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Interaction-induced Fermi surface deformations in quasi-one-dimensional electronic systems
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We consider serious conceptual problems with the application of standard perturbation theory, in its zero-
temperature version, to the computation of the dressed Fermi surface for an interacting electronic system. In
order to overcome these difficulties, we set up a variational approach which is shown to be equivalent to the
renormalized perturbation theory where the dressed Fermi surface is fixed by recursively computed counter-
terms. The physical picture that emerges is that couplings that are irrelevant tend to deform the Fermi surface
in order to become more relevafitrelevant couplings being those that do not exist at vanishing excitation
energy because of kinematical constraints attached to the Fermi guifaese insights are incorporated in a
renormalization group approach, which allows for a simple approximate computation of Fermi surface defor-
mation in quasi-one-dimensional electronic conductors. We also analyze flow equations for the effective cou-
plings and quasiparticle weights. For systems away from half-filling, the flows show three regimes correspond-
ing to a Luttinger liquid at high energies, a Fermi liquid, and a low-energy incommensurate spin-density wave.
At half-filling Umklapp processes allow for a Mott insulator regime where the dressed Fermi surface is flat,
implying a confined phase with vanishing effective transverse single-particle coherence. The boundary between
the confined and Fermi liquid phases is found to occur for a bare transverse hopping amplitude of the order of
the Mott charge gap of a single chain.
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I. INTRODUCTION chains, at high enough energfeSAt low energies, optical
conductivity measuremeriteave shown the existence of two
One of the striking results obtained in the last decade ofypes of behaviors: either the system remains confined in a
strongly correlated electronic systems is the coexistence of Mlott-insulator phase(in the Fabre salts also known as

notion of Fermi surface and of strong deviations from the! MTTF compoundsor the transverse hopping of electrons

‘o C o ) takes over and establishes a long-ranged transverse phase
predlctlpns Of. Fermi liquid theqry for many low energy coherence, leading to a two-dimensioit2D) Fermi liquid
properties. This has been extensively studied eXpe”mema"E{hase(for the Bechgaard salts TMTSAN the latter case the
for high-temperature superconducting cuprates, where ang

Yressed Fermi surface remains warped while in the former it
lar resolved photoemission spectroscd@yRPES has re- P

, i becomes completely flat under the effect of sufficiently
vealed the presence of Fermi surface arcs, even in the “nd%rfrong interaction&19

doped regime which is characterized by the pseudogap seen gecause of their difficulty, precise computations of Fermi
with most low-energy probesAlthough these systems ex- syrface deformations for model systems have been under-
hibit intermediate or even strong electron interactions, theyaken only recently. A direct numerical evaluation of the
have triggered many theoretical works using perturbativeslectron propagator to second order in interaction has been
tools>™* performed for the 2D Hubbard modé{!? Similar studies

At the beginning of any perturbative analysis, the shape ofiave also been carried for more phenomenological models
the Fermi surface is crucial in determining which couplingswhere electrons are scattered by dynamical spin
survive in an effective low-energy descriptidrFor most  fluctuations:>'* Although these computations yield valuable
crystalline materials the absence of continuous rotational inphysical understanding of the processes involved in the
variance allows for a deformation of the Fermi surface awayFermi surface deformation, they suffer from at least two se-
from the bare free electron Fermi surface, as interactions anéous problems. First, they identify the dressed Fermi surface
switched on. In many metallic systems this effect is not exwith the locus of points irk space for which the dressed
pected to play much of a role beyond usual renormalizationguasiparticle energy is equal to thimteracting chemical
of effective parameters of band theory. But in some situapotential, which is, of course, correct. But this does not im-
tions, such as the vicinity of a Van-Hove singularity, the ply that the imaginary part of the self-energy vanishes on this
presence of a nesting vector, or for strongly anisotropic consurface and for frequencies equal to the chemical potential.
ductors, it seems essential to understand how to compute tfiéherefore this procedure does not lead to a picture of asymp-
dressed Fermi surface, since it is the relevant object for thiotically stable quasiparticles at low energies. This remark is
construction of an effective low-energy theory. valid in the zero-temperature approach, which is the only one

In the case of quasi-one-dimensioigquasi 1D systems, we are using in this paper, because of its conceptual simplic-
this Fermi surface deformation is intimately connected to thdty. Second, this problem is not cured while going to higher
widely studied notion of transverse coherence. Experimentadrders in perturbation theory. Furthermore, some new prob-
and theoretical investigations converge towards a descriptiolems arisenamely, infrared divergenceat these higher or-
in terms of almost uncoupled Luttinger liquids along theders for both zero and finite temperature formalisms.
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The underlying assumption of the standard perturbatiomerstanding of these works is that they always begin with a
scheme as used above is that one can generate the interactkimgpwn bare Fermi surface and compute the evolution of the
ground state by adiabatically switching on the interactionseffective Fermi surface, as the high-energy cutoff is gradu-
starting from the noninteracting ground state. This has to bally decreased. Although this is very reasonable on physical
guestioned for large systems for which the ground state liegrounds, we may wonder whether this fits with the general
at the edge of an energy continuum. Because of this, thegorous analysis described in the last but one paragraph. We
perturbation algorithm acting on various excited states of théelieve there are two ways to combine the corresponding
original systems, associated to different shapes of the Ferméquirements with a RG approach. The first one uses the
surface, has the possibility to generate energy levels’ crosgenormalized perturbation theory described above, with a
ings. This implies that the seed state to be used in perturbatinning energy cutoff. After the usual mode integration in a
tion theory is not knowra priori, when interactions do de- small energy shell, the kinetic term in the effective action is
form the Fermi surface. This difficulty has been pointed outcorrected to preserve the shape of the dressed Fermi surface.
in the 1960's by Kohn and LuttingEtand also Noziees!®  In the process of integrating the RG flow, one has to keep
These ideas have been revived recently in a mathematicallyack of and sum all these counterterms to obtain the bare
rigorous frameworR’ The conclusion of all these works is Fermi surface as a function of the dressed one. Alternatively,
that a sound formalism is obtained when one works with zone would fix the bare high-energy theory, and perform the
bare propagator which singularities are pinned todfessed mode integration is such a way that modes being integrated
Fermi surface. This is achieved in practice by the introduc-out always remain at a finite distance from the flowing Fermi
tion of counterterms, which have to be computed order bysurface. But then one has to ensure that all modes are inte-
order in perturbation theory. The main difficulty in practical grated over exactly once with a uniform weight. This is in-
implementations of this philosophgwhich may be called deed possible but requires some slight modifications of the
renormalized perturbation thedris that it provides only an  Wilson-Polchinski usual RG equatiof’s.We believe the
implicit determination of the dressed Fermi surface, sincepractical implementation of either approach remains to be
this algorithm expresses the bare Fermi surface as a functicatempted.
of the dressed one. Although formally this connection has The bulk of this paper is composed of three sections. Sec-
been proved to be invertibf& this remains a formidable task tion Il begins with a general discussion of some difficulties
which has never been, to our knowledge, practically underwith the standard perturbation theory. We then develop a
taken. Note that the necessity to use these counterterms is naitysical understanding of the driving force that deforms the
a pathology of the zero-temperature approach. It also appeakFermi surface on the basis of a simple variational calculation
in the Matsubara formalism at finite temperature which is thefor a system of two spinless chains. The main insight gained
one used in the rigorous works just described. here is that the couplings which tend to deform the Fermi

As a first step towards the realization of this program,surface are those for which external momenta of in and out
several groups have performed self-consistent computationgoing particles cannot be simultaneously taken on the Fermi
Their basic principle is to start with a trial Fermi surface, surface, because of momentum conservation. In the RG lan-
which is adjusted so that it matches with the calculatedjuage, these interactions are usually called irrelevant. We
Fermi surface. A first example follows directly the standardfinally establish the equivalence between this procedure and
Hartree-Fock methotf It has been applied to the 2D Hub- a standard renormalized perturbation theory where the
bard model in the presence of second-neighbor hopping andfessed Fermi surface is fixed by counterterms. A reader in-
nearest-neighbor interaction, and the possibility of a changterested in more technical aspects is referred to Appendixes
in Fermi surface topologyfrom holelike to electronlikehas A, B, and C(the first two begin with some simple first order
been observed. A rather sophisticated scheme has also begaiculations on the system of two spinless chains, whose
developed by Nojirf® in which the self-energy is self- results can be compared to the ones obtained in Sednll
consistently computed from the corresponding second orde$ecs. Il and IV we show how the RG can be implemented in
Feynman diagram. This work addressed the simplest 2@he study of quasi-1D systems. We want to emphasize that
Hubbard model with on-site interaction for which the Fermiwe have not made use of a single RG scheme, but of two
surface deformation was found to be very small and to precoupled RG schemes. We describe our motivations for per-
serve the Fermi surface topology. Note that the quantitativéorming such a study in Secs. llIB1 and IV A, but let us
difference between this self-consistent scheme and a stamery briefly explain what they are before turning to a more
dard perturbation theoty'? appears to be small. detailed description in Secs. Il and IV. The field-theoretical

In spite of their merits, these approaches lack the abilityRG in the spirit of Gell-Mann and Lot is a simple but
to keep track of the growth of some effective couplings agpowerful way of computing low-energy properties of sys-
the typical energy scale is lowered. These effects play a cruems described by a renormalizable field theory. This is why
cial role for the 2D Hubbard model near half filling, or for we adopted it for this purposghis method is discussed in
quasi-1D conductors. A natural way of handling these trendsletail in Appendix D. However, it cannot be used to com-
is to use a renormalization groufRG) approach. Several pute the dressed Fermi surface, for the simple reason that the
groups have incorporated the RG methodology in the comFermi surface is defined as the locus of the zerok space
putation of the dressed Fermi surfdce'%2!Similar studies  of the inverse propagator evaluatedzato frequencyThere
have also been carried for two coupled chains where thé thus no low-energy scale that can be varied to get RG
Fermi surface is reduced to four Fermi poifts?* Our un-  equations as is done, for example, for the low-energy verti-
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FIG. 1. Schematic energy level pattern as a function of interaction strength for a conducting Fermi system. Different levels correspond
to different choices for the Fermi surface of the noninteracting system. The left figure represents what happens in the standard perturbation
theory, where the level repulsion at avoided crossings cannot be resolved, so that one obtains a nonadiabatic evolution of the system wave
function as interactions are increased, therefore generating an excited state. On the right we represent the effect of applying the standard
perturbation theory in a finite size system. In this case an adiabatic generation of the interacting ground-state is possible.

ces, when relating the values of these vertices at two differ-Il. COMPUTING THE SHAPE OF THE FERMI SURFACE:
ent scalesy and v’. However, one can use the approach VARIOUS DIFFICULTIES AND THEIR RESOLUTION
known under the name cutoff scaling, and developed by
Sdyom 3! This RG does not suffer from the limitation just
described, because it is the high-energy cutoff and not the As emphasized in the Introduction, the computation of the
low-energy scale that is varied, and we have used it for th&lressed Fermi surface in an interacting metallic state encoun-
computation of the dressed Fermi surface. The high-energlg’s some obstacles because of the presence of a continuum
part of the flows, in which the Fermi surface deformation©f low-lying energy states in the immediate vicinity of the
takes place, is thus described by the cutoff scaling. Th&oninteracting ground state. This has been already discussed
dressed Fermi surface that one obtains in this way theH! & Very inspiring paper by Kohn and Lutting&rThere,
serves as an input parameter for the field-theoretical R@hey have shown that the standard Brueckner-Goldstone per-
which governs the low-energy part of the flows. Let us Sayturbation theory for the ground-state energy is not consistent
that RG flow equations are not presented in Secs. Il or [vwith a careful procedure of taking the zero-temperature limit
but have all been gathered in Appendix E. In Sec. Ill we seff the total energy computed in the grand-canonical en-
up the cutoff scaling approach for the study of Fermi surfaces@mble. They interpret this failure in terms of the pattern of
deformations in a quasi-1D system of weakly coupled elecENergy levels of an interacting Fermi system as a function of

tronic chains. In order to make the ideas more concrete, thide interaction strength. When the shape of the Fermi surface
method is then applied to the simplest possible example, ang'@nges, a deep reshuffling of the spectrum takes place, lead-
g to a huge number of level crossings. A simple illustration

we end the section with a comparison to other methods the*gr this is given on Fig. 1. At this stage, it is important to

can be found in the literature. We then turn to numerical’;, . = . S - .

. o . distinguish between two situations, which have both interest-

investigations, that are presented in Sec. IV, for short-range ; o :

Hubbard-like, and repulsive electron interactions. Sectio ihg physical realizations. For some simple models, such as a
iy Eepuis| : adder of interacting spinless fermions, or a single chain of

IV B deals with considerations about systems away from hal

fill hich exhibi . ) ¢ pin 1/2 electrons, the total number of particles of a given
ling which exhibit an incommensurate nesting vector for gheiagtransverse momentum in the ladder case, orzhe

their Ferm.i sgrface.. The flow pattern involvgs: a_high—.energyComponent of the spin for spin 1/2 electrpmsay be con-
Luttinger liquid regime, followed by a Fermi liquid at inter- seryed. As a result of this symmetry, the level crossings just
mediate energy, and finally a long-range ordered spin-densify,entioned are an essential feature of the exact many-body
wave(SDW) phase is the stable low-energy attractor. Speciakpectrum. In more general situations, these level crossings
attention has been given to the scale and transverse size dgypear at any finite order in a perturbative computation of
pendence of the quasiparticle weight. We then focus on théhe spectrum as a function of interaction strength, although
half-filled (and nearly half-filledl case in Sec. IV C, where they are expected to disappear in an exact treatment for a
Umklapp processes may drive the system into a confinefinite-size system. Let us first concentrate on the former case
low-energy phase and pin the SDW on the crystal lattice. Irfor a while, since it shows dramatically why and where dif-
particular we study the crossover between the confined anficulties arise. In such situations, the conventional assump-
the Fermi liquid regimes. It is shown to occur for bare valuestion often made in many-body computations does not hold. It
of the interchain hopping of the order of the 1D Mott chargestates that one can get the interacting many-body ground-
gap. state by adiabatically switching on the interactions, starting

A. General considerations
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from the noninteracting ground state. A trivial example
where the adiabatic switching procedure most often gener
ates an excited state is provided in the case of the free Hamil
tonian

ng ex(k)c(k)e(k), (1)

where we arbitrarily split, (k) into two parts:

ex(k)=go(k)+Neq(Kk). 2 FIG. 2. Examples of possible initial states for the perturbation
algorithm. These states are Slater determinants with occupied
single-particle states depicted by the dashed are&ssjmace. The
dashed line denotes the non-interacting Fermi surface. In &gte
the Fermi surface is deformed, but no additional particle-hole exci-
tations are present, unlike in stgt®.

