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Resonant scattering in random-polymer chains with inversely symmetric impurities
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National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
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In the frame of the tight-binding approximation, we study the electronic transport and delocalization in
one-dimensional random-polymer chains, where the impurity clusters are randomly distributed in the host
monatomic chain and the impurity atoms possess inverse symmetry in each cluster. As an example, the
asymmetric trimer case is presented first. The resonant energy is obtained analytically, which has been dem-
onstrated by the numerical calculation on the electronic transmission. According to the zero Lyapunov expo-
nent at the resonant energy, we confirm that electronic delocalization, indeed, exists in the model. Moreover,
the undecayed electronic wave functions are shown near the resonant energy. Thereafter, we generalize the
asymmetric trimer model to a polymer one with inversely symmetric impurities. The electronic delocalization
and resonant scattering have been found in this generalized polymer model. The result is beyond the common
viewpoint that the internal mirror symmetry in the defects is the necessary condition for the presence of
delocaliztion in such correlated systems. The polymer model presented here may provide a way to make
different types of polymers with high electronic conductivity.
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I. INTRODUCTION

In 1958, Anderson presented the electronic localizat
theorem based on the model with site-diagonal disorder.1 The
exponentially localized eigenstates in one-dimensional~1D!
disordered systems have been demonstrated by the expo
tial decay of the electronic transmission coefficients.2,3 In the
last decade, many experimental and theoretical studies
provided deeper insights into the problem of electronic loc
ization. It is found that extended states can exist in the s
tem with correlated disorder. One typical case is the rand
dimer model~RDM! introduced by Dunlap, Wu, and Phillip
in 1990.4 In the RDM, one of the two site energiesea andeb
is randomly assigned to pairs in the lattice, and an invaria
nearest-hopping integralV connects the sites. Provided th
uea2ebu<2V, there areAN extended electronic states in th
RDM with lengthN; otherwise localization occurs. Recentl
much attention has been paid to the random-dimer mo
For example, theAN rule of extended states has been ext
sively discussed by the perturbation calculation on the d
sity of states, the Lyapunov exponent, the Laudauer the
on the conductance, and also the electronic wave function5–8

The experimental evidence of the delocalization has b
found in the random-dimer semiconductor supperlattice,9 and
the RDM has been successfully applied to explain the h
conductivity of some polymers.10,11 In 1993, Phillips pro-
posed an ultimate generalization of the RDM, i.e., the twin
disordered system.12 Up to now, the RDM has been genera
ized to the random-trimer, random-dimer-trimer, and ev
the random-polymer model.13–15The widely accepted under
standing of the electronic delocalization in RDM-like sy
tems is that the impurity possesses internal mirror symme
and this short-range correlated disorder can make the lo
ization length comparable to the length of the system at so
specific energies, which are called ‘‘resonant energies.’’4,10,11

However, the investigation on the ‘‘asymmetric dimer’’ h
shown that the internal mirror symmetry is not a necess
condition for the presence of the electronic delocalization
0163-1829/2003/67~20!/205209~6!/$20.00 67 2052
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RDM,16 instead, the short-range spatial correlation plays
important role in such kind of systems.17–20

In this paper, the electronic resonant scattering is inve
gated in the 1D random-polymer chain, where the inter
structure of the impurity cluster is considered to possess
inverse symmetry. It is found that electronic delocalizati
can indeed take place in this system. This paper is organ
as follows. In Sec. II, we analytically discuss the reson
energy of a host monatomic chain inserted by a single as
metric trimer~AST!. In Sec. III, the transmission coefficien
of the AST model is presented numerically. In Sec. IV, t
electronic delocalization in the AST model is discuss
based on the Lyapunov exponent and the electronic wa
function behavior. In Sec. V, we generalize the AST mode
the random-polymer chain with impurities possessing an
verse symmetry, i.e., random antisymmetric polymer~RAS
polymer!, and we rigorously prove the presence of electro
delocalization in this generalized model. Finally, a summ
is given in Sec. VI.

II. THE THEORETICAL ANALYSIS

Under the tight-binding approximation, the Schro¨dinger
equation for a one-dimensional chain is

~E2e j !Cj2Vj , j 11Cj 112Vj , j 21Cj 2150, ~1!

wheree j is the site energy,Cj is the amplitude of the elec
tronic wave function on thej th site, andVj , j 61 is the
nearest-hopping integral. We restrict ourselves to the on-
model, that is,Vj , j 61 is taken as the same constantV,
wherease j depends on the atom that occupies thej th site. It
is assumed that the host chain is only composed of atoma.
From Eq.~1!, energyE of the monatomic host chain satisfie

E2ea52V cosk, ~2!

wherek is the wave vector. That is, the allowed energy m
locate in the range@22V1ea,2V1ea#.

