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Artificial molecules in coupled and single quantum dots
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An exactly solvable model has been proposed for the artificial molecules composed of two electrons con-
fined in double coupled and single isolated quantum dots. This model allows us to study systematically the
spontaneous symmetry breaking, which results from the electron-electron correlation in the artificial molecules.
By comparing the exact and Hartree-Fock results we have shown that—in the barrier-separated coupled
guantum dots—the correlation increases with the increasing barrier thickness, which leads to the localization of
both the electrons in the different dots, i.e., the vanishing probability of finding both the electrons in the same
dot. In the single quantum dot, the correlation increases with the increasing dot size, which leads to a formation
of a Wigner molecule. We have found a remarkable similarity of the electron density distribution in both the
types of the artificial molecules.
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[. INTRODUCTION applying the path-integral method to the QB*sne obtains
systematic overestimates of the energy of the system with the
A guantum dot(QD), i.e., a nanostructure, in which the Coulomb interaction. Therefore, it is desirable to replace the
electrons are confined in all three space dimensions, is callé@oulomb interaction by some nonsingular effective interac-
an artificial atomt? The electrons confined in the two tion, which could simulate the behavior of the confined-
coupled QD's can form an artificial molecule® The electron system and lead to exact solutigatsleast for the
artificial-molecule states can be formed in the vertiédllgs ~ small number of electrons o
well as laterally coupled QD¥ The nanostructure with the ~ In the present paper, we propose such an effective inter-
vertically coupled QD'’s fabricated by Austireg al® consists ~ €lectron interaction, which allows us to reduce the original
of GaAs, AlGaAs, and InGaAs layers, which were etched tothree-dimensionalB3D) electron problem to the effective, ex-
form a pillar. Along the axis of the etched pilléin the ver- ~ actly solvable, 1D problem. Using this effective interaction
tical direction the confinement potential can be approxi- We obtain the exact solutions for the two-electron artificial
mated by the double-weitriple-barrie) potential. The elec- Molecules in the single isolated QD and double coupled
trons are confined in the QD regions within the two InGaAsQD's. For the single QD, we study the conditions, under
layers by this vertical confinement potential and by the lat-Which the electrons form the Wigner molecule and discuss
eral confinement potential, which is created by the gate voltthe similarity between the artificial molecules created in the
age applied to a side gate electrode. single and double QD's. The paper is organized as follows:
Another class of the artificial molecules can be created irS€ction Il contains the description of the theoretical model
a single isolated QD at high magnetic fi¢fd? If the mag- ~ With the derivation of the effective interaction, Sec. Iil con-
netic field is sufficiently strong, the electrons can be localtains the results, and Sec. IV, the discussion and conclusions.
ized at different sites within the single QD forming a Wigner
molecule*? Il. THEORETICAL MODEL
A theory of artificial molecules in single and double QD’s : Lo .
deals withyfew—electron problems whic?h do not admithxactt We consider the cylindrically symmeiric 3D electron sys-
’ e

solutions even for simple parabolic confining potentials. Sev- m confined in the single isolated QD. We assume the con-

eral approximate methods have been applied to solve thfénement potential to be a sum of lateral parabolit; § and

few-electron eigenvalue problem in the QD’s. These includevertlcal (Uy) confinement potentials, i.e.,

13,14 H H H H 3,15
the Hartree-Foc_KHF), c_onﬂgura;(t)ul)gl-lnteractlomcI), UcondN)=U, (x,y)+U(2). 1)
and local-density approximatibi'®'® methods. The ClI
method with a large number of Slater determinants yieldd=or this separable potential the one-electron wave function is
large matrices that can be exactly diagonalized, which allow& product
us to approach the exact solutidisAnother possible
method to obtain the exact results is based on the real-space ()= (XY)¢(2). 2
mesh technique§™ that provide accurate numerical Solu- The lateral potential is assumed to be parabolic, i.e.,
tions. However, the singularity of the Coulomb potential at
small interparticle distances limits the accuracy of the tech- mwf
niques based on the finite differend@dhe Coulomb singu- U, (xy)= T(X2+y2)’ ()
larity is especially hard to overcome in problems with the
reduced dimensionality, e.g., one-dimensioidD) prob- wherem is the effective electron band mass aad is the
lems, which arise when considering the electrons confined itateral confinement frequency. The ground state wave func-
the 1D QD's(Ref. 11) and quantum wire& Moreover, when tion for the lateral motion has the form
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¥y (x,y)= (28 m)Y%exd — B(x3+y?)], (4) 3 T I

where=muw  /2h. !
Let us consider the electron-electron interaction energy !