This induces a decomposition ¢i, as a sumH,=H,
+AH;, whereH, is the “unperturbed” Hamiltonian and
AH the perturbation. Sincely andH,; commute, the eigen-
states ofH, do not depend on the strengthof the pertur-
bation. But energy levels as functionsofare free to cross,
so the initial ground staté.e., for A=0) becomes, in gen-
eral, an excited state for finite. This is reflected on the
computation of the single particle Green’s function in the
zero-temperature formalism. Starting with the “bare” propa-
gator GO(k,w) *=w—gg(k)+insgieo(k)—uol, the
conventional algorithm vyields a “dressed” propagator
GM(k,w) t=w—e)(K)+insgieg(k)—uo] instead of GOk w) L= w—eo(K) +i 7P (K). 3)

the correct resultG™(k,w) '=w—g,(k)+iznsgie, (k) _ . -

_ As usual, the dressed propagator is obtaine®gék,») *

], where ug and u, denote the bare and the dressed e
chemical potentials, respectively. Note that the problem @~ €o(K) ~2q¢(k, ), where the subscripb in 2 (k)
would apparently disappear in a finite-temperature approacl¥ to stres; the mfluerjce of the.cho.|ce of a Frlal Ferm.l surface
using the Matsubara formalism. However, Kohn and Lut-€ncoded in the func_tlorb. If_ this trlaI_Ferm| surface is the
tinger have shown that special care is needed in taking th€oTect one for the interacting Fermi system, we expect the
zero-temperature limit, since they have found a class of diaSelf-energy satisfies the following well-known conditions.
grams (they have called them anomalous diagranfsr (i) There eX|sts_ a well defm_ed cherr_ucal potentiado that
which the zero-temperature limit and the infinite volume for any ke belonging to the trial Fermi surface, we have
limit do not commute. Taking the former limit first yields a _ _ _
vanishing contribution for those diagrams, and therefore the w=eolke) ~ReZq(ke, ) =0. @
wrong result of the standard zero-temperature formalism is jj) The inverse lifetime of “quasiparticles” vanishes on
obtained. The correct result for an infinite system is obtaineghe trial Fermi surface so that
by taking the other order of limits, where anomalous dia-
grams do provide finite contributions. Im 2 4(Ke,u)=0. (5)

For this reason, and also given the conceptual interest of . - _
this problem, we shall use only the zero-temperature formal©f course, these conditions are not satisfied for most trial
ism throughout this paper. In this framework, a natural WayF'erml surfaces, as the reader will immediately notice on
to circumvent this problem with level crossings is to start theSiMPIe examples. We have checked on several examples that
standard perturbation algorithm with any arbitrary eigenstat@©th Procedurefi.e., minimizing the total energy, or satisfy-

of the noninteracting Hamiltonialdo. Intuitively, we believe 'Y cond|t|0r_13|é|)hand (ii) ((j)n thed dressed s%lngle particle
in most cases it is sufficient to choose an initial state wher@foPagatolyield the same dressed Fermi surface. In Appen-

the locus of occupied single particle states is singly con-d'x A, we provide a formal proof of this equivalence, first in

nected(i.e., it has no isolated particle-hole excitations fromth‘T finite Vﬁlumi caf]e,_ angbthen in Lhe case of an infinite
the viewpoint ofH), but with a deformed Fermi surface, as volume. When t e choice IS not the correct one, It is
mpossible to satisfy both conditiong) and (i) simulta-

shown on Fig. 2. The selection of the correct initial state is' ) ¢
performed by minimizing the total energy of the dressed€0Usly. In ”}g) case of standard perturbation thebrys
state it generates, after switching on the interactions. An extaken to be® g;lolrgespondmg to the bare Fermi surface,
ample of this procedure is given belo@ec. 11 B for a obtained fromH,.**“The dressed Fermi surface is assumed

simple two-chain model. to be determined from an equation which resembles condi-

For practical purposes, it is important to note that thistion (i), namely,
approach may also be implemented through a perturbative _ _ _
computation of the single particle Green’s function. Instead w=eolke) ~ReX g0k, 1) =0. ©)
of using the free propagatoiG(O(k,w) *=w—=go(k)  But doing this yields two severe flaws: as shown in Appen-
+insgrieq(k) —uol, we should first make a guess for the dix B, this does not generate the same dressed Fermi surface
dressed Fermi surface. This allows us to define a functioms the two procedures presented above and argued to be the
® (k) such that®d(k)=1 if k does not belong to the trial correct ones do. Furthermore, in perturbation theory,

Fermi sea, andb(k)=—1 if k belongs to it. The locus of
points ink space whera (k) jumps from—1 to +1 is our

trial Fermi surface, and points on this set will be generically
denoted akg in the present discussion. The corresponding
bare propagator to be used in Feynman graph expansions is
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Im X 4 0)(ke , ) changes sign on the noninteracting Fermi ) ) . ryFr o N .
surface and fow equal to the noninteracting chemical po- . ' ' B
tential ug as shown in Appendix C. —0—'—9—9—\':40—“ = = 0
This discussion holds clearly in the case where energy

level crossings associated to various initial shapes of the ™ 7N
Fermi surface are protected by some symmetries of the full 6 ‘ ‘ e
Hamiltonian, as stated at the beginning of this section. Here . e
we would like to emphasize that a similar qualitative picture A
also holds in a more generic situation. On general grounds
we expect that energy levels of a finite system do not cross a —o ' o—7 ° , , w
the interaction strength is increased. This is the famous pher / / . D \ \ .
nomenon of energy level repulsion which plays a key role in ™ *' ’ ’ e
the field of “quantum chaos{see, for instance, the book by
Gutzwiller®). So, standard perturbation theory starting from o . i . . i
the unperturbed ground state is expected to generate the co, '\' '/' B /” ”\
rect interacting ground state forfamite system. However, to o o 0 ! re—1U

et the full single energy level resolution in the spectrum . . :
\g/]vith all the avoi%ed Ieve%ycrossings clearly requires ZOing to FIG. 3. Selected low-energy interactions for the two-chain
very high orders in perturbation theory. Instead, in mostmOdEI'
many-body computations, we first get formal expressions fo
various quantities such as Green’s functions for a chosetf
finite order in powers of the interaction, and we most often

i (0)
take the thermodynamical limkiefore summing the pertur- simply be denoted as¢". S .
bation series. We believe this procedure is most likely to e shall also make simplifying assumptions about the

generate in the end an excited state of the interacting Systemtera.(ﬁtions. Thus, the only Iovx:c—ek?erfgy interaction processes
although the seed of the perturbation series is the nonintetV® Will be interested in, are of the forward scattering type

acting ground state. This belief is confirmed by the simpleld2), classified a#, B, C, D, andF. They are represented in
computations in Appendix B, which do not require any Spe_F|g. 3. We shall neglect the Umklapps, assuming the filling is
cial symmetry of the full Hamiltonian. not commensurateg, interactions, involving four right or

four left fermions, are also discarded, because we shall re-
strict ourselves to first and second order effects, to which
these interactions give no contribution. In order to save

llows, we will simplify the problem and suppose that the
ermi velocities for both branches are equal, and they will

B. Two chains of spinless fermions: Energy minimization

1. Model and notations space, we only give thB type interaction Hamiltonian
Let us first focus on the simplest possible model exhibit-
ing the features described previously: a system of two chains H(®D)=— % (et (k+q)c] (k' —q)c, . (k")cro(K)
of interacting spinless fermions. We will assume this system Kk ' ’ ’

to be anisotropic, described by a tight-binding Hamiltonian, Y ®)
with a hoppingt; along the chain much larger than the trans- -,

verse hoppind, . Hence, we have two bands_, nameq by théyhere H.c. means the Hermitic conjugate.

transverse momentum they correspond to, i.e(bdnhding

and (antibond_ing. We suppose the filling is such that both 2 First order

bands are partially filled. We will furthermore focus on the ] ]

low-energy properties, so that we can linearize the spectrum \We will here compute the energy to order one in the usual
around the four Fermi points, giving rise to four types of duantum mechanical perturbation theory, of eigenstates ob-
fermions: ®R,0), (R,7), (L,0), and (,). As usual, we tained from two types of free eigenstates. The first ones,
extend the spectrum for arbitrary momenta. The low-energfienoted a0k o.kr )o, are free states for which the bond-

free Hamiltonian is thus given by ing (antibonding band is fjlled up td(F_‘O (kF'”)o' Thg ground
state of the free system is thus obvioufyk{®} k) ),. Of

course, as the number of particles is fixed, the condition

Ho= ; |:20w @+ v (k= k) ]ck (K cr, (k) ke ot ke »=kC3+ kO must be satisfied. As we wish to un-
' derstand what happens if one adds a particle to the system,
+O=vPk+kED el (e, (k). (7)  we will also consider states that are simply obtained from the

first ones by adding a particle of momentgron branch 0 or
In the above expression, all the superscfiptslenote free (with g=kg o or =K ). We will refer to these states as
quantities (%) is the chemical potential and®) andk{°} the  |1,9,0(7);Ke o,k .)o. We shall neither consider states with
Fermi velocity and momentum on chaln c&y,(k) is the  one hole, nor states with an arbitrary number of particles or
creation operator of a right fermion on chdirwith parallel  holes.
momentumk. The sum overk is to be understood as an First of all we can compute the energies of these states, in
integral for a system in the thermodynamic limit. In all that the noninteracting case. Of course, because our linearized
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L A R AEM(1,9,0ke 0,Ke, ) = AED(0ke o, ke, )

1 (0)
+ 5 AAAot (ke o—ke )]

+C[Ao— (ke o~ kDT, (12

AEM(1,0, 7Kg 0.Ke )= AED(0:Ke 0.k )

1 (0)
+ E{B[Ao_(klr,o_ kio)]

Yo

+C[ Ao+ (ke o~ kDT (139

We have used the conservation of the number of particles so
that the above expressions are expressed only in terms of the
Fermi momenta on branch 0. Thus we minimize the energy
EMW=g©+AE® simply by requiring for its derivative
with respect tkg o to vanish. This yields

-1
. (19

1+ A+B-2C
47TU|(:0)

Ao

kb~ kib=(B-A)

FIG. 4. Here we show how the ultraviolet cutoff is chosen
around the free Fermi surface, for one band.

vl

Let us show how the chemical potential can be computed,
dispersion relations have been extended to include infinitelysing the energies of the states with one added particle. First
many single-particle states, there is strictly speaking an infiof all, we notice that the expressionE(*)(q) are indepen-
nite particle density in these Dirac seas, which yields diverdent ofqg. It implies the energy for adding a particle to the
gent expressions for the total energy. We will regularize thessystem on branch 0#) will be minimal if q is as small as
divergences by putting an ultraviolet cutoffy on the mo-  possible, i.e.0=Kkg o (q=Kg ). This confirms thakg  and
menta, around the fouree Fermi momenta, as shown on kg . are the actual Fermi momenta. Now if we require this
Fig. 4 for one band. For the sake of simplicity, we work in minimal energy to be the same on the two branches, equal to
the thermodynamic limit, and after a bit of algebra we find the renormalized chemical potential, we obtain the following

two conditions:

E@(0;ke o,k L 2uON =0 A3
(03K o, F'”)_ﬂ'( K 0~ vE Ag) M(l):M(O)+UI(:O)(kF,O_kl(:(?()))'i_AE(l)(qu:kF,OrO;kF,OrkF,w)

U(FO)L<kFo—k<Fog>2 9 —AED(0;ke o,Ke. ), (15)
— (ke K,

+
pB=uO+ 0P (ke -~ k)
+AED (1=K ;7K 0,Ke )

+ (g kE ) _AEW(O-

(10) AE (kaF,OikF,w)' (16)
It is obvious that the minimum of the energy is obtained for
the free Fermi surface. The value of% does not play a role
here since we have fixed the total particle number.

and E(O)[lquo(w);kF,OikF,ﬂ'] = E(O)(O;kF,O7kF,ﬂ') + /’L(O)

One can check these equations give the deformdfidnof

the Fermi surface. This is physically desirable. Indeed, im-

posing that the minimum energies to add one particle on one
! . o branch or the other are identical, should be equivalent to the

To order one in the couplings, it is well known that the

energy of a free state is simply shifted by the mean value O;equwement that taking two particles at the Fermi surface on

the interaction for this state. As a consequenceOtendF 8?heerb[)a;2ﬁzhaggstg Utr?c;%i:EdﬁThsttrtlr:a?mlj)eolmr]llafnui(r:feattlcﬁm(;tn the
couplings do not give any contribution. They will only start y

playing a role to second order. It is a very simple matter tOFmaIIy we find the chemical potential

check that Ao
,LL(l)Z ,LL(O)+ (A+B+2C) E

-1

L
AEM(Oike o, ke ) = (ZT)Z{A[AOJF (ke o— k)12

B A2 Ay A+B-2C a7
+ B[AO_ (kF,O_ kgzo,()))]z ( 41rv '(:0) 41v §:O)
+2C[Ag+ (ke o= KED)] o _ _

©) ' To conclude this section about first order computations,
X[Ao— (ke o= kg0 1}, (1) we show two figures of what would happen for a total energy
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T T T T T ' vertices in the corresponding Feynman graphsd we will
0.02 = § also see that some problems arise to third order and beyond,
0.01 i showing that another perturbation scheme is needed. We
: \ have already seen the effects/AfB, andC interactions on
the Fermi surface’s shape to first order. We let the reader
E(l) 0 === . . . .
check that these three interactions play no essential role in
the deformation of the Fermi surface at second order. Indeed,
when we compute the energy of the std@Xr o,kr, )0, if
we only keep contributions that diverge whénp—o~, we
get a quantity that is proportional 192, andindependenof
-0.03 L L . . . . the dressed Fermi momenta. Only finite terms do depend on
0 005 01 015 02 025 03 035 )
B_A the dressed Fermi momenta. We shall thus neglect these con-
tributions, and focus o andF interactions.

FIG. 5. Energies as functions 8- A, for states with different Let us begin with the effect d interaction, which is the
values of ke o—k{®) (0, 0.05, 0.1, 0.15, and 0.2The crossings only one that does not exist at zero energy if the Fermi sur-
show us that the Fermi surface will be deformed. The dashed curvface is not strictly flat. This is due to the constraint of mo-
is the envelope of all these curves. It is thus the energy of thenentum conservation, and is easily visualized from Fig. 3.
interacting ground state, as a function of the interaction. Second order perturbation theory tells us that the eigenen-
ergy of an eigenstatpm), obtained from the free eigenstate

of the fOHOWC')”g simplified form: ED= (ke o~ ki) +(A " |n),, is obtained by shifting the free eigenenergy of a quan-
—B) (ke o—k{®). Figure 5 illustrates the level crossings: we tity

represent the energy as a function BF{A) (assumed posi-
tive), for various values ofKg o— k,(:og,) Figure 6 proposes an ViVin
alternative vision of the same thirigee the caption

Equation(14) shows us that the deformation of the Fermi
surface at first order is due to the difference between thguhereV,,=,(n|V|k), andV is the interaction potential. This
couplings on the branches: £=B, no deformation takes formula involves energy denominators. If these become
place. We can understand the sign of the deformation verymaller, the energy will decrease. WhBninteractions are
simply. Suppose the fermions repel each otfier the cou-  considered, we understand from these considerations that
plings are positivg but that the repulsion is bigger on chain they will tend to flatten the Fermi surface, because this will
m, for example,B—A>0. It is then natural, in order to allow for smaller energy denominators. That this is true can
lower the energy of the system, that some fermions of chaime checked by explicitly computing the energy shift, which is
7 go to chain 0, so thatke o— k) should be positive. This found to be
is indeed what we find. We will now see that things are
different at second order: tH2 couplings tend to flatten the @ LD? ) Ao
Fermi surface, whatever their sign, and without having to ~ AEp :m(km_ ke 7)In Keoke )" (19

F y , T

invoke a difference between two couplings.
We stress that this result has been found computing 1),
3. Second order and further keeping only terms that are divergent whég— o and that
We shall now discuss in detail perturbation theory to secdepend on the Fermi momenta. If orllyterms are consid-

ond order(this notion of order being simply the number of ered, it is now easy to show that the free and renormalized
Fermi momenta are linked by the following formula:

-0.01

-0.02

_ 18
& EO_gO 18

0.02
AKO= Ake| 142 —> 2|n Ao (20)

0.01 F - 2mv® |Akel/ |

B0 where we have sekkg=Kkg o— kg, (and the same for free
0.1 quantities. This clearly shows the tendency towards the flat-
- tening of the Fermi surface, induced Byterms.
-0.02 What aboutF interactions? Perturbation theory at second

order is divergent in the low-energy limit. Indeed

-0.03 |0;kr 0.Kg )0 States that are not the free ground states, are

1 1 1 AN | 1 | - .
0 005 01 o015 02 o%: 03 035 coupled to a continuum of excited states composed of two

koo — kO particles and two holes, which have kinetic energies arbi-
' ’ trarily close to the one of the seed stglekr o,kr ,)o. This
FIG. 6. Energies as functions dtg ,— k(%) for different values ~ Yields energy denominators that are very small in absolute
of B—A (0, 0.1, 0.2, 0.3, 0.35The dashed curve gives the energy value, and even zero. In the self-energy formaligron-
of the ground state, and thus goes through the minima of all thétructed from an excited state, see Appendix A for details
different curves. this problem is regularized by the imaginary patt$» in
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Ko > [1] >
P - — - k,w | M | k,w
- K,Q ~ .
4 IA \ \ FIG. 8. Graphical representation of the chemical potential coun-
// \ \ \ terterm, at first order.
/ v ! \
‘ b Hamiltonian with the correct interacting Fermi surface, and
P Q b+ ¢ + wg k+g,w+w, E,w another that will be the difference between the true free
\ / Hamiltonian, and the modified one. We will thus write
\ //
\
/
S . Ho= 2 2 {lm+ve(k—ke Ik (Kcr (k)
~ P I=0,m k
~ -
— -
K= gw' - +u—ve(k+ke Dle] (ke (0} +HEG+HEY,
FIG. 7. Example of nonskeleton diagram giving rise to infrared (21

di .

