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Resonant scattering in random-polymer chains with inversely symmetric impurities
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In the frame of the tight-binding approximation, we study the electronic transport and delocalization in
one-dimensional random-polymer chains, where the impurity clusters are randomly distributed in the host
monatomic chain and the impurity atoms possess inverse symmetry in each cluster. As an example, the
asymmetric trimer case is presented first. The resonant energy is obtained analytically, which has been dem-
onstrated by the numerical calculation on the electronic transmission. According to the zero Lyapunov expo-
nent at the resonant energy, we confirm that electronic delocalization, indeed, exists in the model. Moreover,
the undecayed electronic wave functions are shown near the resonant energy. Thereafter, we generalize the
asymmetric trimer model to a polymer one with inversely symmetric impurities. The electronic delocalization
and resonant scattering have been found in this generalized polymer model. The result is beyond the common
viewpoint that the internal mirror symmetry in the defects is the necessary condition for the presence of
delocaliztion in such correlated systems. The polymer model presented here may provide a way to make
different types of polymers with high electronic conductivity.
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[. INTRODUCTION RDM, ¢ instead, the short-range spatial correlation plays an
important role in such kind of system&.%°

In 1958, Anderson presented the electronic localization In this paper, the electronic resonant scattering is investi-
theorem based on the model with site-diagonal discr@@e  gated in the 1D random-polymer chain, where the internal
exponentially localized eigenstates in one-dimensighBl) structure of the impurity cluster is considered to possess an
disordered systems have been demonstrated by the exponénverse symmetry. It is found that electronic delocalization
tial decay of the electronic transmission coefficiett$n the  can indeed take place in this system. This paper is organized
last decade, many experimental and theoretical studies haws follows. In Sec. Il, we analytically discuss the resonant
provided deeper insights into the problem of electronic local-energy of a host monatomic chain inserted by a single asym-
ization. It is found that extended states can exist in the sysmetric trimer(AST). In Sec. lll, the transmission coefficient
tem with correlated disorder. One typical case is the randomef the AST model is presented numerically. In Sec. IV, the
dimer modelRDM) introduced by Dunlap, Wu, and Phillips electronic delocalization in the AST model is discussed
in 1990% In the RDM, one of the two site energies and e, based on the Lyapunov exponent and the electronic wave-
is randomly assigned to pairs in the lattice, and an invariabléunction behavior. In Sec. V, we generalize the AST model to
nearest-hopping integral connects the sites. Provided that the random-polymer chain with impurities possessing an in-
|ea— ep| <2V, there are/N extended electronic states in the verse symmetry, i.e., random antisymmetric polyrtRAS
RDM with lengthN; otherwise localization occurs. Recently, polymey, and we rigorously prove the presence of electronic
much attention has been paid to the random-dimer modefielocalization in this generalized model. Finally, a summary
For example, the/N rule of extended states has been extenis given in Sec. VI.
sively discussed by the perturbation calculation on the den-
sity of states, the Lyapunov exponent, the Laudauer theory Il. THE THEORETICAL ANALYSIS
on the conductance, and also the electronic wave functidn. . - L -~
The experimental evidence of the delocalization has been UnQer the tlght—bl_ndlng_approxmat_lon, the Scleger
found in the random-dimer semiconductor supperlattiard equation for a one-dimensional chain is
the RDM has been successfully applied to explain the high C\C. V. . RV -
conductivity of some polymer€:* In 1993, Phillips pro- (=)= Vil Vi-a6-1=0, @)
posed an ultimate generalization of the RDM, i.e., the twinedvheree; is the site energyC; is the amplitude of the elec-
disordered systertf.Up to now, the RDM has been general- tronic wave function on thejth site, andV; ., is the
ized to the random-trimer, random-dimer-trimer, and evernearest-hopping integral. We restrict ourselves to the on-site
the random-polymer modé?->The widely accepted under- model, that is,V;;., is taken as the same constavit
standing of the electronic delocalization in RDM-like sys- Whereass; depends on the atom that occupies jtesite. It
tems is that the impurity possesses internal mirror symmetrys assumed that the host chain is only composed of @&om
and this short-range correlated disorder can make the localFrom Eq.(1), energyE of the monatomic host chain satisfies
ization length comparable to the length of the system at some
specific energies, which are called “resonant energfe§: E—e€a=2V cosk, 2
However, the investigation on the “asymmetric dimer” has wherek is the wave vector. That is, the allowed energy must
shown that the internal mirror symmetry is not a necessarjocate in the rangé—2V+¢€,,2V+e€,].
condition for the presence of the electronic delocalization in Equation(1) is easily rewritten in the matrix form
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C e n+m—1
jt+1 j — —
=M; , ©) Pn= i 7
(Cj J(Cj—l) A v
with L= . . .
_ [(E—¢)/V -1 For a givenP,,, the reflection amplitude can be written
J:(l 0 ) 4 ag?