e |W(ry,rp)|? |
_ 3. 43 '
U, 477808f d°r.d°r, ot (5) \

whereW¥ (r,r,) is the two-electron wave function ardis

the static dielectric constant. For the parabolic lateral poten- y
tial and under assumption that the vertical confinement is
considerably weaker than the lateral one, we can separate the
ground-state two-electron wave function as follows: 1

W(ry,ro) = (X1,Y) ¥ (X2,Y2) ¥ (21,21). (6)

Substituting this form into Eq(5) and integrating over the
lateral coordinates, we obtain

* * 0 1 2 3
U= f_ dzlf_ d22|‘1'||(21,Zz)|2Ueff(|Zl_Zz|)- (7) ¢
In Eq. (7), Uy is the effective 1D electron-electron interac-  FIG. 1. Effective (solid curve and Coulomb(dashed curve
tion given by electron-electron interaction potentials as functions of electron-
electron distance {. Length is expressed in unitsl,
e’(wp)*? o =(2h/mw,)*2 energy in unitfiw, , and we take oRp=%w, ,
Uer(l2]) = Werfcx(ﬁ 12]), (8 whereRy is the donor rydberg.
where The effective electron-electron interacti@) allows us to
B 5 simplify considerably the two-electron problem, which—in a
erfex() = exp({%)erfa({) ©) general case—depends on the six coordinates. After separat-

is the exponentially scaled complementary error functfon. ing the lateral and vertical motions and using Eg), we can
The effective interaction enerd$) is essentially Coulombic reduce the number of independent coordinates to two. The
at large interelectron distances but—contrary to the Coulomigorresponding two-electron Hamiltonian has the form
potential—does not possess any singularity at zero distance

(Fig. 1). At small distances, the effective interaction is much h? ( P 9

softer than the Coulomb interaction and possesses a cusp, H(Z1.Z2)== 5| —+ ——|+U)(z1) +U)(z2)

which stems from the averaged Coulomb singularity at ori- 92y 97,

gin. The nonsingular effective interacti¢8) can be used to +Uei(|z1— 2]+ 2000, (10
obtain exact solutions for the few-electron problems in the

QD’s. where the last term is the ground-state energy of the two

The assumption of the separated form of wave functiomoninteracting electrons in the two-dimensio(2D) lateral
(6), under which Eq(8) has been obtained, means that theparabolic confinement potential. The two-electron eigenvalue
energy-level differences for the quantized motion in the problem with the Hamiltoniari10) is a unique two-electron
direction are much smaller than the corresponding differproblem, which can be solved exactly, i.e., with the correla-
ences for the lateral motion. In this case, several low-energtion effects entirely taken into account. This solution has
levels of the quantized vertical motion correspond to thebeen obtained by the iterative extraction-orthogonalization
ground state of the lateral motion. This assumption is welmethod?® which allows us to achieve an arbitrary precigibn
fulfilled in the QD formed from a section of a quantum for the eigenvalues and wave functions. In the present paper,
wire 29 for which the vertical extension of the QD is much we require that the uncertainty of the calculated energy lev-
greater than the lateral one. The vertically coupled doublels does not exceed 10 meV. Therefore, we can regard
QD’s® with the same(or comparablesize provide another these solutions to be exact in the framework of the present
possible physical realization of the model system considerednodel which is based on the assumption of parabolic lateral
In the nanostructure made of the two QD’s with the compa-confinemen{3) and separability of wave functiof®).
rable size, the main contribution to the two-electron wave In the present approach, the one-electron approximations
function stems from the single-QD one-electron wave func-are not necessary. Instead, we can study the quality of the
tions, which are associated with comparable energies. Theapproximate methods based on the application of the one-
the corresponding energy differences for the vertical motiorelectron wave functions, e.g., HF method, by comparing the
are much smaller than those for the lateral motion and thexact and approximate solutions. The exact solutions of the
excited states of the lateral motion only slightly affect thetwo-electron problem—in contrast to the HF solutions—
two-electron ground state. fully take into account the electron-electron correlation. In
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0 2 4 b [nm] 6 8 10 (dashed curyemethods for the singlet state of two electrons con-

