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Interaction-induced Fermi surface deformations in quasi-one-dimensional electronic systems
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We consider serious conceptual problems with the application of standard perturbation theory, in its zero-
temperature version, to the computation of the dressed Fermi surface for an interacting electronic system. In
order to overcome these difficulties, we set up a variational approach which is shown to be equivalent to the
renormalized perturbation theory where the dressed Fermi surface is fixed by recursively computed counter-
terms. The physical picture that emerges is that couplings that are irrelevant tend to deform the Fermi surface
in order to become more relevant~irrelevant couplings being those that do not exist at vanishing excitation
energy because of kinematical constraints attached to the Fermi surface!. These insights are incorporated in a
renormalization group approach, which allows for a simple approximate computation of Fermi surface defor-
mation in quasi-one-dimensional electronic conductors. We also analyze flow equations for the effective cou-
plings and quasiparticle weights. For systems away from half-filling, the flows show three regimes correspond-
ing to a Luttinger liquid at high energies, a Fermi liquid, and a low-energy incommensurate spin-density wave.
At half-filling Umklapp processes allow for a Mott insulator regime where the dressed Fermi surface is flat,
implying a confined phase with vanishing effective transverse single-particle coherence. The boundary between
the confined and Fermi liquid phases is found to occur for a bare transverse hopping amplitude of the order of
the Mott charge gap of a single chain.

DOI: 10.1103/PhysRevB.67.205111 PACS number~s!: 71.10.Pm, 71.27.1a, 71.30.1h, 71.10.Hf
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I. INTRODUCTION

One of the striking results obtained in the last decade
strongly correlated electronic systems is the coexistence
notion of Fermi surface and of strong deviations from t
predictions of Fermi liquid theory for many low-energ
properties. This has been extensively studied experimen
for high-temperature superconducting cuprates, where a
lar resolved photoemission spectroscopy~ARPES! has re-
vealed the presence of Fermi surface arcs, even in the un
doped regime which is characterized by the pseudogap
with most low-energy probes.1 Although these systems ex
hibit intermediate or even strong electron interactions, th
have triggered many theoretical works using perturba
tools.2–4

At the beginning of any perturbative analysis, the shape
the Fermi surface is crucial in determining which couplin
survive in an effective low-energy description.5 For most
crystalline materials the absence of continuous rotationa
variance allows for a deformation of the Fermi surface aw
from the bare free electron Fermi surface, as interactions
switched on. In many metallic systems this effect is not
pected to play much of a role beyond usual renormalizati
of effective parameters of band theory. But in some sit
tions, such as the vicinity of a Van-Hove singularity, t
presence of a nesting vector, or for strongly anisotropic c
ductors, it seems essential to understand how to compute
dressed Fermi surface, since it is the relevant object for
construction of an effective low-energy theory.

In the case of quasi-one-dimensional~quasi 1D! systems,
this Fermi surface deformation is intimately connected to
widely studied notion of transverse coherence. Experime
and theoretical investigations converge towards a descrip
in terms of almost uncoupled Luttinger liquids along t
0163-1829/2003/67~20!/205111~35!/$20.00 67 2051
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chains, at high enough energies.6,7 At low energies, optical
conductivity measurements8 have shown the existence of tw
types of behaviors: either the system remains confined
Mott-insulator phase~in the Fabre salts also known a
TMTTF compounds! or the transverse hopping of electron
takes over and establishes a long-ranged transverse p
coherence, leading to a two-dimensional~2D! Fermi liquid
phase~for the Bechgaard salts TMTSF!. In the latter case the
dressed Fermi surface remains warped while in the forme
becomes completely flat under the effect of sufficien
strong interactions.9,10

Because of their difficulty, precise computations of Fer
surface deformations for model systems have been un
taken only recently. A direct numerical evaluation of th
electron propagator to second order in interaction has b
performed for the 2D Hubbard model.11,12 Similar studies
have also been carried for more phenomenological mo
where electrons are scattered by dynamical s
fluctuations.13,14Although these computations yield valuab
physical understanding of the processes involved in
Fermi surface deformation, they suffer from at least two
rious problems. First, they identify the dressed Fermi surf
with the locus of points ink space for which the dresse
quasiparticle energy is equal to the~interacting! chemical
potential, which is, of course, correct. But this does not i
ply that the imaginary part of the self-energy vanishes on
surface and for frequencies equal to the chemical poten
Therefore this procedure does not lead to a picture of asy
totically stable quasiparticles at low energies. This remar
valid in the zero-temperature approach, which is the only o
we are using in this paper, because of its conceptual simp
ity. Second, this problem is not cured while going to high
orders in perturbation theory. Furthermore, some new pr
lems arise~namely, infrared divergences! at these higher or-
ders for both zero and finite temperature formalisms.
©2003 The American Physical Society11-1
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The underlying assumption of the standard perturba
scheme as used above is that one can generate the intera
ground state by adiabatically switching on the interactio
starting from the noninteracting ground state. This has to
questioned for large systems for which the ground state
at the edge of an energy continuum. Because of this,
perturbation algorithm acting on various excited states of
original systems, associated to different shapes of the Fe
surface, has the possibility to generate energy levels’ cr
ings. This implies that the seed state to be used in pertu
tion theory is not knowna priori, when interactions do de
form the Fermi surface. This difficulty has been pointed o
in the 1960’s by Kohn and Luttinger15 and also Nozie`res.16

These ideas have been revived recently in a mathematic
rigorous framework.17 The conclusion of all these works i
that a sound formalism is obtained when one works wit
bare propagator which singularities are pinned to thedressed
Fermi surface. This is achieved in practice by the introd
tion of counterterms, which have to be computed order
order in perturbation theory. The main difficulty in practic
implementations of this philosophy~which may be called
renormalized perturbation theory! is that it provides only an
implicit determination of the dressed Fermi surface, sin
this algorithm expresses the bare Fermi surface as a func
of the dressed one. Although formally this connection h
been proved to be invertible,18 this remains a formidable tas
which has never been, to our knowledge, practically und
taken. Note that the necessity to use these counterterms i
a pathology of the zero-temperature approach. It also app
in the Matsubara formalism at finite temperature which is
one used in the rigorous works just described.

As a first step towards the realization of this progra
several groups have performed self-consistent computati
Their basic principle is to start with a trial Fermi surfac
which is adjusted so that it matches with the calcula
Fermi surface. A first example follows directly the standa
Hartree-Fock method.19 It has been applied to the 2D Hub
bard model in the presence of second-neighbor hopping
nearest-neighbor interaction, and the possibility of a cha
in Fermi surface topology~from holelike to electronlike! has
been observed. A rather sophisticated scheme has also
developed by Nojiri,20 in which the self-energy is self
consistently computed from the corresponding second o
Feynman diagram. This work addressed the simplest
Hubbard model with on-site interaction for which the Fer
surface deformation was found to be very small and to p
serve the Fermi surface topology. Note that the quantita
difference between this self-consistent scheme and a s
dard perturbation theory11,12 appears to be small.

In spite of their merits, these approaches lack the ab
to keep track of the growth of some effective couplings
the typical energy scale is lowered. These effects play a
cial role for the 2D Hubbard model near half filling, or fo
quasi-1D conductors. A natural way of handling these tre
is to use a renormalization group~RG! approach. Severa
groups have incorporated the RG methodology in the co
putation of the dressed Fermi surface.4,9,10,21Similar studies
have also been carried for two coupled chains where
Fermi surface is reduced to four Fermi points.22–24 Our un-
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derstanding of these works is that they always begin wit
known bare Fermi surface and compute the evolution of
effective Fermi surface, as the high-energy cutoff is gra
ally decreased. Although this is very reasonable on phys
grounds, we may wonder whether this fits with the gene
rigorous analysis described in the last but one paragraph
believe there are two ways to combine the correspond
requirements with a RG approach. The first one uses
renormalized perturbation theory described above, with
running energy cutoff. After the usual mode integration in
small energy shell, the kinetic term in the effective action
corrected to preserve the shape of the dressed Fermi sur
In the process of integrating the RG flow, one has to ke
track of and sum all these counterterms to obtain the b
Fermi surface as a function of the dressed one. Alternativ
one would fix the bare high-energy theory, and perform
mode integration is such a way that modes being integra
out always remain at a finite distance from the flowing Fer
surface. But then one has to ensure that all modes are
grated over exactly once with a uniform weight. This is i
deed possible but requires some slight modifications of
Wilson-Polchinski usual RG equations.25 We believe the
practical implementation of either approach remains to
attempted.

The bulk of this paper is composed of three sections. S
tion II begins with a general discussion of some difficulti
with the standard perturbation theory. We then develop
physical understanding of the driving force that deforms
Fermi surface on the basis of a simple variational calculat
for a system of two spinless chains. The main insight gain
here is that the couplings which tend to deform the Fe
surface are those for which external momenta of in and
going particles cannot be simultaneously taken on the Fe
surface, because of momentum conservation. In the RG
guage, these interactions are usually called irrelevant.
finally establish the equivalence between this procedure
a standard renormalized perturbation theory where
dressed Fermi surface is fixed by counterterms. A reader
terested in more technical aspects is referred to Append
A, B, and C~the first two begin with some simple first orde
calculations on the system of two spinless chains, wh
results can be compared to the ones obtained in Sec. II!. In
Secs. III and IV we show how the RG can be implemented
the study of quasi-1D systems. We want to emphasize
we have not made use of a single RG scheme, but of
coupled RG schemes. We describe our motivations for p
forming such a study in Secs. III B 1 and IV A, but let u
very briefly explain what they are before turning to a mo
detailed description in Secs. III and IV. The field-theoretic
RG in the spirit of Gell-Mann and Low30 is a simple but
powerful way of computing low-energy properties of sy
tems described by a renormalizable field theory. This is w
we adopted it for this purpose~this method is discussed i
detail in Appendix D!. However, it cannot be used to com
pute the dressed Fermi surface, for the simple reason tha
Fermi surface is defined as the locus of the zeros, ink space
of the inverse propagator evaluated atzero frequency. There
is thus no low-energy scalen that can be varied to get RG
equations as is done, for example, for the low-energy ve
1-2
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FIG. 1. Schematic energy level pattern as a function of interaction strength for a conducting Fermi system. Different levels co
to different choices for the Fermi surface of the noninteracting system. The left figure represents what happens in the standard pe
theory, where the level repulsion at avoided crossings cannot be resolved, so that one obtains a nonadiabatic evolution of the sy
function as interactions are increased, therefore generating an excited state. On the right we represent the effect of applying th
perturbation theory in a finite size system. In this case an adiabatic generation of the interacting ground-state is possible.
fe
ch
b
t
th
th
r

on
h

he
R
a
IV
se
c

ec
th
a
th
ca
g
io
a
or
rg
r-
s

cia
e
th

ne
. I
a
e
ge

the
un-
uum
e
ssed

per-
tent
mit
en-
of
of

face
lead-
on
to
st-
s a
of

en
e

just
ody
ings
of
gh

or a
ase
if-
mp-
. It
nd-
ing
ces, when relating the values of these vertices at two dif
ent scalesn and n8. However, one can use the approa
known under the name cutoff scaling, and developed
Sólyom.31 This RG does not suffer from the limitation jus
described, because it is the high-energy cutoff and not
low-energy scale that is varied, and we have used it for
computation of the dressed Fermi surface. The high-ene
part of the flows, in which the Fermi surface deformati
takes place, is thus described by the cutoff scaling. T
dressed Fermi surface that one obtains in this way t
serves as an input parameter for the field-theoretical
which governs the low-energy part of the flows. Let us s
that RG flow equations are not presented in Secs. III or
but have all been gathered in Appendix E. In Sec. III we
up the cutoff scaling approach for the study of Fermi surfa
deformations in a quasi-1D system of weakly coupled el
tronic chains. In order to make the ideas more concrete,
method is then applied to the simplest possible example,
we end the section with a comparison to other methods
can be found in the literature. We then turn to numeri
investigations, that are presented in Sec. IV, for short-ran
Hubbard-like, and repulsive electron interactions. Sect
IV B deals with considerations about systems away from h
filling which exhibit an incommensurate nesting vector f
their Fermi surface. The flow pattern involves a high-ene
Luttinger liquid regime, followed by a Fermi liquid at inte
mediate energy, and finally a long-range ordered spin-den
wave~SDW! phase is the stable low-energy attractor. Spe
attention has been given to the scale and transverse siz
pendence of the quasiparticle weight. We then focus on
half-filled ~and nearly half-filled! case in Sec. IV C, where
Umklapp processes may drive the system into a confi
low-energy phase and pin the SDW on the crystal lattice
particular we study the crossover between the confined
the Fermi liquid regimes. It is shown to occur for bare valu
of the interchain hopping of the order of the 1D Mott char
gap.
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II. COMPUTING THE SHAPE OF THE FERMI SURFACE:
VARIOUS DIFFICULTIES AND THEIR RESOLUTION

A. General considerations

As emphasized in the Introduction, the computation of
dressed Fermi surface in an interacting metallic state enco
ters some obstacles because of the presence of a contin
of low-lying energy states in the immediate vicinity of th
noninteracting ground state. This has been already discu
in a very inspiring paper by Kohn and Luttinger.15 There,
they have shown that the standard Brueckner-Goldstone
turbation theory for the ground-state energy is not consis
with a careful procedure of taking the zero-temperature li
of the total energy computed in the grand-canonical
semble. They interpret this failure in terms of the pattern
energy levels of an interacting Fermi system as a function
the interaction strength. When the shape of the Fermi sur
changes, a deep reshuffling of the spectrum takes place,
ing to a huge number of level crossings. A simple illustrati
for this is given on Fig. 1. At this stage, it is important
distinguish between two situations, which have both intere
ing physical realizations. For some simple models, such a
ladder of interacting spinless fermions, or a single chain
spin 1/2 electrons, the total number of particles of a giv
species~transverse momentum in the ladder case, or thz
component of the spin for spin 1/2 electrons! may be con-
served. As a result of this symmetry, the level crossings
mentioned are an essential feature of the exact many-b
spectrum. In more general situations, these level cross
appear at any finite order in a perturbative computation
the spectrum as a function of interaction strength, althou
they are expected to disappear in an exact treatment f
finite-size system. Let us first concentrate on the former c
for a while, since it shows dramatically why and where d
ficulties arise. In such situations, the conventional assu
tion often made in many-body computations does not hold
states that one can get the interacting many-body grou
state by adiabatically switching on the interactions, start
1-3
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from the noninteracting ground state. A trivial examp
where the adiabatic switching procedure most often ge
ates an excited state is provided in the case of the free Ha
tonian

Hl5(
k

«l~k!c†~k!c~k!, ~1!

where we arbitrarily split«l(k) into two parts:

«l~k!5«0~k!1l«1~k!. ~2!

This induces a decomposition ofHl as a sumHl5H0
1lH1, where H0 is the ‘‘unperturbed’’ Hamiltonian and
lH1 the perturbation. SinceH0 andH1 commute, the eigen
states ofHl do not depend on the strengthl of the pertur-
bation. But energy levels as functions ofl are free to cross
so the initial ground state~i.e., for l50) becomes, in gen
eral, an excited state for finitel. This is reflected on the
computation of the single particle Green’s function in t
zero-temperature formalism. Starting with the ‘‘bare’’ prop
gator G(0)(k,v)215v2«0(k)1 ih sgn@«0(k)2m0#, the
conventional algorithm yields a ‘‘dressed’’ propagat
G̃(l)(k,v)215v2«l(k)1 ih sgn@«0(k)2m0# instead of
the correct resultG(l)(k,v)215v2«l(k)1 ih sgn@«l(k)
2ml#, wherem0 and ml denote the bare and the dress
chemical potentials, respectively. Note that the probl
would apparently disappear in a finite-temperature appro
using the Matsubara formalism. However, Kohn and L
tinger have shown that special care is needed in taking
zero-temperature limit, since they have found a class of
grams ~they have called them anomalous diagrams! for
which the zero-temperature limit and the infinite volum
limit do not commute. Taking the former limit first yields
vanishing contribution for those diagrams, and therefore
wrong result of the standard zero-temperature formalism
obtained. The correct result for an infinite system is obtain
by taking the other order of limits, where anomalous d
grams do provide finite contributions.

For this reason, and also given the conceptual interes
this problem, we shall use only the zero-temperature form
ism throughout this paper. In this framework, a natural w
to circumvent this problem with level crossings is to start
standard perturbation algorithm with any arbitrary eigens
of the noninteracting HamiltonianH0. Intuitively, we believe
in most cases it is sufficient to choose an initial state wh
the locus of occupied single particle states is singly c
nected~i.e., it has no isolated particle-hole excitations fro
the viewpoint ofH0), but with a deformed Fermi surface, a
shown on Fig. 2. The selection of the correct initial state
performed by minimizing the total energy of the dress
state it generates, after switching on the interactions. An
ample of this procedure is given below~Sec. II B! for a
simple two-chain model.

For practical purposes, it is important to note that t
approach may also be implemented through a perturba
computation of the single particle Green’s function. Inste
of using the free propagatorG(0)(k,v)215v2«0(k)
1 ih sgn@«0(k)2m0#, we should first make a guess for th
dressed Fermi surface. This allows us to define a func
F(k) such thatF(k)51 if k does not belong to the tria
20511
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Fermi sea, andF(k)521 if k belongs to it. The locus of
points ink space whereF(k) jumps from21 to 11 is our
trial Fermi surface, and points on this set will be generica
denoted askF in the present discussion. The correspond
bare propagator to be used in Feynman graph expansion

GF
(0)~k,v!215v2«0~k!1 ihF~k!. ~3!

As usual, the dressed propagator is obtained asGF(k,v)21

5v2«0(k)2SF(k,v), where the subscriptF in SF(k,v)
is to stress the influence of the choice of a trial Fermi surf
encoded in the functionF. If this trial Fermi surface is the
correct one for the interacting Fermi system, we expect
self-energy satisfies the following well-known conditions.

~i! There exists a well defined chemical potentialm so that
for any kF belonging to the trial Fermi surface, we have

m2«0~kF!2ReSF~kF ,m!50. ~4!

~ii ! The inverse lifetime of ‘‘quasiparticles’’ vanishes o
the trial Fermi surface so that

Im SF~kF ,m!50. ~5!

Of course, these conditions are not satisfied for most t
Fermi surfaces, as the reader will immediately notice
simple examples. We have checked on several examples
both procedures@i.e., minimizing the total energy, or satisfy
ing conditions ~i! and ~ii ! on the dressed single particl
propagator# yield the same dressed Fermi surface. In Appe
dix A, we provide a formal proof of this equivalence, first
the finite volume case, and then in the case of an infin
volume. When the choice ofF is not the correct one, it is
impossible to satisfy both conditions~i! and ~ii ! simulta-
neously. In the case of standard perturbation theoryF is
taken to beF (0) corresponding to the bare Fermi surfac
obtained fromH0.11,12The dressed Fermi surface is assum
to be determined from an equation which resembles co
tion ~i!, namely,

m2«0~kF!2ReSF(0)~kF ,m!50. ~6!