lvergences with
the self-energy approach. For the minimization of energy,
one can similarly defme the divergent integrals vy|th a prin- HE)l,Lc)t: 5#2 CE,|(k)CR,|(k)+5ME CI,I(k)CL,I(k)
cipal part, and one finds the same results as in this self- Tk Tk
energy version. But this infrared divergence is only the first (22
one, and is not the most problematic. Things become worse d
and worse for higher orders. This has already been discuss&dl
by Feldman, Salmhofer, and Trubowlitzo that we shall be
brief. In the language of Feynman diagrams, the d|v§rge_nce|3|g'fgt: — vk D Cge,|(k)CR,|(k)—UF5k|2 C[,I(k)CL,I(k)-
come from repeated self-energy insertions, or to say it differ- Ik Ik
ently, with nonskeleton diagrams. An example of the lowest (23
order diagrams of this typeap.art from the Kohn-Luttinger The counterterm$u and ok, are found by the requirement
diagram we have already discussed at second order, and. 1 remains the true free Hamiltonian
which is zerg is given in Fig. 7. The problem with such a 0
diagram is the following. Because of the inserted first order
self-energy in the internal right propagator, we now have two
right internal propagators. This gives a bad behavior of thgy;i
integral overg aroundg=0 for «¥=0 andk=0, once all
other variables have been integrated out. It is clear that Su=uV+su@+ ... =GUSu+ - .- 25
things get even worse if two or more such first or higher p=on H #1 ' 9
order self-energies are inserted. We thus have to find a way

p®=p+ou (24)

(0) —
of getting rid of these infrared problems that plague our per- KE1=ke, 1+ ki (26)
turbation theory. This is achieved by the use of counterterms, ..,
that we will expose now.
ok = ok(M+ ok{D+ ... =Gaskiy+ - (27)

C. The use of counterterms in the two-chain model

Note that we have used a symbolic notat{®fi for the cou-
o i ) plingsA to F, and the sum oves is implicit. We stress that

In order to simplify the notations, we will denote the there is not only one counterterm for the chemical potential
Fermi velocity byv instead ofv”. We will again suppose (or for the Fermi momentum of each chgibut an infinity,
this velocity to be independent of the chain index and itswhich are all thesu(™’s, for n=1,2, ... . Thenumbern
renormalization will be neglected throughout this paper togives the power in the couplings of the considered counter-
simplify the discussion. The use of counterterms in interactterm. Counterterms have to be computed order by order, one
ing fermionic systems, for which the Fermi surface gets deafter the other, in a perturbation theory. When using the
formed, is quite old, and \c_anlgor example be found in thecounterterms, the Luttinger theorem simply says thatk
beautiful discussion by Nozies;™ where the reader will find =g, or for each ordef: 3,5k{’=0. Now the free R,0)
more details. The main idea, which has been illustrated veryopagator with which Feynman diagrams are computed is
recently?”?8is to take the interacting Fermi sea as the start-
ing point of perturbation theory. As it ia priori unknown, X A~ N
we must ensure in the end of the calculation, that the L w U b w
“guessed” Fermi surface is indeed the dressed one. In order ’ ’
to have a good starting point, the most natural idea is to split FIG. 9. Graphical representation of the Fermi momenta counter-
the free Hamiltonian into two bits: one that is a modified freeterms, at first order.

1. Notations and first order calculation
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q,wg K w
P -~
/ N
\
!
1
\
\ ]
/ \
\ /
/ q, Wy ' l q, Wy
& ”
k,w k,w k,w ‘ k,w
FIG. 10. First order contribution to the self-energy: the tadpole FIG. 12. Kohn-Luttinger diagram contributing to the second or-
graph. der self-energy.
Gyl k) = ! S8 (ko) =(B+C) 52, 30
RO w_[M+UF(k_kF,I)]+|ﬂSgr(k_kF,l)(’ )
28

But we also have the counterterm contributigdeagrams of

and similarly for other types of fermions. Both real and Figs. 8 and 9
imaginary parts of these propagators refer to the interacting

;1 _ 1 _
Fermi surface. SURNKk o) =2 %R) (K 0)=su), (3D
We shall now see how to implement the use of counter-
. . > s (k1) __ (1)
terms in the perturbation theory of the two-chain model. For 2ro(k @)= —vpdky (32)
this, it is useful to associate a graphical representation to the s (k1) (1)
counterterms. This is illustrated at first order in Fig. 8 for the 2Rk 0)=—vpdk (33

chemical potential, and in Fig. 9 for the Fermi momenta. The .
. . : The dressed propagato@are such that they satisfy the
chemical potential counterterm is represented by a squar ) :
b P y asq t?éyson equationG *=G{?)"1-3 -3 . The chemical po-

whereas the Fermi momenta counterterms are denoted ) - .
hexagons. In both cases, the number written inside the syniential and Fermi momenta are found by requiring that they

bol is the ordern mentioned previously. Notice that for vanish forw= u and fork on the interacting Fermi surface,
Fermi momenta, we do not need to explicitly write down the@nd that the Luttinger theorem is satisfied:
chain indexl, because it would be redundant with the chain
index of the propagators. The reader should also remark that
counterterms for right or left fermions are exactly identical.
Now that the general notations have been given, let us see
what the counterterm approach gives to first order, for the
two chains. In all that follows, we will not use an ultra-violet > ski=o, (36)
cut-off around the free Fermi surface, but around the inter- I
acting Fermi surface. This will slightly alter the results, but it
makes the computation simpler, without involving a qualita-
tively different physics. The tadpole diagram of Fig. 10,
computed with the new free propagat@ﬁo) and the new

Gro(k=Kg 0, 0=pu)=0, (39)

Gri(k=Kg »,0=pu)=0, (35)

with j=1 here, because we are working at first order for the
moment. It is very easy to check that one finds

cutoff, gives the following contribution to the self-energy: suV=—(A+ B+ZC)4—;, (37)

Sk w)z(A+C)ﬂ (29) 1

ro(K, o skiH=(A—B) (38)
47TU
and This is fully compatible with Eqs(14) and (17), except for
second order terms that we do not find here, because we have
K, changed the way we choose the cutoff.
/ ~ ~
\ 2. Second order calculation with counterterms
Q b - and next-order considerations
b ket gwtu, ) k,w As for the first order calculation, we have “usual” contri-

butions to the self-energy, namely, the sunrise and Kohn-
Luttinger diagrams of Figs. 11 and 12. We also have “pure”
counterterms contributions, as in Figs. 8 and 9, with the in-
FIG. 11. Sunrise diagram contributing to the second order selfdex 1 replaced by an index 2. But now we also have two
energy. “mixed” contributions, involving counterterms of the previ-

\->¢
E—q,0 —wy
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\ Eg%;D(kZKF’O-I— K, 0=+ )
/
/ N L[ D | +2Ak
/ ~ 4 2mve [v—ve(k Pl
q,wq‘ X‘qu
2 2
vo—[ve(k+2AKg)
\ Y cin| 1L ZF”), @1
\ y; (2vEAo)
@
ke By S o(k=ke o+ K, 0=p+ )
FIG. 13. “Mixed” contribution to the second order self-energy. 1/ D \2
This graph is a tadpole, with an insertion of the first order chemical = _( [v—ve(k—2AKg)]
potential counterterm. 4\2mve

|v?—[ve(x—2Ake) ]
(2UFAO)2

ous order, shown in Figs. 13 and 14. In fact, these two graphs

vanish, for the same reason the Kohn-Luttinger graph van- X1n

ishes. This is consistent, because there is no divergence from

the Kohn-Luttinger graph to cancel. . . ) .
Before studying the sunrise graph, let us see how usefulhe seqond—order condltlons_ ensuring that the trial Fermi

the counterterms are for third order graphs on the example ¢iurface is indeed the interacting one read

Fig. 7. It is now obvious that it will be completely canceled 1 D 2 kel

by the same graph, with the inserted tadpole replaced by the F

two first order counterterms. Notice that the fourth order ~ 2 va) (—2veAke)In Ao >_5M(Z)+UF5I<E>2):O’

graph, consisting of still the same graph, with an inserted (43

sunrise instead of a tadpole, would not be canceled by the

graph with inserted second-order counterterms. The reason is (

) . (42

| AK|

that the sunrise is frequency and momentum dependent, but_ — 0 )_ Su@+vesk@=0,
0

D 2
—) (ZU,:Ak,:)ln(

the counterterms are not. However, the counterterms allow 2\ 27ve
for the infrared divergence cancellation obtained at zero ex- (44)
ternal momentum and frequency.

The sunrise is easily computed, and one gets the follow- 5k§,2)+ 5k(73):O. (45)

ing contributions(the interaction indexG refers to the inter-

action associated to the two black dots in the surise These equations lead tosu®=0, and to 5k§)2)

Eg%;e(k:kp,oJrK,w:MJFV) = —(D/27vg)?AKg In(|AKg|/Ag), which is identical to Eq.
(20). The dressedR,0) propagatofand others as welican
1/ G \? |v2— (vEK)?| finally be deduced from all this:
~a\zm ) TN T A
G%Z%_l(kaFYO-I- K,0=u+v)
for G=A,C,F, (39 ’
, B 1 AV [ C\2 [ F \?
EE,L;G(k:kF,Tr"‘K,w:M*’V) _V_UFK_Z 2770,: + 2771),: + 2771),:
1( G )2 |V2_(U|:K)2| |V2_(U K)2| 1 D 2
=— (v—uFK)In(— X (p— LIS AR D
4\ 27vE (2veAg)? (v=vex)in (2veA )2 4\ 27vg
for G=B,C,F, (40 12— [0p(k+ 2AKe) Y
X(v—vgk)In 5
D (20FAo)
N
/ 1/ D \? 2— +2Akg)]?
, \ +Z(2—> (ZUFAkF)In(|V Lo+ 20k l)_
qqut 1q,wq TUF (2ueAkg)
\ ! (46)
\ /
N\ 7 We could now define renormalized propagators, introducing
> ‘ > a wave function renormalization, and show how to imple-

k,w k,w

ment a RG calculation of the dressed Fermi surface. In order
FIG. 14. “Mixed” contribution to the second order self-energy. Not to be too redundant, we will do this for the more general

This graph is a tadpole, with an insertion of the first order Fermicase ofN chains of spin 1/2 electrons, which is anyway

momentum counterterm. physically motivated by the case of quasi-1D systems.
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lll. CUTOFF SCALING RG CALCULATION FOR A
SYSTEM OF N CHAINS OF SPIN 1/2 ELECTRONS:
FORMALISM

A. Setting of the model

The free Hamiltonian is very similar to the one of K@),
except that there are nolW chains instead of 2, and that the
fermions carry a spin indeu:

N
Ho=§ gl FEH {{u@+vOk=kEDck (Kcr) oK)

O =v@)(k+kED el | (ke (K} (47) g 3
We will in fact assume, as we did previously, that the Fermi  FiG. 15. Graphical representation of the spin interaction
velocity is independent of the chain indéxand that it re-  GS(1,J).
mains unrenormalized. We will thus simply use the notation
[ =38
As in the two-chain model, we select low-energy interac-
tion processes. Those are of two types. The first one denot . . . Lo
e couplings are dimensionless, and this will suppress many

by G, generalizes the interactioms to F of the two-chain 5 denominators in the following. In th &f
model. They are forward or backward scattering interactions:. mUg denominators € following. € case ‘icou-

We shall only be interested in interactions that are invarianpl'n%(ss') the left-right  symmetry req_uwesGZ{Z(l J)
under spin rotations. Thus, we will use the charge and spin- C—(g)(‘]")' and the hermiticity oft;y yields G5 (1,J)
couplingsG® and G®. We refer the reader to our previous =G-s(I+6J=6). The first of these relations, i.e.,
papef® for more details about this parametrization. There isUs(1,J)=U_5(J,1), naturally holds for the Umklapps be-
however, one major difference between the situation decause of the Pauli principle, so that the interaction that de-
scribed in this article and the one we are interested in herétroys two left fermions on chainisandJ, and creates two
Because of periodic boundary conditions in the transverséght fermions on chaink+ 6 andJ— & is present twice. The
direction, all indiced, J, and s are defined modulo the num- difference of a 1/2 factor between the Umklapps andGhe
ber of chains\. This was not the case in our previous article, interactions, is here to compensate this. We let the reader
where the chains were obtained after considering patches dieck that in the case of the Hubbard model with an inter-
a nearly square Fermi surface, thus Mehains had bound- action Hamiltoniart/Z;n; ;n; |, one has(up to 2mvg fac-
aries, and as a consequence the chains were not all equii®'s G°=UI2, G®=—Ul2, andU=U. Because of this last
lent. equality, we will simply give the value dff when referring
Furthermore, if the filling is not too far from one half, we to Hubbard couplings. Of course the Hubbard model, in
have to consider Umklapp scatterings. These will be denoteterms of right and left fermions, also contaigs interac-
by U. It is easy to convince oneself that due to the Paulitions, but these have been set to zero, for the reasons already
principle, there is no need to consider exchange couplinggiven in Sec. I B 1.

The factors IN are required to yield a good thermody-
mical limit. The 2rvg terms have been factorized, so that

for the Umklapps. The interaction Hamiltonian is thus In order to make our notations for the interactions a bit
more concrete, we show two Feynman graphs in Figs. 15 and
Hin=H(® + H(Y (48) 16, assqciated, re;pectively, wi@r andU terms. The rep-
resentation foiG® is the same as the one f@S, except it
with
2 1 ~
mo
HY=" 2 2 2 2 A{GYLIL ], RN
NL 1,J,6 k,k,,q T,T’ P,p, ! ! I,T/
+G5(1,d)0, -0, ]ck 1 5 (k+Q)
Xcl s 5K =a)eLy,(K)eg) (K} (49
and
() TUF t M
Hint :W Igﬁ kz 2 2 {U§(| vJ)HT,T’Tp,p'CR,IJrr?,T - -

k'.q n.7" p.p’ -

X(k+q)C;,J—5,p(k,_q)CL,J,p’(k,)CL,I,T’(k) _ ) _ )
FIG. 16. Graphical representation of the Umklapp interaction
+H.cl. (50 Us(1,d).
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involves matrices instead of matrices. Notice we do not gular on the dressed Fermi surface. But clearly, this is not
use the single dot notation as we did previously, because it ignown until the whole computation has been performed.
not suited for the Umklapps, but we have adopted the wigglyl'his calls for an iterative procedure. For a given microscopic
line instead. In these graphs we also show which externanodel (defined with an initial cutoffA,), the one-particle
legs are numbered 1, 2, 3, and 4. part of the corresponding Hamiltonian defines a Fermi sur-
face which will be called the\,-Fermi surface. This is a
natural first choice for a trial dressed Fermi surface in the
iterative computation. One can then construct the flow equa-
1. General considerations tions for the running bare Fermi surfa¢de A-Fermi sur-

One of the main conclusions of Sec. Il is the necessity tdac® and the effective couplings using cutoff scaling. In the
use a renormalized perturbation theory in situations wherdimit where A goes to zerdor at least to its minimal value
the Fermi surface changes as a function of interactioP€fore a phase transition occyrthe A-Fermi surface goes
strength. In the standard many-body formalism, this istowards a new dressed Fermi surface, which is to be used as
achieved by the introduction of counterterms which pin thethe new trial dressed Fermi surface in the next step of the
dressed Fermi surface. The outcome is a precise connectidigration.
such as Eq(20) between the bare and dressed Fermi surfaces On physical grounds, such a computation is expected to
which may in principle be computed to any order in pertur-converge although we have not embarked yet in checking
bation theory. As noticed already long ago by Gell-Mann andhis statement. Instead we have tried to bypass the intrinsic
Low,% it is possible to sum infinite classes of contributions complication of an iterative procedure by appealing to the
using a renormalization group procedure_ This idea haﬁ)hySical inSightS gained in Sec. Il B devoted to the energetic
played a crucial role in building a consistent physical pictureaPproach. The main ideas are the following. First, in the
of quasi-1D conductors for instance. high-energy regime, and in the logarithmic approximation,