where I\WJ- is the transfer matrix that correlates the adjacent TP«
. . — 2n

site amplitude<C; andC; .. r=—¢ T o 8
Now we consider the electronic transmission in the case @ me

that only a single impurity is inserted into the host mon-

atomic chain. Provided that a defect occupies the sites fro

n+1 ton+m, the amplitude of the Bloch wave with a spe-

cific wave vectork at both sides of the defect follows as

Where ¢= ek I=(2 9, a=(§), and

of a.
In the AST model, the impurity has the form age,e. .
Note that the middle atom of the defect is the element of the

is the transpose

ekltre ™ (if j<n+1) host chain. The total transfer matrix across a single AST
€I tei (if j=n+m). © epeaccis
Here,r andt are the reflection and transmission amplitudes, _/c -1\/A -1\/B -1
respectively. The correlation between the wave amplitudes at Pm=< ) ( ) ( )
both ends of the defect can be written in the matrix form 10 10 10
ABC—-B-— —AC+1
(Cn+m )—E Cn (6) :( C c c E(u U)' (9)
Cn+m_1 m Cn_l 1 AB_l _A w X

where5m is the total transfer matrix across the impurity. It where A=(E—€,)/V, B=(E—¢€,)/V, andC=(E—¢€.)/V.
satisfies Thus, the reflection coefficient can be given by

R_|r|2_—4UWC0§k+2(U—X)(U—W)Cosk+(u_x)2+(v+w)2 o
= - —4uxcogk+2(u—x)(v—w)cosk+ (u+x)%+ (v —w)? .

It is not difficult to deduce that when Ill. THE NUMERICAL CALCULATION

If a series of impurities is randomly inserted into the or-
€yt € dered host chain, the electronic-transport property can be

€= 5 (11) studied by the numerical calculation of the transmisgion

reflection coefficient. Generally, the sample chain of length

and N is embedded in an infinite monatomic chain composed of
atoma.?! Then, in the conduction region to the left and right
of the sample chain, the normalized wave functions can be

E=¢,, (12)  written as
we can obtainR=0. Therefore, Egs(11) and (12) are the ekl+fe ™ (when—wo<j<1)
" . S N C— - _ 13
necessary conditions for the unit transmission coefficient in i f ek (whenN+ 1< <o) (13

the case of the AST model. It is important to note that Egs.
(1) and (12) are independent of the hopping integial
Moreover, if a definite concentration of such asymmetric tri-Here, we define a new transfer mat@(N) by
mers epe €. has been added into the host chain, a remark-

able property is that the resonant energy always exisEs at f, _

= ¢, for random values o0&, and e, in each trimere, e, €., ( ¢ ) =Q(N)
as long as Eq(1l) is satisfied. For example, &,=1.0, we t
can choosee,=0.5 ande.=1.5 for the first defect, then
choosee,= — 0.2 ande.= 2.2 for the second defect. . , and
so on. If Eg.(11) is always observed in each defect, the . .
reflection coefficient certainly vanishesBat e,=1.0. Q(N)=0"1S(N)o, (15

(14

1+f, )
i(1—f,))"

where
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04 0al FIG. 2. The Lyapunov coefficieny as a funtion of the energy

for the AST model withN=12000. (a) €,=1.0, €,=0.0, €,
°4 o4 =2.0, andV=1.0. (b) €,=1.0, V=1.0, ¢, and ¢, randomly dis-
O s e ks 10 T o T e T E T 1k tribute in the rang¢0,2], respectively. Note that Eql1) is always
Energy Energy satisfied in each trimer.

FIG. 1. The transmission coefficiefitas a function of energy
for the AST epe e With N=12000. (a) €,=1.0, €,=0.0, €,
=2.0, andv=1.0. AroundE=1.0, there is a symmetric peak in the
transmission spectrum(b) Electronic transmission greatly de-
creases ife,= 0.1, while other parameters are the same as those i
(@. (c) The width of the peak increases wh¥h=2.0 with other
parameters are the same ag@h (d) €,=1.0, V=1.0, ¢, and €,

setting bothe, and ¢, randomly distributed in the interval
[0,2], but letting Eq.(11) be always satisfied in every defect
€p€q€., it is found that the transmission spectrum still pos-
I&_esses the resonant peak arolhde,=1.0 [as shown in

ig. 2(d)].