But doing this yields two severe flaws: as shown in Appe
dix B, this does not generate the same dressed Fermi su
as the two procedures presented above and argued to b
correct ones do. Furthermore, in perturbation theo

FIG. 2. Examples of possible initial states for the perturbat
algorithm. These states are Slater determinants with occu
single-particle states depicted by the dashed areas ink space. The
dashed line denotes the non-interacting Fermi surface. In state~a!,
the Fermi surface is deformed, but no additional particle-hole e
tations are present, unlike in state~b!.
1-4
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Im SF(0)(kF ,m) changes sign on the noninteracting Fer
surface and forv equal to the noninteracting chemical p
tential m0 as shown in Appendix C.

This discussion holds clearly in the case where ene
level crossings associated to various initial shapes of
Fermi surface are protected by some symmetries of the
Hamiltonian, as stated at the beginning of this section. H
we would like to emphasize that a similar qualitative pictu
also holds in a more generic situation. On general groun
we expect that energy levels of a finite system do not cros
the interaction strength is increased. This is the famous p
nomenon of energy level repulsion which plays a key role
the field of ‘‘quantum chaos’’~see, for instance, the book b
Gutzwiller26!. So, standard perturbation theory starting fro
the unperturbed ground state is expected to generate the
rect interacting ground state for afinite system. However, to
get the full single energy level resolution in the spectru
with all the avoided level crossings clearly requires going
very high orders in perturbation theory. Instead, in m
many-body computations, we first get formal expressions
various quantities such as Green’s functions for a cho
finite order in powers of the interaction, and we most oft
take the thermodynamical limitbeforesumming the pertur-
bation series. We believe this procedure is most likely
generate in the end an excited state of the interacting sys
although the seed of the perturbation series is the nonin
acting ground state. This belief is confirmed by the sim
computations in Appendix B, which do not require any sp
cial symmetry of the full Hamiltonian.

B. Two chains of spinless fermions: Energy minimization

1. Model and notations

Let us first focus on the simplest possible model exhib
ing the features described previously: a system of two ch
of interacting spinless fermions. We will assume this syst
to be anisotropic, described by a tight-binding Hamiltonia
with a hoppingt i along the chain much larger than the tran
verse hoppingt' . Hence, we have two bands, named by t
transverse momentum they correspond to, i.e., 0~bonding!
andp ~antibonding!. We suppose the filling is such that bo
bands are partially filled. We will furthermore focus on th
low-energy properties, so that we can linearize the spect
around the four Fermi points, giving rise to four types
fermions: (R,0), (R,p), (L,0), and (L,p). As usual, we
extend the spectrum for arbitrary momenta. The low-ene
free Hamiltonian is thus given by

H05(
k

(
I 50,p

$@m (0)1vF,I
(0)~k2kF,I

(0)!#cR,I
† ~k!cR,I~k!

1@m (0)2vF,I
(0)~k1kF,I

(0)!#cL,I
† ~k!cL,I~k!%. ~7!

In the above expression, all the superscripts(0) denote free
quantities.m (0) is the chemical potential andvF,I

(0) andkF,I
(0) the

Fermi velocity and momentum on chainI. cR,I
† (k) is the

creation operator of a right fermion on chainI, with parallel
momentumk. The sum overk is to be understood as a
integral for a system in the thermodynamic limit. In all th
20511
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follows, we will simplify the problem and suppose that th
Fermi velocities for both branches are equal, and they w
simply be denoted asvF

(0) .
We shall also make simplifying assumptions about

interactions. Thus, the only low-energy interaction proces
we will be interested in, are of the forward scattering ty
(g2), classified asA, B, C, D, andF. They are represented i
Fig. 3. We shall neglect the Umklapps, assuming the filling
not commensurate.g4 interactions, involving four right or
four left fermions, are also discarded, because we shall
strict ourselves to first and second order effects, to wh
these interactions give no contribution. In order to sa
space, we only give theD type interaction Hamiltonian

H int
(D)5

D

L (
k,k8,q

$cR,p
† ~k1q!cL,0

† ~k82q!cL,p~k8!cR,0~k!

1H.c.%, ~8!

where H.c. means the Hermitic conjugate.

2. First order

We will here compute the energy to order one in the us
quantum mechanical perturbation theory, of eigenstates
tained from two types of free eigenstates. The first on
denoted asu0;kF,0 ,kF,p&0, are free states for which the bond
ing ~antibonding! band is filled up tokF,0 (kF,p). The ground
state of the free system is thus obviouslyu0;kF,0

(0) ,kF,p
(0) &0. Of

course, as the number of particles is fixed, the condit
kF,01kF,p5kF,0

(0)1kF,p
(0) must be satisfied. As we wish to un

derstand what happens if one adds a particle to the sys
we will also consider states that are simply obtained from
first ones by adding a particle of momentumq on branch 0 or
p ~with q>kF,0 or q>kF,p). We will refer to these states a
u1,q,0(p);kF,0 ,kF,p&0. We shall neither consider states wi
one hole, nor states with an arbitrary number of particles
holes.

First of all we can compute the energies of these states
the noninteracting case. Of course, because our linear

FIG. 3. Selected low-energy interactions for the two-cha
model.
1-5
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dispersion relations have been extended to include infini
many single-particle states, there is strictly speaking an i
nite particle density in these Dirac seas, which yields div
gent expressions for the total energy. We will regularize th
divergences by putting an ultraviolet cutoffL0 on the mo-
menta, around the fourfree Fermi momenta, as shown o
Fig. 4 for one band. For the sake of simplicity, we work
the thermodynamic limit, and after a bit of algebra we fin

E(0)~0;kF,0 ,kF,p!5
L

p
~2m (0)L02vF

(0)L0
2!

1
vF

(0)L

p
~kF,02kF,0

(0)!2 ~9!

and E(0)@1,q,0~p!;kF,0 ,kF,p#5E(0)~0;kF,0 ,kF,p!1m (0)

1vF
(0)~q2kF,0(p)

(0) !.
~10!

It is obvious that the minimum of the energy is obtained
the free Fermi surface. The value ofm (0) does not play a role
here since we have fixed the total particle number.

To order one in the couplings, it is well known that th
energy of a free state is simply shifted by the mean value
the interaction for this state. As a consequence, theD andF
couplings do not give any contribution. They will only sta
playing a role to second order. It is a very simple matter
check that

DE(1)~0;kF,0 ,kF,p!5
L

~2p!2
$A@L01~kF,02kF,0

(0)!#2

1B@L02~kF,02kF,0
(0)!#2

12C@L01~kF,02kF,0
(0)!#

3@L02~kF,02kF,0
(0)!#%, ~11!

FIG. 4. Here we show how the ultraviolet cutoff is chos
around the free Fermi surface, for one band.
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DE(1)~1,q,0;kF,0 ,kF,p!5DE(1)~0;kF,0 ,kF,p!

1
1

2p
$A@L01~kF,02kF,0

(0)!#

1C@L02~kF,02kF,0
(0)!#%, ~12!

DE(1)~1,q,p;kF,0 ,kF,p!5DE(1)~0;kF,0 ,kF,p!

1
1

2p
$B@L02~kF,02kF,0

(0)!#

1C@L01~kF,02kF,0
(0)!#%. ~13!

We have used the conservation of the number of particle
that the above expressions are expressed only in terms o
Fermi momenta on branch 0. Thus we minimize the ene
E(1)5E(0)1DE(1) simply by requiring for its derivative
with respect tokF,0 to vanish. This yields

kF,0
(1)2kF,0

(0)5~B2A!
L0

4pvF
(0) S 11

A1B22C

4pvF
(0) D 21

. ~14!

Let us show how the chemical potential can be comput
using the energies of the states with one added particle. F
of all, we notice that the expressionsDE(1)(q) are indepen-
dent of q. It implies the energy for adding a particle to th
system on branch 0 (p) will be minimal if q is as small as
possible, i.e.,q5kF,0 (q5kF,p). This confirms thatkF,0 and
kF,p are the actual Fermi momenta. Now if we require th
minimal energy to be the same on the two branches, equ
the renormalized chemical potential, we obtain the followi
two conditions:

m (1)5m (0)1vF
(0)~kF,02kF,0

(0)!1DE(1)~1,q5kF,0,0;kF,0 ,kF,p!

2DE(1)~0;kF,0 ,kF,p!, ~15!

m (1)5m (0)1vF
(0)~kF,p2kF,p

(0) !

1DE(1)~1,q5kF,p ,p;kF,0 ,kF,p!

2DE(1)~0;kF,0 ,kF,p!. ~16!

One can check these equations give the deformation~14! of
the Fermi surface. This is physically desirable. Indeed,
posing that the minimum energies to add one particle on
branch or the other are identical, should be equivalent to
requirement that taking two particles at the Fermi surface
one branch and putting them at the Fermi surface on
other branch costs nothing~in the thermodynamical limit!.
Finally we find the chemical potential

m (1)5m (0)1~A1B12C!
L0

4p

2~B2A!2
L0

4pvF
(0) S 11

A1B22C

4pvF
(0) D 21

. ~17!

To conclude this section about first order computatio
we show two figures of what would happen for a total ene
1-6
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of the following simplified form:E(1)5(kF,02kF,0
(0))21(A

2B)(kF,02kF,0
(0)). Figure 5 illustrates the level crossings: w

represent the energy as a function of (B2A) ~assumed posi-
tive!, for various values of (kF,02kF,0

(0)). Figure 6 proposes an
alternative vision of the same thing~see the caption!.

Equation~14! shows us that the deformation of the Fer
surface at first order is due to the difference between
couplings on the branches: ifA5B, no deformation takes
place. We can understand the sign of the deformation v
simply. Suppose the fermions repel each other~i.e. the cou-
plings are positive!, but that the repulsion is bigger on cha
p, for example,B2A.0. It is then natural, in order to
lower the energy of the system, that some fermions of ch
p go to chain 0, so that (kF,02kF,0

(0)) should be positive. This
is indeed what we find. We will now see that things a
different at second order: theD couplings tend to flatten the
Fermi surface, whatever their sign, and without having
invoke a difference between two couplings.

3. Second order and further

We shall now discuss in detail perturbation theory to s
ond order~this notion of order being simply the number

FIG. 5. Energies as functions ofB2A, for states with different
values of (kF,02kF,0

(0)) ~0, 0.05, 0.1, 0.15, and 0.2!. The crossings
show us that the Fermi surface will be deformed. The dashed c
is the envelope of all these curves. It is thus the energy of
interacting ground state, as a function of the interaction.

FIG. 6. Energies as functions of (kF,02kF,0
(0)) for different values

of B2A ~0, 0.1, 0.2, 0.3, 0.35!. The dashed curve gives the ener
of the ground state, and thus goes through the minima of all
different curves.
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vertices in the corresponding Feynman graphs!, and we will
also see that some problems arise to third order and bey
showing that another perturbation scheme is needed.
have already seen the effects ofA, B, andC interactions on
the Fermi surface’s shape to first order. We let the rea
check that these three interactions play no essential rol
the deformation of the Fermi surface at second order. Inde
when we compute the energy of the statesu0;kF,0 ,kF,p&0, if
we only keep contributions that diverge whenL0→`, we
get a quantity that is proportional toL0

2, andindependentof
the dressed Fermi momenta. Only finite terms do depend
the dressed Fermi momenta. We shall thus neglect these
tributions, and focus onD andF interactions.

Let us begin with the effect ofD interaction, which is the
only one that does not exist at zero energy if the Fermi s
face is not strictly flat. This is due to the constraint of m
mentum conservation, and is easily visualized from Fig.
Second order perturbation theory tells us that the eigen
ergy of an eigenstateun&, obtained from the free eigensta
un&0, is obtained by shifting the free eigenenergy of a qua
tity

(
kÞn

VnkVkn

En
(0)2Ek

(0)
, ~18!

whereVnk50^nuVuk&0 andV is the interaction potential. This
formula involves energy denominators. If these beco
smaller, the energy will decrease. WhenD interactions are
considered, we understand from these considerations
they will tend to flatten the Fermi surface, because this w
allow for smaller energy denominators. That this is true c
be checked by explicitly computing the energy shift, which
found to be

DED
(2)5

LD2

vF
(0)~2p!3

~kF,02kF,p!2 lnS L0

ukF,02kF,pu D . ~19!

We stress that this result has been found computing Eq.~18!,
keeping only terms that are divergent whenL0→` and that
depend on the Fermi momenta. If onlyD terms are consid-
ered, it is now easy to show that the free and renormali
Fermi momenta are linked by the following formula:

DkF
(0)5DkFF112S D

2pvF
(0)D 2

lnS L0

uDkFu D G , ~20!

where we have setDkF5kF,02kF,p ~and the same for free
quantities!. This clearly shows the tendency towards the fl
tening of the Fermi surface, induced byD terms.

What aboutF interactions? Perturbation theory at seco
order is divergent in the low-energy limit. Indee
u0;kF,0 ,kF,p&0 states that are not the free ground states,
coupled to a continuum of excited states composed of
particles and two holes, which have kinetic energies a
trarily close to the one of the seed stateu0;kF,0 ,kF,p&0. This
yields energy denominators that are very small in abso
value, and even zero. In the self-energy formalism~con-
structed from an excited state, see Appendix A for detai!,
this problem is regularized by the imaginary parts6 ih in

ve
e

e

1-7



g
in
e
rs
r

ss

c
fe
es

a
a
de
w
th

th
e
w
e
m

e

it
t
c

de
th

e
r

th
rd
p
ee

nd
ree

t

tial

ter-
one
the

is

un-

ter-

ed
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the self-energy approach. For the minimization of ener
one can similarly define the divergent integrals with a pr
cipal part, and one finds the same results as in this s
energy version. But this infrared divergence is only the fi
one, and is not the most problematic. Things become wo
and worse for higher orders. This has already been discu
by Feldman, Salmhofer, and Trubowitz17 so that we shall be
brief. In the language of Feynman diagrams, the divergen
come from repeated self-energy insertions, or to say it dif
ently, with nonskeleton diagrams. An example of the low
order diagrams of this type~apart from the Kohn-Luttinger
diagram we have already discussed at second order,
which is zero! is given in Fig. 7. The problem with such
diagram is the following. Because of the inserted first or
self-energy in the internal right propagator, we now have t
right internal propagators. This gives a bad behavior of
integral overq aroundq50 for v50 and k50, once all
other variables have been integrated out. It is clear
things get even worse if two or more such first or high
order self-energies are inserted. We thus have to find a
of getting rid of these infrared problems that plague our p
turbation theory. This is achieved by the use of counterter
that we will expose now.

C. The use of counterterms in the two-chain model

1. Notations and first order calculation

In order to simplify the notations, we will denote th
Fermi velocity byvF instead ofvF

(0) . We will again suppose
this velocity to be independent of the chain index and
renormalization will be neglected throughout this paper
simplify the discussion. The use of counterterms in intera
ing fermionic systems, for which the Fermi surface gets
formed, is quite old, and can for example be found in
beautiful discussion by Nozie`res,16 where the reader will find
more details. The main idea, which has been illustrated v
recently,27,28 is to take the interacting Fermi sea as the sta
ing point of perturbation theory. As it isa priori unknown,
we must ensure in the end of the calculation, that
‘‘guessed’’ Fermi surface is indeed the dressed one. In o
to have a good starting point, the most natural idea is to s
the free Hamiltonian into two bits: one that is a modified fr

FIG. 7. Example of nonskeleton diagram giving rise to infrar
divergences.
20511
y,
-
lf-
t
se
ed

es
r-
t

nd

r
o
e

at
r
ay
r-
s,

s
o
t-
-

e

ry
t-

e
er
lit

Hamiltonian with the correct interacting Fermi surface, a
another that will be the difference between the true f
Hamiltonian, and the modified one. We will thus write

H05 (
I 50,p

(
k

$@m1vF~k2kF,I !#cR,I
† ~k!cR,I~k!

1@m2vF~k1kF,I !#cL,I
† ~k!cL,I~k!%1H0,ct

(m)1H0,ct
(k) ,

~21!

with

H0,ct
(m)5dm(

I ,k
cR,I

† ~k!cR,I~k!1dm(
I ,k

cL,I
† ~k!cL,I~k!

~22!

and

H0,ct
(k) 52vFdkI(

I ,k
cR,I

† ~k!cR,I~k!2vFdkI(
I ,k

cL,I
† ~k!cL,I~k!.

~23!

The countertermsdm anddkI are found by the requiremen
that H0 remains the true free Hamiltonian

m (0)5m1dm ~24!

with

dm5dm (1)1dm (2)1•••5Gadm1
a1•••, ~25!

kF,I
(0)5kF,I1dkI ~26!

with

dkI5dkI
(1)1dkI

(2)1•••5GadkI ,1
a 1••• . ~27!

Note that we have used a symbolic notationGa for the cou-
plings A to F, and the sum overa is implicit. We stress that
there is not only one counterterm for the chemical poten
~or for the Fermi momentum of each chain!, but an infinity,
which are all thedm (n)’s, for n51,2, . . . . Thenumbern
gives the power in the couplings of the considered coun
term. Counterterms have to be computed order by order,
after the other, in a perturbation theory. When using
counterterms, the Luttinger theorem simply says that( IdkI

50, or for each orderj: ( IdkI
( j )50. Now the free (R,0)

propagator with which Feynman diagrams are computed

FIG. 8. Graphical representation of the chemical potential co
terterm, at first order.

FIG. 9. Graphical representation of the Fermi momenta coun
terms, at first order.
1-8
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GR,0* ~k,v!5
1

v2@m1vF~k2kF,I !#1 ih sgn~k2kF,I !
,

~28!

and similarly for other types of fermions. Both real an
imaginary parts of these propagators refer to the interac
Fermi surface.

We shall now see how to implement the use of coun
terms in the perturbation theory of the two-chain model. F
this, it is useful to associate a graphical representation to
counterterms. This is illustrated at first order in Fig. 8 for t
chemical potential, and in Fig. 9 for the Fermi momenta. T
chemical potential counterterm is represented by a squ
whereas the Fermi momenta counterterms are denote
hexagons. In both cases, the number written inside the s
bol is the ordern mentioned previously. Notice that fo
Fermi momenta, we do not need to explicitly write down t
chain indexI, because it would be redundant with the cha
index of the propagators. The reader should also remark
counterterms for right or left fermions are exactly identic

Now that the general notations have been given, let us
what the counterterm approach gives to first order, for
two chains. In all that follows, we will not use an ultra-viol
cut-off around the free Fermi surface, but around the in
acting Fermi surface. This will slightly alter the results, bu
makes the computation simpler, without involving a quali
tively different physics. The tadpole diagram of Fig. 1
computed with the new free propagatorG

*
(0) and the new

cutoff, gives the following contribution to the self-energy:

SR,0
(1)~k,v!5~A1C!

L0

2p
~29!

and

FIG. 11. Sunrise diagram contributing to the second order s
energy.

FIG. 10. First order contribution to the self-energy: the tadp
graph.
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SR,p
(1) ~k,v!5~B1C!

L0

2p
. ~30!