The most general and flexible way to implement a renorthe dressed Fermi momenta do not appear in the flow cou-
malization approach is based on Wilson's idea of graduaPlings’ equations. Secondly, in the low-energy part of the
mode elimination. Several groups have recently implementeflow, the Fermi surface should not move too much, because
Wilson’s approach to the RG, expressed via the Polchinskihe couplings that deform it are irrelevant in this regime. The
equationz,v:; or its One-partide irreducible Versi&r?_z Al- first pOint will be checked on the RG equations. The second
though these equations are exact, they are quite complicate@e has already been checked in the two-chain model, where
since effective interactions involving an arbitrary number ofonly theD coupling that does not exist at very low energies
particles are generated along the RG flow. Any numericaPecause of the nonflatness of the Fermi surface, deforms the
computation requires therefore drastic truncations in the efEermi surface. We will furthermore check it remains true in
fective action. For this reason, we have prefered to use H1e case oN chains. Assuming what happens in the interme-
simplified version of RG which is known as “cutoff” scal- diate energy regimédefined by the curvature of the Fermi
ing. This procedure has been initiated in the pioneering worigurface is not essential, the computation of the dressed
by Andersonet a|'33 for the Kondo prob]em, and put in a Fermi surface is now pOSSible ina Single Step. Indeed, we do
more mathematical form by Abrikosov and Migifaland ~ not needa priori knowledge of the dressed Fermi surface
Fowler and ZawadowsKP A very extensive review on this anymore, since it disappears from the RG couplings’ flow
method has been written by gom 3! equations in the logarithmic approximation of the high-

This scheme amounts to constructing a one parameténergy regime. The flow of th&-Fermi surface, will then be
family of “bare” Hamiltonians. These are defined on the Stopped when the cutoff becomes comparable to the maxi-
single particle states whose momentum lies in a strip ofmal momentum scale defined by the runnihgFermi sur-
width A away from the Fermi surface. It is therefore naturalface. Note that this is the least controlled step of this ap-
to parametrize these Hamiltonians as a functiomofNote ~ Proximated scheme, because the Fermi surface does not
that by contrast to Wilson’s effective action, which includesdefine one single momentum scale, but rather a continuum of
all the possible types of interactiofi®levant, marginal, and scales. This will, for example, prevent us from using this
irrelevant onek the cutoff scaling procedure only considers scheme when the Umklapp couplings are taken into account,
relevant and marginal couplings. So unlike what is achievedn @ system too far from half filling.
in Wilson's RG, it is no longer possible to preserve invari- The couplings’ flow equations in the cutoff scaling are
ance of the full set of low-energy correlation functionsfas ~ given in Appendix E, since their derivation is standard. We
is gradua”y decreased. The cutoff Sca”ng approach On|y a|Sha|| now focus on the RG Computation of the Fermi surface.
lows one to preserve a restricted set of low-energy observIhe basic equation is E¢D9). The self-energy that appears
ables, for instance, the first derivatives of the two-point funcdn this equation can be found from E€E13), where, since
tion with respect to external momentum and frequency, andve work in the cutoff scaling scheme, the cutdff should
the value of the four-point function for external legs takennow be replaced by the running cutoff, and where the
onshell at the Fermi level. couplings are to be understood as running bare couplings.

Actual computations within this scheme encounter a newGiven thatsk, =k{®(A)—k; , Eq.(D9) allows us to express
difficulty when the Fermi surface is sensitive to the strengtrkfo)(/\) as a function ofA, the running bare couplings and
of interactions. As explained in detail in Sec. Il C the barethe dressed Fermi momenka. But it is the latter who are
propagators used in Feynman graphs are required to be sifixed independently of the value of, so that it is more

B. Cutoff scaling calculation of the Fermi surface
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convenient to invert this relation, working only at a secondThis simplifies the flow, because the charge couplings then

order accuracy, to gdq; as a function of\, the running bare remain constant along it. Furthermore, this will allow us to

couplings and the running Fermi momend& (A). Asking ~ compare our results to those obtained in the literature, start-

for the invariance ok, as A is changed yields the Fermi ing from decoupled Luttinger liquids, coupled by a hopping

surface flow equation that we give in Appendix E, Eg15.  term. It is easy to check that the general flow equation of the
Only the couplings for which the curvature of the Fermi Fermi surfacE15) can be simplified in

surface is felt, i.e., for whiciAk,(1,J)#0 orAk‘j(I J)#0

contribute to the flow ok{®)(A). This is what we had al- oG8 © O (0 L)

ready noticed in the two-chain system, where Eheoupling kg ] =2 JEa [(KE T4 ot KES) = (KT +KES - o) ]
was the only one to give a deformation of the Fermi surface. '

This confirms that only couplings that will be irrelevant in G2

the low-energy regime contribute to the deformation of the = —GE;Zk(FOJ)wL N > k|(:O’|)+a- (53

Fermi surface.

Finally, notice that we have not taken the first order con- . —
tribution into account. This is not justified in the general If we denote the mean value of the Fermi momentaﬁ)y
case, but for the initial condition we are interested in, i.e.,= (Zke )/N=(ZkE)/N, and if we write kO)(t)=k
with all Charge, Spin and Umk|app Coup”ngs equaG@l + 5k€:c3|)(t), the differential equation is eaSin solved and the

S, andUg, the first order contribution vanishes. We em- solution is
phasize this is true only in the high-energy regime, where the
couplings will have a purely one-dimensior{aD) flow (be- A\ G8
cause of the logarithmic approximatiorand thus will re- 5k§:(?l)(A):5k§:O,I)(AO)(A_> : (54)
main equal(with one value for each of the three types of 0

co_upllngs). Once 'ghe low-energy regime is reached the CoU" The guestion that now arises, is how to determine at what
plings become different, so that one should take the first-

. .
order deformation into account. scaleA™ the flow should be stopped. This scale cannot be

S — determined precisely in the cutoff scaling scheme, which is
The self-energy at one loop is given by the contribution OfonI a very simple version of the Wilsonian approach. Onl
the tadpole diagram. It is easy to see that out of the thre Y Y b PP X y

couplingsG®, GS, andU, only the G® couplings contribute. the latter approach .could pre_C|ser describe the transition be-
X . ween the two regimes, which would not even occur at a
Compared to the spinless case, there will be a factor of 2t

because of the two possible spin states of the propagator %ingle scalgbecause of the large number of different scales
the loop. We let the reader check that appearing in the RHS of the RG flow equatipng/e will

thus adopt the simple and pragmatic following point of view:

1 the flow of the Fermi surface will be stopped, when the big-
— E G&(1,9) |(2veA), gest of these scales is reached, i.e., when the scale given by
N <3 the difference between the biggest and the smallest Fermi
(51 momenta[denoted byAkf'®{A)] is reached

and that the corresponding first-order Fermi momenta coun- -
terterms read A* =AKF(A*). (55)

20eA 1 Notice that if the Fermi surface flattens more quickly than
5k|(1)=T( > Gi(1,9)— N Go( ,J))- (52)  the RG time decreases, this scale will never be reached.
J . According to Eq.(54), the differences between the Fermi
omenta and the mean value are all multiplied by the same

Z(Rl’?(k=kp'|+f<,w=,u‘+ V)=

_However_, because we are interested in systems for Whichzctor. The bigges(smallest momentum will remain the
t, is small,_l.e., for systems th:?xt are nearly 1D, we k_now tha iggest (smallest along the flow. We thus havak™®(A)
all the chains are nearly equivalent, so that the right-han m o2 i .
side (RHS) of the previous equation will be nearly indepen- =AKE (Ao)(A/Ao)%8". We will stop the flow at the scalé
dent of I, and thus, very small. That this is true can besuch that/\*:Ak';’a’ﬁ(Ao)(A*/Ao)Gcsz_ Finally we get the fol-
checked on Fig. 32, that will be described later, and on whichowing link between high-energy and low-energy momenta:
the couplingsGg(1,J) are represented after running the flow,

into the low-energy regime. It is clear on this figure that the AKT¥(A ) Gg2I(1-Gg?)
term = ;G§(1,J) is nearly independent df 5kF,Iz5k§=O,I)(AO)<FA—OO) (56)
2. Analytical study of the simplest example
. . . . Akma A ng/(l—ng)
Let us illustrate all this on the simplest possible case, for o AR A KT A ) F(Ao) 57
which G§=0 andUg=0. This physically corresponds to a FoomTE A0 Ao

system away from half filling, so that it is justified to neglect
the Umklapps. Furthermore we have set the spin couplings tds Akg®{(Ag)=2t, /t;, we obtain the result already found in
zero, which corresponds to the Luttinger liquid fixed point.the literaturé*®
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mug). Finally, we haveAkg®=2(t, /t)) which shows the

equivalence between the two approaches.

We want to stress that this equivalence relies on our
where « is the single-particle Green’s function’s exponent simple approximation according to which the Fermi surface
a=(K,+1K,)/4-1/2, with K,= \/(l—ZGg)/(1+ZGCB). is deformed only in the high-energy regime, since this defor-
Perturbativelya=G§ , so that our result is indeed the same mation is driven .by irrelevgnt c_:ouplings. It WOUI(.j be pos_sible
as Eq.(58), to lowest order. Let us mention that the power- to go beyond this approximation by implementing the itera-

law behavior of Eq(58) has been confirmed numerically, for tive procedure outlined in Sec. Il B 1. To estimate the re-
d Y sidual deformation of the Fermi surface induced by these

wo-chain m in X iagonalization, ' . . :
'?echai(;)ugﬁ system, using exact diagonalizatio irrelevant couplings in the low-energy regime remains an

. . . . interesting open question, that could be addressed within the
Notice that according to E¢57), if G32=1, the effective ! g open ques. . Mo,

) . . eneral framework discussed in this paper. Furthermore,
transverse hopping vanishes, and the dressed Fermi surf hap

. : ) : &ich a calculation would enable us to take into account the
is flat. Although this result is confirmed by the nonperturba—deformation of the Fermi surface induced by the Hartree

. . . . 02
tive (in the coupling result Eq.(58) after replacingGg” by tgrms which are effective only when the forward scattering
a, we shall not use the perturbative RG in such situationgymplitudes significantly vary along the Fermi line. Such a

tj_ al(1-a)
) : (58)

tiﬁN t ( .
L

that lay outside the validity range of this approach. dependence is only generated when the running cutoff be-
comes comparable to or smaller than the natural scale asso-
3. Comparison to other previous results of the literature ciated to the transverse dispersion.

Before turning to numerical calculations, we shall com- For the sake of completeness, we shall give a simple and
pare our equations describing the deformation of the Fernfiuick derivation of the RG equation, which emphasizes the
surface to some more results of the recent literature. Let uéle of the 1D chaingsee note 31 of Ref. 37and explains
begin with the article by Kishine and Yonemitsuwhich ~ Why the exponent obtained in EG8) is the 1D propagator’s
treats exactly the same problem as ours. We shall compagxponent. The idea is to assume that the full propagator at
our Egs.(E15) to their flow equation for the effective trans- scaleA can be obtained by taking the corresponding purely
verse hoppingEq. (4)]. Note that they obtained this equation 1D propagator at scal&, and correcting it with the disper-
from the previous works by Bourbonnais and sion relation induced by the bate : G™Y(A)=Gy5(A)
co-workeré®"8and Kimurd® (see also the review article by +2t, cosk,). [In other words, this amounts to assume that
Firsov, Prigodin, and Seid®). We, however, choose the pa- when computing the effective action at scaleone puts the
per by Kishine and Yonemitsu because their formalism is thénterchain hopping aside, so that the flow is purely 1D, and
closest to ours. the (unrenormalizepl interchain hopping is reintroduced in

The comparison is easily achieved in two steps: first nothe effective action at the end of the computafiddut we
tice that our Fermi momenta do not flow when no interac-can WriteGI,DlzZ{Dl(A)[w—EA(k”)]. Note that in the pre-
tions are turned 0|(NVh|Ch is desirable, since the Fermi sur- vious two formulas, we have denoted by and kH the trans-
face should not get deformed in this cpsenhile theirt,  verse and longitudinal moment&Z,y is the 1D wave-
flowg in this case, beca_use of the first term of their equation, -\ tion renormalization anaA(kH) is the renormalized 1D
coming from the rescaling they have performed, so that W%ispersion relation. We thus geG‘l(A)zzl‘Dl(A)[w

should simply forget this term if we want to compare our = ) i
results. Second, we have to take the particular set of cou= &a(K)) +2Z1p(A)t, cosk )], showing that the effective

plings they have chosen, namely local couplings. This is obinterchain hopping at scalé readst, (A)=Zyp(A)t, . The
tained when setting all charge couplings to the same valugffectivet, at two different scales are thus proportionally
and doing the same for spin couplings and Umklapps. Retelated by the 1¥ function, whose flow equation can easily

peating exactly what we have done in the previous sectior?® deduced from EqE14) specialized to the 1D case. This
we find yields the correct flow equation far . Let us also mention

that this way of taking into account the interchain tunneling
U2 has been recently adopted by Essler and TsVélixxcept
9,5k = — 5k(FO|)<GEZ+ 3G+ —|. (59)  that they use the exact 1D Green’s function instead of the

’ ' 2 result of a perturbative RG computation.
Let us now compare our results with those of FabrfZio,

This in particular means that all Fermi momerdie) will  whose work is devoted to the two-chain model without lon-
be scaled by the same factor. Next, we have to link ougitudinal Umklapps, but with Fermi velocity renormaliza-
charge and spin couplings to theology notation. It is easily tion. Fabrizio used a Wilsonian RGt two loop$ for the
checked that one simply h&°=g,—g,/2 andG°=—g4/2  calculation of the deformation of the Fermi surface. As one
(here allg; andg, couplings of theg-ology are equal be- can expect, this formalism allows to cross the energy scales
cause we have restricted ourselves to spin-rotation invariamoming from the nonflatness of the Fermi surfdsee how
couplings. We also have the trivial identificatiod =gs. the flows are defined piecewise in his Appendix A, and for
The difference in the numerical factor 4 simply comes fromwhich the various RHS never divergeur equations coin-
a different normalization of the dimensionless couplifige  cide with those of Fabrizio in the high-energy regitmehen
divided the couplings by 2vr and they divided them by his functionC, is expanded to lowest order im the dimen-
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sionlessAkg), and in the low-energy regime where the flow 012 F T auntnnnant
of the Fermi surface vanishes. The intermediate regime is O 0.08 |i"!"' ]
course different. Note for the comparison that Fabrizio’'s cou-— .04 }.-ceeee-- ..|||||||”||“l -
pling gy, is our couplingD. Finally, we would like to note o | , ”|||lll:::,::::::::::::'
that our results at one loop are consistent with the article of 0 T 20 10 60 30
Louis, Alvarez, and Grd? [see their Eqs(9) and(13)] if we P s
specialize these to the case of uniform Fermi velocities. 0.02 | | |
(RN RN N NNNNN]
¢ of ST LU
8 Leetd
IV. COUPLED CUTOFF SCALING AND -0.02F .7 : "i;i. N
FIELD-THEORETICAL RG CALCULATIONS FOR A 004k . S e
SYSTEM OF N CHAINS OF SPIN 1/2 ELECTRONS: 0 1 20 10 60 30
NUMERICAL RESULTS p s
A. Motivation of the use of two RG schemes FIG. 17. Flow of the normalized chargp) and spin(bottom)

Before we present our results for specific models, we wist¢ouplings, as a function of the “good” timg, for N=8. Initially
to emphasize that one of our motivations in addition to thethe true couplinggnot normalized are G°=0.3= —G°, and the
Fermi surface deformation was to describe precisely the corfare hopping ig, /t;=0.1. We have indicated the valsé corre-
nection between the essentially 1D high-energy regime angPonding to the valua* [see Eq.(55)].
the 2D low-energy physics where the system is sensitive to
the warping of the Fermi surface. This can be viewed as atill assume a perfect Fermi surface nesting. This situation is
complement to the RG analysis of Liet al** who have realized in several interesting systems as for instance in two-
focused exclusively on the low-energy side where the cutoflimensional molybdenum and tungsten bronzes. For a re-
is much smaller than the scale associated to the transversew, see, for example, the paper by Foury and Poffyet.
dispersion. In this work, they could relate the high- and low- We have chosen an initial condition for which all charge
energy regimes without actually solving RG flow equationscouplings are equal, and all spin couplings too, w@h
for the former since they assumed very weak bare couplings:0.3= — G®. The bare hopping is /tj=0.1. The couplings
(so that these couplings were barely renormalized in thare quite large so that the deformation of the Fermi surface
high-energy part of the flowwAlthough working with the full  will be visible. The Fermi surface could be deduced analyti-
Wilsonian effective action allows one to get through suchcally, but we have computed it numerically as all other quan-
intermediate-energy scales, it is not clear to us that this catities. All the results are contained in Figs. 17—22. The first
be achieved in a reliable way with the cutoff scaling. Indeedthree (last threg of these figures have been computed with
our view of this procedure is that it provides a simple ap-N=8 (N=32). The reasons for these choices are that we
proximation of the full Wilsonian RG, which is certainly could not represent all the couplinéthe first of the six fig-
well controlled when the running cutoff is much larger thanureg for a too high value oN, because the number of cou-
the intrinsic low-energy scales of the system’s dynamics. Beplings grows as\®. But this was no problem for the Fermi
cause of this we have decided to study the low-energy part ddurface and the quasiparticle weights, except for a longer
the flow in the field-theoretical framework. This latter computation time.
scheme heavily relies on the existence of an infinite cutoff In these figures, that we shall comment one after the other,
limit (continuum limiy, or in other words the corresponding we have made use of some notions such as the norm of the
theory of 1D fermions with linear dispersion and pointlike couplings, the normalized couplings, and the adapted RG
interactions is renormalizable. This statement is independenime s. All these notions, and some othefsuch as fixed
of the existence of intrinsic low-energy scales such as a masfirections, etg.have been dealt with extensively in our pre-
term, or variations in Fermi wave vectors with the chain
index. In this context RG equations are obtained by relating 440

physical properties measured at different running energy ' ' '
scales. To avoid confusion with cutoff scaling this running 10 :
scale has been denoted byin Appendix D which presents 3000 |- . 5
some details on this approach. Since we have used a loge TDO OO'
rithmic approximation, the high-energy flows of the cou- N N 8% 0 o)
. . ; ; : 2000 | g "o 4
plings in both cutoff scaling and field-theoretical RG are 7k i o
identical. It is an interesting question whether the two | o
schemes give the same physical low-energy results or not 1goq |- 60 T 20 40 o -
We plan to study this in more detail in a forthcoming work. 5 g 2
O
0
B. A first numerical study: incommensurate nesting 0 20 40 60 80