fined in the double QD with barrier thicknebsThe errors for the
FIG. 2. Lowest singletlower solid curve and triplet (upper  triplet state of both the HF methods are shown by the dotted line.

solid curve energy levels of the two-electron system confined in

the double QD as functions of barrier thicknésshe UHF(RHF) fairly well reproduced by the UHF method, while the RHF

results for the singlet state are drawn by the dagdetted curve.  approach considerably overestimates the energy of the sin-

For the triplet state the results of both the HF methods are the sanglet state. Fob>4 nm the RHF method yields the incorrect

and are shown by the dashed curve with crosses. ordering of the energy levelshe singlet energy level is er-
roneously predicted to lie above the triplet Ievdlhe results

the present paper, we have performed the calculations applyor the triplet state obtained by both the HF methods are the

ing the two versions of the HF method, namely, the restrictedame and are almost indistinguishable from the exact results.

HF (RHF) and the unrestricted HRUHF) method. In the We have studied the accuracy of the HF methods by esti-

UHF method for all the states and in the RHF method for themating the error\E = |Egyae— Enel, WhereE,r is the HF

triplet states, each one-electron orbital is independently optienergy estimate obtained by either the RHF or UHF method.

mized for each spin state. When calculating the singlet stategsually, the correlation energy is defined Bs,,,= — AE

by the RHF method, the one-electron orbitals are the samgith E,- calculated by the RHF method. For the triplet state

for the different spin states. both the UHF and RHF methods are equivalent and lead to
the identical results marked by HF in Figs. 2 and 3. In this
Ill. RESULTS state, the HF energy estimates are nearly exact, i.e., the cor-

relation error is negligibly small at all interdot distances. The
inaccuracies of the HF methods appear for the singlet state.
The calculations have been performed for the doubleThe error of the UHF method increases wihitfor smallb, is
barrier vertical confinement potential with the 12-nm well maximal for b=3 nm, and decreases for larger For b
width and depth—240 meV (the energy is measured with >6 nm the UHF results become indistinguishable from the
respect to the conduction-band minimum of the barrier maexact ones. On the contrary, the RHF energy estimates are
terial). Moreover, we take om= 0.064m,, for Ing o=Ga, gAS, remarkably distinct from the exact results at hlland the
£=12.9, andiw, =6 meV. The material parameters used in RHF error monotonically increases with
the calculations correspond to the vertically coupled QD’s of In order to get a more deep physical insight into the prop-
Austing et al?® erties of the system considered, we have plotted in Fig. 4 the
We study the artificial-molecule states, which are formedcontours of the two-electron probability density, i.e.,
in the two vertically coupled QD’s separated by the potential ¥ (z;,z,)|?, for the single{Fig. 4] and triplet{Fig. 4(b)]
barrier with thickness. By varying b we can change the states. The cade=0 corresponds to the single QD, in which
coupling between the QD’s. Figure 2 shows the exact, UHRhe two joined potential wells form the single potential well
and RHF results for the lowest-energy singlet and tripletwith the double width. For the singlet state ahe-0 the
states. For the strongly coupled QD’s, i.e., flse6 nm, the electrons are localized nearly at the center of the single QD
singlet and triplet states are nondegenerate and the singledf. Fig. 4(a)]. Nevertheless, the interelectron repulsion
state is the ground state of the system. Bor6 nm, i.e., in  slightly shifts the electrons in the opposite directions, which
the weak coupling regime, the singlet and triplet energy levis visible as a small deformation of the exact two-electron
els become degenerate. We note that the exact results amave function. This is a trace of the weak electron-electron