But we also have the counterterm contributions~diagrams of
Figs. 8 and 9!:

Sct;R,0
(m;1)~k,v!5Sct;R,p

(m;1) ~k,v!5dm (1), ~31!

Sct;R,0
(k;1) ~k,v!52vFdk0

(1) , ~32!

Sct;R,p
(k;1) ~k,v!52vFdkp

(1) . ~33!

The dressed propagatorsG are such that they satisfy th
Dyson equationG215G

*
(0)212S2Sct . The chemical po-

tential and Fermi momenta are found by requiring that th
vanish forv5m and fork on the interacting Fermi surface
and that the Luttinger theorem is satisfied:

GR,0
21~k5kF,0 ,v5m!50, ~34!

GR,p
21 ~k5kF,p ,v5m!50, ~35!

(
I

dkI
( j )50, ~36!

with j 51 here, because we are working at first order for
moment. It is very easy to check that one finds

dm (1)52~A1B12C!
L0

4p
, ~37!

dk0
(1)5~A2B!

L0

4pvF
. ~38!

This is fully compatible with Eqs.~14! and ~17!, except for
second order terms that we do not find here, because we
changed the way we choose the cutoff.

2. Second order calculation with counterterms
and next-order considerations

As for the first order calculation, we have ‘‘usual’’ contr
butions to the self-energy, namely, the sunrise and Ko
Luttinger diagrams of Figs. 11 and 12. We also have ‘‘pur
counterterms contributions, as in Figs. 8 and 9, with the
dex 1 replaced by an index 2. But now we also have t
‘‘mixed’’ contributions, involving counterterms of the previ

f-

FIG. 12. Kohn-Luttinger diagram contributing to the second
der self-energy.

e

1-9



p
a
fro

ef
e
d
t
e
te
th

on
, b
llo
e

ow

rmi

ing
le-
der
ral
y

y.
ica

y.
rm
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ous order, shown in Figs. 13 and 14. In fact, these two gra
vanish, for the same reason the Kohn-Luttinger graph v
ishes. This is consistent, because there is no divergence
the Kohn-Luttinger graph to cancel.

Before studying the sunrise graph, let us see how us
the counterterms are for third order graphs on the exampl
Fig. 7. It is now obvious that it will be completely cancele
by the same graph, with the inserted tadpole replaced by
two first order counterterms. Notice that the fourth ord
graph, consisting of still the same graph, with an inser
sunrise instead of a tadpole, would not be canceled by
graph with inserted second-order counterterms. The reas
that the sunrise is frequency and momentum dependent
the counterterms are not. However, the counterterms a
for the infrared divergence cancellation obtained at zero
ternal momentum and frequency.

The sunrise is easily computed, and one gets the foll
ing contributions~the interaction indexG refers to the inter-
action associated to the two black dots in the sunrise!:

SR,0;G
(2) ~k5kF,01k,v5m1n!

5
1

4 S G

2pvF
D 2

~n2vFk!lnS un22~vFk!2u

~2vFL0!2 D
for G5A,C,F, ~39!

SR,p;G
(2) ~k5kF,p1k,v5m1n!

5
1

4 S G

2pvF
D 2

~n2vFk!lnS un22~vFk!2u

~2vFL0!2 D
for G5B,C,F, ~40!

FIG. 13. ‘‘Mixed’’ contribution to the second order self-energ
This graph is a tadpole, with an insertion of the first order chem
potential counterterm.

FIG. 14. ‘‘Mixed’’ contribution to the second order self-energ
This graph is a tadpole, with an insertion of the first order Fe
momentum counterterm.
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SR,0;D
(2) ~k5kF,01k,v5m1n!

5
1

4 S D

2pvF
D 2

@n2vF~k12DkF!#

3 lnS un22@vF~k12DkF!#2u

~2vFL0!2 D , ~41!

SR,p;D
(2) ~k5kF,p1k,v5m1n!

5
1

4 S D

2pvF
D 2

@n2vF~k22DkF!#

3 lnS un22@vF~k22DkF!#2u

~2vFL0!2 D . ~42!

The second-order conditions ensuring that the trial Fe
surface is indeed the interacting one read

2
1

2 S D

2pvF
D 2

~22vFDkF!lnS uDkFu
L0

D2dm (2)1vFdk0
(2)50,

~43!

2
1

2 S D

2pvF
D 2

~2vFDkF!lnS uDkFu
L0

D2dm (2)1vFdkp
(2)50,

~44!

dk0
(2)1dkp

(2)50. ~45!

These equations lead todm (2)50, and to dk0
(2)

52(D/2pvF)2DkF ln(uDkFu/L0), which is identical to Eq.
~20!. The dressed (R,0) propagator~and others as well! can
finally be deduced from all this:

GR,0
(2)21~k5kF,01k,v5m1n!

5n2vFk2
1

4 F S A

2pvF
D 2

1S C

2pvF
D 2

1S F

2pvF
D 2G

3~n2vFk!lnS un22~vFk!2u

~2vFL0!2 D 2
1

4 S D

2pvF
D 2

3~n2vFk!lnS un22@vF~k12DkF!#2u

~2vFL0!2 D
1

1

4 S D

2pvF
D 2

~2vFDkF!lnS un22@vF~k12DkF!#2u

~2vFDkF!2 D .

~46!

We could now define renormalized propagators, introduc
a wave function renormalization, and show how to imp
ment a RG calculation of the dressed Fermi surface. In or
not to be too redundant, we will do this for the more gene
case ofN chains of spin 1/2 electrons, which is anywa
physically motivated by the case of quasi-1D systems.

l

i
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III. CUTOFF SCALING RG CALCULATION FOR A
SYSTEM OF N CHAINS OF SPIN 1Õ2 ELECTRONS:

FORMALISM

A. Setting of the model

The free Hamiltonian is very similar to the one of Eq.~7!,
except that there are nowN chains instead of 2, and that th
fermions carry a spin indexs:

H05(
k

(
I 51

N

(
s5↑,↓

$@m (0)1vF,I
(0)~k2kF,I

(0)!#cR,I ,s
† ~k!cR,I ,s~k!

1@m (0)2vF,I
(0)~k1kF,I

(0)!#cL,I ,s
† ~k!cL,I ,s~k!%. ~47!

We will in fact assume, as we did previously, that the Fer
velocity is independent of the chain indexI, and that it re-
mains unrenormalized. We will thus simply use the notat
vF .

As in the two-chain model, we select low-energy intera
tion processes. Those are of two types. The first one den
by G, generalizes the interactionsA to F of the two-chain
model. They are forward or backward scattering interactio
We shall only be interested in interactions that are invari
under spin rotations. Thus, we will use the charge and s
couplingsGc and Gs. We refer the reader to our previou
paper29 for more details about this parametrization. There
however, one major difference between the situation
scribed in this article and the one we are interested in h
Because of periodic boundary conditions in the transve
direction, all indicesI, J, andd are defined modulo the num
ber of chainsN. This was not the case in our previous artic
where the chains were obtained after considering patche
a nearly square Fermi surface, thus theN chains had bound
aries, and as a consequence the chains were not all eq
lent.

Furthermore, if the filling is not too far from one half, w
have to consider Umklapp scatterings. These will be deno
by U. It is easy to convince oneself that due to the Pa
principle, there is no need to consider exchange coupli
for the Umklapps. The interaction Hamiltonian is thus

H int5H int
(G)1H int

(U) ~48!

with

H int
(G)5

2pvF

NL (
I ,J,d

(
k,k8,q

(
t,t8

(
r,r8

$@Gd
c~ I ,J!It,t8Ir,r8

1Gd
s~ I ,J!st,t8•sr,r8#cR,I 1d,t

† ~k1q!

3cL,J2d,r
† ~k82q!cL,J,r8~k8!cR,I ,t8~k!% ~49!

and

H int
(U)5

pvF

NL (
I ,J,d

(
k,k8,q

(
t,t8

(
r,r8

$Ud~ I ,J!It,t8Ir,r8cR,I 1d,t
†

3~k1q!cR,J2d,r
† ~k82q!cL,J,r8~k8!cL,I ,t8~k!

1H. c.%. ~50!
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The factors 1/N are required to yield a good thermody
namical limit. The 2pvF terms have been factorized, so th
the couplings are dimensionless, and this will suppress m
2pvF denominators in the following. In the case ofG cou-
plings, the left-right symmetry requiresGd

c(s)(I ,J)
5G2d

c(s)(J,I ), and the hermiticity ofH int yields Gd
c(s)(I ,J)

5G2d
c(s)(I 1d,J2d). The first of these relations, i.e

Ud(I ,J)5U2d(J,I ), naturally holds for the Umklapps be
cause of the Pauli principle, so that the interaction that
stroys two left fermions on chainsI and J, and creates two
right fermions on chainsI 1d andJ2d is present twice. The
difference of a 1/2 factor between the Umklapps and theG
interactions, is here to compensate this. We let the rea
check that in the case of the Hubbard model with an int
action HamiltonianU( ini ,↑ni ,↓ , one has~up to 2pvF fac-
tors! Gc5U/2, Gs52U/2, andU5U. Because of this las
equality, we will simply give the value ofU when referring
to Hubbard couplings. Of course the Hubbard model,
terms of right and left fermions, also containsg4 interac-
tions, but these have been set to zero, for the reasons alr
given in Sec. II B 1.

In order to make our notations for the interactions a
more concrete, we show two Feynman graphs in Figs. 15
16, associated, respectively, withGs and U terms. The rep-
resentation forGc is the same as the one forGs, except it

FIG. 15. Graphical representation of the spin interact
Gd

s(I ,J).

FIG. 16. Graphical representation of the Umklapp interact
Ud(I ,J).
1-11
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involves I matrices instead ofs matrices. Notice we do no
use the single dot notation as we did previously, because
not suited for the Umklapps, but we have adopted the wig
line instead. In these graphs we also show which exte
legs are numbered 1, 2, 3, and 4.

B. Cutoff scaling calculation of the Fermi surface

1. General considerations

One of the main conclusions of Sec. II is the necessity
use a renormalized perturbation theory in situations wh
the Fermi surface changes as a function of interac
strength. In the standard many-body formalism, this
achieved by the introduction of counterterms which pin
dressed Fermi surface. The outcome is a precise conne
such as Eq.~20! between the bare and dressed Fermi surfa
which may in principle be computed to any order in pert
bation theory. As noticed already long ago by Gell-Mann a
Low,30 it is possible to sum infinite classes of contributio
using a renormalization group procedure. This idea
played a crucial role in building a consistent physical pictu
of quasi-1D conductors for instance.31

The most general and flexible way to implement a ren
malization approach is based on Wilson’s idea of grad
mode elimination. Several groups have recently implemen
Wilson’s approach to the RG, expressed via the Polchin
equation,2,3 or its one-particle irreducible version.4,32 Al-
though these equations are exact, they are quite complic
since effective interactions involving an arbitrary number
particles are generated along the RG flow. Any numer
computation requires therefore drastic truncations in the
fective action. For this reason, we have prefered to us
simplified version of RG which is known as ‘‘cutoff’’ scal
ing. This procedure has been initiated in the pioneering w
by Andersonet al.33 for the Kondo problem, and put in
more mathematical form by Abrikosov and Migdal34 and
Fowler and Zawadowski.35 A very extensive review on this
method has been written by So´lyom.31

This scheme amounts to constructing a one param
family of ‘‘bare’’ Hamiltonians. These are defined on th
single particle states whose momentum lies in a strip
width L away from the Fermi surface. It is therefore natu
to parametrize these Hamiltonians as a function ofL. Note
that by contrast to Wilson’s effective action, which includ
all the possible types of interactions~relevant, marginal, and
irrelevant ones!, the cutoff scaling procedure only conside
relevant and marginal couplings. So unlike what is achie
in Wilson’s RG, it is no longer possible to preserve inva
ance of the full set of low-energy correlation functions asL
is gradually decreased. The cutoff scaling approach only
lows one to preserve a restricted set of low-energy obs
ables, for instance, the first derivatives of the two-point fu
tion with respect to external momentum and frequency,
the value of the four-point function for external legs tak
onshell at the Fermi level.

Actual computations within this scheme encounter a n
difficulty when the Fermi surface is sensitive to the stren
of interactions. As explained in detail in Sec. II C the ba
propagators used in Feynman graphs are required to be
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gular on the dressed Fermi surface. But clearly, this is
known until the whole computation has been perform
This calls for an iterative procedure. For a given microsco
model ~defined with an initial cutoffL0), the one-particle
part of the corresponding Hamiltonian defines a Fermi s
face which will be called theL0-Fermi surface. This is a
natural first choice for a trial dressed Fermi surface in
iterative computation. One can then construct the flow eq
tions for the running bare Fermi surface~the L-Fermi sur-
face! and the effective couplings using cutoff scaling. In t
limit where L goes to zero~or at least to its minimal value
before a phase transition occurs!, the L-Fermi surface goes
towards a new dressed Fermi surface, which is to be use
the new trial dressed Fermi surface in the next step of
iteration.

On physical grounds, such a computation is expected
converge although we have not embarked yet in check
this statement. Instead we have tried to bypass the intri
complication of an iterative procedure by appealing to
physical insights gained in Sec. II B devoted to the energ
approach. The main ideas are the following. First, in t
high-energy regime, and in the logarithmic approximatio
the dressed Fermi momenta do not appear in the flow c
plings’ equations. Secondly, in the low-energy part of t
flow, the Fermi surface should not move too much, beca
the couplings that deform it are irrelevant in this regime. T
first point will be checked on the RG equations. The seco
one has already been checked in the two-chain model, w
only theD coupling that does not exist at very low energi
because of the nonflatness of the Fermi surface, deforms
Fermi surface. We will furthermore check it remains true
the case ofN chains. Assuming what happens in the interm
diate energy regime~defined by the curvature of the Ferm
surface! is not essential, the computation of the dress
Fermi surface is now possible in a single step. Indeed, we
not needa priori knowledge of the dressed Fermi surfa
anymore, since it disappears from the RG couplings’ fl
equations in the logarithmic approximation of the hig
energy regime. The flow of theL-Fermi surface, will then be
stopped when the cutoffL becomes comparable to the max
mal momentum scale defined by the runningL-Fermi sur-
face. Note that this is the least controlled step of this
proximated scheme, because the Fermi surface does
define one single momentum scale, but rather a continuum
scales. This will, for example, prevent us from using th
scheme when the Umklapp couplings are taken into acco
in a system too far from half filling.

The couplings’ flow equations in the cutoff scaling a
given in Appendix E, since their derivation is standard. W
shall now focus on the RG computation of the Fermi surfa
The basic equation is Eq.~D9!. The self-energy that appear
in this equation can be found from Eq.~E13!, where, since
we work in the cutoff scaling scheme, the cutoffL0 should
now be replaced by the running cutoffL, and where the
couplings are to be understood as running bare couplin
Given thatdkI5kI

(0)(L)2kI , Eq. ~D9! allows us to express
kI

(0)(L) as a function ofL, the running bare couplings an
the dressed Fermi momentakI . But it is the latter who are
fixed independently of the value ofL, so that it is more
1-12
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convenient to invert this relation, working only at a seco
order accuracy, to getkI as a function ofL, the running bare
couplings and the running Fermi momentakI

(0)(L). Asking
for the invariance ofkI as L is changed yields the Ferm
surface flow equation that we give in Appendix E, Eq.~E15!.

Only the couplings for which the curvature of the Fer
surface is felt, i.e., for whichDka(I ,J)Þ0 or Dka

U(I ,J)Þ0
contribute to the flow ofkI

(0)(L). This is what we had al-
ready noticed in the two-chain system, where theD coupling
was the only one to give a deformation of the Fermi surfa
This confirms that only couplings that will be irrelevant
the low-energy regime contribute to the deformation of
Fermi surface.

Finally, notice that we have not taken the first order co
tribution into account. This is not justified in the gener
case, but for the initial condition we are interested in, i.
with all charge, spin and Umklapp couplings equal toGB

c ,
GB

s , andUB , the first order contribution vanishes. We em
phasize this is true only in the high-energy regime, where
couplings will have a purely one-dimensional~1D! flow ~be-
cause of the logarithmic approximation!, and thus will re-
main equal~with one value for each of the three types
couplings!. Once the low-energy regime is reached the c
plings become different, so that one should take the fi
order deformation into account.

The self-energy at one loop is given by the contribution
the tadpole diagram. It is easy to see that out of the th
couplingsGc, Gs, andU, only theGc couplings contribute.
Compared to the spinless case, there will be a factor o
because of the two possible spin states of the propagat
the loop. We let the reader check that

SR,I
(1)~k5kF,I1k,v5m1n!5F 1

N (
J

G0
c~ I ,J!G~2vFL!,

~51!

and that the corresponding first-order Fermi momenta co
terterms read

dkI
(1)5

2vFL

N S (
J

G0
c~ I ,J!2

1

N (
I ,J

G0
c~ I ,J! D . ~52!

However, because we are interested in systems for w
t' is small, i.e., for systems that are nearly 1D, we know t
all the chains are nearly equivalent, so that the right-h
side ~RHS! of the previous equation will be nearly indepe
dent of I, and thus, very small. That this is true can
checked on Fig. 32, that will be described later, and on wh
the couplingsG0

c(I ,J) are represented after running the flo
into the low-energy regime. It is clear on this figure that t
term (JG0

c(I ,J) is nearly independent ofI.

2. Analytical study of the simplest example

Let us illustrate all this on the simplest possible case,
which GB

s 50 andUB50. This physically corresponds to
system away from half filling, so that it is justified to negle
the Umklapps. Furthermore we have set the spin coupling
zero, which corresponds to the Luttinger liquid fixed poi
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This simplifies the flow, because the charge couplings t
remain constant along it. Furthermore, this will allow us
compare our results to those obtained in the literature, s
ing from decoupled Luttinger liquids, coupled by a hoppi
term. It is easy to check that the general flow equation of
Fermi surface~E15! can be simplified in

] tkF,I
(0)5

GB
c 2

N2 (
J,a

@~kF,I 1a
(0) 1kF,J

(0) !2~kF,I
(0)1kF,J2a

(0) !#

52GB
c 2kF,I

(0)1
GB

c 2

N (
a

kF,I 1a
(0) . ~53!

If we denote the mean value of the Fermi momenta byk̄

5(( IkF,I)/N5(( IkF,I
(0))/N, and if we write kF,I

(0)(t)5 k̄
1dkF,I

(0)(t), the differential equation is easily solved and t
solution is

dkF,I
(0)~L!5dkF,I

(0)~L0!S L

L0
D GB

c 2

. ~54!

The question that now arises, is how to determine at w
scaleL* the flow should be stopped. This scale cannot
determined precisely in the cutoff scaling scheme, which
only a very simple version of the Wilsonian approach. On
the latter approach could precisely describe the transition
tween the two regimes, which would not even occur a
single scale~because of the large number of different sca
K appearing in the RHS of the RG flow equations!. We will
thus adopt the simple and pragmatic following point of vie
the flow of the Fermi surface will be stopped, when the b
gest of these scales is reached, i.e., when the scale give
the difference between the biggest and the smallest Fe
momenta@denoted byDkF

max(L)] is reached

L* 5DkF
max~L* !. ~55!