We will now show what information can be deduced from ?

numerical computations. For this we choose to focus on a FIG. 18. Flow of the normV ass grows, corresponding to Fig.
simple example, where the Umklapps are set to zero, but we7. The inset is a zoom on short times.
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FIG. 19. Link between the “good” RG time and the “true”
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FIG. 21. Flow of the quasiparticle weightg,=1/¢, for N

RG timet, corresponding to Fig. 17. We have indicated the values=32. We have represented theselferl6 tol =32, as the ones for

of s* and oft* =In(Ay/A*) corresponding to\*.

vious papef® so we shall simply give the few basic defini-

smaller values of can be found using the top-bottorh«¢ N— I
becauseN is even symmetry. Note that we have indicated the value
of t* =In(Ay/A*) on the time axis.

tions. The norm is the Euclidean norm of the coupling vec-
tor, and the normalized couplings are the usual coupllng§ponding to the high-energy regime, all charge couplings and

divided by the norm(we give an explicit formula for the
charge couplings onjy

N= \/E(S G§(1,9)2+G5(1,9)2+U41,3)%, (60
1,J,

G%(1,J
665(|,J)=%.

(61)

In all the figures in which flows will be representésiich as
Fig. 17), we adopt the following convention: in the caption,
we give the initial condition fousualcouplings, while in the
figures themselves we draw tm®rmalizedcouplings, and

suppress the in the y-axis legends. The reader should not
get confused by this abuse of notation. The tisthat we
have used in the numerical simulation is defined dxy
=Mt)dt, and is the time adapted for zooming on the flow
singularities.

The first of the six figures, Fig. 17, represents the “field-
theoretical” RG flow of the normalized charge and spin cou-
plings, as functions of the RG time This flow is divided
into three regions. In the first one €<s*=15), corre-

32
28
24

T
bare —6—
dressed -13--

FIG. 20. Bare and dressed Fermi surfaceNot 32.

all spin couplings remain equal. Indeed, in this regime, the
curvature of the Fermi surface is not felt at all, in the loga-
rithmic approximation we use. All chains are thus identical
(remember we use periodic boundary conditions in the trans-
verse directiopy the system is purely one dimensional, so
that the symmetry between the chains cannot be broken.

In this high-energy regime, the cutoff scaling flow is ex-
actly the same as the “field-theoretical” one, so that we
could use the latter for the computation of the deformation of
the Fermi surface. Aftes=15, the flow of the Fermi surface
is stopped, because the scalé [as previously defined by
A* =AkF®{(A*)] is reached. The dressed Fermi surface is
the one obtained at that scale, and is then used in the “field-
theoretical” flow of the couplings. This dressed Fermi sur-
face, and the bare one, are represented on Fig. 20. As dis-
cussed in Sec. Il B 3, within the approximation we use, the
dressed Fermi surface is still given bycosk, ) but with the
dressed value of the interchain hopping. Higher harmonics
for Akg as a function ok, , corresponding to longer range
transverse hoppings, are expected to be generated only in the

32
28
2
20

I 16
12

FIG. 22. Here we show the transverse momentiim, chain
numberl) dependence of the quasiparticle weights at four RG
timest=1, 2, 3 and 4(see Fig. 21 for a time reference
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low-energy part of the Fermi surface flow. Indeed it is only 1g T T T T T

in this regime that effective couplings acquire a dramatic a
dependence with respect to transverse momenta. But thi “H -1
goes beyond the scope of the simfile., noniterativg pro- 075 g  _ dllZye) 7

. . dt =10
cedure used for the numerical computations presented here a

We emphasize that in contrast to the flow of the cou- Zy/4
plings, for the quasiparticle weigh® functions associated 0.5
with the renormalized propagator, the whole flow must be
computed with the fixed dressed Fermi surface, because th
flow equations do depend on the Fermi surface in the high- 0.25
energy regimgsee Eq.E14)]. As a consequence it is nec-
essary to first compute the dressed Fermi surface, and the 0 } o 4 6 8 10
use it to compute the flow of thg,’s. These flows are rep- t* t
resented on Fig. 21. We furthermore show the variation of
the Z,’s along the Fermi line at four different RG times on
Fig. 22. We note that the dispersion in tAgs is small, in

2

FIG. 23. Flow ofZ,,, as a function of the “true” RG tima, for
different values oN, and fort, /t;=0.1. These flows were obtained

qualitative agreement with the dynamical mean field theory?S3UMing that all coupling remain constant to their bare values
results obtained by Biermaret al*® and this provides a con- (G®=—G"=0.3). Note that we chose=N/4 becauseyy, is about

- ., . the mean value of thg,’s. The inserted graph is a base 10 log-log
sistency .CheCk of Bourbonnais ComPUtatldBee Se.c' representation of the value of the time derivative-oin(Z,,) at
I.” B 3)._F|gure_ 22 sh_ows that the evolutlo_n_of the quasiparine t= 10 as a function oN. The solid curve is the numerical fit,
ticle weights with typical energy scale exhibits some similar-,hich shows a M behavior.
ity with the results of Kishine and Yonemitéfin the early
stages of the flow, the quasiparticle weight is largerKpr gime, where only the terms with a vanishinik,(l,J)
==+ (I=0 orN) than fork,=m/2 (1=N/2), and this or-  contribute, and whose number is of order This factorN
dering is reversed at later stages. However, we stress that teembined with the M? denominator explains the numerical
two models are different since Kishine and Yonemitsu haveesult. The relevance of these considerations with constant
considered a 2D model with flat Fermi surface segments, ancouplings is demonstrated by Figs. 18 and 19. Indeed they
it is not obvious that the end points of these segments shoulshow that the norm is almost constant for the interwval
exhibit the same properties as the extremal pdipts = 7 in €[0,5] in which we are interestetsee Fig. 21 (Note that
our quasi-1D model. The variation of the quasiparticleFigs. 18 and 19 were obtained fbd=8 not for N=32, but
weight along the Fermi surface has also been investigated hye have checked that on this intertai[0,5], the flows of
Zanchf’ for the 2D Hubbard model, where he found a muchthe two norms are identical, apart from a multiplicative fac-
stronger reduction of th& factor in the vicinity of the van  tor of 8=(32/8)*2, whose origin is the numbex® of cou-
Hove singularities than for typical Fermi surface points. Weplings for a givenN, and which is irrelevant for our discus-
believe this effect requires to take into account the variatiorsion)
of the Fermi velocity along the Fermi surface which we have The final regime is one of a fixed direction, for which
not done here. The influence of these variations on the flowome normalized couplings are zero, and the others are gath-
of couplings for aN-leg Hubbard ladder has been recently ered around specific values. It is in this final phase of the
studied® (for t, <t), with the conclusion that they play a flow that the norm of the couplings explodes, as can be seen
dramatic role only below a cross-over scale which is ex-on Fig. 18. In order to be complete, we have also represented
tremely small as\ becomes large. the link between the two RG timesandt on Fig. 19. Notice

The second regime (¥5s=<60) is a transient between the that because of the definition sfsee the comment after Eq.

1D high-energy flow and the low-energy regime, where theg10) of our previous papérand because the norm explodes
shape of the Fermi surface is felt, and where the differentiain the end of the flow, the time“saturates,” as a function of
tion between the couplings takes place. In more physicas, to a value which is roughly the critical temperature at
terms, it corresponds to a Fermi liquid regime, located bewhich the final phase sets in.
tween a Luttinger liquid state at higher energies, and an or- Let us now study more precisely the final fixed direction,
dered phase at lower energies. One might have expected thatthe spirit of our previous paper. First of all, let us have a
in this Fermi liquid regime, th&,’s would remain constant, more precise look at the values of the couplings, on the fixed
so that if this Fermi liquid regime was the final one, thedirection that is reached. These values are shown on Fig. 24,
quasiparticle residue would be finite. Instead of this, we se¢or the N=16 case. We did not choo$¢=8 as on Fig. 17,
on Fig. 21, that the time derivative of tlg’s decrease§in  because we wanted to have more val(asich was manage-
absolute valugbut does not vanish. This is in fact a finlke  able here since we represent the whole set of values only
effect, as can be seen on the flows of #é& one obtains once.
(see Fig. 2B assuming that the couplings are constant, equal When briefly looking at these values, one can deduce that
to their bare value, all along the flow. The inserted graphthe couplings seem to be grouped into a few sets of similar
shows that the growth rate of the logarithm of thés be-  values(with lots of couplings being equal to zerd-urther-
haves as N in the Fermi liquid regime. This is indeed con- more, forgetting about the zero value, it seems the three val-
sistent with the flow equation€E14) in the low-energy re- ues(for charge or spin couplingsare not independent, but

205111-17



SEBASTIEN DUSUEL AND BENOIT DOUCOT PHYSICAL REVIEW B 67, 205111 (2003

- 0.005 T ND¢=(N—2)(D%+3D%?)+2(A°~C)D°®
0.06 |- . °
< S_ 1S\ 7S
0.05 | 4 Uy © . +6(AS-C%DS,
ooaf 006F 14 -0o0osf -
‘ 0.058 - i e NDS=2(N—2)(D?+DD°)+2(AS—C%D°®
ver oossl & 4 | C0f 7 +2(AS—CC)DS+4(AS+C5DS. (62)
0021 sl 8 17
0orf | 0sr 1 This set of coupled equations is nothing but E4f) of
' e our previous paper, with usual letters replaced by calli-
ok 9 4 002r 0 7 graphic letters. The conditioh®S=C®S+ DS was satisfied,
-0.01 1 0.025 ) and ensured the SB) symmetry of the interaction Hamil-

Ge Gs tonian. Here we will thus also be able to fulfill the relation
, .  AS®=¢c9+DS) which was previously guessed when
_ FIG. 24. Values of the charge and spin couplings, for the fixedigoking at the fixed direction obtained numerically. The val-
direction that is finally reached on Fig. 17, but fé= 16 here. The ues of the couplings can be found in Table Il of our previous
inset is a zoom on the values taken by the positive charge coupling?’aper_ It is clear that in the present situation, it is the so
and shows that these can be grouped into two sets. called (+,—) fixed direction that is selected since in the

i , infinite N limit, it is the one for which the charge couplings
one is the sum of the other two. Finally, the values of the g ping

: . . equal minus three times the spin couplings.
gharge couphngs seem tp differ by a fgctor ofadid a minus The effective low-energy interaction Hamiltonian has the
sign from the spin couplings. In fact, if we also look at Fig. fol

o lowing schematic form(we drop the charge and spin
17, we see that this will probably not be an exact statemergtructurg: ( P g P

for all values ofN, but only in the limit of infiniteN.

It is then interesting to study what types of couplings take
nonzero values. For the system we study, the notation Hﬁf{~62 [
G,(1,J) which is best adapted to superconductivity, can fa- q
vorably be changed foF(1,J)=GS)_4(1,J). & is then
the transferred transverse momentum, betweeiRtparticle X
that is destroyed and thie particle that is created. In this
notation, onlyF couplings with6=J—1 or with §=N/2 are

2, c&,.<k+q>cR,.<k>}

> cE,ﬂk'—q)cL,J(k')}

J k'

numerically found to have nonzero values. Notice that here, -D> [2 et ,_wo(k+q)c (k,)}

as N is even,N/2 is an integerwe will discuss the oddN a.k k' RN KT Q)CL

case a bhit further The couplings for whichs=J—1 andJ

—1#N/2 will be denoted agc® couplings, and correspond x| > C[,|+N/z(k’ _q)CR,I(k)}- (63
to the chargdrespectively, spincouplings that are negative [

(respectively, positiveon the fixed direction. They are the ) ) ) . .
usual forward scattering couplings. The couplings that satisfy-et us describe the physics associated with such an effective
5=N/2 andJ— I # N/2 will be denoted a® (¥, whereas the Hamiltonian. We will assume tha is large, so that we can
ones for whichs=N/2 andJ—1=N/2 will be denoted as Nneglect all finiteN corrections. Thus, for example, only the
A couplings. Both have a transferred transverse momen? terms(Peierls couplingssurvive, as the forward couplings
tum & which is half the number of Chair(j;e_, T if we use C are a correction of order NI/ Furthermore, in the infinit&l
the usual momentum unjtsThe vector linking a point of the limit, the couplings take the value®®=3/4 and D°
Fermi surface on thR side, to the one on theside, andN/2 = —1/4, so thatD®=—3D°®. This relation implies that the
chains further is aestingvector, which explains why these interaction exists only in the triplet channel, and the effective
couplings are present in the final low-energy fixed direction Hamiltonian can be written agy¢-0)

We let the reader write down the RG equations satisfied
by th_e F couplings, specialize these for_the thrge_types of et g de_
couplings above, and deduce the equations satisfied for the "'int NJo
final fixed direction, in the spirit of our previous pagelhe
resulting equations are

EJ: l;b;,J*N/Z,p(X)Up,p’ll/L,J,p’(X)

X El: lﬁI,l+N/2,T(X)0'T,r"//R,|,T/(X) . (64)

NA®=(N-1)(D%+3D*%),

The only differencelexcept for changes of notatipbe-
tween this effective Hamiltonian and the one we arrived at in
Eq. (70) of our previous paper, is in the shift of the creation

NAS=4A4%+2(N-1)(D+D°D°),

NC®= —(D®+3D%), operators’ chain number by an amountM®. We thus ex-
pect the physics to be essentially the same as we had dis-
NCS=4C%%+2(D2—DSD°), cussed in our previous paper, apart from a different SDW'’s
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FIG. 25. Flow of the charge and spin couplings, for the same FIG. 26. Flow of the Fermi momenta, fot=16 chainst, /t,
values of the parameters as in Fig. 17, but vtk 7. =0.1 and Hubbard initial conditio®=0.2= —G® andU =0.4.