A. Coupled quantum dots
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for the potential barrier with the sufficiently large height and
thickness the electrons become spatially separated and local-
ized in the different QD’s. The correlation is of crucial im-
darker the shade of gray, the larger the electron density. The whit ortance in the sepqratlor) of the electrons between the dif-
areas correspond to the electron probability density equal to zero.erent d,OIS' In the single Isolat(?d QD, the elec.tror}-electron
correlation can also be responsible for the localization of the
correlation. If we introduce the barrier with the increasingelectrons. In order to show this effect we have performed the
thickness, the correlation increases and the electrons can lalculations for the two-electron system in the single QD
found with the increasing probability in the different QD’s. with the varying size and with the same values of the other
Forb=6 nm the probability of finding both the electrons in parameters as those for the double QD. Figure 5 shows
the same QD yanishes. In this case, the correlation is_strong‘qat_sim”aﬂy as for the double QD—the singlet state is the
These properties of the exact two-electron wave function arground state of the system and the singlet and triplet states
reproduced by the UHF method. However, the red|§tr|but|orbecome degenerate if the size of the QD exceed20 nm.
of the electrons over the different QD's occurs with SOome jyq in the double QD, the results for the singlet state are

“delay” when the barrier thickness increases. This leads tQ‘airIy well reproduced by the UHF method, while the RHF

B e o Sland I isapbesr approsch leads 1o a considerable overestmation of he

densities are iﬁdistin uishable. The ground-state wave fumground-state energy, which increases with the increasing size
9 ' 9 of the QD. Moreover, the RHF method erroneously predicts

tion [cf. exact and UHF results in Fig(#] does not possess r{he triplet state to be the ground state for the QD’s of a large

the symmetry of the confining potential, i.e., the one-electrort. . - < e
parity is not conserved. Only the total parity, which corre-Size. The corresponding errors are displayed in Fig. 6. Simi-

sponds to the simultaneous inversion of the coordinates dfi"ly as in the coupled QD’s, the error of the UHF method for
both particles, is well defined for the artificial molecules con-the singlet state grows with the size of the QD, reaches the
sidered. However, the RHF wave functions are additionallynaximum atZ=75 nm, and next decreases to zero. The
symmetric with respect to the one-electron parity, whichRHF error is a monotonically increasing function of the QD
leads to the erroneous prediction of equal probabilities ofize. In the triplet state, the HF error is negligibly small.
finding one or two electrons in the same QD. In the triplet Let us look at the electron density distribution in the
state, the correlation is negligibly small and the exact and HESingle QD(Fig. 7). If the size of the dot increases, the elec-

FIG. 4. Contours of the two-electron probability density in the
coupled QD’s as functions af; andz, (in nm) for the singlet(a)
and triplet(b) states for several values of barrier thicknes§he

wave functions are identicéFig. 4(b)]. trons in the singlet state tend to be localized at the different
_ _ _ sites of the QD[cf. exact results in Fig. (@ for Z
B. Wigner molecules in a single quantum dot =70 nm]. The results foZz=70 and 100 nm can be inter-

In the double QD, the localization of electrons changes ifPreted as a creation of precursors of Wigner molecthé&lf
we change the repulsive potential of the barrier. As a result/ is larger than~120 nm, the electrons become strongly
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localized at the different sites within the QD. In this case, the
Wigner moleculé? is formed with the clearly separated
electrons. The Wigner molecules can be created in the singlet B _
[Fig. 7(@] as well as in the triplefFig. 7(b)] state. It is FIG._?. Contours of th_e two-electron _electron probal_alllty density
interesting that—contrary to the magnetic-field induced for-in the single QD as functions a andz, (in nm) for the singlet(@)
mation of the Wigner molecul®—no external field is nec- and triplet (b) states for several values of dot siZe Note the
essary to create the Wigner molecules of this kind. In the!
present case, the formation of the Wigner molecules results
from the strong electron-electron correlation. This effect islateral direction, which is qualitatively similar td ¢ [Eq.