Equation~1! is easily rewritten in the matrix form
©2003 The American Physical Society09-1
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S Cj 11

Cj
D 5M̄ j S Cj

Cj 21
D , ~3!

with

M̄ j5S ~E2e j !/V 21

1 0 D , ~4!

whereM̄ j is the transfer matrix that correlates the adjac
site amplitudesCj andCj 61.

Now we consider the electronic transmission in the c
that only a single impurity is inserted into the host mo
atomic chain. Provided that a defect occupies the sites f
n11 to n1m, the amplitude of the Bloch wave with a sp
cific wave vectork at both sides of the defect follows as

Cj5H eik j1re2 ik j ~ if j <n11!

teik j ~ if j >n1m!.
~5!

Here,r and t are the reflection and transmission amplitud
respectively. The correlation between the wave amplitude
both ends of the defect can be written in the matrix form

S Cn1m

Cn1m21
D 5 P̄mS Cn

Cn21
D , ~6!

where P̄m is the total transfer matrix across the impurity.
satisfies
t i
qs

tri
rk

at

he

20520
t

e
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m

,
at

P̄m5 )
j 5n

n1m21

M̄ j . ~7!

For a givenP̄m , the reflection amplituder can be written
as11

r 52j2n
aTG P̄ma

aTG P̄ma*
, ~8!

where j5eik,G5(21 0
0 1), a5(1

j), and aT is the transpose
of a.

In the AST model, the impurity has the form asebeaec .
Note that the middle atom of the defect is the element of
host chain. The total transfer matrix across a single A
ebeaec is

P̄m5S C 21

1 0 D S A 21

1 0 D S B 21

1 0 D
5S ABC2B2C 2AC11

AB21 2A D[S u v

w xD , ~9!

whereA5(E2ea)/V, B5(E2eb)/V, and C5(E2ec)/V.
Thus, the reflection coefficient can be given by
R5ur u25
24vw cos2k12~u2x!~v2w!cosk1~u2x!21~v1w!2

24ux cos2k12~u2x!~v2w!cosk1~u1x!21~v2w!2
. ~10!
r-
be

th
of

ht
be
It is not difficult to deduce that when

ea5
eb1ec

2
~11!

and

E5ea , ~12!

we can obtainR50. Therefore, Eqs.~11! and ~12! are the
necessary conditions for the unit transmission coefficien
the case of the AST model. It is important to note that E
~11! and ~12! are independent of the hopping integralV.
Moreover, if a definite concentration of such asymmetric
mersebeaec has been added into the host chain, a rema
able property is that the resonant energy always existsE
5ea for random values ofeb andec in each trimerebeaec ,
as long as Eq.~11! is satisfied. For example, ifea51.0, we
can chooseeb50.5 and ec51.5 for the first defect, then
chooseeb520.2 andec52.2 for the second defect, . . . , and
so on. If Eq. ~11! is always observed in each defect, t
reflection coefficient certainly vanishes atE5ea51.0.
n
.

-
-

III. THE NUMERICAL CALCULATION

If a series of impurities is randomly inserted into the o
dered host chain, the electronic-transport property can
studied by the numerical calculation of the transmission~or
reflection! coefficient. Generally, the sample chain of leng
N is embedded in an infinite monatomic chain composed
atoma.21 Then, in the conduction region to the left and rig
of the sample chain, the normalized wave functions can
written as

Cj5H eik j1 f re
2 ik j ~when2`, j <1!

f te
ik j ~whenN11< j ,`!.

~13!

Here, we define a new transfer matrixQ̄(N) by

S f t

i f t
D 5Q̄~N!S 11 f r

i ~12 f r !
D , ~14!

where

Q̄~N!5s21S̄~N!s, ~15!
9-2
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s5S cosk sink

1 0 D , ~16!

andS̄(N) is the total transfer matrix across the sample ch
of lengthN, i.e., S̄(N)5) j 51

N M̄ j . BecauseQ̄(N) is unimo-
dular, the transmission coefficient satisfies21

T5
4

21 (
i , j 51

2

uQ̄~N! i , j u2
. ~17!