wave vector that will now be () (rememberk is the  plausiblg argument to define the scale at which we had to
average Fermi momentymWe refer the reader to our pre- stop the flow of the couplings. We will see that there are
vious paper for details. some cases where it is not possible to use such a simple point
We thus have shown that after a high-energy 1D regimef view. The well known main limitation of a RG approach is
where the Fermi surface’s shape is not felt in the flow of theits perturbative nature. We cannot fully trust the RG flows
couplings, and after the crossing of the typical energy-scalgyhen they go to strong couplings, even if the fixed direction
given by the curvature of the Fermi surface, the system goegat is reached in this regime gives an insight of what physics
to a strong coupling phase of the SDW type, with the aboveakes place. For the two computations of the Fermi surface
effective low-energy Hamiltonian. The k27) nesting vec- we have given previously, it is clear that this was no limita-
tor naturally arises from the RG flow, and there is no need tdion, because the deformation of the Fermi surface occurred
artificially introduce it. in a weak coupling regimdremember Figs. 17 and 18,
Let us make a final remark, about the obdcase. The where the norm diminishes betweer8=<20, which is the
flow of the charge and spin couplings fiir=7 is shown on time interval where the deformation of the Fermi surface
Fig. 25. This figure is obviously different from Fig. 17. The takes placg
reason for this is that there is rexactnesting vector any- The half-filled system is interesting, because it exhibits a
more whenN is odd. We have analyzed which couplings arevariety of behaviors, depending on the strength of the bare
nonzero in the low-energy phase of Fig. 25, and these turnouplings(compared to the value of the bare transverse hop-
out to be BCS type couplings, indicating a superconductinging). We will discuss the strong, intermediate, and weak
low-energy phase. This is not in contradiction with what hascoupling situations, which do not give the same low-energy
been said before in the eve¥ case. WhenN grows, the physics. After this, we will consider the case of a nearly
nesting is better and better in the oNdtase, so that the RG half-filled system.
flow will first be towards the same fixed direction as in the
evenN case. Then, there will be a shift from this fixed di- 1. Half-filled system in strong coupling
rection to another one, corresponding to superconductivity. . o ,
But, this will take place at very low energies, and in regimes  BY Strong coupling, we mean the initial couplings are
where the norm of the couplings has exploded. The conclul-arge gnoug'h for the behawqr of the system to remain purely
sion is that the low-energy phase, in the thermodynamicapn€ dimensional. To make this statement more precise, let us
limit, is always the one we have observed in the eMezase. st_u-dy the flows for one of these strong cpuplmg initial con-
This discussion has been quite brief, but we refer the readdfitions. We will assume, as we g_lwa}:ys did, tmﬁgﬂzo'l'
to our previous paper where we had analyzed in detail hot!! this case, the Hubbard conditida®=0.2=—G" and U
the observed shift from one fixed direction to another one, i 0-4 IS @ strong coupling condition, for which the RG leads
a finite N situation, slows down a8l increases and finally t© @ fully flat Fermi surface. In fact, as the couplings are
disappears in the infinitdl limit. We have checked all this 12rge and grow quicklybecause of the Umklappghe Fermi
numerically, but unfortunately it requires quite a large valueSurface flattens quickly, so that the decreasing cutoff never

of N (more than 3Dto be visible, so that we could not depict catches the scale of the Fermi surface, and there is no non-
it in this paper. zero value ofA*. The flow of the couplings is thus purely

1D all along the flow and is well known, so that we do not
show it. However, to be concrete, we show the evolution of
the Fermi momenta on Fig. 26. About the norm, let us say
that its value at the beginning of the flow is about 30, and at
In the above two simple examples we have studied, we= 140, it is about 1400, so that it is around 50 times bigger.
encountered no real limitation of the computation scheme wé his means the couplings have grown a lot. For example, for
have proposed. Of course, we had to use a non rigdimuts  the UmklappdJ =19 which is very big, so that the RG is not

C. Taking account of the Umklapps and limitations
of the method
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valid anymore. However, if we believe the RG is qualita- The couplings on the fixed direction have very well de-
tively valid, the flow of the Fermi momenta seems to showfined values, with many being equal to zero. For the charge
the existence of a confined phadbe effectivet, is zerg. and spin couplings, the only nonzero couplings are the same
As the system goes to strong coupling, and remains purelgs previously discussed in Sec. IV B, namely, of the type
1D, it would thus be natural to directly start from a system ofC, and D. The condition A%®)=C%®)+ DS still seems
decoupledno hopping Luttinger liquids or 1D Mott insula-  valid, and one can furthermore check ti#Et=0, so that
tors. We shall simply direct the reader to some papers on thigl °="D¢. For the study of the Umklapps, it is also interesting
line of approach{}°051 to introduceV couplings, which are the equivalent of the
couplingsV4(1,J)=U;_,_4(1,J). An analysis of the non-
2. Half-filled system in weak coupling zero Umklapps reveals that there are only three types of such

A weak coupling initial condition is one for which the couplings: U=Uyp(1,371), V=Vyp(l,J#1), and W
Fermi surface does not get completely flat during the RG_ Uniall,1) =Vl 1) Furthermore, these Umkiapps also
flow (i.e., a nonzero value oh* existy, and for which all seem not to be independent, but linked by te=t/+V .
couplings that are irrelevarit.e., that do not exist at zero relation. We Ie_t the reader c_heck that the fixed dlrectl_on is
energy do go to zerdafter dividing by the normduring the four_1d t_)y_solvmg the f_oIIo_vvmg set of.coupled equations
flow. As a consequence, the crossover seglebetween the [which is just a generalization of E¢62)]:

Luttinger and the Fermi liquid behavior is much larger than NAC=(N—=1)(D%+3D%2+ 12+ V2= 1)

the typical scale for the onset of long range order. The sys- ’

tem is therefore in a deconfined regime, in the sense that it 1

allows for coherent transverse motion of electronlike excita- N.45=4.452+ 2(N—1)[D52+ DD+ E(UZ—W)},

tions. An example of this is obtained while using initial Hub-

bard couplingsG®=0.03= —G®* andU=0.06, and as usual
t, /ty=0.1. It is not worth representing the deformation of
the Fermi surface in this case, for it is very smdbr N
=8, the effectivet, /| is about 0.0995, so that the correc- NCS=4C52+ 2
tion is of the order of half a percentLet us, however, rep-

resent the flow of the couplings, on Fig. 27, in tNe=8

case, and the flow of the quasiparticle weigand of the 1ﬁ“nu
norm of the couplingson Fig. 28. As in the incommensurate 0.99 e
case, the time derivative of the quasiparticle weights be-0 08 |- Znys
comes smallefin absolute valugin an intermediate regime,
and this effect is more and more visible Nsgets bigger. 097
This decrease can be understood from the flow of the norm
which shows a tendency towards a plateau behavior at mter
mediate scales, so that the arguments previously given ir
Sec. IV B still apply. For the comparison with Fig. 27, let us
simply say that for 8=t<6 the link betweers andt is ap-
proximately linear, and fot=6, one has=14.

Before studying the fixed direction, let us make a remark
about the scaleA*. Because of the presence of the
Umklapps, not only the scales defined by all thie- ,(1,J)

U
P"'?‘y a, role, but also the Scaléik,:va(l',\]). Howeve.r, as the function of t for N=8 (squarey 16 (circles, and 32(triangles.
filling is one-half, the average Fermi momentumsi&, and The bottom figure shows how the norm varies with timén fact,

one can check that in this case, the.biggblsﬁa_(l ,J) is,as in order to allow the comparison, we have divided the normNor
the biggestAkeg ,(1,J), equal to twice the difference be- =16 and 32 by a constas so as to make all the norms equal at

NC®=—(D?+3D2+UV-U?~V?),

s2_1ysTycC E 2_
D DD+2(V u) |,

320 F

240

FIG. 28. The top figure represents the evolutionZgf, as a

tween the biggest and the smallest Fermi momehtawill time t=0. The squares thus represent the novirior N=8, the
then be defined exactly as we did when the Umklapps wereircles representV/C (N=16) with C=(16/8)*?=22 and the
zero. triangles represent/C (N=32) with C=(32/8)*?=8.
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NDC®=(N—2)(D%?+3D%2+U>+ V>~ UY) surface, and + § andJ— § on the other side, may typically
be written asusing Pauli’'s principle
+2(A°=C)D°+6(A%-C% D>+ WU+ V),

> 1 2 2NL E 2 2 (]ITT/]I[)[J Tp pf’)
ND5=2(N~2)| D+ DD+ Z(U?~UV) -
X(CR,|+N/27CEJ—N/2,pCL,J,p’CL,I,T’+H'C')' (67)

+2(A%=C%D+2(A°-CD*® . :
Asl, 1, o 2]17,,]1,3 7= 0,00, itiS easy to rewrite

T4(AS+CIHD+WU-Y), the Umklapp interaction in the triplet channel only. If we
define the generalized current

NU=2(N—2)[(D +3DSU—2DV]|+2(D +DSHW

+2( A% BAU-4AV+2(CO-COU, IR =20 Prieniza(0 0 o120 () = ILR(X),
NV=2(N—2)(D D) V+2(D D)W+ 2(A°~ AV (68)
s c S the total effective Hamiltonian takes the simple following
ACU+2(C+3CP)V, form (g>0):

NW=2(N-=D)[ DU+ V)+3D(U-V)]+4AW. g (L
(65) Hi= Nfo dx:[Jr(X)+ I R(X) 1%, (69)
It is easy to solve this set of equatiofwith the relations

between the couplingsorder by order irN. One finds a few ~The low-energy physics can again be described by the fluc-
fixed directions, but the one of interest is the followifigat ~ tuations of the massless modes associated to the order pa-

we give to order 3, for the independent couplings rameter{which is &(x) =(Jr(x))]. The difference with the
non half-filled case studied in Sec. IV B, is that the spin-
1 47 1 density wave will be pinned to the lattice by the Umklapps.
C°=0+ T er RYNE + N_ , That this is indeed what happens can be seen by computing

the effective action of the gapless modes, and one fings
drop less relevant terms

D 3 3 1 o 33 Lo 1
“8 16N 2 3 _4 ! N
8 16N 16N2 64N N Ser(N) = EJ’ dxdtd,nd“n (70)
D= _ 1+ L+ 1 _ 11 i with &(x) =pn(x), p being a positive number found by solv-
8 16N 16N2  64N3 N4/’ ing mean-field equations, amgx) is a real unit vector, giv-

ing the direction of the staggered magnetization. This time,
1 ) there is no gapless mode associated to the “phason” field

[see the discussion around EG&)) and(71) of our previous
papel. This is physical, for a shifg(x)— 6(x) + 0 in the
“phason” field corresponds roughly to a uniform translation

1 1 1 13 of the spin-density wave condensate. As the physics of Eq.

V=g——+—+ +0| —|. (66) ; ; ;
2 4N gN2  24N3 ( N“) (70) has already been discussed in our previous paper, we do
not consider it further.

We let the reader check that even the order O reproduces Let us now study more precisely the fate of the irrelevant
quite accurately the values of the couplings of Fig.(®7  couplings. We defined the initial coupling as a weak coupling
course, up to an overall normalization fagtoHere again, if the normalized irrelevant couplings go to zero during the
the effective Hamiltonian contains forward interactions thatflow. In fact it is interesting to check that the final fixed
are 1N corrections, and interactions for which the trans-direction that is reached is the same whether we run the
ferred momentum is the nesting vector. Thecouplings complete flow, or we run the flow in which the irrelevant
satisfy the relatiorD°+3D5=0 (in the infiniteN limit), so  couplings are initially set to zero. We have done this in a
that the part of the effective low-energy Hamiltonian con-system ofN=16 chains, witht, /t;=0.1 and an initial Hub-
taining theD couplings is the sam@part from a numerical bard couplingu =0.02. The evolution of the irrelevant cou-
factor) as the one we previously obtainéske Sec. IVB It plings is shown on Fig. 29. In fact we have not represented
is nonzero only in the triplet chann@he again consider the all the couplings, because there are too many of them. We
particle-hole parametrization of the couplingtet us see have decided to show only the smallest and largest charge,
what form the effective Umklapp Hamiltonian takes in this spin and Umklapp couplings. In order to make sure that the
singlet and triplet parametrization. From E®6), we see final fixed direction is the same as the one we would have
that we have a relation betweén and V which readsY  obtained when initially setting irrelevant couplings to zero,
=2U [this is valid up to©®(1/N?) termd. The corresponding we show the different values of the couplings on this fixed
interaction involving chaing andJ on one side of the Fermi direction, in both cases, on Fig. 30.

N4

205111-21



SEBASTIEN DUSUEL AND BENOIT DOUCOT PHYSICAL REVIEW B 67, 205111 (2003

0.015 N T T 0.46 T T T T
A,
Juatadinsens, charge © R
0.01 Bp% umklapp & 044 L  intermediate coupling - i
e
0.005 042 i
U In(N) o ’
0 041 ’ weak coupling 7
-0.005 0.38 ' 4
1 1 1 1 1 | 1
0 40 80 120 8 12 16 24 32
s N
FIG. 29. Evolution of the smallest and largest chafgguares FIG. 31. Representation of the numerical valuesJein(N) as
spin (circles, and Umklapp(triangles irrelevant couplings, foN functlpns ofN, whereU, is the value above which the irrelevant
=16, t, /ty=0.1, and initial conditiorlJ =0.02. couplings do not flow to zero.
A natural question that arises from this discussion is how 3. Halt-filled system in intermediate coupling

small should the couplings be for being weak couplings ac- When the couplings are neither strong nor weak, that is
cording to the definition given above? This question has alintermediate, we suspect the system will behave more and
ready been answered by Lin, Balents, and Fiéh&ihey  more similar to a 1D system, as the initial Hubbard coupling
have done so on a theoretical grouiadd for a situation that U grows. Before we check that this is the case, let us clarify
is not the half-filled system, but this should not change anythis notion of intermediate coupling. We have just seen at the
thing), and found that the weak coupling condition readsend of the previous sectiofiV C 2), that the intermediate

U In(N)<1 (for large N). Thanks to our ability to take the coupling should typically be characterized hi=U (re-
irrelevant couplings into account, we have tried to check thignember Fig. 31 In the casdN=16 andt, /t;=0.1 on which
numerically. To do so, we have determined the critical couwe shall focus, this meang=0.15. We should also have
pling U, for which the irrelevant couplings do not flow to U<0.206, value above which the system.is in the confined
zero anymore, foN=8, 12, 16, 24, and 32, and representedPhase. If we expect the system’s behavior to change and
the valuedJ,, In(N) as functions oN. The result is shown on Pecome nearly one-dimensional for these typical valuds, of
Fig. 31. Because of the small valueshfwe have used, we this should mean that the effective hopping is of the same

do not observe an horizontal line as could have been inferreg.rder of (T‘."‘ggtUd?Vaé Te chrmcal teerder?:]ure.hThls (\j’\.”" be
from the U In(N)<<1 criterion. But this criterion is in fact a Iscussed in Sec. - when we study the phase diagram

. e of the system. Let us simply say here that for the minimum
sufficient conditionmaybe not a necessary grie observe a ; . ) .
. ; . o . (maximum value of the couplingU we will consider,
weak coupling behavior, since it implies that the effective

S . . amely,U=0.12 (U=0.202), the effective hoppin@ﬁz is
Hamiltonian hardly changes during the high-energy part oQbout 8 timeg0.9 times the critical temperature. These val-
the RG flow, for scales abov&*.

ues confirm the previous expectation.
We have numerically studied the evolution of some spe-
cial couplings, adJ becomes bigger. It is not possible to

0.07 6 o consider the couplings on the final fixed direction. Indeed,
0.06 = T the norm is huge even before it is reached. We had neglected
0.05 - o o - this problem in the strong and weak coupling regimes. In the
0.04 - - first case, we anyway knew that the RG is not valid anymore
0.03 o} o] i and should be replaced by a nonperturbative analysis. In the

' o o second case, we can make the norm as small as we want
0.02 |- 1 when reducing the initial coupling, because in this case, the
0.01 | - RG flow is scale invarianfthe RHS of the RG equations

ok 8 ) i quickly becomer independent, a rapidly goes to very
small values In this last case we refer the reader to our

0011 8 e 7  previous papér for more details about the implications of
-0.02 ' . this scale invariance.

with irrelevant couplings  without irrelevant couplings We thus have chosen to stop the RG flows at the time

FIG. 30. Values of all the couplings on the final fixed direction, When the biggest of all couplingthe true Cquplings, not the
for N=16, t, /t;=0.1 and weak initial Hubbard coupling) normalized onlesreaches the value 1. In this regime, the RG
=0.02. On the leftright), we represented the values obtained whenshould be valid(of course, the two-loops contributions are
computing the whole flowinitially setting the irrelevant couplings not negligible when the couplings approaghThis gives us
to zero. the results shown on Figs. 32—34, which were obtained for
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FIG. 32. Evolution of thenormalized charge forward scatter- FIG. 34. Same as Fig. 32, for the Umklapp couplingg1,!).
ing couplingsG§(1,J), when the strength of the initial Hubbard Here, the values of the couplings range fronx 8072 to 2.4
coupling U is increased/U=0.12 for (a), U=0.17 for (b), U X102 in (a), and from 1.395% 10 2 to 1.3962x 10 2 in (d).
=0.19 for (c), andU =0.202 for(d)]. The number of chains ibl
=16 andt, /tyj=0.1. The flow has been stopped at the RG time for
which the biggest of the whole set of couplings is equal to 1. The
charge forward scattering pictured here are the ones obtained at this As a conclusion of this investigation, we shall summarize
time. In order to keep the figures clear, we have not put any indithe numerical results we obtained on a single figure, which is
cation on thez axis. Let us simply say that the values of the cou-the phase diagram of the system. It is depicted in Fig. 35.
plings range from X10°° to 1.3<10 % in (a), and from 6.75  The solid curves represetf’/t; as a function ot, /t;, for
x10°° to 7.05<10 % in (d), so that(d) is in reality much flatter |J=0.05, 0.06(indicated by the arrows0.08, 0.1, 0.15 and
than (a). 0.2 (notice that bottx andy scales are expressed in base 10