Notice that if the Fermi surface flattens more quickly th
the RG time decreases, this scale will never be reached

According to Eq.~54!, the differences between the Ferm
momenta and the mean value are all multiplied by the sa
factor. The biggest~smallest! momentum will remain the
biggest ~smallest! along the flow. We thus haveDkF

max(L)

5DkF
max(L0)(L/L0)

GB
c2

. We will stop the flow at the scaleL*

such thatL* .DkF
max(L0)(L* /L0)

GB
c2

. Finally we get the fol-
lowing link between high-energy and low-energy momen

dkF,I.dkF,I
(0)~L0!S DkF

max~L0!

L0
D GB

c 2/(12GB
c 2)

~56!

⇒DkF
max.DkF

max~L0!S DkF
max~L0!

L0
D GB

c 2/(12GB
c 2)

. ~57!

As DkF
max(L0)52t' /ti , we obtain the result already found i

the literature9,10
1-13
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t'
eff;t'S t'

t i
D a/(12a)

, ~58!

where a is the single-particle Green’s function’s expone
a5(Kr11/Kr)/421/2, with Kr5A(122GB

c )/(112GB
c ).

Perturbatively,a5GB
c2

, so that our result is indeed the sam
as Eq.~58!, to lowest order. Let us mention that the powe
law behavior of Eq.~58! has been confirmed numerically, fo
a two-chain system, using exact diagonalizati
techniques.36

Notice that according to Eq.~57!, if GB
c 2>1, the effective

transverse hopping vanishes, and the dressed Fermi su
is flat. Although this result is confirmed by the nonperturb
tive ~in the coupling! result Eq.~58! after replacingGB

c 2 by
a, we shall not use the perturbative RG in such situatio
that lay outside the validity range of this approach.

3. Comparison to other previous results of the literature

Before turning to numerical calculations, we shall co
pare our equations describing the deformation of the Fe
surface to some more results of the recent literature. Le
begin with the article by Kishine and Yonemitsu,21 which
treats exactly the same problem as ours. We shall com
our Eqs.~E15! to their flow equation for the effective trans
verse hopping@Eq. ~4!#. Note that they obtained this equatio
from the previous works by Bourbonnais an
co-workers7,37,38and Kimura39 ~see also the review article b
Firsov, Prigodin, and Seidel40!. We, however, choose the pa
per by Kishine and Yonemitsu because their formalism is
closest to ours.

The comparison is easily achieved in two steps: first
tice that our Fermi momenta do not flow when no intera
tions are turned on~which is desirable, since the Fermi su
face should not get deformed in this case!, while their t'
flows in this case, because of the first term of their equa
coming from the rescaling they have performed, so that
should simply forget this term if we want to compare o
results. Second, we have to take the particular set of c
plings they have chosen, namely local couplings. This is
tained when setting all charge couplings to the same va
and doing the same for spin couplings and Umklapps.
peating exactly what we have done in the previous sect
we find

] tdkF,I
(0)52dkF,I

(0)S GB
c 213GB

s 21
U2

2 D . ~59!

This in particular means that all Fermi momentadkF,I
(0) will

be scaled by the same factor. Next, we have to link
charge and spin couplings to theg-ology notation. It is easily
checked that one simply hasGc5g22g1/2 andGs52g1/2
~here allgi and g' couplings of theg-ology are equal be-
cause we have restricted ourselves to spin-rotation invar
couplings!. We also have the trivial identificationU5g3.
The difference in the numerical factor 4 simply comes fro
a different normalization of the dimensionless couplings~we
divided the couplings by 2pvF and they divided them by
20511
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pvF). Finally, we haveDkF
max52(t' /ti) which shows the

equivalence between the two approaches.
We want to stress that this equivalence relies on

simple approximation according to which the Fermi surfa
is deformed only in the high-energy regime, since this def
mation is driven by irrelevant couplings. It would be possib
to go beyond this approximation by implementing the ite
tive procedure outlined in Sec. III B 1. To estimate the
sidual deformation of the Fermi surface induced by the
irrelevant couplings in the low-energy regime remains
interesting open question, that could be addressed within
general framework discussed in this paper. Furtherm
such a calculation would enable us to take into account
deformation of the Fermi surface induced by the Hart
terms which are effective only when the forward scatter
amplitudes significantly vary along the Fermi line. Such
dependence is only generated when the running cutoff
comes comparable to or smaller than the natural scale a
ciated to the transverse dispersion.

For the sake of completeness, we shall give a simple
quick derivation of the RG equation, which emphasizes
role of the 1D chains~see note 31 of Ref. 37! and explains
why the exponent obtained in Eq.~58! is the 1D propagator’s
exponent. The idea is to assume that the full propagato
scaleL can be obtained by taking the corresponding pur
1D propagator at scaleL, and correcting it with the disper
sion relation induced by the baret' : G21(L)5G1D

21(L)
12t' cos(k'). @In other words, this amounts to assume th
when computing the effective action at scaleL, one puts the
interchain hopping aside, so that the flow is purely 1D, a
the ~unrenormalized! interchain hopping is reintroduced i
the effective action at the end of the computation#. But we
can writeG1D

215Z1D
21(L)@v2 «̃L(ki)#. Note that in the pre-

vious two formulas, we have denoted byk' andki the trans-
verse and longitudinal momenta.Z1D is the 1D wave-
function renormalization and«̃L(ki) is the renormalized 1D
dispersion relation. We thus getG21(L)5Z1D

21(L)@v

2 «̃L(ki)12Z1D(L)t' cos(k')#, showing that the effective
interchain hopping at scaleL readst'(L)5Z1D(L)t' . The
effective t' at two different scales are thus proportiona
related by the 1DZ function, whose flow equation can easi
be deduced from Eq.~E14! specialized to the 1D case. Th
yields the correct flow equation fort' . Let us also mention
that this way of taking into account the interchain tunneli
has been recently adopted by Essler and Tsvelik,41 except
that they use the exact 1D Green’s function instead of
result of a perturbative RG computation.

Let us now compare our results with those of Fabrizio22

whose work is devoted to the two-chain model without lo
gitudinal Umklapps, but with Fermi velocity renormaliza
tion. Fabrizio used a Wilsonian RG~at two loops! for the
calculation of the deformation of the Fermi surface. As o
can expect, this formalism allows to cross the energy sc
coming from the nonflatness of the Fermi surface~see how
the flows are defined piecewise in his Appendix A, and
which the various RHS never diverge!. Our equations coin-
cide with those of Fabrizio in the high-energy regime~when
his functionC2 is expanded to lowest order inh, the dimen-
1-14
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sionlessDkF), and in the low-energy regime where the flo
of the Fermi surface vanishes. The intermediate regime i
course different. Note for the comparison that Fabrizio’s c
pling gb is our couplingD. Finally, we would like to note
that our results at one loop are consistent with the article
Louis, Alvarez, and Gros42 @see their Eqs.~9! and~13!# if we
specialize these to the case of uniform Fermi velocities.

IV. COUPLED CUTOFF SCALING AND
FIELD-THEORETICAL RG CALCULATIONS FOR A

SYSTEM OF N CHAINS OF SPIN 1Õ2 ELECTRONS:
NUMERICAL RESULTS

A. Motivation of the use of two RG schemes

Before we present our results for specific models, we w
to emphasize that one of our motivations in addition to
Fermi surface deformation was to describe precisely the c
nection between the essentially 1D high-energy regime
the 2D low-energy physics where the system is sensitive
the warping of the Fermi surface. This can be viewed a
complement to the RG analysis of Linet al.43 who have
focused exclusively on the low-energy side where the cu
is much smaller than the scale associated to the transv
dispersion. In this work, they could relate the high- and lo
energy regimes without actually solving RG flow equatio
for the former since they assumed very weak bare coupl
~so that these couplings were barely renormalized in
high-energy part of the flow!. Although working with the full
Wilsonian effective action allows one to get through su
intermediate-energy scales, it is not clear to us that this
be achieved in a reliable way with the cutoff scaling. Inde
our view of this procedure is that it provides a simple a
proximation of the full Wilsonian RG, which is certainl
well controlled when the running cutoff is much larger th
the intrinsic low-energy scales of the system’s dynamics.
cause of this we have decided to study the low-energy pa
the flow in the field-theoretical framework. This latte
scheme heavily relies on the existence of an infinite cu
limit ~continuum limit!, or in other words the correspondin
theory of 1D fermions with linear dispersion and pointlik
interactions is renormalizable. This statement is independ
of the existence of intrinsic low-energy scales such as a m
term, or variations in Fermi wave vectors with the cha
index. In this context RG equations are obtained by relat
physical properties measured at different running ene
scales. To avoid confusion with cutoff scaling this runni
scale has been denoted byn in Appendix D which presents
some details on this approach. Since we have used a l
rithmic approximation, the high-energy flows of the co
plings in both cutoff scaling and field-theoretical RG a
identical. It is an interesting question whether the tw
schemes give the same physical low-energy results or
We plan to study this in more detail in a forthcoming wor

B. A first numerical study: incommensurate nesting

We will now show what information can be deduced fro
numerical computations. For this we choose to focus o
simple example, where the Umklapps are set to zero, bu
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still assume a perfect Fermi surface nesting. This situatio
realized in several interesting systems as for instance in t
dimensional molybdenum and tungsten bronzes. For a
view, see, for example, the paper by Foury and Pouget.44

We have chosen an initial condition for which all char
couplings are equal, and all spin couplings too, withGc

50.352Gs. The bare hopping ist' /t i50.1. The couplings
are quite large so that the deformation of the Fermi surf
will be visible. The Fermi surface could be deduced analy
cally, but we have computed it numerically as all other qua
tities. All the results are contained in Figs. 17–22. The fi
three ~last three! of these figures have been computed w
N58 (N532). The reasons for these choices are that
could not represent all the couplings~the first of the six fig-
ures! for a too high value ofN, because the number of cou
plings grows asN3. But this was no problem for the Ferm
surface and the quasiparticle weights, except for a lon
computation time.

In these figures, that we shall comment one after the ot
we have made use of some notions such as the norm o
couplings, the normalized couplings, and the adapted
time s. All these notions, and some others~such as fixed
directions, etc.! have been dealt with extensively in our pr

FIG. 17. Flow of the normalized charge~top! and spin~bottom!
couplings, as a function of the ‘‘good’’ times, for N58. Initially
the true couplings~not normalized! are Gc50.352Gs, and the
bare hopping ist' /t i50.1. We have indicated the values* corre-
sponding to the valueL* @see Eq.~55!#.

FIG. 18. Flow of the normN ass grows, corresponding to Fig
17. The inset is a zoom on short times.
1-15
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vious paper,29 so we shall simply give the few basic defin
tions. The norm is the Euclidean norm of the coupling ve
tor, and the normalized couplings are the usual coupli
divided by the norm~we give an explicit formula for the
charge couplings only!:

N5A(
I ,J,d

Gd
c~ I ,J!21Gd

s~ I ,J!21Ud~ I ,J!2, ~60!

Gc̃
d~ I ,J!5

Gd
c~ I ,J!

N . ~61!

In all the figures in which flows will be represented~such as
Fig. 17!, we adopt the following convention: in the captio
we give the initial condition forusualcouplings, while in the
figures themselves we draw thenormalizedcouplings, and
suppress thẽ in the y-axis legends. The reader should n
get confused by this abuse of notation. The times that we
have used in the numerical simulation is defined byds
5N(t)dt, and is the time adapted for zooming on the flo
singularities.

The first of the six figures, Fig. 17, represents the ‘‘fie
theoretical’’ RG flow of the normalized charge and spin co
plings, as functions of the RG times. This flow is divided
into three regions. In the first one (0<s<s* .15), corre-

FIG. 19. Link between the ‘‘good’’ RG times and the ‘‘true’’
RG time t, corresponding to Fig. 17. We have indicated the valu
of s* and of t* 5 ln(L0 /L* ) corresponding toL* .

FIG. 20. Bare and dressed Fermi surface forN532.
20511
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sponding to the high-energy regime, all charge couplings
all spin couplings remain equal. Indeed, in this regime,
curvature of the Fermi surface is not felt at all, in the log
rithmic approximation we use. All chains are thus identic
~remember we use periodic boundary conditions in the tra
verse direction!, the system is purely one dimensional,
that the symmetry between the chains cannot be broken

In this high-energy regime, the cutoff scaling flow is e
actly the same as the ‘‘field-theoretical’’ one, so that w
could use the latter for the computation of the deformation
the Fermi surface. Afters.15, the flow of the Fermi surface
is stopped, because the scaleL* @as previously defined by
L* 5DkF

max(L* )] is reached. The dressed Fermi surface
the one obtained at that scale, and is then used in the ‘‘fi
theoretical’’ flow of the couplings. This dressed Fermi su
face, and the bare one, are represented on Fig. 20. As
cussed in Sec. III B 3, within the approximation we use, t
dressed Fermi surface is still given byt' cos(k') but with the
dressed value of the interchain hopping. Higher harmon
for DkF as a function ofk' , corresponding to longer rang
transverse hoppings, are expected to be generated only i

FIG. 21. Flow of the quasiparticle weightsZI51/w I for N
532. We have represented these forI 516 to I 532, as the ones for
smaller values ofI can be found using the top-bottom (I↔N2I
becauseN is even! symmetry. Note that we have indicated the val
of t* 5 ln(L0 /L* ) on the time axis.

FIG. 22. Here we show the transverse momentum~i.e., chain
numberI ) dependence of the quasiparticle weightsZI , at four RG
times t51, 2, 3 and 4~see Fig. 21 for a time reference!.
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low-energy part of the Fermi surface flow. Indeed it is on
in this regime that effective couplings acquire a drama
dependence with respect to transverse momenta. But
goes beyond the scope of the simple~i.e., noniterative! pro-
cedure used for the numerical computations presented h

We emphasize that in contrast to the flow of the co
plings, for the quasiparticle weightsZI functions associated
with the renormalized propagator, the whole flow must
computed with the fixed dressed Fermi surface, because
flow equations do depend on the Fermi surface in the h
energy regime@see Eq.~E14!#. As a consequence it is nec
essary to first compute the dressed Fermi surface, and
use it to compute the flow of theZI ’s. These flows are rep
resented on Fig. 21. We furthermore show the variation
the ZI ’s along the Fermi line at four different RG times o
Fig. 22. We note that the dispersion in theZI ’s is small, in
qualitative agreement with the dynamical mean field the
results obtained by Biermannet al.45 and this provides a con
sistency check of Bourbonnais’ computation~see Sec.
III B 3 !. Figure 22 shows that the evolution of the quasip
ticle weights with typical energy scale exhibits some simil
ity with the results of Kishine and Yonemitsu:46 in the early
stages of the flow, the quasiparticle weight is larger forky
56p (I 50 or N) than forky5p/2 (I 5N/2), and this or-
dering is reversed at later stages. However, we stress tha
two models are different since Kishine and Yonemitsu ha
considered a 2D model with flat Fermi surface segments,
it is not obvious that the end points of these segments sh
exhibit the same properties as the extremal pointsky56p in
our quasi-1D model. The variation of the quasipartic
weight along the Fermi surface has also been investigate
Zanchi47 for the 2D Hubbard model, where he found a mu
stronger reduction of theZ factor in the vicinity of the van
Hove singularities than for typical Fermi surface points. W
believe this effect requires to take into account the variat
of the Fermi velocity along the Fermi surface which we ha
not done here. The influence of these variations on the fl
of couplings for aN-leg Hubbard ladder has been recen
studied48,49 ~for t',t), with the conclusion that they play
dramatic role only below a cross-over scale which is
tremely small asN becomes large.

The second regime (15&s&60) is a transient between th
1D high-energy flow and the low-energy regime, where
shape of the Fermi surface is felt, and where the differen
tion between the couplings takes place. In more phys
terms, it corresponds to a Fermi liquid regime, located
tween a Luttinger liquid state at higher energies, and an
dered phase at lower energies. One might have expected
in this Fermi liquid regime, theZI ’s would remain constant
so that if this Fermi liquid regime was the final one, t
quasiparticle residue would be finite. Instead of this, we
on Fig. 21, that the time derivative of theZI ’s decreases~in
absolute value! but does not vanish. This is in fact a finiteN
effect, as can be seen on the flows of theZI ’s one obtains
~see Fig. 23!, assuming that the couplings are constant, eq
to their bare value, all along the flow. The inserted gra
shows that the growth rate of the logarithm of theZI ’s be-
haves as 1/N in the Fermi liquid regime. This is indeed con
sistent with the flow equations~E14! in the low-energy re-
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gime, where only the terms with a vanishingDka(I ,J)
contribute, and whose number is of orderN. This factorN
combined with the 1/N2 denominator explains the numeric
result. The relevance of these considerations with cons
couplings is demonstrated by Figs. 18 and 19. Indeed t
show that the norm is almost constant for the intervat
P@0,5# in which we are interested~see Fig. 21!. „Note that
Figs. 18 and 19 were obtained forN58 not for N532, but
we have checked that on this intervaltP@0,5#, the flows of
the two norms are identical, apart from a multiplicative fa
tor of 85(32/8)3/2, whose origin is the numberN3 of cou-
plings for a givenN, and which is irrelevant for our discus
sion.…

The final regime is one of a fixed direction, for whic
some normalized couplings are zero, and the others are g
ered around specific values. It is in this final phase of
flow that the norm of the couplings explodes, as can be s
on Fig. 18. In order to be complete, we have also represe
the link between the two RG timess andt on Fig. 19. Notice
that because of the definition ofs @see the comment after Eq
~10! of our previous paper#, and because the norm explod
in the end of the flow, the timet ‘‘saturates,’’ as a function of
s, to a value which is roughly the critical temperature
which the final phase sets in.

Let us now study more precisely the final fixed directio
in the spirit of our previous paper. First of all, let us have
more precise look at the values of the couplings, on the fi
direction that is reached. These values are shown on Fig
for the N516 case. We did not chooseN58 as on Fig. 17,
because we wanted to have more values~which was manage-
able here since we represent the whole set of values
once!.

When briefly looking at these values, one can deduce
the couplings seem to be grouped into a few sets of sim
values~with lots of couplings being equal to zero!. Further-
more, forgetting about the zero value, it seems the three
ues ~for charge or spin couplings! are not independent, bu

FIG. 23. Flow ofZN/4 as a function of the ‘‘true’’ RG timet, for
different values ofN, and fort' /t i50.1. These flows were obtaine
assuming that all coupling remain constant to their bare val
(Gc52Gs50.3). Note that we choseI 5N/4 becauseZN/4 is about
the mean value of theZI ’s. The inserted graph is a base 10 log-lo
representation of the value of the time derivative of2 ln(ZN/4) at
time t510 as a function ofN. The solid curve is the numerical fit
which shows a 1/N behavior.
1-17
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one is the sum of the other two. Finally, the values of
charge couplings seem to differ by a factor of 3~and a minus
sign! from the spin couplings. In fact, if we also look at Fi
17, we see that this will probably not be an exact statem
for all values ofN, but only in the limit of infiniteN.