Based on Eqs.~15!–~17!, the transmission coefficient as
function of energy can be calculated numerically. We ta
the length of the sample chainN512 000 and the concentra
tion of defectsp50.5 ~the strength of disorder is maximum
under this condition! in all following calculations. The trans
mission coefficients of the AST model are shown in Fig.
In Fig. 1~a!, an obvious transmission peak occurs atE5ea
51.0. Here, the parameters are set asea51.0, eb50.0, ec
52.0, andV51.0; therefore, the constraint condition, E
~11!, is satisfied. If Eq.~11! is not satisfied, there is indeed n
resonant transmission, as shown in Fig. 1~b!, where the pa-
rameters are the same as those in Fig. 1~a!, excepteb50.1.
Actually, in the case of resonant transmission, the width
the transmission peak can be enlarged if the hopping inte
V is increased. The reason is that whenV increases, the over
lap between site Wannier orbitals is enhanced. Conseque
the width of the transmission peak will increase, but the re
nant energy does not change. Figure 1~c! shows a wider peak
aroundE5ea51.0 whenV is increased to beV52.0 and
other parameters are kept same as in Fig. 1~a!. Moreover, if
we increase the strength of the disorder in the AST system

FIG. 1. The transmission coefficientT as a function of energy
for the AST ebeaec with N512 000. ~a! ea51.0, eb50.0, ec

52.0, andV51.0. AroundE51.0, there is a symmetric peak in th
transmission spectrum.~b! Electronic transmission greatly de
creases ifeb50.1, while other parameters are the same as thos
~a!. ~c! The width of the peak increases whenV52.0 with other
parameters are the same as in~a!. ~d! ea51.0, V51.0, eb and ec

randomly distribute in the range@0,2#, respectively. Note that Eq
~11! is always satisfied in each trimer.
20520
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setting botheb and ec randomly distributed in the interva
@0,2#, but letting Eq.~11! be always satisfied in every defe
ebeaec , it is found that the transmission spectrum still po
sesses the resonant peak aroundE5ea51.0 @as shown in
Fig. 1~d!#.

IV. THE LYAPUNOV COEFFICIENT AND THE WAVE
FUNCTION

It is known that in the disordered system, the involv
matrices possess random elements, but statistical prope
are available. One important quantity to reveal the phys
problem in the theory of random matrices is the Lyapun
coefficientg, which has the following expression:

g5 lim
N→`

1

N
ln

uS̄~N!z~0!u
uz~0!u

, ~18!

where S̄(N) is the total transfer matrix across the samp
chain and the initial vector isz(0)5(C0

C1). According to the

Furstenberg theorem,22 the limit in Eq. ~18! exists and con-
verges to its mean value for long chains. In fact, t
Lyapunov coefficientg is directly related to some physica
quantities, such as the localization length and the densit
states in electronic and vibrational systems, and the free
ergy in random Ising models, etc. The localization length
inverse to the Lyapunov coefficient. When the length of t
sample tends to infinity, the zero Lyapunov coefficient c
responds to delocalized states with infinite localized leng
Therefore, dependent on the Lyapunov coefficient, we
obtain the overall behavior of the electrons, i.e., we c
know whether they are localized or delocalized at spec
energies in the system.

The Lyapunov coefficientsg of the AST chains are plot-
ted in Fig. 2. It can be seen from Fig. 2 that around t
corresponding resonant energy in each chain,g is very close
to zero though the fluctuation exists. Actually, the fluctuati
can be eliminated whenN increases, and the Lyapunov co
efficient tends to a finite value for every eigenenergy of
system. Therefore, the zero Lyapunov coefficient appear
the resonant energy where the localized length is infin

in

FIG. 2. The Lyapunov coefficientg as a funtion of the energy
for the AST model with N512 000. ~a! ea51.0, eb50.0, ec

52.0, andV51.0. ~b! ea51.0, V51.0, eb and ec randomly dis-
tribute in the range@0,2#, respectively. Note that Eq.~11! is always
satisfied in each trimer.
9-3
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FIG. 3. The periodiclike wave function near the resonant energy for the AST model withN53000.~a!–~c! In the vicinity of the resonant
energy, the electronic wave function consists of two Bloch-like waves. Here,ea51.0, eb50.0, ec52.0, andV51.0. ~d!–~f! One of the
Bloch-like waves persists, while the other turns to be chaotic. Here,ea51.0, V51.0, eb and ec randomly distribute in the range@0,2#,
respectively.
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Under this condition, the electronic wave function cann
‘‘feel’’ the existence of the defects, and the wave funtion c
propagate through the chain without decay. It is differe
from the exponentially localized states occurring in the g
eral Anderson model.

It is worthwhile to give a descriptive picture of the del
calized state at resonant energy. The spatial distribution
electronic wave functions is considered to be a direct
solid evidence of localized or delocalized states in lo
dimensional systems. The wave function near the reso
energy is shown in Fig. 3. It is found that when the eigen
ergy is in the vicinity of the resonant energyE5ea51.0, the
electronic wave function consists of two Bloch-like wav
@as shown in Figs. 3~a!–3~c!#, and the periodicity of the
wave function changes in different eigenvalues. More in
estingly, if eb andec are randomly distributed in the interva
@0,2#, respectively, one of the Bloch-like waves persis
while the other turns to be chaotic@as shown in Figs. 3~d!–
3~f!#. The chaos originates from the randomness of the
energy in the trimer impurity.