. logarithms. F ivenu, t& | in th fined phase,
N=16 and initial couplingd) =0.12, 0.17, 0.19, and 0.202, \°9&Nthms. For a givenu, t;is zero in the confined phase

) . f8r t, smaller than a critical valug (this explains the ver-
For the charge and spin couplings, we have represent(—:-tlcal lines, and it takes non-zero values as soort ast°®
forward scattering coupling&$(®(1,J). In the weak cou- ; i =L

pling regime, we would have obtaine@S(1,J)~ 8 |+ niz Whent, is much larger than® , tfﬂ.ztL , so that all solid
(remember the fixed direction we found in Sec. IV 2 curves asymptotically go to the first bisector. The dashed
Here we also obtain peaks aroude | +N/2 valués but  curves give the value of the scale at which the couplings

these peaks progressively disappear whergrows, as is diverge, which is the critical temperatufe . They are hori-

c .
expected because the system looks more and more onéc-)ntal whent, <t , since in our approach the RG flows are

dimensional. We have chosen to represeéhl,) cou- purely one dimensional in this regime. The uppgkawer)

plings, in the case of the Umklapps. The reason for thisdo'[tecl curve is a_straight line of slope(_rlumerically fo_und
choice is that the bhiggest of all Umklapps (isumerically toc be 1-004’C9°'”9 through thec pomt; (2f co+ord|nates
found in this subset of couplings. Again, the weak coupling(t: (U), TcLU,ti (U)]; respectivelyt, (U),t [t (U)"]), as
would give a peal 5(1,1)~ 85 2, Which is smeared in the the one represented by a diamofeitcle) in the inset. This

case of intermediate couplings, and disappears in the strorlgS€t IS & zoom of the interesting region where both scales
coupling limit. meet, forU=0.05. We have indicated the different phases

(Luttinger liquid, Fermi liquid, Mott insulator, and spin-

4. Phase diagram

» L5
oo LN "{/!‘\‘\‘\“ 0 T T T T
N AN e AN
N é.:oi“:“i‘iﬁ\\\\&,/,a SN 4
oSN TN,
K SR -
W TN
-4.5
7 J ol
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log[t9 /1]

= N
o NN
"',(éot‘ot‘:‘:"‘"oo
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J

FIG. 33. Same as Fig. 32, for the spin forward scattering cou- loglt1 /1]
plings G§(1,J). Here, the values of the couplings range from
—1.8x10°% to —2%x10 % in (a), and from 7.9%10 * to 7.7 FIG. 35. Phase diagram of the system, computed Ner8
X 10~ % in (d). chains. See text for a detailed description of this diagram.
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density wave The dash-dotted curve is the first bisector, thatFermi surface nearly stops at that scale. It is clear that if the
we did not represent in the global figure to keep it readablefilling is not too far from one half, the three scales are not
Let us now study the physical implications of the value 1qualitatively different, so that we can afford stopping the
taken by the slopes of the two dotted lines. The upper onflow when the biggest scale is reached.
tells us that the critical value of, is proportional to the When the filling is quite far from one half, things become
value of the charge gajpy of the Mott insulating phase, and more involved. Of course, we could simply forget about the
we numerically findt{=1.14A. The lower curve gives the Umklapps and perform the analysis of Sec. IV B devoted to
following relation between the value of the effective hoppingthe non-half-filled system. But we expect that in an interme-
for t, =t¢ ", that we will denote byt§™, and the critical diate to strong coupling regime, the Umklapps could play a
value of the bare hopping$™ ~0.6& . Let us remark that non-negligible role in the high-energy part of the flow, where
this also implieg$™ =0.78\. These relations show that the there are not yet irrelevant. We would thus like to be able to
confinement-deconfinement transition takes place when thgke them into account. Intuitively, we expect that the Fermi
bare and the effective hopping become of the order of thgurface deformation is caused by battandG couplings for
pharge gap. The_se _results have'natura_ll interpretatio.ns. Imag-cutoff A > AkI™4+(2)|6k| and by theG couplings only for
ine the system is in the Mott insulating phase, with zeroAkanax<A<Akanax+(2)|5k|_ It is, however, not possible to

effective h_opping. It is clear that we can only compare the|mplement this idea in a simple manner. Indeed, once the
bare hopping to the charge gap. If on the contrary the system max .
is in the deconfined regime, the low-energy physics is domi-scale.AkF. +(2)| 54 is reached, we (.:OUId drop the Umklapp
nated by two scales: the critical temperature and the effectivEentribution to the flow of the Fermi surface, but the flow of
hopping. When decreasing the bare hopping, we expect &€ Umklapp couplings will not stop and will depend on the
phase transition to occur when these two low-energy scaled1ape of the fixed dressed Fermi surface. This flow of the
become of the same order of magnitude. These results are {mklapps will affect the flow of theG couplings and as

guantitative agreement with those obtained by Tsuchiizdhese latter still deform the Fermi surface, we see that the
et al>? for a two-chain model, see, for instance, the inset inflow of the Umklapps indirectly affects the flow of the Fermi

their Fig. 1. For values of, which are not too small, they surface. As the shape of the dressed Fermi surface comes

indeed find a proportionality between andt, with a slope  into play beforethe flow of the running Fermi surface stops,
compatible with our results. For smaller valuestof they there is here no simple way to circumvent the inversion
obtain a sizeable deviation away from a linear behavior. BuProblem we have discussed in the Introduction.

this difference with our conclusions comes from their choice AS @ consequence, in what follows, we will restrict our-
of a fixed value for the intrachain forward scattering, while S€lves to situations where our pragmatic scheme works, i.e.,
they let the Umklapp scattering go to zero. In this regime,© the nearly half-filled system. We hav_e conS|dered a filling
they observed a significant renormalization of the hoppin%“gh“){ less than 1/2, setting the chemical potential to -0.01.
amplitude, so that the transition is finally given by the bal-For this value, the difference between the initial values of

ance between the charge gap and the renormalized hoppindkr - andAkg®+(2)[8K| is about 10%, which is reasonable.
As in the half-filled case, we have observed different re-

5. Nearly half-filled system gimes, when changing the strength of the initial coupling,

Ub to now. we have not encountered anv real difficult namely, weak, intermediate, and strong coupling regimes.
P ’ y Y In the strong coupling regime, as before, the system be-

. . .
when choosing theA™ scale. Of course, the choice was haves as a purely 1D system, and the Fermi surface gets

purely pragmat_ic, as we simply chose the biggest of th%ompletely flat. The intermediate coupling regime is the
scalesK appearing in th_e RHS of the RG flows. '_I'here WaSsame as the one observed in the half-filled case, where the
no problem in the half-ﬁlleq case, because the biggest sca mklapps are not suppressed, because the scale at which the
was thg same for all the nine sorts Iot[remember the defi- phase transition takes place is bigger than the scale that mea-
nitions in Eqs.(E4—(E12)]. Let us consider the non half- ¢, o5 the dgistance from half filling, namely, (&) In the
filled case, for which the mean Fermi momentunkis«/2  \eak coupling regime, the Umklapps are irrelevant, and all
+ 8k. The filling does not change the biggést® andKP",  yanish (for the normalized couplingsat low energies. The
which is still the difference between the biggest and thefing| fixed direction is simply the one we previously found in
smallest Fermi momenta\kg*=kf“—kz". We let the Sec. IV B, where we had set the Umklapps to zero at the
reader check that the biggestV is now 2| 5k| + Ak and beginning of the flow. The flows of the couplings are repre-
the biggestK®Y' is | k| + AkP®. Those last two scales are sented on Fig. 36, and were obtained fo=8 and initial
obviously always bigger than the first one. couplingU=0.1. We also have represented the evolution of
What are the consequences of the existence of these thréee norm of the couplings, because its behavior changes
scales? At the formal level there is no real consequencealrastically at the precise time the Umklapps become irrel-
Indeed, even in the half-filled case, there were a lot of dif-evant §=24). The plateau observed in the norm'’s evolution
ferent scales, given by all the possilidés, so that introduc- just after this time reveals the existence of an intermediate
ing more scales does not make much change. But, practFermi liquid phase.
cally, we have used the pragmatic point of view that we These flows show how our RG, taking account of the
should stop the cutoff scaling flow when the biggest scale iglifferent scales of the system, is able to get rid of the irrel-
reached. This relied on the hypothesis that the flow of theevant couplings, such as the Umklapps, and leads to the cor-
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rect final fixed direction. This is not of a purely academicliquid, which is in overall good agreement with previous

interest. Indeed, if one takes the same value of the initiaworks®??14°*3ye have presented a detailed analysis of the
couplings G°=0.05=—G9), but setU to zero from the evolution of the quasiparticle weights as a function of the
beginning(with a flow very similar to the one in Fig. };7the typical energy scale. This confirms the existence of a Fermi
scale at which the phase transition occurs is found to be 4quid regime at intermediate energies, for the deconfined
% 10*2 times smaller as the one found when the Umklappssystems. It would be very interesting to compute the longi-
are incorporated and vanish along the flow. This can in partudinal and transverse optical conductivities, which could be
be explained because neglecting the Umklapps from the b&lone by adapting some existing mettigids quasi-1D sys-

ginning of the flow is a very crude approximation. We could ems. Another problem is to investigate the nature of spin

also take the Umklapps into account in the 1D part of thecorrelations in the confined regime. This cannot be achieved

flow, and then take them to zero. However, a look at Fig. 3E§Nithin the pr.esent formalism since the gouplings diverge at a
shows that the Umklapps do not vanish very fast, and theiﬁfale associated to the charge gap which is much larger than

influence has thus no reason to be small. Indeed, we pe 1€ Nee! _temperature in the limit of small transvgrs_e hop-
formed this comparison, and found that this prediction isP!ng. This problem has been addressed by Kishine and

correct. In fact both methods neglecting the Umklapps at on%}?nem'ts.& who “.S‘?d RG equations to two-loop order.for
time or another, give approximately the same critical tem- € cpuplmgs. Butitis npt g:lear'that the two-Io_op corrections
perature, because the Hubbard couplihig small so that the provide a reliable description since the couplings do not re-

; - ; i Il.
couplings do not change much in the 1D regiove found main smafl. . .
G¢=0.074 andGS= —0.038 in the end of the 1D flow This limitation of our method is certainly connected to the

fact that we are using a physical picture in which the fermion
fields remain the elementary objects. This is valid at suffi-
V. CONCLUSION ciently high energies and thus generically adapted to the

We have attempted to develop a simple physical picture tStudy of the Fermi surface deformations. However in the

understand the forces which drive the deformations of th&onfined regime, elementary excitations are likely to be very
Fermi surface of an interacting electron system. Using condifférent from the Fermi liquidlike quasiparticles, but rather
ome solitonlike objects. In this case, it seems a deeper un-

siderations from second-order time-independent perturbatio . ; .
theory, we showed that the shape of the dressed Fermi s lerstanding of the corresponding phases should be obtained

face controls the quantum zero-point motion correction to?Y €xpanding around the exact solution for a system of un-

the ground-state energy. We demonstrated that a given coGouPled chain§.***!Nevertheless this raises the important
pling tends to deform the Fermi surface so as to have all it&S4€ of the validity of an adiabatic principle for generating

four momenta precisely on the Fermi surface, because thid'® 9round state at finite transverse hopping from the ground
allows for smaller energy denominatdis the second order state of uncoupled chains. At half filling this adiabatical prin-
ciple certainly holds in the confined phase where the charge

contribution) and thus decreases the total energy. As a con='F'~ ~~' . L -

sequence, we find that the Fermi surface is deformed b$aP i finite. But its validity beyond the critical value of the

irrelevant couplings, which are characterized by the impost@NSVerseé hoppmg is questionable. This may explain the

sibility of choosing all four momenta on the Fermi surface, dualitative discrepancy between the perturbation approach of
)I,:_ssler and Tsvelik! which leads to a disconnected Fermi

Because of this, the Fermi surface deformation induced b X .
these couplings can only occur in the high-energy regimé“rfaee with electron and hole pockets, and the dynamical

where the kinematical constraints associated to the Fernfi€an-field theory of Biermanet al., who have obtained a
surface do not play much role. Once the energy is loweonventional Fermi surfadesee Fig. 5 of the latter wofR.

enough and the warping of the Fermi surface is felt, theséway from ha!f filling, this nqtion of adiabatic continu.ity is
irrelevant couplings do not flow any more and no longer€Ven less obvpus to prove since the energy gap vanishes for
contribute to the Fermi surface deformation. uncoupled Luttinger liquids. However, we believe the use of

For the quasi-1D materials at half filing, the Umklapp & SKeleton expansion by A_rr_igc?ﬁilikely provides a way to
couplings belong to this category. As they undergo a strong'cumvent this potential difficulty.
renormahzgtlon in the high-energy regime, they ha_ve a_much ACKNOWLEDGMENTS
more drastic effect than the charge or spin couplings in the
doped system. Our numerical simulation provide a descrip- We would like to thank FerraVistulo de Abreu for pro-
tion of the crossover from the confined regime to the Fermviding the initial impetus to this work. We have also benefit-
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ted from many valuable remarks by Dese Zanchi and n(ky)=0. This induces a change in the total energy of the
Benedikt Binz. Finally we are grateful to Bertrand DelamottesystemAE=E({n’'})—E({n}). For a finite size system, it is
and Dominique Mouhanna for sharing their experience witheasy to connect this energy shift to the single particle propa-
various aspects of the renormalization group. gator Gy (kg,w). Indeed, we have the well-known spectral
decomposition
APPENDIX A: EQUIVALENCE BETWEEN MINIMIZING

)
THE TOTAL ENERGY AND STABILITY CRITERIA [(N+1ko,e|cy [N)[?

FOR THE DRESSED SINGLE PARTICLE PROPAGATOR Ga(ko, )= ; w—E(N+1Ko,a)+E(N)+i7
1. Two-chain system at first order [(N=1,— ko, Blci IN)[2
I} 0>
We wish to check that the self-energy computed by using + 2 TE(N—I—K _OE N i7"
a free excited state, with a trial Fermi sea which should be 5 ot E( Ko, B)—E(N) =iz

determined only at the end of the calculation, gives the cor- (A5)
rect results of Sec. Il B 2. The sole difference with the cal- . ] ] ) )
culation of Appendix below is that we shall consider here the€re,[N) is the eigenstate witN particles obtained pertur-

following free propagators: batively from the free-particlg state with .diStribl.Jti(ka),
and the ket$M ,k,a) denote eigenstates wiM particles and
5 1 a total momentunk with respect to the total momentum of
GRl(k,w)= SING) O , state [N). The total energy of these states is of course
o= [P+ (k—kED1+i 7 sgnk—kg ) E(M,k,a). So the energy shifAE is one of the poles of

(A1) Go(kg,w) seen as a function ob. Denoting the typical
interaction strength by, it is sensible to assume that for a
1 finite-size system, energy differences such &N
o[- O k+kO)]—insgnk+ke ) +1kg, ) - E(N) (andAE in particula}b can be expanded as
’ (A2) power series irV. In the noninteracting cas& E=¢q(ko),

_ _ ~and GP(kg,w) 1=w—so(Ko) +i7. Therefore,AE is the
These formulas differ with Eq¢B1) and(B2) below onlyin 516 6t G, (k,, ) (as a function ofe) which goes smoothly
the imaginary parts. We let the reader chdskme more towards eo(k,) asV goes to zero. WitingGe (K, ) -
details about one-loop self-energy calculations can be foun_w_so(ko)_zcI (Ko, ), and given the fact that (ko , )
in Appendix devoted to the standard perturbation thitigt has a well-defined power series expansiorViwhich van-

the self-energies read ishes asv goes to zero, we may conclude theE may be

0 0 obtained as a formal power series\infrom the solution of
Ao+ (Keo— kl(:,g) Ao— (kg o~ kfr,r)) P

E%é(k,w)=A P + 5 , the following equation forw:
(A3) w—=go(kg) —ReS ¢ (kg,w)=0. (AB)
) Ao— (K o= kgog)) Ao+ (Ke o— k(FO%) Indeed, let us denote by (k) the solution of this equation
s (kw)=B 27’7 —+C 27'7 —. which goes taeq(ko) asV goes to zero. Then, we have
(A4) AE= (ko). (A7)

It is sufficient to compare these results with E¢E2) and ) ) , L

(13) to understand that we wikkxactlyfind Egs. (14) and Now, if the trial statﬁN) obtained frorm(l_<) minimizes the
(17). The energy minimization method or this self-consistentCta! energyE({nj), it means that removing a particle lef
computation of the self-energy carried formally to first order®n the Fermi surface associated to the distributigk) and

in interaction do generate the same higher order terms. The&€ding another particle & also on the Fermi surface does
appear since corresponding contributions are sensitive to tH&t change the total energyp to corrections which are neg-
shape of the trial Fermi surface. As shown in Appendix B,ligible for very large systems This yields w(ky) = w(ky),

this feedback effect is missing in the standard perturbativdMPlying that quasiparticle energies are consta@uual the
approach. the dressed chemical potentja) on the Fermi surface as-

sociated ton(k). This is exactly conditior(i) [see Eq.(4)]

for the dressed propagator discussed in Sec. Il A. Assuming

condition (i) holds, condition(ii) on the imaginary part fol-
Let us choose a trial Fermi surface, with the correspondiows from standard phase-space arguments and analyticity

ing occupation numbens(k) €{0,1} and®(k)=1—-2n(k).  considerations developed already long ago by Luttitfger

This generates a free particle sté®ater determinantwhich Langer?5 The main idea is to use an expression for the self-

may be used as a starting point for perturbative expansionsnergy in terms of skeleton graphs. Conditioh suggests

of the total energye({n}) and the single particle propagator that the full one-particle spectral functiéwhich determines

Go(k,w). Suppose we add one particle to the system, so thatompletely the internal lines of these graplssqualitatively

the total momentum is increased ky. This is achieved by similar to the one of a Fermi liquid with the Fermi surface

using n’(k):n(k)JmSk,k0 instead ofn(k), assuming that obtained fromn(k).