It is then interesting to study what types of couplings ta
nonzero values. For the system we study, the nota
Gd(I ,J) which is best adapted to superconductivity, can
vorably be changed forFd

c(s)(I ,J)5GJ2I 2d
c(s) (I ,J). d is then

the transferred transverse momentum, between theR particle
that is destroyed and theL particle that is created. In thi
notation, onlyF couplings withd5J2I or with d5N/2 are
numerically found to have nonzero values. Notice that he
as N is even,N/2 is an integer~we will discuss the oddN
case a bit further!. The couplings for whichd5J2I and J
2IÞN/2 will be denoted asC c(s) couplings, and correspon
to the charge~respectively, spin! couplings that are negativ
~respectively, positive! on the fixed direction. They are th
usual forward scattering couplings. The couplings that sat
d5N/2 andJ2IÞN/2 will be denoted asD c(s), whereas the
ones for whichd5N/2 and J2I 5N/2 will be denoted as
A c(s) couplings. Both have a transferred transverse mom
tum d which is half the number of chains~i.e., p if we use
the usual momentum units!. The vector linking a point of the
Fermi surface on theR side, to the one on theL side, andN/2
chains further is anestingvector, which explains why thes
couplings are present in the final low-energy fixed directi

We let the reader write down the RG equations satis
by the F couplings, specialize these for the three types
couplings above, and deduce the equations satisfied for
final fixed direction, in the spirit of our previous paper.29 The
resulting equations are

NA c5~N21!~D c213D s2!,

NA s54A s212~N21!~D s21D sD c!,

NC c52~D c213D s2!,

NC s54C s212~D s22D sD c!,

FIG. 24. Values of the charge and spin couplings, for the fix
direction that is finally reached on Fig. 17, but forN516 here. The
inset is a zoom on the values taken by the positive charge coupl
and shows that these can be grouped into two sets.
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ND c5~N22!~D c213D s2!12~A c2C c!D c

16~A s2C s!D s,

ND s52~N22!~D s21D sD c!12~A s2C s!D c

12~A c2C c!D s14~A s1C s!D s. ~62!

This set of coupled equations is nothing but Eq.~46! of
our previous paper, with usual letters replaced by ca
graphic letters. The conditionAc,s5Cc,s1Dc,s was satisfied,
and ensured the SU(N) symmetry of the interaction Hamil
tonian. Here we will thus also be able to fulfill the relatio
A c(s)5C c(s)1D c(s), which was previously guessed whe
looking at the fixed direction obtained numerically. The va
ues of the couplings can be found in Table II of our previo
paper. It is clear that in the present situation, it is the
called (1,2) fixed direction that is selected since in th
infinite N limit, it is the one for which the charge coupling
equal minus three times the spin couplings.

The effective low-energy interaction Hamiltonian has t
following schematic form~we drop the charge and spi
structure!:

H int
eff;C(

q
F(

I ,k
cR,I

† ~k1q!cR,I~k!G
3F(

J,k8
cL,J

† ~k82q!cL,J~k8!G
2D (

q,k,k8
F(

J
cR,J2N/2

† ~k1q!cL,J~k8!G
3F(

I
cL,I 1N/2

† ~k82q!cR,I~k!G . ~63!

Let us describe the physics associated with such an effec
Hamiltonian. We will assume thatN is large, so that we can
neglect all finiteN corrections. Thus, for example, only th
D terms~Peierls couplings! survive, as the forward coupling
C are a correction of order 1/N. Furthermore, in the infiniteN
limit, the couplings take the valuesD c53/4 and D s

521/4, so thatD c523D s. This relation implies that the
interaction exists only in the triplet channel, and the effect
Hamiltonian can be written as (g.0)

H int
eff52

g

NE0

L

dx:F(
J

cR,J2N/2,r
† ~x!sr,r8cL,J,r8~x!G

3F(
I

cL,I 1N/2,t
† ~x!st,t8cR,I ,t8~x!G :. ~64!

The only difference~except for changes of notation! be-
tween this effective Hamiltonian and the one we arrived a
Eq. ~70! of our previous paper, is in the shift of the creatio
operators’ chain number by an amount ofN/2. We thus ex-
pect the physics to be essentially the same as we had
cussed in our previous paper, apart from a different SDW

d

s,
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wave vector that will now be (2k̄,p) ~rememberk̄ is the
average Fermi momentum!. We refer the reader to our pre
vious paper for details.

We thus have shown that after a high-energy 1D reg
where the Fermi surface’s shape is not felt in the flow of
couplings, and after the crossing of the typical energy-sc
given by the curvature of the Fermi surface, the system g
to a strong coupling phase of the SDW type, with the abo
effective low-energy Hamiltonian. The (2k̄,p) nesting vec-
tor naturally arises from the RG flow, and there is no need
artificially introduce it.

Let us make a final remark, about the oddN case. The
flow of the charge and spin couplings forN57 is shown on
Fig. 25. This figure is obviously different from Fig. 17. Th
reason for this is that there is noexactnesting vector any-
more whenN is odd. We have analyzed which couplings a
nonzero in the low-energy phase of Fig. 25, and these
out to be BCS type couplings, indicating a superconduct
low-energy phase. This is not in contradiction with what h
been said before in the evenN case. WhenN grows, the
nesting is better and better in the oddN case, so that the RG
flow will first be towards the same fixed direction as in t
evenN case. Then, there will be a shift from this fixed d
rection to another one, corresponding to superconductiv
But, this will take place at very low energies, and in regim
where the norm of the couplings has exploded. The con
sion is that the low-energy phase, in the thermodynam
limit, is always the one we have observed in the evenN case.
This discussion has been quite brief, but we refer the rea
to our previous paper where we had analyzed in detail h
the observed shift from one fixed direction to another one
a finite N situation, slows down asN increases and finally
disappears in the infiniteN limit. We have checked all this
numerically, but unfortunately it requires quite a large va
of N ~more than 30! to be visible, so that we could not depi
it in this paper.

C. Taking account of the Umklapps and limitations
of the method

In the above two simple examples we have studied,
encountered no real limitation of the computation scheme
have proposed. Of course, we had to use a non rigorous~but

FIG. 25. Flow of the charge and spin couplings, for the sa
values of the parameters as in Fig. 17, but withN57.
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plausible! argument to define the scale at which we had
stop the flow of the couplings. We will see that there a
some cases where it is not possible to use such a simple p
of view. The well known main limitation of a RG approach
its perturbative nature. We cannot fully trust the RG flow
when they go to strong couplings, even if the fixed directi
that is reached in this regime gives an insight of what phys
takes place. For the two computations of the Fermi surf
we have given previously, it is clear that this was no limit
tion, because the deformation of the Fermi surface occu
in a weak coupling regime~remember Figs. 17 and 18
where the norm diminishes between 0<s&20, which is the
time interval where the deformation of the Fermi surfa
takes place!.

The half-filled system is interesting, because it exhibit
variety of behaviors, depending on the strength of the b
couplings~compared to the value of the bare transverse h
ping!. We will discuss the strong, intermediate, and we
coupling situations, which do not give the same low-ene
physics. After this, we will consider the case of a nea
half-filled system.

1. Half-filled system in strong coupling

By strong coupling, we mean the initial couplings a
large enough for the behavior of the system to remain pu
one dimensional. To make this statement more precise, le
study the flows for one of these strong coupling initial co
ditions. We will assume, as we always did, thatt' /t i50.1.
In this case, the Hubbard conditionGc50.252Gs and U
50.4 is a strong coupling condition, for which the RG lea
to a fully flat Fermi surface. In fact, as the couplings a
large and grow quickly~because of the Umklapps!, the Fermi
surface flattens quickly, so that the decreasing cutoff ne
catches the scale of the Fermi surface, and there is no
zero value ofL* . The flow of the couplings is thus purel
1D all along the flow and is well known, so that we do n
show it. However, to be concrete, we show the evolution
the Fermi momenta on Fig. 26. About the norm, let us s
that its value at the beginning of the flow is about 30, and
s5140, it is about 1400, so that it is around 50 times bigg
This means the couplings have grown a lot. For example,
the UmklappsU.19 which is very big, so that the RG is no

e FIG. 26. Flow of the Fermi momenta, forN516 chains,t' /t i
50.1 and Hubbard initial conditionGc50.252Gs andU50.4.
1-19
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FIG. 27. Flow of the three
types of couplings, for N58
chains,t' /t i50.1, and the initial
conditionGc50.0352Gs andU
50.06.
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valid anymore. However, if we believe the RG is qualit
tively valid, the flow of the Fermi momenta seems to sh
the existence of a confined phase~the effectivet' is zero!.
As the system goes to strong coupling, and remains pu
1D, it would thus be natural to directly start from a system
decoupled~no hopping! Luttinger liquids or 1D Mott insula-
tors. We shall simply direct the reader to some papers on
line of approach.41,50,51

2. Half-filled system in weak coupling

A weak coupling initial condition is one for which th
Fermi surface does not get completely flat during the
flow ~i.e., a nonzero value ofL* exists!, and for which all
couplings that are irrelevant~i.e., that do not exist at zero
energy! do go to zero~after dividing by the norm! during the
flow. As a consequence, the crossover scaleL* between the
Luttinger and the Fermi liquid behavior is much larger th
the typical scale for the onset of long range order. The s
tem is therefore in a deconfined regime, in the sense th
allows for coherent transverse motion of electronlike exc
tions. An example of this is obtained while using initial Hu
bard couplingsGc50.0352Gs andU50.06, and as usua
t' /t i50.1. It is not worth representing the deformation
the Fermi surface in this case, for it is very small~for N
58, the effectivet' /t i is about 0.0995, so that the corre
tion is of the order of half a percent!. Let us, however, rep-
resent the flow of the couplings, on Fig. 27, in theN58
case, and the flow of the quasiparticle weight~and of the
norm of the couplings! on Fig. 28. As in the incommensura
case, the time derivative of the quasiparticle weights
comes smaller~in absolute value! in an intermediate regime
and this effect is more and more visible asN gets bigger.
This decrease can be understood from the flow of the no
which shows a tendency towards a plateau behavior at in
mediate scales, so that the arguments previously give
Sec. IV B still apply. For the comparison with Fig. 27, let
simply say that for 0<t<6 the link betweens and t is ap-
proximately linear, and fort56, one hass514.

Before studying the fixed direction, let us make a rem
about the scaleL* . Because of the presence of th
Umklapps, not only the scales defined by all theDkF,a(I ,J)
play a role, but also the scalesDkF,a

U (I ,J). However, as the
filling is one-half, the average Fermi momentum isp/2, and
one can check that in this case, the biggestDkF,a

U (I ,J) is, as
the biggestDkF,a(I ,J), equal to twice the difference be
tween the biggest and the smallest Fermi momenta.L* will
then be defined exactly as we did when the Umklapps w
zero.
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The couplings on the fixed direction have very well d
fined values, with many being equal to zero. For the cha
and spin couplings, the only nonzero couplings are the sa
as previously discussed in Sec. IV B, namely, of the typeA,
C, and D. The conditionA c(s)5C c(s)1D c(s) still seems
valid, and one can furthermore check thatC c50, so that
A c5D c. For the study of the Umklapps, it is also interesti
to introduceV couplings, which are the equivalent of theF
couplingsVd(I ,J)5UJ2I 2d(I ,J). An analysis of the non-
zero Umklapps reveals that there are only three types of s
couplings: U5UN/2(I ,JÞI ), V5VN/2(I ,JÞI ), and W
5UN/2(I ,I )5VN/2(I ,I ). Furthermore, these Umklapps als
seem not to be independent, but linked by theW5U1V
relation. We let the reader check that the fixed direction
found by solving the following set of coupled equatio
@which is just a generalization of Eq.~62!#:

NA c5~N21!~D c213D s21U 21V 22UV!,

NA s54A s212~N21!FD s21D sD c1
1

2
~U 22UV!G ,

NC c52~D c213D s21UV2U 22V 2!,

NC s54C s212FD s22D sD c1
1

2
~V 22UV!G ,

FIG. 28. The top figure represents the evolution ofZN/4 as a
function of t for N58 ~squares!, 16 ~circles!, and 32~triangles!.
The bottom figure shows how the norm varies with timet. In fact,
in order to allow the comparison, we have divided the norm forN
516 and 32 by a constantC so as to make all the norms equal
time t50. The squares thus represent the normN for N58, the
circles representN/C (N516) with C5(16/8)3/252A2 and the
triangles representN/C (N532) with C5(32/8)3/258.
1-20
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ND c5~N22!~D c213D s21U 21V 22UV!

12~A c2C c!D c16~A s2C s!D s1W~U1V!,

ND s52~N22!FD s21D sD c1
1

2
~U 22UV!G

12~A s2C s!D c12~A c2C c!D s

14~A s1C s!D s1W~U2V!,

NU52~N22!@~D c13D s!U22D sV#12~D c1D s!W
12~A c13A s!U24A sV12~C c2C s!U,

NV52~N22!~D c2D s!V12~D c2D s!W12~A c2A s!V
24C sU12~C c13C s!V,

NW52~N21!@D c~U1V!13D s~U2V!#14A cW.
~65!

It is easy to solve this set of equations~with the relations
between the couplings!, order by order inN. One finds a few
fixed directions, but the one of interest is the following~that
we give to order 3, for the independent couplings!:

C s501
1

4N
2

1

4N2
1

47

96N3
1OS 1

N4D ,

D c5
3

8
2

3

16N
2

1

16N2
1

33

64N3
1OS 1

N4D ,

D s52
1

8
1

1

16N
1

1

16N2
2

11

64N3
1OS 1

N4D ,

U5
1

4
2

1

8N
2

7

24N2
1

89

96N3
1OS 1

N4D ,

V5
1

2
2

1

4N
1

1

6N2
1

13

24N3
1OS 1

N4D . ~66!

We let the reader check that even the order 0 reprodu
quite accurately the values of the couplings of Fig. 27~of
course, up to an overall normalization factor!. Here again,
the effective Hamiltonian contains forward interactions th
are 1/N corrections, and interactions for which the tran
ferred momentum is the nesting vector. TheD couplings
satisfy the relationD c13D s50 ~in the infiniteN limit !, so
that the part of the effective low-energy Hamiltonian co
taining theD couplings is the same~apart from a numerica
factor! as the one we previously obtained~see Sec. IV B!. It
is nonzero only in the triplet channel~we again consider the
particle-hole parametrization of the couplings!. Let us see
what form the effective Umklapp Hamiltonian takes in th
singlet and triplet parametrization. From Eq.~66!, we see
that we have a relation betweenU and V which readsV
52U @this is valid up toO(1/N2) terms#. The corresponding
interaction involving chainsI andJ on one side of the Ferm
20511
es
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surface, andI 1d andJ2d on the other side, may typically
be written as~using Pauli’s principle!

U
2NL (

I ,J
(
t,t8

(
r,r8

~It,t8Ir,r822It,r8Ir,t8!

3~cR,I 1N/2,t
† cR,J2N/2,r

† cL,J,r8cL,I ,t81H.c.!. ~67!

As It,t8Ir,r822It,r8Ir,t852st,t8•sr,r8 , it is easy to rewrite
the Umklapp interaction in the triplet channel only. If w
define the generalized current

JRL~x!5(
I

cR,I 1N/2,t
† ~x!st,t8cL,I ,t8~x!5JLR

† ~x!,

~68!

the total effective Hamiltonian takes the simple followin
form (g.0):

H int
eff52

g

NE0

L

dx:@JRL~x!1JLR~x!#2:. ~69!

The low-energy physics can again be described by the fl
tuations of the massless modes associated to the orde
rameter@which is j(x)5^JRL(x)&]. The difference with the
non half-filled case studied in Sec. IV B, is that the sp
density wave will be pinned to the lattice by the Umklapp
That this is indeed what happens can be seen by compu
the effective action of the gapless modes, and one finds~we
drop less relevant terms!

Seff~n!5
N

4pE dxdt]mn]mn ~70!

with j(x)5rn(x), r being a positive number found by solv
ing mean-field equations, andn(x) is a real unit vector, giv-
ing the direction of the staggered magnetization. This tim
there is no gapless mode associated to the ‘‘phason’’ fi
@see the discussion around Eqs.~70! and~71! of our previous
paper#. This is physical, for a shiftu(x)→u(x)1Q in the
‘‘phason’’ field corresponds roughly to a uniform translatio
of the spin-density wave condensate. As the physics of
~70! has already been discussed in our previous paper, w
not consider it further.

Let us now study more precisely the fate of the irreleva
couplings. We defined the initial coupling as a weak coupl
if the normalized irrelevant couplings go to zero during t
flow. In fact it is interesting to check that the final fixe
direction that is reached is the same whether we run
complete flow, or we run the flow in which the irreleva
couplings are initially set to zero. We have done this in
system ofN516 chains, witht' /t i50.1 and an initial Hub-
bard couplingU50.02. The evolution of the irrelevant cou
plings is shown on Fig. 29. In fact we have not represen
all the couplings, because there are too many of them.
have decided to show only the smallest and largest cha
spin and Umklapp couplings. In order to make sure that
final fixed direction is the same as the one we would ha
obtained when initially setting irrelevant couplings to zer
we show the different values of the couplings on this fix
direction, in both cases, on Fig. 30.
1-21
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A natural question that arises from this discussion is h
small should the couplings be for being weak couplings
cording to the definition given above? This question has
ready been answered by Lin, Balents, and Fisher.43 They
have done so on a theoretical ground~and for a situation tha
is not the half-filled system, but this should not change a
thing!, and found that the weak coupling condition rea
U ln(N)!1 ~for large N). Thanks to our ability to take the
irrelevant couplings into account, we have tried to check t
numerically. To do so, we have determined the critical c
pling Uc for which the irrelevant couplings do not flow t
zero anymore, forN58, 12, 16, 24, and 32, and represent
the valuesUc ln(N) as functions ofN. The result is shown on
Fig. 31. Because of the small values ofN we have used, we
do not observe an horizontal line as could have been infe
from the U ln(N)!1 criterion. But this criterion is in fact a
sufficient condition~maybe not a necessary one! to observe a
weak coupling behavior, since it implies that the effecti
Hamiltonian hardly changes during the high-energy part
the RG flow, for scales aboveL* .

FIG. 29. Evolution of the smallest and largest charge~squares!,
spin ~circles!, and Umklapp~triangles! irrelevant couplings, forN
516, t' /t i50.1, and initial conditionU50.02.