randomly distribute in the rand®,2], respectively. Note that Eq. IV. THE LYAPUNOV COEFFICIENT AND THE WAVE
(11) is always satisfied in each trimer. FUNCTION
cosk sink It is known that in the disordered system, the involved
o= ) (16) matrices possess random elements, but statistical properties
1 0 are available. One important quantity to reveal the physical

rProblem in the theory of random matrices is the Lyapunov

andS(N) is the total transfer matrix across the sample chai ! oefficienty, which has the following expression:

of lengthN, i.e., S(N)=1II'_,;M; . BecauseQ(N) is unimo-
dular, the transmission coefficient satistfes

= lim i n—'g(N)Z(O)| (18
4 TNz
2+ 2 |QIN); 2 where S(N) is the total transfer matrix across the sample

=t chain and the initial vector is(O):(g(l)). According to the
Based on Eqg15)—(17), the transmission coefficient as a Furstenberg theoreff,the limit in Eq. (18) exists and con-
function of energy can be calculated numerically. We takeverges to its mean value for long chains. In fact, the
the length of the sample chali= 12 000 and the concentra- Lyapunov coefficienty is directly related to some physical
tion of defectsp=0.5 (the strength of disorder is maximum quantities, such as the localization length and the density of
under this conditionin all following calculations. The trans- states in electronic and vibrational systems, and the free en-
mission coefficients of the AST model are shown in Fig. 1.ergy in random Ising models, etc. The localization length is
In Fig. 1(a), an obvious transmission peak occursEat €, inverse to the Lyapunov coefficient. When the length of the
=1.0. Here, the parameters are setegs 1.0, €,=0.0, e,  sample tends to infinity, the zero Lyapunov coefficient cor-
=2.0, andV=1.0; therefore, the constraint condition, Eq. responds to delocalized states with infinite localized length.
(12, is satisfied. If Eq(11) is not satisfied, there is indeed no Therefore, dependent on the Lyapunov coefficient, we can
resonant transmission, as shown in Fi¢h)lwhere the pa- obtain the overall behavior of the electrons, i.e., we can
rameters are the same as those in Fi@),lexcepte,=0.1.  know whether they are localized or delocalized at specific
Actually, in the case of resonant transmission, the width ofenergies in the system.
the transmission peak can be enlarged if the hopping integral The Lyapunov coefficienty of the AST chains are plot-
Vis increased. The reason is that whéimcreases, the over- ted in Fig. 2. It can be seen from Fig. 2 that around the
lap between site Wannier orbitals is enhanced. Consequentlgprresponding resonant energy in each chgiig very close
the width of the transmission peak will increase, but the resoto zero though the fluctuation exists. Actually, the fluctuation
nant energy does not change. Figu(e) shows a wider peak can be eliminated wheN increases, and the Lyapunov co-
aroundE=e¢,=1.0 whenV is increased to b&=2.0 and efficient tends to a finite value for every eigenenergy of the
other parameters are kept same as in Fig). Moreover, if  system. Therefore, the zero Lyapunov coefficient appears at
we increase the strength of the disorder in the AST system bihe resonant energy where the localized length is infinite.
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FIG. 3. The periodiclike wave function near the resonant energy for the AST modelNwiB000. (a)—(c) In the vicinity of the resonant
energy, the electronic wave function consists of two Bloch-like waves. Hgrel.0, €,=0.0, ¢,=2.0, andV=1.0. (d)—(f) One of the
Bloch-like waves persists, while the other turns to be chaotic. Hgre 1.0, V=1.0, ¢, and ¢, randomly distribute in the randge,2],
respectively.

Under this condition, the electronic wave function cannotsion of the left one, that isg,=(e;+€1)/2= (e, + €5)/2
“feel” the existence of the defects, and the wave funtion can=. .. = (&+ €!)/2 is satisfied. Thus, the total transfer matrix
propagate through the chain without decay. It is differentacross the impurity cluster in the RAS polymer model fol-
from the exponentially localized states occurring in the genjows as
eral Anderson model.