well reproduced by the UHF methddf. Figs. 5 and § but (8)]. However, in the calculations, the authGrpreferred to

not by the RHF method. Comparing Figatwith Fig. 7(a) use the simpler model interaction, which at small
and Fig. 4b) with Fig. 7(b) we note the remarkable similar- distances—on the contrary to E(B)—possesses the flat,

ity of the electron density distributions in the artificial mol- parabolic-like maximum. The parabolic form is also charac-
ecules formed in the double and single QD’s. teristic for the model interaction proposed by Johnson and
Payne?® According to the derivation presented in Sec. Il and
that given by Priceet al,?® the effective interaction should
have a cusp at zero interelectron distafefe Fig. 1), which

We have considered the 3D problem of interacting electesults from the Coulomb singularity at origin.
trons in double and single QD’s. The assumption of the The problem of two electrons in the quasi-1D coupled
harmonic-oscillator potential for the lateral confinemé)t QD’s was considered by Tamborenea and M&iwyho,
and the separability of wave functidf) allows us to reduce however, did not derive a closed formula for the effective
the 3D problem to the 1D problem. The effective electron-interaction. Jaureguét al!! investigated the formation of
electron interaction obtained is a smooth nonsingular funcWigner molecules in quasi-1D QD’s using the model
tion of the interelectron distance with the long-range Cou-interaction?® Yannouleas and Landmadiscussed the spon-
lomb tail. These properties of the effective interaction enabléaneous symmetry breaking in the single and laterally
us to solve the two-electron problem exactly. In the presentoupled QD’s applying the two-center-oscillator confine-
paper, the effective interaction has been applied to the twoment. The results for the planar two-dot systeswhibit a
electron artificial molecules created in the double and singleualitative similarity to the present results for the vertically
QD’s. coupled QD's.

In quantum wells, the effective electron-electron interac- The effective electron-electron interaction proposed in the
tion has been studied by Pria al?® The author® per-  present paper can be used together with the model confine-
formed the averaging over the electron ground state in thenent potential, which is sufficiently flexible to account for
vertical direction and obtained the effective interaction in thethe realistic confinement. In Ref. 27, we have proposed the

ifferent length scales for differe@t The gray scale is as in Fig. 4.

IV. DISCUSSION AND CONCLUSIONS
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power-exponential confinement potential, which allows us tacreases with the increasing thickness of the barrier layer
model the properties of real QD’s. separating the dots. This means that—in some sense—the
In order to study the correlation effects we have per-correlation can be artificially tuned by changing the thick-
formed calculations with the use of both the RHF and UHFness of the barrier layer. Therefore, in the double coupled
methods. We have found that the UHF method fairly accuQD nanostructure, we can intentionally change the electron-
rately takes into account the electron-electron correlationglectron correlation from weafkor the thin barriey to strong
The deviations of the UHF results from the exact ones occuffor the thick barriey. The same tuning of the correlation can
only for the the small barrier thickness in the double QD and?® reéalized in the single QD by changing its size.
for the small size of the single QD. If the barrier thickness in In summary, we ha"%’ prqposed the model for,the 3D elec-
the coupled QDglinear size of the single QOncreases, the tron systems confined in single and double QD’s, which al-
UHF results become indistinguishable from the exact oneé.owS us to _ol:_)taln r_1ur_ner|cal solutions of the arbitrary re-
In particular, both the exact and UHF methods predict thequwed precision within the present mode_l for_ the tV.VO'
formation of the Wigner molecule in the single QD with the electron artificial molecules. The effective interaction

sufficiently large size. When the Wigner molecule is createdObta'ned in the present paper can also.be applied tq_the
gnany—electron systems. We have determined the conditions

under which the electrons are strongly localized in the dif-

other energy contributions. In this case, the confining- o . .
potential symmetry of the two-electron wave function is bro_ferent QD’s in the double-dot structure and in the spatially

ken, which leads to the localization of the electrons at theseparated parts of the single QD. We haye obtained accurate
different sites of the QD. Due to the application of the same esults that_ allow us to study systematically the formation
electron orbitals for the singlet states, the RHF method doe"é,md evolution of Wigner molecules from the weakly to

not allow for this symmetry breaking and does not lead to the;trong{;ly dc.otrr%latt'ed s'ysl;et[r;]si we hafv?hfount(;if_thalt thel eIe(I:tron
formation of the Wigner molecule. ensity distribution in both types of the artificial molecules