FIG. 30. Values of all the couplings on the final fixed directio
for N516, t' /t i50.1 and weak initial Hubbard couplingU
50.02. On the left~right!, we represented the values obtained wh
computing the whole flow~initially setting the irrelevant couplings
to zero!.
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3. Half-filled system in intermediate coupling

When the couplings are neither strong nor weak, tha
intermediate, we suspect the system will behave more
more similar to a 1D system, as the initial Hubbard coupli
U grows. Before we check that this is the case, let us cla
this notion of intermediate coupling. We have just seen at
end of the previous section~IV C 2!, that the intermediate
coupling should typically be characterized byU.Uc ~re-
member Fig. 31!. In the caseN516 andt' /t i50.1 on which
we shall focus, this meansU.0.15. We should also hav
U,0.206, value above which the system is in the confin
phase. If we expect the system’s behavior to change
become nearly one-dimensional for these typical values oU,
this should mean that the effective hopping is of the sa
order of magnitude as the critical temperature. This will
discussed in Sec. IV C 4, when we study the phase diag
of the system. Let us simply say here that for the minimu
~maximum! value of the couplingU we will consider,
namely,U50.12 (U50.202), the effective hoppingt'

eff5 is
about 8 times~0.9 times! the critical temperature. These va
ues confirm the previous expectation.

We have numerically studied the evolution of some s
cial couplings, asU becomes bigger. It is not possible t
consider the couplings on the final fixed direction. Inde
the norm is huge even before it is reached. We had negle
this problem in the strong and weak coupling regimes. In
first case, we anyway knew that the RG is not valid anym
and should be replaced by a nonperturbative analysis. In
second case, we can make the norm as small as we
when reducing the initial coupling, because in this case,
RG flow is scale invariant~the RHS of the RG equation
quickly becomen independent, asn rapidly goes to very
small values!. In this last case we refer the reader to o
previous paper29 for more details about the implications o
this scale invariance.

We thus have chosen to stop the RG flows at the ti
when the biggest of all couplings~the true couplings, not the
normalized ones! reaches the value 1. In this regime, the R
should be valid~of course, the two-loops contributions a
not negligible when the couplings approach 1!. This gives us
the results shown on Figs. 32–34, which were obtained

FIG. 31. Representation of the numerical values ofUc ln(N) as
functions ofN, whereUc is the value above which the irrelevan
couplings do not flow to zero.
1-22
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N516 and initial couplingsU50.12, 0.17, 0.19, and 0.202
For the charge and spin couplings, we have represe

forward scattering couplingsG0
c(s)(I ,J). In the weak cou-

pling regime, we would have obtainedG0
c(I ,J);dJ,I 1N/2

~remember the fixed direction we found in Sec. IV C 2!.
Here we also obtain peaks aroundJ5I 1N/2 values, but
these peaks progressively disappear whenU grows, as is
expected because the system looks more and more
dimensional. We have chosen to representUd(I ,I ) cou-
plings, in the case of the Umklapps. The reason for t
choice is that the biggest of all Umklapps is~numerically!
found in this subset of couplings. Again, the weak coupl
would give a peakUd(I ,I );dd,N/2 , which is smeared in the
case of intermediate couplings, and disappears in the st
coupling limit.

FIG. 32. Evolution of the~normalized! charge forward scatter
ing couplingsG0

c(I ,J), when the strength of the initial Hubbar
coupling U is increased@U50.12 for ~a!, U50.17 for ~b!, U
50.19 for ~c!, andU50.202 for ~d!#. The number of chains isN
516 andt' /t i50.1. The flow has been stopped at the RG time
which the biggest of the whole set of couplings is equal to 1. T
charge forward scattering pictured here are the ones obtained a
time. In order to keep the figures clear, we have not put any in
cation on thez axis. Let us simply say that the values of the co
plings range from 331023 to 1.331022 in ~a!, and from 6.75
31023 to 7.0531023 in ~d!, so that~d! is in reality much flatter
than ~a!.

FIG. 33. Same as Fig. 32, for the spin forward scattering c
plings G0

s(I ,J). Here, the values of the couplings range from
21.831023 to 2231024 in ~a!, and from 7.9531024 to 7.7
31024 in ~d!.
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4. Phase diagram

As a conclusion of this investigation, we shall summar
the numerical results we obtained on a single figure, whic
the phase diagram of the system. It is depicted in Fig.
The solid curves representt'

eff/t i as a function oft' /t i , for
U50.05, 0.06~indicated by the arrows!, 0.08, 0.1, 0.15 and
0.2 ~notice that bothx andy scales are expressed in base
logarithms!. For a givenU, t'

eff is zero in the confined phase
for t' smaller than a critical valuet'

c ~this explains the ver-
tical lines!, and it takes non-zero values as soon ast'.t'

c .
When t' is much larger thant'

c , t'
eff.t' , so that all solid

curves asymptotically go to the first bisector. The dash
curves give the value of the scale at which the couplin
diverge, which is the critical temperatureTc . They are hori-
zontal whent',t'

c , since in our approach the RG flows a
purely one dimensional in this regime. The upper~lower!
dotted curve is a straight line of slope 1~numerically found
to be 1.004!, going through the points of coordinate
„t'

c (U),Tc@U,t'
c (U)#; respectively,t'

c (U),t'
eff@ t'

c (U)1#…, as
the one represented by a diamond~circle! in the inset. This
inset is a zoom of the interesting region where both sca
meet, forU50.05. We have indicated the different phas
~Luttinger liquid, Fermi liquid, Mott insulator, and spin

r
e
his
i-

-

FIG. 34. Same as Fig. 32, for the Umklapp couplingsUd(I ,I ).
Here, the values of the couplings range from 831023 to 2.4
31022 in ~a!, and from 1.395431022 to 1.396131022 in ~d!.

FIG. 35. Phase diagram of the system, computed forN58
chains. See text for a detailed description of this diagram.
1-23
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density wave!. The dash-dotted curve is the first bisector, th
we did not represent in the global figure to keep it reada

Let us now study the physical implications of the value
taken by the slopes of the two dotted lines. The upper
tells us that the critical value oft' is proportional to the
value of the charge gapD of the Mott insulating phase, an
we numerically findt'

c .1.14D. The lower curve gives the
following relation between the value of the effective hoppi
for t'5t'

c 1, that we will denote byt'
eff* , and the critical

value of the bare hopping:t'
eff* .0.68t'

c . Let us remark that
this also impliest'

eff* .0.78D. These relations show that th
confinement-deconfinement transition takes place when
bare and the effective hopping become of the order of
charge gap. These results have natural interpretations. Im
ine the system is in the Mott insulating phase, with ze
effective hopping. It is clear that we can only compare
bare hopping to the charge gap. If on the contrary the sys
is in the deconfined regime, the low-energy physics is do
nated by two scales: the critical temperature and the effec
hopping. When decreasing the bare hopping, we expe
phase transition to occur when these two low-energy sc
become of the same order of magnitude. These results a
quantitative agreement with those obtained by Tsuch
et al.52 for a two-chain model, see, for instance, the inset
their Fig. 1. For values oft' which are not too small, they
indeed find a proportionality betweenD and t' with a slope
compatible with our results. For smaller values oft' , they
obtain a sizeable deviation away from a linear behavior.
this difference with our conclusions comes from their cho
of a fixed value for the intrachain forward scattering, wh
they let the Umklapp scattering go to zero. In this regim
they observed a significant renormalization of the hopp
amplitude, so that the transition is finally given by the b
ance between the charge gap and the renormalized hop

5. Nearly half-filled system

Up to now, we have not encountered any real difficu
when choosing theL* scale. Of course, the choice wa
purely pragmatic, as we simply chose the biggest of
scalesK appearing in the RHS of the RG flows. There w
no problem in the half-filled case, because the biggest s
was the same for all the nine sorts ofK @remember the defi-
nitions in Eqs.~E4!–~E12!#. Let us consider the non half
filled case, for which the mean Fermi momentum isk̄5p/2
1dk. The filling does not change the biggestKpp andKph,
which is still the difference between the biggest and
smallest Fermi momentaDkF

max5kF
max2kF

min . We let the
reader check that the biggestKUU is now 2udku1DkF

max and
the biggestKGUi is udku1DkF

max. Those last two scales ar
obviously always bigger than the first one.

What are the consequences of the existence of these
scales? At the formal level there is no real consequen
Indeed, even in the half-filled case, there were a lot of d
ferent scales, given by all the possibleK ’s, so that introduc-
ing more scales does not make much change. But, pr
cally, we have used the pragmatic point of view that
should stop the cutoff scaling flow when the biggest scal
reached. This relied on the hypothesis that the flow of
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Fermi surface nearly stops at that scale. It is clear that if
filling is not too far from one half, the three scales are n
qualitatively different, so that we can afford stopping t
flow when the biggest scale is reached.

When the filling is quite far from one half, things becom
more involved. Of course, we could simply forget about t
Umklapps and perform the analysis of Sec. IV B devoted
the non-half-filled system. But we expect that in an interm
diate to strong coupling regime, the Umklapps could pla
non-negligible role in the high-energy part of the flow, whe
there are not yet irrelevant. We would thus like to be able
take them into account. Intuitively, we expect that the Fer
surface deformation is caused by bothU andG couplings for
a cutoff L.DkF

max1(2)udku and by theG couplings only for
DkF

max,L,DkF
max1(2)udku. It is, however, not possible to

implement this idea in a simple manner. Indeed, once
scaleDkF

max1(2)udku is reached, we could drop the Umklap
contribution to the flow of the Fermi surface, but the flow
the Umklapp couplings will not stop and will depend on t
shape of the fixed dressed Fermi surface. This flow of
Umklapps will affect the flow of theG couplings and as
these latter still deform the Fermi surface, we see that
flow of the Umklapps indirectly affects the flow of the Ferm
surface. As the shape of the dressed Fermi surface co
into playbeforethe flow of the running Fermi surface stop
there is here no simple way to circumvent the invers
problem we have discussed in the Introduction.

As a consequence, in what follows, we will restrict ou
selves to situations where our pragmatic scheme works,
to the nearly half-filled system. We have considered a filli
slightly less than 1/2, setting the chemical potential to -0.
For this value, the difference between the initial values
DkF

max andDkF
max1(2)udku is about 10%, which is reasonabl

As in the half-filled case, we have observed different
gimes, when changing the strength of the initial couplin
namely, weak, intermediate, and strong coupling regimes

In the strong coupling regime, as before, the system
haves as a purely 1D system, and the Fermi surface
completely flat. The intermediate coupling regime is t
same as the one observed in the half-filled case, where
Umklapps are not suppressed, because the scale at whic
phase transition takes place is bigger than the scale that m
sures the distance from half filling, namely, (2)dk. In the
weak coupling regime, the Umklapps are irrelevant, and
vanish ~for the normalized couplings! at low energies. The
final fixed direction is simply the one we previously found
Sec. IV B, where we had set the Umklapps to zero at
beginning of the flow. The flows of the couplings are rep
sented on Fig. 36, and were obtained forN58 and initial
couplingU50.1. We also have represented the evolution
the norm of the couplings, because its behavior chan
drastically at the precise time the Umklapps become ir
evant (s.24). The plateau observed in the norm’s evoluti
just after this time reveals the existence of an intermed
Fermi liquid phase.

These flows show how our RG, taking account of t
different scales of the system, is able to get rid of the irr
evant couplings, such as the Umklapps, and leads to the
1-24
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FIG. 36. Flow of the three
types of couplings, for N58
chains, t' /t i50.1, m520.01,
and the initial condition Gc

50.0552Gs and U50.1. We
also have represented the flow o
the norm, for 0<s<60.
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t-
rect final fixed direction. This is not of a purely academ
interest. Indeed, if one takes the same value of the in
couplings (Gc50.0552Gs), but setU to zero from the
beginning~with a flow very similar to the one in Fig. 17!, the
scale at which the phase transition occurs is found to b
31012 times smaller as the one found when the Umklap
are incorporated and vanish along the flow. This can in p
be explained because neglecting the Umklapps from the
ginning of the flow is a very crude approximation. We cou
also take the Umklapps into account in the 1D part of
flow, and then take them to zero. However, a look at Fig.
shows that the Umklapps do not vanish very fast, and th
influence has thus no reason to be small. Indeed, we
formed this comparison, and found that this prediction
correct. In fact both methods neglecting the Umklapps at
time or another, give approximately the same critical te
perature, because the Hubbard couplingU is small so that the
couplings do not change much in the 1D region~we found
Gc50.074 andGs520.038 in the end of the 1D flow!.

V. CONCLUSION

We have attempted to develop a simple physical pictur
understand the forces which drive the deformations of
Fermi surface of an interacting electron system. Using c
siderations from second-order time-independent perturba
theory, we showed that the shape of the dressed Fermi
face controls the quantum zero-point motion correction
the ground-state energy. We demonstrated that a given
pling tends to deform the Fermi surface so as to have al
four momenta precisely on the Fermi surface, because
allows for smaller energy denominators~in the second orde
contribution! and thus decreases the total energy. As a c
sequence, we find that the Fermi surface is deformed
irrelevant couplings, which are characterized by the imp
sibility of choosing all four momenta on the Fermi surfac
Because of this, the Fermi surface deformation induced
these couplings can only occur in the high-energy reg
where the kinematical constraints associated to the Fe
surface do not play much role. Once the energy is l
enough and the warping of the Fermi surface is felt, th
irrelevant couplings do not flow any more and no long
contribute to the Fermi surface deformation.

For the quasi-1D materials at half filling, the Umklap
couplings belong to this category. As they undergo a str
renormalization in the high-energy regime, they have a m
more drastic effect than the charge or spin couplings in
doped system. Our numerical simulation provide a desc
tion of the crossover from the confined regime to the Fe
20511
l

4
s
rt
e-

e
6
ir
r-

s
e
-

to
e
-
n

ur-
o
u-

ts
is

n-
y
-

.
y
e
i

e
r

g
h
e
-
i

liquid, which is in overall good agreement with previou
works.9,10,21,45,52We have presented a detailed analysis of
evolution of the quasiparticle weights as a function of t
typical energy scale. This confirms the existence of a Fe
liquid regime at intermediate energies, for the deconfin
systems. It would be very interesting to compute the lon
tudinal and transverse optical conductivities, which could
done by adapting some existing methods53 to quasi-1D sys-
tems. Another problem is to investigate the nature of s
correlations in the confined regime. This cannot be achie
within the present formalism since the couplings diverge a
scale associated to the charge gap which is much larger
the Néel temperature in the limit of small transverse ho
ping. This problem has been addressed by Kishine
Yonemitsu21 who used RG equations to two-loop order f
the couplings. But it is not clear that the two-loop correctio
provide a reliable description since the couplings do not
main small.

This limitation of our method is certainly connected to t
fact that we are using a physical picture in which the ferm
fields remain the elementary objects. This is valid at su
ciently high energies and thus generically adapted to
study of the Fermi surface deformations. However in t
confined regime, elementary excitations are likely to be v
different from the Fermi liquidlike quasiparticles, but rath
some solitonlike objects. In this case, it seems a deeper
derstanding of the corresponding phases should be obta
by expanding around the exact solution for a system of
coupled chains.41,50,51Nevertheless this raises the importa
issue of the validity of an adiabatic principle for generati
the ground state at finite transverse hopping from the gro
state of uncoupled chains. At half filling this adiabatical pri
ciple certainly holds in the confined phase where the cha
gap is finite. But its validity beyond the critical value of th
transverse hopping is questionable. This may explain
qualitative discrepancy between the perturbation approac
Essler and Tsvelik,41 which leads to a disconnected Ferm
surface with electron and hole pockets, and the dynam
mean-field theory of Biermannet al., who have obtained a
conventional Fermi surface~see Fig. 5 of the latter work45!.
Away from half filling, this notion of adiabatic continuity is
even less obvious to prove since the energy gap vanishe
uncoupled Luttinger liquids. However, we believe the use
a skeleton expansion by Arrigoni51 likely provides a way to
circumvent this potential difficulty.
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APPENDIX A: EQUIVALENCE BETWEEN MINIMIZING
THE TOTAL ENERGY AND STABILITY CRITERIA

FOR THE DRESSED SINGLE PARTICLE PROPAGATOR

1. Two-chain system at first order

We wish to check that the self-energy computed by us
a free excited state, with a trial Fermi sea which should
determined only at the end of the calculation, gives the c
rect results of Sec. II B 2. The sole difference with the c
culation of Appendix below is that we shall consider here
following free propagators:

G̃R,I
(0)~k,v!5

1

v2@m (0)1vF
(0)~k2kF,I

(0)!#1 ih sgn~k2kF,I !
,

~A1!

G̃L,I
(0)~k,v!5

1

v2@m (0)2vF
(0)~k1kF,I

(0)!#2 ih sgn~k1kF,I !
.

~A2!

These formulas differ with Eqs.~B1! and~B2! below only in
the imaginary parts. We let the reader check~some more
details about one-loop self-energy calculations can be fo
in Appendix devoted to the standard perturbation theory! that
the self-energies read

SR,0
(1)~k,v!5A

L01~kF,02kF,0
(0)!

2p
1C

L02~kF,02kF,0
(0)!

2p
,

~A3!

SR,p
(1) ~k,v!5B

L02~kF,02kF,0
(0)!

2p
1C

L01~kF,02kF,0
(0)!

2p
.

~A4!

It is sufficient to compare these results with Eqs.~12! and
~13! to understand that we willexactly find Eqs. ~14! and
~17!. The energy minimization method or this self-consiste
computation of the self-energy carried formally to first ord
in interaction do generate the same higher order terms. T
appear since corresponding contributions are sensitive to
shape of the trial Fermi surface. As shown in Appendix
this feedback effect is missing in the standard perturba
approach.

2. Formal proof for a finite size system

Let us choose a trial Fermi surface, with the correspo
ing occupation numbersn(k)P$0,1% andF(k)5122n(k).
This generates a free particle state~Slater determinant! which
may be used as a starting point for perturbative expans
of the total energyE($n%) and the single particle propagato
GF(k,v). Suppose we add one particle to the system, so
the total momentum is increased byk0. This is achieved by
using n8(k)5n(k)1dk,k0

instead of n(k), assuming that
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n(k0)50. This induces a change in the total energy of t
systemDE5E($n8%)2E($n%). For a finite size system, it is
easy to connect this energy shift to the single particle pro
gator GF(k0 ,v). Indeed, we have the well-known spectr
decomposition

GF~k0 ,v!5(
a

u^N11,k0 ,auck0

† uN&u2

v2E~N11,k0 ,a!1E~N!1 ih

1(
b

u^N21,2k0 ,buck0
uN&u2

v1E~N21,2k0 ,b!2E~N!2 ih
.

~A5!

Here, uN& is the eigenstate withN particles obtained pertur
batively from the free-particle state with distributionn(k),
and the ketsuM ,k,a& denote eigenstates withM particles and
a total momentumk with respect to the total momentum o
state uN&. The total energy of these states is of cour
E(M ,k,a). So the energy shiftDE is one of the poles of
GF(k0 ,v) seen as a function ofv. Denoting the typical
interaction strength byV, it is sensible to assume that for
finite-size system, energy differences such asE(N
11,k0 ,a)2E(N) ~andDE in particular! can be expanded a
power series inV. In the noninteracting case,DE5«0(k0),
and GF

(0)(k0 ,v)215v2«0(k0)1 ih. Therefore,DE is the
pole ofGF(k0 ,v) ~as a function ofv) which goes smoothly
towards «0(k0) as V goes to zero. WritingGF(k0 ,v)21

5v2«0(k0)2SF(k0 ,v), and given the fact thatSF(k0 ,v)
has a well-defined power series expansion inV which van-
ishes asV goes to zero, we may conclude thatDE may be
obtained as a formal power series inV from the solution of
the following equation forv:

v2«0~k0!2ReSF~k0 ,v!50. ~A6!