It is worthwhile to give a descriptive picture of the delo- P,,=P_-Pc Pg, (19
calized state at resonant energy. The spatial distribution of _
electronic wave functions is considered to be a direct anavherePr is the transfer matrix across the Igfsites of the
solid evidence of localized or delocalized states in low-polymer, P is the transfer matrix across the centdr—21
dimensional systems. The wave function near the resonanfomsa, andP, is the transfer matrix across the righgites
energy is shown in Fig. 3. It is found that when the eigenenyf the polymer. It is obvious that
ergy is in the vicinity of the resonant energy- e¢,= 1.0, the
electronic wave function consists of two Bloch-like waves — A —1\%1
[as shown in Figs. @)-3(c)], and the periodicity of the Pc=<1 0 ;
wave function changes in different eigenvalues. More inter-
estingly, if e, and e, are randomly distributed in the interval where A=(E—¢€,)/V. Because the site energy within the
[0,2], respectively, one of the Bloch-like waves persists,impurity has an antisymmetric distribution around the center
while the other turns to be chaofias shown in Figs.@)—  atom, it is ready to derive that whéi- €,, Pg andP, can
3(f)]. The chaos originates from the randomness of the sitee written, respectively, as

energy in the trimer impurity.
Rl o 1 0 Jl1 o) |G H

(21)

(20

V. RANDOM-POLYMER CHAINS WITH IMPURITIES
POSSESSING AN INVERSE SYMMETRY

and
Equation(1l) indicates that the site energy antisymmetri-

cally distributes around the center atomin the trimer _ —A; —1\(-4, -1 -4 -1
epeq€c - Actually, the above discussion can be generalizedto P (1 0 ) (1 0 ) - ( 1 0 )
a more common case, i.e., the random-polymer chain with

inversely symmetric impurityRAS polymej. The impurity _

cluster contains three parts: the central part consists of E(—1)J(Y H)'
2k—1 (k=1) host atomsa; the left part consists of (j

=1) atoms with site energies distributed randomly asAfter substituting Eq(19) by Eqgs.(200—(22), the total trans-

I _In

“ €165+ - - €"; and the right part “ej’- --€,€;,” is the inver-  fer matrix across the RAS polymer can be rewritten as

(22)
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A —1\/X Y polymer with an inverse symmetry provides wider perspec-
)(G H) tives on the conducting mechanism of polymers. According
to the electronic-transport properties of this model, the reso-
-1 nant electronic scattering can take place at a specific energy,
) (23)  which originates from the spatial correlation, but not from
10 the internal mirror symmetry of the impurities or bond de-
Using the property of unimodular matrix, finally we obtain fects as the RDM requires. Technically, it is possible to select
some clusters with the inverse symmetry of the impurity dis-
tributions, and attach them to certain sites of the polymeric
chain. Following this, we may synthesize different conduct-
- ing polymers. Though we do not choose site and hopping
That is, the matriXP,, turns to be proportional to that of the energies of our Hamiltonians with specific reference to a
ordered system. realistic polymer, we have indeed presented the resonant
As we know, the reflection coefficient will vanish only scattering in the RAS polymer, and we can expect the pres-
when the matrixP,,, is proportional to the unit matrix, or the €ence of the metal-insulator transition in the polymers con-
transfer matrix of the ordered system, or some linear combistructed based on this model.
nations of both! In the case that the site energy within the
impurity has an inverse symmetry around the central host

element atoms, the total transfer matiy, across the impu- . o o )
rity can be simplified to the transfer matrix of the ordered Based on the tight-binding approximation and the on-site
system aE = ¢, . Consequently, the corresponding reflectionmodel, we have investigated the electronic transport and de-
coefficient is zero. Therefore, we reach a general conclusiolpcalization in a random-polymer model, where the impurity
that if the site energy within the impurity cluster has an an-clusters are randomly distributed in the host monatomic
tisymmetric distribution around the host element atoms, th&hain, and the impurity atoms possess an inverse symmetry
resonant transport and electronic delocalization will defi-around the central host atoms in each cluster. The asymmetri-
nitely take place at the electronic energy that equals the sitgal trimer epe, €. is one of the examples. It is found that the
energy of the host atom. This result is beyond the generdsonant transport and electronic delocalization can take
understanding that the internal mirror symmetry in the dePlace in such systems. This result does not agree with the
fects is the necessary requirement for the presence of del@eneral viewpoint that the internal symmetrical structure in
calization in RDM-like systems. Moreover, when the numberthe defect is the necessary condition for the electronic delo-
of central host atoms is large enough, the impurity cluste€@lization in the RDM-like system. Furthermore, the RAS
seems to be a cluster of two isolated random defects that aRPlymer model is valuable to understand the conducting
separated by a long periodic chain. However, the resonarif€chanism of some polymeric materials, and it may provide
scattering still exists due to the intrinsic correlation deter-2 method to produce different types of polymers with high
mined by the structure of the impurity. In this case, the elec€lectronic conductivity.

tronic delocalization in the RAS polymer may be similar to
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