It is interesting that the spontaneous breaking of the symg’FUdied show a remarkable similarity. Additionally, we have
metry of the confining potential leads to the very similar?ﬁsiﬂﬁse&:r;e actc;]urgcly ?jf t?e tE": metr:ods alltndf potlﬂte(tj out
electron density distributions in the different types of the Iat € Wi me ci ela S Od fe ?ﬁaiwresﬁj St or etwo—
artificial molecules studied, namely, the artificial molecules® €CoN Wigner moieculies and for the two-electron systems

formed in the double coupled QD’s and the Wigner mol-Conflned in the weakly coupled QD’s.
ecules formed in the single isolated QD. In both the cases,
the redistribution and localization of the electrons results
from the electron-electron correlation, which becomes strong This work has been partly supported by the Polish Gov-
for the nanostructures of the sufficiently large size. ernment Scientific Research Commiti@&N) under Grant

In the coupled QD’s, the electron-electron correlation in-No. 5P03B 4920.

ACKNOWLEDGMENT

*Email address: adamowski@ftj.agh.edu.pl 145, Bednarek, B. Szafran, and J. Adamowski, Phys. Re®4B
1p. A. Maksym and T. Chakraborty, Phys. Rev. L&, 108 195303(2001).

(1990. 15 M. Eto, J. Appl. Phys36, 3924(1997.
2M. A. Kastner, Phys. Toda¢6(1), 24 (1993. 160, steffens, U. Rssler, and M. Suhrke, Europhys. Led2, 529
3G. W. Bryant, Phys. Rev. B8, 8024(1993. - (1998.
4. J. Palacios and P. Hawrylak, Phys. Re\6B 1769 (1995. A. Wojs and P. Hawrylak, Phys. Rev. 3, 10 841(1996.

183, R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B

5
C. Yannouleas and U. Landman, Phys. Rev. [82£5325(1999. 50, 11 355(1994),

6
7B. Pgrtoens and F. M. Peeters, Phys. Rev. Iaattt..4433(200(). 197, |, Beck, Rev. Mod. Phys72, 1041 (2000).
M. Pi, A. Emperador, M. Barranco, and F. Garcias, Phys. ReV. B0p | Tamborenea and H. Metiu, Phys. Rev. L88,. 3912(1999.

63, 115316(2001. 21, p. Pokatilov, V. M. Fomin, J. T. Devreese, S. N. Balaban, and
8M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S. 5. N. Klimin, Phys. Rev. B51, 2721(2000.

Tarucha, and D. G. Austing, Phys. Rev. L&, 066801(2001). 22y, L. Luke, The Special Functions and Their Approximatipns
°D. G. Austing, T. Honda, K. Muraki, Y. Tokura, and S. Tarucha,  Vol. 1 (Academic, New York, 1969

Physica B249-251, 206 (1998. 23R. Kosloff and H. Tal-Ezer, Chem. Phys. Lei27, 223(1986);
105, Nagaraja, J.-P. Leburton, and R. M. Martin, Phys. Re60B D. Jovanovic and J.-P. Leburton, Phys. RevA® 7474(1994.
8759(1999. 248 szafran, J. Adamowski, and S. Bednarek, PhysidAraster-
K. Jauregui, W. Hasler, and B. Kramer, Europhys. Le®4, 581 dam 5, 185(2000.
(1993. 25R. Price, X. Zhu, S. Das Sarma, and P. M. Platzman, Phys. Rev. B
12, szafran, S. Bednarek, and J. Adamowski, Phys. Re87B 51, 2017(1995.
045311(2003. 28N. F. Johnson and M. C. Payne, Phys. Rev33819(1992.
B -M. Miller and S. E. Koonin, Phys. Rev. B4, 14532 2T\, Ciurla, J. Adamowski, B. Szafran, and S. Bednarek, Physica E
(1996. (Amsterdam 15, 261 (2002.

205316-6