Indeed, let us denote byv(k0) the solution of this equation
which goes to«0(k0) asV goes to zero. Then, we have

DE5v~k0!. ~A7!

Now, if the trial stateuN& obtained fromn(k) minimizes the
total energyE($n%), it means that removing a particle atk1
on the Fermi surface associated to the distributionn(k) and
adding another particle atk2 also on the Fermi surface doe
not change the total energy~up to corrections which are neg
ligible for very large systems!. This yieldsv(k1)5v(k2),
implying that quasiparticle energies are constant~equal the
the dressed chemical potentialm) on the Fermi surface as
sociated ton(k). This is exactly condition~i! @see Eq.~4!#
for the dressed propagator discussed in Sec. II A. Assum
condition ~i! holds, condition~ii ! on the imaginary part fol-
lows from standard phase-space arguments and analyt
considerations developed already long ago by Luttinger54 or
Langer.55 The main idea is to use an expression for the s
energy in terms of skeleton graphs. Condition~i! suggests
that the full one-particle spectral function~which determines
completely the internal lines of these graphs! is qualitatively
similar to the one of a Fermi liquid with the Fermi surfac
obtained fromn(k).
1-26
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3. Extension to an infinite system

Applying the previous argument to infinite systems
quires some care. In fact, we have to prove that the co
cients of perturbative series in powers ofV for DE or v(k0)
have a well-defined infinite volume limit. Our experien
with other systems including models for an unstable s
coupled to a continuum suggests that such a limit does
exist in general. However, perturbation theory in powers
the interaction strength for fermion systems with local tw
body interactions is likely to be a favorable case for wh
this limit may be safely taken. For instance, the perturba
expansion of the ground-state energy involves conne
Feynman graphs with no external lines, which contributio
are easily shown to be proportional to the volume. Simila
standard techniques based on the Luttinger-Ward en
functional~see, for instance, the text by Nozie`res,16 pp. 222–
229! show that

DE5E~$n8%!2E~$n%!

5«0~k0!1E
2`

` dv

2p i
lnFv2«0~k0!2 ih

v2«0~k0!1 ih

3
v2«0~k0!2SF~k0 ,v!1 ih

v2«0~k0!2SF~k0 ,v!2 ih G ~A8!

up to terms which vanish in the thermodynamical limit. Ifk0
is close enough to the dressed Fermi surface so that th
verse lifetime of the corresponding ‘‘quasiparticle’’ is sma
compared toh, it is easy to show thatDE5v(k0). This
shows that the series expansion ofv(k0) has a well-defined
infinite volume limit. This fact isa priori nontrivial since
any perturbative algorithm forv(k0) involves partial deriva-
tives at any order forSF(k0 ,v) with respect tov, taken at
v5«0(k0). AlthoughSF(k0 ,v) has a good thermodynam
cal limit, some difficulties arise while considering deriv
tives with respect tov. Indeed, their expressions for finit
size systems involve sums of rational functions ofv with
multiple poles, and these are not easily converted into c
verging integrals in the infinite volume limit. But the abov
connection betweenDE ~which has a thermodynamica
limit ! and v(k0) shows that all the wild terms which ar
expected to appear in a perturbative expression ofv(k0),
eventually cancel.

APPENDIX B: DIFFICULTIES WITH THE REAL PART OF
S IN THE TRADITIONAL PERTURBATION SCHEME

1. Two-chain system at first order

Let us begin by the calculation of the self-energy in t
usual case where one starts from the free ground state.
free propagators are simply given by

GR,I
(0)~k,v!5

1

v2@m (0)1vF
(0)~k2kF,I

(0)!#1 ih sgn~k2kF,I
(0)!

,

~B1!
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GL,I
(0)~k,v!5

1

v2@m (0)2vF
(0)~k1kF,I

(0)!#2 ih sgn~k1kF,I
(0)!

.

~B2!

We will restrict ourselves to the study of the right propag
tors, because the left ones can be analyzed in an analo
way. The first order correction to the right propagators
given by the tadpole graph represented on Fig. 10, where
solid ~dashed! lines represent right~left! propagators, and
where the black dot denotes one of the couplings. The s
energy for the (R,0) fermions is given by two terms: eithe
the interaction isA, in which case the left propagator in th
loop is on branch 0, or the interaction isC, and the left
propagator is on branchp. It is a simple matter to evaluat
the tadpole, and to show that in the thermodynamic limit
self-energy given by theA interaction reads

SR,0;A
(1) 5AE dq

2p
nL,0

(0)~q!, ~B3!

where nL,0
(0)(q) is the particle distribution on branch (L,0),

i.e., it is 1 if q>2kF,0 and 0 otherwise. Of course, exactly a
in the energy minimization scheme described in Sec. II B,
get infinite results because our linearized dispersion relat
have been extended to include infinitely many states. We
thus here too regularize these divergences by putting an
traviolet cutoff L0 on the momenta, around the fourfree
Fermi momenta~remember Fig. 4 for one band!. It is then
easy to show thatSR,0;A

(1) 5AL0 /(2p). We let the reader
check that the final results for the self-energies of right f
mions are

SR,0
(1)~k,v!5~A1C!

L0

2p
, ~B4!

SR,p
(1) ~k,v!5~B1C!

L0

2p
. ~B5!

The renormalized chemical potentialm and Fermi momenta
kF,0(p) can now be deduced from the condition that the
verse propagators vanishes forv5m and k5kF,0 or k
5kF,p , and from the conservation of the number of pa
ticles. This last condition is nothing but the Luttinger the
rem. We thus have to solve for the following system of thr
equations for three unknown quantities:

m2@m (0)1vF
(0)~kF,02kF,0

(0)!#2~A1C!
L0

2p
50, ~B6!

m2@m (0)1vF
(0)~kF,p2kF,p

(0) !#2~B1C!
L0

2p
50, ~B7!

kF,01kF,p5kF,0
(0)1kF,p

(0) . ~B8!

The chemical potential is found by summing the first tw
equations and making use of the third one. Then one gets
difference between interacting and free Fermi momenta
one loop
1-27
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m (1)2m (0)5~A1B12C!
L0

4p
, ~B9!

kF,0
(1)2kF,0

(0)5~B2A!
L0

4pvF
(0)

. ~B10!

These are the results given by the standard perturba
theory. This last result is to be compared with Eq.~14!. To
first order in the couplings, both results are equal. But
~14! contains next order contributions that are not presen
Eq. ~B10!. This happens although both computations assu
the same physics, namely, the validity of the Hartree
proximation. As has been shown in Appendix A1, cons
tency between both viewpoints is recovered only if the el
tron self-energy is computed with free propagato
corresponding to thedressedFermi surface. A similar con-
clusion also holds for the chemical potential shift, as a co
parison between Eqs.~17! and ~B9! readily shows.

2. Formal calculation to second order

Let us consider a system of interacting spinless Fermi
in d53 dimensions. In fact, the actual value ofd does not
have much influence in the following discussion, the m
point is thatd>2 so the Fermi surface is in general a smoo
manifold of codimension one ink space. We take the follow
ing Hamiltonian:

H5E d3k

~2p!3
«~k!c†~k!c~k!

1
V

2E d3k

~2p!3E d3k8

~2p!3E d3q

~2p!3
f ~k,k8,q!

3c†~k1q!c†~k82q!c~k8!c~k!. ~B11!

We assume the Fermi surface forV50 is connected and tha
each half line starting from the origin ink space intersects i
only once. For any unit vectoru, we thus define a positive
numberkF,0(u) such thatkF,0(u)u belongs to the Fermi sur
face. The Fermi sea is then the set ofk points such thatk
5ku with u unit vector and 0<k<kF,0(u). The total particle
number is assumed to be fixed, independently of the c
pling strengthV. We now consider eigenstates obtained
adiabatic switching of the interactionV on free particle states
with a deformed Fermi surfaceu°kF(u). DenotingkF(u)
2kF,0(u)5dkF(u), the constraint on the total particle num
ber reads

E d2uFkF,0
2 ~u!dkF~u!1kF,0~u!dkF

2~u!1
1

3
dkF

3~u!G50,

~B12!

whered2u is the usual area element on the unit sphere,
instance,d2u5sinududf in spherical coordinates. We now
wish to choosedkF(u) in order to minimize the total energ
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of the corresponding eigenstate, while keeping a cons
particle number. To second order inV, this total energy is
given by

E~$kF%!5E d3k

~2p!3
n~k!«~k!

1
V

2E d3k

~2p!3E d3k8

~2p!3
n~k!n~k8!g~k,k8,0!

1
V2

4 E d3k

~2p!3E d3k8

~2p!3E d3q

~2p!3
g~k,k8,q!2

3
n~k!n~k8!@12n~k1q!#@12n~k82q!#

«~k!1«~k8!2«~k1q!2«~k82q!

1O~V3!. ~B13!

Here, n(ku)51 if k is smaller thankF(u) and n(ku)50
otherwise. We have also definedg(k,k8,q)[ f (k,k8,q)
2 f (k,k8,k82k2q). After some algebra, we find tha
dkF(u)5VdkF,1(u)1V2dkF,2(u)1O(V3), and m5m0
1Vm11V2m21O(V3), wheredkF,1(u), dkF,2(u), m1 and
m2 are given by the following coupled linear equations:

vF~u!dkF,1~u!1S (1)@kF,0~u!#2m150, ~B14!

E d2ukF,0
2 ~u!dkF,1~u!50, ~B15!

vF~u!dkF,2~u!1ReS (2)$kF,0~u!,«@kF,0~u!#%

1u•¹kS
(1)@kF,0~u!#1

1

2
vF8 ~u!dkF,1

2 ~u!

1DS (1)@kF,0~u!#2m250 ~B16!

and

E d2u@kF,0
2 ~u!dkF,2~u!1kF,0~u!dkF,1

2 ~u!#50.

~B17!

In these expressions,vF(u) and vF8 (u) denote the first and
second derivatives of the functionx°«$@kF,0(u)1x#u%,
taken atx50. S (1)(k) and S (2)(k,v) are the self-energies
computed to first and second order inV, using the standard
algorithm

S (1)~k!5E d3k8

~2p!3
n(0)~k8!g~k,k8,0! ~B18!

and
1-28
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ReS (2)~k,v!5
1

2E d3k

~2p!3E d3k8

~2p!3E d3q

~2p!3
g~k,k8,q!2

3
n(0)~k8!@12n(0)~k1q!#@12n(0)~k82q!#1@12n(0)~k8!#n(0)~k1q!n(0)~k82q!

v1«~k8!2«~k1q!2«~k82q!
. ~B19!
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The most interesting quantity in these formulas isDS (1)(k).
It is the change in the first-order~with respect toV) self-
energy due to the fact that the Fermi surface has change
an amountdkF,1 . More precisely, we have

DS (1)~k!5E d2u8

~2p!3
g~k,kF,0~u8!,0!kF,0

2 ~u8!dkF,1~u8!.

~B20!

It turns out this term isnot recovered in the naive perturba
tion algorithm. This latter procedure is based on solving
kF(u) in the equations

«@kF~u!#1ReS@kF~u!,m#5m, ~B21!

whereS(k,v) is computed with the free propagators asso
ated to the noninteracting Fermi surface. As before,m is
chosen to keep a constant total particle number. This sec
approach yields the same set of equations as before, ex
that the termDS (1)@kF,0(u)# is missing in the first equation
for dkF,2(u). This shows that the naive algorithm is not ab
to keep track of the first-order Fermi surface deformat
while evaluating the Hartree-Fock corrections to second
der. Intuitively, these effects are expected to be associate
the four second order graphs forS shown on Fig. 37. How-
ever, these graphs are anomalous according to Kohn and
tinger, and their contribution vanishes in theT50 perturba-
tion theory scheme. We believe this illustrates the cruc
problem with naive perturbation theory. As we go to high
orders inV, lower order graphs forS are modified by the
changes already induced on the occupation numbers

FIG. 37. The four anomalous Kohn-Luttinger graphs contrib
ing to the self-energy at two loops.
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single particle states. One would expect to capture th
changes thanks to self-energy insertions in the internal li
of the lower-order graphs forS. But the example of anoma
lous graphs shows this does not work so well in general

As discussed in Sec. II C the natural cure for this probl
is to fix the dressed Fermi surface, thanks to counterte
which gradually modify the single particle dispersion of t
original Hamiltonian, asV is increased. In this approach, w
choose the dressed Fermi surfaceu°kF(u) and the dressed
dispersion relation«(k). We therefore compute the sel
energyS̃(k,v) with respect to this dressed Fermi surfac
Denoting by m5«@kF(u)# the dressed chemical potentia
the countertermsSCT(u) are defined by

S̃@kF~u!,m#1SCT~u!50. ~B22!

In this third approach, the ‘‘bare’’ Fermi surfaceu°kF,0(u)
becomes a function ofV and$kF%. It is obtained from

«@kF,0~u!#1SCT~u!5m0 , ~B23!

where, as always,m0 is chosen in order to conserve the tot
particle number. We therefore have to solve

«@kF~u!#2«@kF,0~u!#1S̃@kF~u!,m#5m2m0 .
~B24!

SinceS̃ is computed with free propagators whose singula
ties lie on the dressed Fermi surface, it is easy to check
this yields the same expressions fordkF,1 and dkF,2 as the
energy minimizing procedure, in complete agreement w
the general conclusions of Appendix A.

APPENDIX C: DIFFICULTIES WITH THE IMAGINARY
PART OF S IN THE TRADITIONAL

PERTURBATION SCHEME

Let us consider the traditional perturbation scheme aro
the unperturbed Fermi surface. With the same notation
before, this corresponds to the choice of free propaga
G(0)(k,v)215v2«0(k)1 ih sgn@«0(k)2m0#. In the dis-
cussion, we shall use the spectral densitiesrp,h(k,v) for
excited states involvingp particles andh holes, with a total
momentumk and a total energyv. We have

-

1-29
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rp,h~k,v!5)
i 51

p E dki

~2p!d
u@«0~ki !2m0#

3)
j 51

h E dkj8

~2p!d
u@m02«0~kj8!#

3~2p!ddS k2(
i 51

p

ki1(
j 51

h

kj8D
3~2p!dS v2(

i 51

p

«0~ki !1(
j 51

h

«0~kj8!D .

~C1!

Let us consider the simple second order diagram forS(k,v)
shown on Fig. 11~the sunrise diagram!. It is simple to check
that the imaginary part of this diagram is proportional
r2,1(k,v)2r1,2(2k,2v). As is well known since Landau
this quantity vanishes at the bare chemical potentialm0, and
behaves as (v2m0)2 in magnitude forv close tom0. The
effect of Fermi surface deformation onS(k,v) arises via the
replacement of bare propagators by sequences of t
propagators separated by lower order self-energy inserti
The main point we wish to emphasize here is that there is
simple way to predict the influence of these insertions on
frequency dependence of ImS(k,v). For some graphs, an
some patterns of insertions, the resulting ImS(k,v) will
continue to vanish atv5m0, whereas some other combin
tions will produce a finite contribution to ImS(k,v) at v
5m0. Therefore, the traditional scheme does not allow fo
good control of the analytical structure of the self-energy

Let us show this on a typical example. The simplest
teresting situation is obtained for the sunrise graph, for s
energy insertions which are assumed not to depend onk nor
on v, since it is then easy to perform the frequency integr
In the more general case of an arbitrary frequency dep
dence for the insertions, the natural procedure would be
Taylor-expand them in the vicinity ofm0. The strongest ef-
fect is obtained for the constant term in these expansio
and this leads to our toy example. For a total numbern of
constant insertions, we get a contribution to ImS(k,v) pro-
portional to r2,1

(n)(k,v)2(21)nr1,2
(n)(2k,2v), where

rp,h
(n) (k,v) stands for thenth partial derivative ofrp,h(k,v)

with respect tov. Using the fact thatr2,1(k,v) and r1,2
(2k,2v) behave as (v2m0)2 for v close tom0, we notice
that a single self-energy insertion in the sunrise graph p
serves the property that ImS(k,v) vanishes forv5m0.
More generally, this implies that ImS(k,v5m0)50 up to
third order in perturbation theory. However, a Fermi surfa
deformation already occurs usually for the simplest Hart
and Fock graphs, which are first order in the coupli
strength. In the standard perturbation scheme, the dre
chemical potential and the dressed Fermi surface are d
mined by solving the infinite set of equations

m2«0~kF!2ReS~kF ,m!50, ~C2!

with the constraint that the total volume of the Fermi surfa
does not change as interactions are switched on. We th
20511
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fore see that, in this scheme, there is no reason for wh
Im S(kF ,v5m) should vanish. This is rather unsatisfacto
on physical grounds, since it would imply a finite life-tim
for particle-like excitations lying just on the dressed Fer
surface.

APPENDIX D: FIELD-THEORETICAL RG

This Appendix is devoted to a detailed derivation of t
field-theoretical RG equations which we have gathered
Appendix E. The two main considerations we wish to stre
here are~i! the choice of external momenta in the renorm
ization prescriptions, which has to be adapted to the Fe
surface shape and~ii ! the use of the logarithmic approxima
tion.

1. Motivation and general idea

In the usual ‘‘field-theoretical’’ RG, the high-energ
Hamiltonian is given and fixed, and one parametrizes
theory by low-energy values of proper Green’s functions~for
instance the interaction vertices! at a typical scalen. Requir-
ing that all these theories at different energy scales sho
correspond to one and the same high-energy theory yi
RG flows, whenn is varied. This approach is physicall
natural, because it is based on the calculation of low-ene
observables. Furthermore, as we will see, it allows fo
study of crossovers between high and low-energy regime

One of its limitations is that it requires renormalizab
interactions~i.e., the existence of a continuous limit!. But it
is not really a severe drawback, since nonrenormalizable
teractions are expected to be irrelevant~by power counting!
in the low-energy limit, which is the most interesting to u
Note that the renormalizability constraint disappears in R
schemes based on Wilson’s idea of gradual mode elim
tion. Several groups have recently implemented Wilson’s
proach to the RG, expressed via the Polchinski equatio2,3

or its one-particle irreducible version.4,32 Although these
equations are exact, they are quite complicated, since e
tive interactions involving an arbitrary number of particl
are generated along the RG flow. Any numerical computat
therefore requires drastic truncations in the effective acti
By contrast, the field-theory approach involves only a mu
smaller set of effective or running couplings, which is a go
feature for practical implementations.

2. Renormalization of the interactions

First of all, we have to define the renormalized couplin
The two corresponding Green’s functions~in real space for
the direction parallel to the chains! are

GI~X4 ,X3 ,X2 ,X1!52^0uT@cR,I 1d,t~X4!cL,J2d,r~X3!

3cL,J,r8
†

~X2!cR,I ,t8
†

~X1!#u0&, ~D1!