V. RANDOM-POLYMER CHAINS WITH IMPURITIES
POSSESSING AN INVERSE SYMMETRY

Equation~11! indicates that the site energy antisymmet
cally distributes around the center atoma in the trimer
ebeaec . Actually, the above discussion can be generalized
a more common case, i.e., the random-polymer chain w
inversely symmetric impurity~RAS polymer!. The impurity
cluster contains three parts: the central part consists
2k21 (k>1) host atomsa; the left part consists ofj ( j
>1) atoms with site energies distributed randomly
‘‘ e1e2•••e j ’’; and the right part ‘‘e j8•••e28e18’’ is the inver-
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sion of the left one, that is,ea5(e11e18)/25(e21e28)/2
5•••5(e j1e j8)/2 is satisfied. Thus, the total transfer matr
across the impurity cluster in the RAS polymer model fo
lows as

P̄m5 P̄L• P̄C• P̄R , ~19!

whereP̄R is the transfer matrix across the leftj sites of the
polymer, P̄C is the transfer matrix across the center 2k21
atomsa, andP̄L is the transfer matrix across the rightj sites
of the polymer. It is obvious that

P̄C5S A 21

1 0 D 2k21

, ~20!

where A5(E2ea)/V. Because the site energy within th
impurity has an antisymmetric distribution around the cen
atom, it is ready to derive that whenE5ea , P̄R and P̄L can
be written, respectively, as

P̄R5S D j 21

1 0 D •••S D2 21

1 0 D S D1 21

1 0 D[S X Y

G HD
~21!

and

P̄L5S 2D1 21

1 0 D S 2D2 21

1 0 D •••S 2D j 21

1 0 D
[~21! j S X G

Y HD . ~22!

After substituting Eq.~19! by Eqs.~20!–~22!, the total trans-
fer matrix across the RAS polymer can be rewritten as
9-4
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P̄m5~21! j S X G

Y HD ~21!k21S A 21

1 0 D S X Y

G HD
5~21! j 1k21~HX2GY!S A 21

1 0 D . ~23!

Using the property of unimodular matrix, finally we obtain

P̄m5~21! j 1k21S ~E2ea!/V 21

1 0 D . ~24!

That is, the matrixP̄m turns to be proportional to that of th
ordered system.

As we know, the reflection coefficient will vanish onl
when the matrixP̄m is proportional to the unit matrix, or the
transfer matrix of the ordered system, or some linear com
nations of both.11 In the case that the site energy within th
impurity has an inverse symmetry around the central h
element atoms, the total transfer matrixP̄m across the impu-
rity can be simplified to the transfer matrix of the order
system atE5ea . Consequently, the corresponding reflecti
coefficient is zero. Therefore, we reach a general conclu
that if the site energy within the impurity cluster has an a
tisymmetric distribution around the host element atoms,
resonant transport and electronic delocalization will de
nitely take place at the electronic energy that equals the
energy of the host atom. This result is beyond the gen
understanding that the internal mirror symmetry in the
fects is the necessary requirement for the presence of d
calization in RDM-like systems. Moreover, when the numb
of central host atoms is large enough, the impurity clus
seems to be a cluster of two isolated random defects tha
separated by a long periodic chain. However, the reson
scattering still exists due to the intrinsic correlation det
mined by the structure of the impurity. In this case, the el
tronic delocalization in the RAS polymer may be similar
the delocalization in the 1D Anderson model with a lon
range correlated disorder.23

The RAS polymer model presented here is useful in
derstanding the high electronic conductivity of some po
mers. Generally speaking, polymers are nonconduct
However, chemically doped polymers have shown a dra
enhancement on electronic conductivity, which shows
presence of the insulator-metal transition in some sense
we know, the random-dimer model has succeeded in expl
ing the conductivity of polyaniline.10,11Our model of random
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VI. SUMMARY

Based on the tight-binding approximation and the on-s
model, we have investigated the electronic transport and
localization in a random-polymer model, where the impur
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resonant transport and electronic delocalization can t
place in such systems. This result does not agree with
general viewpoint that the internal symmetrical structure
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calization in the RDM-like system. Furthermore, the RA
polymer model is valuable to understand the conduct
mechanism of some polymeric materials, and it may prov
a method to produce different types of polymers with hi
electronic conductivity.
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