U I~X4 ,X3 ,X2 ,X1!52^0uT@cR,I 1d,t~X4!cR,J2d,r~X3!

3cL,J,r8
†

~X2!cL,I ,t8
†

~X1!#u0&. ~D2!
1-30
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In the above equations,u0& is the interacting ground state,
is the time ordering operator andX is a shorthand notation
for (t,x). The renormalized couplings are the values of
amputated one-particle irreducible parts of these Gre
functions, divided byi. In fact, the charge and spin coupling
are the coefficients obtained from the Fourier transform
GI, factor of It,t8Ir,r8 and st,t8•sr,r8 , respectively. The
Umklapp couplingUd(I ,J) is defined similarly, but this time
from the expression ofU I, as the coefficient ofIt,t8Ir,r8 @the
one in front ofIr,t8It,r8 being2UJ2I 2d(I ,J)].

The set of external frequencies is chosen to be the s
for all types of couplings. We have decided to take

v15
n

2
, v25

n

2
, v35

3n

2
, ~D3!

and by energy conservation we have, of course,v45v1
1v22v352n/2. n is the typical energy scale of the inte
action process, and is the quantity to be varied to get
flows.

It is a bit more difficult to choose the external momen
because of the warping of the Fermi surface. Our choice
been dictated by a few natural requirements. First the s
metries of the Fermi surface should be respected, as
right-left symmetry, the up-down symmetry~i.e., ky↔
2ky , in terms of the original transverse momenta!. Interac-
tions processes for which it is possible to choose all exte
momenta on the Fermi surface, should be computed for
special choice, because it would otherwise mean the in
duction of a spurious energy scale. Let us first consi
Gd

c(s)(I ,J). It is possible to choosek15kF,I , k252kF,J ,
k352kF,J2d , andk45kF,I 1d , only if momentum conserva
tion kF,I2kF,J5kF,I 1d2kF,J2d is respected. In general, th
will not be possible, for we will haveDkd(I ,J)5(kF,I 1d
1kF,J)2(kF,I1kF,J2d)Þ0. Notice that up to a minus sig
and a factor of 2,Dkd(I ,J) is simply the generalization o
DkF in the two-chain model. It is then natural to split th
quantity equally among the four momenta. One can ch
that the following choice fulfills all the conditions we hav
mentioned:

k15kF,I1
Dkd~ I ,J!

4
,

k252S kF,J2
Dkd~ I ,J!

4 D ,

k352S kF,J2d1
Dkd~ I ,J!

4 D ,

k45kF,I 1d2
Dkd~ I ,J!

4
. ~D4!

For the Umklapps, the choice of external momenta is d
tated by the same requirements. The equivalent ofDkd(I ,J)
is now Dkd

U(I ,J)52p2(kF,I1kF,J1kF,I 1d1kF,J2d), and
the natural choice of momenta reads
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k152S kF,I1
Dkd

U~ I ,J!

4 D ,

k252S kF,J1
Dkd

U~ I ,J!

4 D ,

k35kF,J2d1
Dkd

U~ I ,J!

4
,

k45kF,I 1d1
Dkd

U~ I ,J!

4
. ~D5!

The next task is to draw all possible Feynman diagram
and compute them. One can then establish the field theo
ical RG flows, requiring the couplings measured at two d
ferent scales should correspond to the same high-en
theory. The couplings’ flow equations are given in Append
E1, and are obtained in the one-loop approximation. As
gued in Sec. II, the most interesting effects connected
Fermi surface deformation appear at the two-loop level
the single-electron propagator. For the sake of simplicity,
shall use a hybrid scheme, involving a one-loop approxim
tion for the couplings and a two-loop approximation for t
electronic self-energy. In the case where all the couplin
remain weak, it is reasonable to keep only the dominant te
in the corresponding flow equation. If by contrast couplin
have a tendency to grow and become large at low energ
experience from the Kondo problem suggests adding
subleading terms to the couplings’ flow does not provide
better physical picture. For the Kondo problem, the two-lo
approximation predicts an intermediate coupling fix
point,34,35 whereas the low-energy physics corresponds to
infinite coupling fixed point.33,56

We shall not give any technical detail on the derivation
these couplings’ flow equations which is standard.31 The
main new feature is the use of special sets of external
menta, described in Eqs.~D4! and~D5! above. However, it is
worth focusing on thef function that appears in these equ
tions „the f function is defined byf @ t5 ln(L0 /n),d#51 if n
>udu and 0 otherwise, see Appendix E1…. In fact, the ‘‘true’’
RG equations do not involve this function, but rather

f̃ @ t5 ln~L0 /n!,d#5
1

2 S n

n2d1 ih
1

n

n1d2 ih D .

~D6!

It is obvious that thesef̃ diverge forn5udu, so that some
couplings will diverge or vanish singularly at the scal
given in Eqs.~E4! to ~E12!. Though this physically signals
the crossing of the characteristic scales, it is practically
pleasant for the numerical simulations. Furthermore, if
did not work at zero temperature, the energy scale given
the temperatureT would suppress these divergences. Not
that the presence ofih factors also implies that the coupling
will not remain real.

For all these reasons, it is thus natural to try to find a w
to get rid of these singular behaviors. This can be achie
by replacingf̃ by a function that extends its asymptotic b
haviors~for n@udu andn!udu) up ton5udu. This is exactly
what the functionf does. The quality of the approximatio
can be checked on a very simple flow equation, for wh
one knows the exact solution
1-31
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]ng~n!5
1

2 S 1

n2d1 ih
1

1

n1d2 ih Dg2~n!. ~D7!

This is simply a RPA-like flow, for only one couplingg. We
will not study this in detail, but we show the good quality
the approximate solution for a positive initial coupling, o
Fig. 38.

The approximation we use is in fact nothing but a log
rithmic approximation. Indeed,f̃ appears in the flow equa
tions, after we have differentiated ln@(n2d1ih)(n1d
2ih)/(2vFL0)

2# factors~with respect to the scalen), coming
from the Feynman graphs’ logarithmic divergences. Cha
ing f̃ in f just amounts to replacing this logarithm by th
approximation 2 ln@Max(n,udu)/(2vFL0)#.

3. Renormalization of the propagator

For reasons explained at the end of Sec. III B 1, the o
loop self-energy correction does not have much influence
the Fermi surface deformation for the quasi-1D Hubbard s
tems considered in this paper. Therefore, we will only foc
on the two-loop sunrise diagram~the Kohn-Luttinger dia-
gram being equal to zero!. We only show the Feynman dia

FIG. 38. The dashed curve is the real part of the coupling
satisfying Eq.~D7!, with initial condition g(0)50.1. Hered/L0

51022, so that the coupling goes to zero singularly fort.4.6. The
solid line represents the solution of the approximate equation w

f̃ is replaced byf. The inserted plot is a zoom on the end of t
flows.

FIG. 39. Sunrise diagram involving twoG interactions.
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gram here, with all the information about the internal line
for the ‘‘G2’’ contribution, on Fig. 39. There is of course
‘‘ U2’’ contribution, and the spin algebra has to be taken in
account. In order to simplify the expressions, we have co
puted the self-energy atk5kF,I , and not for a general mo
mentum, since we have decided not to take Fermi velo
renormalization into account. We give the expression of
self-energy in Appendix E2. From this, the first thing to do
to compute the counterterms, so that the inverse propaga
vanish on the dressed Fermi surface. Focusing on sec
order terms only, this amounts to require

;I P$1, . . . ,N%,2SR,I
(2)~k5kF,I ,v5m!

2dm (2)1vFdkI
(2)50, ~D8!

together with the conservation of the total particle numb
dm (2) is found by summing all these equations:dm (2)

52@( ISR,I
(2)(k5kF,I ,v5m)#/N. We let the reader check

that it is in fact sufficient to take the Umklapp contribution
this last equation, because theG contribution sums to zero
This is true because of the following properties:Dka(I ,J)
52Dk2a(J,I ), Ga

c(s)(I ,J)5G2a
c(s)(J,I ) and G2a

c(s)(I 1a,J
2a)5Ga

c(s)(J2a,I 1a), so that in the sum overI, J, and
a, the terms (I ,J,a) and (J,I ,2a) will cancel each other.

Once the chemical potential is known, the Fermi m
menta counterterms can be found:

dkI
(2)5

1

vF
FSR,I

(2)~k5kF,I ,v5m!

2
1

N (
I

SR,I
(2)~k5kF,I ,v5m!G . ~D9!

In order to save space, we will not give the full expressio
of these counterterms.

From all this, we can deduce a dressed propagator, as
did in Eq. ~46! for the two-chain model. As in Eq.~46!, the
result is still divergent whenL0 is sent to infinity. This sim-
ply means that the counterterms are not sufficient. Someth
more is needed, and as is well known, this is wave funct
renormalization. The renormalized (R,I ) propagator is de-
fined as usual by

GR,I
(R)21~k,v!5ZR,IGR,I

21~k,v!, ~D10!

and the wave function renormalization factorZR,I is found
by imposing the following renormalization prescription:

GR,I
(R)21~k5kF,I ,v5m1n!5ZR,IGR,I

21~k5kF,I ,v5m1n!

5n. ~D11!

We have not written which variablesZR,I depends on, in
order to make the equations lighter, but it should be clear
it is a function of the couplings at scalen, of the dressed
Fermi momenta, ofn and of L0. The calculation of the
renormalized propagator is achieved thanks to the stan
observation that Eq.~D11! implies

GR,I
(R)21~k,v;g;n,L0!

5wR,I~g;n,n8,L0!GR,I
(R)21~k,v;g8;n8,L0!

~D12!

re
1-32
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with

wR,I~g;n,n8,L0!5
ZR,I~g;n,L0!

ZR,I~g8;n8,L0!

5
ZR,I~g;n,L0!

ZR,I@ ḡ~g;n,n8,L0!;n8,L0#
.

~D13!
In these equations,g is a shorthand notation for all the cou
plings, at scalen, andg8 is the same at scalen8. In the last
equation, the functionḡ is relating the value of the coupling
at two different scales byg85ḡ(g;n,n8,L0). Finally, the
RG flow equations for thew functions are found by differ-
entiating the multiplicative relation wR,I(g;n,n9,L0)
5wR,I(g;n,n8,L0)wR,I(g8;n8,n9,L0), and one obtains

]

]n8
wR,I~g;n,n8,L0!

5wR,I~g;n,n8,L0!3

3F ]

]n9
wR,I@ ḡ~gb;n,n8,L0!;n8,n9,L0#GU

n95n8

.

~D14!
Notice that the importance of thew functions lay in the close
link between these and the renormalized propagator, that
can deduce from Eq.~D12! and the renormalization prescrip
tion of Eq. ~D11!:
20511
ne

GR,L
(R)21~k5kF ,v;ga;n,L0!5vwR,L~ga;n,v,L0!.

~D15!

For theN chains we are interested in, the flow equations
wR,I are given in Appendix E2, Eq.~E14!. The flow equa-
tions of wL,I can be checked to be exactly the same~this is
due to the Left-Right symmetry of the system we study!.

APPENDIX E: RG FLOW EQUATIONS

1. Flows of the couplings

The flow equations for the couplings that are given bel
are the field-theoretical RG equations, obtained after the g
eral analysis of Appendix D has been performed. In the
the RG timet is given by t5 ln(L0 /n) (L0 being the ultra-
violet cutoff andn the typical energy scale of the intera
tion!, and the running couplings are low-energy interactio
G(n).

The high-energy flow equations of the couplings in t
cutoff scaling scheme are easily deduced from the ones in
field theoretical version. They are in fact the same, with
sole difference that thef functions appearing in the flows ar
to be replaced by 1~which is the value thesef functions take
at high energies!. Notice, however, that the quantities ente
ing the flow equations now have different physical meanin
The cutoff scaling time ist5 ln(L0 /L) (L being the running
cutoff!, and the couplings are running bare couplin
GB(L).

The field theoretical RG flow equations for the charg
spin and Umklapp couplings are given below:
] tGd
c~ I ,J!5

1

N (
a

H f ~ t,2vFKa;d
ph ~ I ,J!!@Ga

c ~ I ,J1a2d!Gd2a
c ~ I 1a,J!13Ga

s ~ I ,J1a2d!Gd2a
s ~ I 1a,J!#

2 f ~ t,2vFKa;d
pp ~ I ,J!!@Ga

c ~ I ,J!Gd2a
c ~ I 1a,J2a!23Ga

s ~ I ,J!Gd2a
s ~ I 1a,J2a!#

1 f ~ t,2vFKa;d
UU~ I ,J!!FUa~ I ,J1a2d!Ud2a~ I 1a,J!1UJ2I 2d~ I ,J1a2d!UJ2I 2d~ I 1a,J!

2
1

2
Ud2a~ I 1a,J!UJ2I 2d~ I ,J1a2d!2

1

2
UJ2I 2d~ I 1a,J!Ua~ I ,J1a2d!G J . ~E1!

] tGd
s~ I ,J!5

1

N (
a

H f ~ t,2vFKa;d
ph ~ I ,J!!@2Ga

s ~ I ,J1a2d!Gd2a
s ~ I 1a,J!1Ga

s ~ I ,J1a2d!Gd2a
c ~ I 1a,J!

1Ga
c ~ I ,J1a2d!Gd2a

s ~ I 1a,J!#1 f ~ t,2vFKa;d
pp ~ I ,J!!@2Ga

s ~ I ,J!Gd2a
s ~ I 1a,J2a!

2Ga
s ~ I ,J!Gd2a

c ~ I 1a,J2a!2Ga
c ~ I ,J!Gd2a

s ~ I 1a,J2a!#1 f ~ t,2vFKa;d
UU~ I ,J!!FUJ2I 2d~ I ,J1a2d!

3UJ2I 2d~ I 1a,J!2
1

2
Ud2a~ I 1a,J!UJ2I 2d~ I ,J1a2d!2

1

2
UJ2I 2d~ I 1a,J!Ua~ I ,J1a2d!G J . ~E2!

] tUd~ I ,J!5
1

N (
a

$ f ~ t,2vFKa;d
GU1~ I ,J!!@G2a

c ~J1a2d,I !2G2a
s ~J1a2d,I !#Ud2a~ I 1a,J!1 f ~ t,2vFKa;d

GU2~ I ,J!!

3@Gd2a
c ~ I 1a,J!2Gd2a

s ~ I 1a,J!#Ua~ I ,J1a2d!2 f ~ t,2vFKa;d
GU3~ I ,J!!@2GI 2a

s ~a1d,I !UJ2a2d~a,J!#

2 f ~ t,2vFKa;d
GU4~ I ,J!!@2GJ2a2d

s ~a,J!UI 2a~a1d,I !#1 f ~ t,2vFKa;d
GU5~ I ,J!!@G2a

c ~ I 1d1a,I !

13G2a
s ~ I 1d1a,I !#Ud~ I 1a,J!1 f ~ t,2vFKa;d

GU6~ I ,J!!@GJ2a
c ~a2d,J!13GJ2a

s ~a2d,J!#Ud~ I ,a!%. ~E3!
1-33
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In the above three flow equations, we have used the
lowing notations:

Ka;d
pp ~ I ,J!5

1

4
@Dkd~ I ,J!22Dka~ I ,J!#, ~E4!

Ka;d
ph ~ I ,J!5

1

4
@Dkd~ I ,J!22Dka~ I ,J1a2d!#, ~E5!

Ka;d
UU~ I ,J!5

1

4
@Dkd~ I ,J!22Dka

U~ I ,J1a2d!#, ~E6!

Ka;d
GU1~ I ,J!5

1

4
@Dkd

U~ I ,J!22Dka~ I ,J1a2d!#, ~E7!

Ka;d
GU2~ I ,J!5

1

4
@Dkd

U~ I ,J!22Dka2d~J,I 1a!#, ~E8!

Ka;d
GU3~ I ,J!5

1

4
@Dkd

U~ I ,J!22Dka2I~ I ,a1d!#, ~E9!
20511
l-
Ka;d

GU4~ I ,J!5
1

4
@Dkd

U~ I ,J!22Dka1d2J~J,a!#, ~E10!

Ka;d
GU5~ I ,J!5

1

4
@Dkd

U~ I ,J!22Dka~ I ,I 1a1d!#,

~E11!

Ka;d
GU6~ I ,J!5

1

4
@Dkd

U~ I ,J!22Dka2J~J,a2d!#.

~E12!

We refer the reader to Appendix D2 for the definitions
Dkd(I ,J) andDkd

U(I ,J). Thef function is defined as follows
f @ t5 ln(L0 /n),d#51 if n>udu and 0 otherwise.

2. Renormalization of the propagator

The two-loop self-energy has the following expression
rgy, and
SR,I
(2)~k5kF,I ,v5m1n!5

1

4N2 (
J,a

H 2@Ga
c ~ I ,J!G2a

c ~ I 1a,J2a!13Ga
s ~ I ,J!G2a

s ~ I 1a,J2a!#

3@n1vFDka~ I ,J!# lnF un22@vFDka~ I ,J!#2u

~2vFL0!2 G1Ua~ I ,J!@2Ua~ I ,J!2UJ2I 2a~ I ,J!#

3~n1vFDka
U~ I ,J!!lnF un22@vFDka

U~ I ,J!#2u

~2vFL0!2 G J . ~E13!

The w functions relating renormalized propagators at two different scales satisfy the general Eq.~D14!, which in the case
of N chains read

] t ln~w I !5
1

2N2 (
J,a

H 2@Ga
c ~ I ,J!G2a

c ~ I 1a,J2a!13Ga
s ~ I ,J!G2a

s ~ I 1a,J2a!#

3F S 11
vFDka~ I ,J!

n D f @n,vFDka~ I ,J!#2
vFDka~ I ,J!

n
l @n,vFDka~ I ,J!#G1Ua~ I ,J!@2Ua~ I ,J!2UJ2I 2a~ I ,J!#

3F S 11
vFDka

U~ I ,J!

n D f @n,vFDka
U~ I ,J!#2

vFDka
U~ I ,J!

n
l @n,vFDka

U~ I ,J!#G J , ~E14!

where the functionl is defined byl (n,d)5 ln(un/du) if n>udu and50 otherwise. This function is, asf, a logarithmic approxi-
mation of a more complex function, diverging at scaleudu. From the definition ofw I @see Eq.~D13!#, it is clear that if the initial
high-energy quasiparticle weight is equal to one, then one simply hasZI(t)51/w I(t).

The flow equation for the running Fermi surface in the cutoff scaling scheme is also obtained thanks to the self-ene
we find

] tkF,I
(0)5

1

2N2 (
J,a

H 2Dka
(0)~ I ,J!@GB,a

c ~ I ,J!GB,2a
c ~ I 1a,J2a!13GB,a

s ~ I ,J!GB,2a
s ~ I 1a,J2a!#1Dka

U(0)~ I ,J!Ua~ I ,J!

3@2Ua~ I ,J!2UJ2I 2a~ I ,J!#2
1

N (
I

Dka
U(0)~ I ,J!Ua~ I ,J!@2Ua~ I ,J!2UJ2I 2a~ I ,J!#J . ~E15!
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