2. Formal proof for a finite size system
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3. Extension to an infinite system 1

(0) —

Applying the previous argument to infinite systems re- GLilk,w)= _r. (0)_.(0) (07 (o)
quires some care. In fact, we have to prove that the coeffi- 0= [pO—vE(k+keD] |nsgr(k+kF,|(|)32)
cients of perturbative series in powers\ofor AE or w(kg)
have a well-defined infinite volume limit. Our experience We will restrict ourselves to the study of the right propaga-
with other systems including models for an unstable stateors, because the left ones can be analyzed in an analogous
coupled to a continuum suggests that such a limit does navay. The first order correction to the right propagators is
exist in general. However, perturbation theory in powers ofgiven by the tadpole graph represented on Fig. 10, where the
the interaction strength for fermion systems with local two-solid (dashed lines represent rightleft) propagators, and
body interactions is likely to be a favorable case for whichwhere the black dot denotes one of the couplings. The self-
this limit may be safely taken. For instance, the perturbativeenergy for the R,0) fermions is given by two terms: either
expansion of the ground-state energy involves connectethe interaction isA, in which case the left propagator in the
Feynman graphs with no external lines, which contributiondoop is on branch 0, or the interaction & and the left
are easily shown to be proportional to the volume. Similarly,propagator is on branch. It is a simple matter to evaluate
standard techniques based on the Luttinger-Ward energyie tadpole, and to show that in the thermodynamic limit the
functional(see, for instance, the text by Noms® pp. 222—  self-energy given by tha interaction reads
229 show that

dg
380, =Af—n<°>(q), (B3)
AE=E({n'}))—E({n}) ROA 27 L0
> do [w—so(ko)—i7 wheren(%)(q) is the particle distribution on branch. (0),
=&o(ko) + f_ 2_7-ri|n w—eg(Ko) 17 i.e., itis 1ifq=—kg gand 0 otherwise. Of course, exactly as

in the energy minimization scheme described in Sec. Il B, we
get infinite results because our linearized dispersion relations
(A8) have been extended to include infinitely many states. We will
thus here too regularize these divergences by putting an ul-
traviolet cutoff Ay on the momenta, around the fofree

up to terms which vanish in the thermodynamical I|m|tk$f Fermi momentaremember F|g 4 for one bahdt is then

is close enough to the dressed Fermi surface so that the igusy to show thal ({).A=AAo/(2m). We let the reader

verse lifetime of the corresponding “quasiparticle” is small chack that the final results for the self-energies of right fer-
compared toy, it is easy to show thaAE=w(ko). This  ions are

shows that the series expansionag(fky) has a well-defined

infinite volume limit. This fact isa priori nontrivial since Ao

any perturbative algorithm fan(k,) involves partial deriva- 38k, w)=(A+C) o (B4)
tives at any order fok 4(kq, ) with respect tow, taken at 7

w==gq(kg). Although2 4 (ky, ) has a good thermodynami- A

cal limit, some difficulties arise while considering deriva- SO (kw)=(B+ C)_O_ (B5)
tives with respect tavn. Indeed, their expressions for finite ' 2m

size systems involve sums of rational functionsapfwith The renormalized chemical potentialand Fermi momenta

\r;;ljrlt!ple_poles, aqd thege are not easHy c_onverted Into Conlipyo(w) can now be deduced from the condition that the in-
ging integrals in the infinite volume limit. But the above verse propagators vanishes far=g and k=K, or K
= =Kro

e Seons o o e e el ks, and fom the consevaion of the e o par

expected to a?)pear in a perturbative expressiomety) ticles. This last condition is nothing but t.he Luttinger theo-

eventually cancel 0/ rem. We thus have to solve for the f_qllowmg system of three
' equations for three unknown quantities:

(,L)_So(ko)_zq)(k0|w)+i n
w—¢gg(Ko) =2 g (Ko, w)—i7

. A
APPENDIX B: DIFFICULTIES WITH THE REAL PART OF ,U«_[,M(O)"'Ul(:o)(kF,O_ kf:%)]— (A+C)

0
-—=0, (B6
3 IN THE TRADITIONAL PERTURBATION SCHEME 2@ (B6)

1. Two-chain system at first order

Ao

Let us begin by the calculation of the self-energy in the M_[M(O)_I—vl(:O)(kF,‘IT_ksz(),ZT)]_(B+C)EZO- (B7)
usual case where one starts from the free ground state. The
free propagators are simply given by Ke o ke o= k(F%Jr k(F%- (B8)
1 The chemical potential is found by summing the first two
GO(k,w)= ' equations and making use of the third one. Then one gets the

' o—[p@+vO(k—kO)1+i7 sgnk—kO) difference between interacting and free Fermi momenta at

(B1)  one loop
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of the corresponding eigenstate, while keeping a constant

M(l)—ﬂ(°)=(A+B+2C)ﬁ, (B9)  particle number. To second order Y this total energy is
given by
1) _ 1 0)_ rg— Ao
ko~ Kgo=(B—A) Ok (B10) d3k
et E(tkeh = | ek
(2m)

These are the results given by the standard perturbation v d3k 31,
theory. This last result is to be compared with Etd). To + —f f ——n(k)n(k")g(k,k’,0)
first order in the couplings, both results are equal. But Eq. 2) (2m)?) (2m)®
(14) contains next order contributions that are not present in 5 3 3, 3
Eq. (B10). This happens although both computations assume +V_ dk f d°k f d°q g(k.k’",q)?
the same physics, namely, the validity of the Hartree ap- 4) (2m3) @2m3) s3]
proximation. As has been shown in Appendix Al, consis-
tency between both viewpoints is recovered only if the elec- ><n(k)n(k’)[l— n(k+q)J[1—-n(k'—q)]

tron self-energy is computed with free propagators N L
corresponding to theressedrFermi surface. A similar con- (k) +e(k')—e(k+tg)—e(k'~q)

clusion also holds for the chemical potential shift, as a com- +O(V3). (B13)
parison between Eq$17) and (B9) readily shows.

_ Here, n(ku)=1 if k is smaller thankg(u) and n(ku)=0
2. Formal calculation to second order otherwise. We have also defined(k,k’,q)=f(k,k’,q)

Let us consider a system of interacting spinless Fermions f(k.k'.k’—k—q). After some algebra, we find that
in d=3 dimensions. In fact, the actual value dtoes not ~ Ke(U) =V ke 1(U) +VZ8Ke o(u) +O(V?), and  u=p,g
have much influence in the following discussion, the maint Va1+V2us+O(V?), where oke 1(u), ke o(u), w1 and
point is thatd=2 so the Fermi surface is in general a smooth#2 are given by the following coupled linear equations:
manifold of codimension one ik space. We take the follow-

ing Hamiltonian: 0p(U) Sk 1(W) +ED[ke o(W] - =0, (B14)
H= f d% k)c(k)c(k
) et toet f d?ukZ o(u) Skg 1(u)=0, (B15)
Vi dk [ dK 3q ,
+§f (ZW)J (Zw)sf (2 oKD 0F(U) 3K o(U) + REE Pk o(U), 5[ ke o) 1}
1

xc'(k+a)ch (k' —gyc(k’)c(k). (B11) + U VE Dlke o)1+ 50£(u) K 4(u)

We assume the Fermi surface 60 is connected and that +ASWO[Ke o(U)]— =0 (B16)

each half line starting from the origin kspace intersects it
only once. For any unit vectas, we thus define a positive
numberke o(u) such thakg o(u)u belongs to the Fermi sur- and

face. The Fermi sea is then the setkopoints such thak

=ku with u unit vector and 8<k<Kkg o(u). The total particle

number is assumed to be fixed, independently of the cou- f d2ulkE o(u) Ske o(u) + K o(u) SkZ 1(u)]=0.

pling strengthV. We now consider eigenstates obtained by (B17)
adiabatic switching of the interactiohon free particle states
with a deformed Fermi surface—kg(u). Denotingkg(u)

—Kg o(u) = 6kg(u), the constraint on the total particle num-
ber reads

f d?u

whered?u is the usual area element on the unit sphere, for
instance,d?u=sinAdéd¢ in spherical coordinates. We now
wish to chooseSkg(u) in order to minimize the total energy and

In these expressions(u) andvg(u) denote the first and
second derivatives of the functior— e{[kg o(u)+x]u},
taken atx=0. 3M(k) and 3@ (k,w) are the self-energies
computed to first and second order\ih using the standard
algorithm

k2 (u) Skg(u)+k (u)ékz(u)+15k3(u)}=0
F,0 F F,0 F 3 9°F ,
(B12) 3
d3k
(1) — )1, ’
(k) f(zw)sn (k")g(k,k’,0) (B19)
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10 &% [ & [ dq ,
Rez(Z)(k,w)zif (277)3f (277)4 (2w)3g(k’k’q)2

» nOkH[1-nO(k+q[1-nO(k’ =]+ [1—-nO(k")In©(k+gn®(k’ —q)
w+e(k)—e(k+q) —e(k' —q) '

(B19

The most interesting quantity in these formulaa s ™ (k). single particle states. One would expect to capture these
It is the change in the first-orddwith respect toV) self-  changes thanks to self-energy insertions in the internal lines
energy due to the fact that the Fermi surface has changed lof the lower-order graphs faX. But the example of anoma-

an amountskg ;. More precisely, we have lous graphs shows this does not work so well in general.
As discussed in Sec. Il C the natural cure for this problem
d2u’ is to fix the dressed Fermi surface, thanks to counterterms
Az(l)(k)=f 59K, Ke,o(U"),00KE o(U") K 1(U”). which gradually modify the single particle dispersion of the
(2m) (B20) original Hamiltonian, a¥/ is increased. In this approach, we

choose the dressed Fermi surfage ke(u) and the dressed
It turns out this term isot recovered in the naive perturba- dispersion relations(k). We therefore compute the self-

tion algorithm. This latter procedure is based on solving forenergy S (k,w) with respect to this dressed Fermi surface.
ke(u) in the equations Denoting by u=¢e[kg(u)] the dressed chemical potential,

the counterterm& cr(u) are defined by
e[Ke(u) ]+ ReX[Ke(u), u]=p, (B21)

where (k,w) is computed with the free propagators associ-
ated to the noninteracting Fermi surface. As befqiejs
chosen to keep a constant total particle number. This second
approach yields the same set of equations as before, excaptthis third approach, the “bare” Fermi surface> kg o(u)

that the termA S ([ ke o(u)] is missing in the first equation pecomes a function of and{kg!. It is obtained from
for 6kg o(u). This shows that the naive algorithm is not able

to keep track of the first-order Fermi surface deformation
while evaluating the Hartree-Fock corrections to second or- e[ ke o(U) ]+ 2 cr(u)= uo, (B23)
der. Intuitively, these effects are expected to be associated to
the four second order graphs fBrshown on Fig. 37. How- . .

. where, as alwaysy, is chosen in order to conserve the total
ever, these graphs are anomalous according to Kohn and Lut- .
i ) S ; . particle number. We therefore have to solve
tinger, and their contribution vanishes in the=0 perturba-
tion theory scheme. We believe this illustrates the crucial
problem with naive perturbation theory. As we go to higher _ = o
orders inV, lower order graphs foB, are modified by the elke(W]—elke oW1+ Z[ke(U), u]= 1~ ko.
changes already induced on the occupation numbers of

Sincel, is computed with free propagators whose singulari-
ties lie on the dressed Fermi surface, it is easy to check that
this yields the same expressions kg ; and ok , as the
energy minimizing procedure, in complete agreement with
the general conclusions of Appendix A.

L\'\'\Aﬁ"f

S[ke(u), 1]+ 3 cp(u) =0. (B22)

(B24)

APPENDIX C: DIFFICULTIES WITH THE IMAGINARY
PART OF X IN THE TRADITIONAL
PERTURBATION SCHEME

Let us consider the traditional perturbation scheme around

the unperturbed Fermi surface. With the same notation as

,rr’jr"’N":.‘"\ before, this corresponds to the choice of free propagator
GO(k,w) t=w—eo(k)+insgieo(k)—mo]. In the dis-
cussion, we shall use the spectral densipgs,(k,w) for

FIG. 37. The four anomalous Kohn-Luttinger graphs contribut-excited states involving particles anch holes, with a total
ing to the self-energy at two loops. momentumk and a total energw. We have
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p dk fore see that, in this scheme, there is no reason for which
pp'h(k,w)ZH f 3 Oleo(ki) = pol Im 3 (ke ',wZ,U,) should yani;h. This i§ rather gn'sati.sfac'tory
=1J (2m) on physical grounds, since it would imply a finite life-time
h dK’ for particle-like excitations lying just on the dressed Fermi
i / surface.
X O o— eo(Ki
jl]l f 3 L0 oK)

APPENDIX D: FIELD-THEORETICAL RG

This Appendix is devoted to a detailed derivation of the
field-theoretical RG equations which we have gathered in
P n Appendix E. The two main considerations we wish to stress
xX(2m)é w—zl eo(ki) + Zl eo(kj) |. here are(i) the choice of external momenta in the renormal-
o = ization prescriptions, which has to be adapted to the Fermi

(C1)  surface shape an) the use of the logarithmic approxima-

Let us consider the simple second order diagran®fge,w) 1O

shown on Fig. 11the sunrise diagramlt is simple to check

that the imaginary part of this diagram is proportional to 1. Motivation and general idea
p2.1(K,w)—p1—k,—w). As is well known since Landau,
this quantity vanishes at the bare chemical potentigland
behaves asd— uo)? in magnitude forw close toug. The

effect of Fermi surface deformation ai(k,w) arises via the instance the interaction vertidest a typical scaler. Requir-

replacement of bare propagators by sequences of t_he?ﬁg that all these theories at different energy scales should
propagators separated by lower order self-energy insertiong, esn0nd to one and the same high-energy theory yields
The main point we wish to emphasize here is that there is NG flows, whenw is varied. This approach is physically

simple way to predict the influence of these insertions on th‘?‘latural, because it is based on the calculation of low-energy
frequency dependence of Di(k,w). For some graphs, and ,pqeryaples. Furthermore, as we will see, it allows for a

some pattemns of insertions, the resultingdifk,w) will 44y of crossovers between high and low-energy regimes.
continue to vanish ab = o, whereas some other combina- — gne of jts limitations is that it requires renormalizable
tions will produce a finite contribution to IB(k,0) at @ jneractions(i.e., the existence of a continuous lipiBut it
= po. Therefore, the traditional scheme does not allow for &g oy really a severe drawback, since nonrenormalizable in-
good control of th(_—:' analyncall structure of the self-energy: teractions are expected to be irrelevéiny power counting

Let us show this on a typical example. The simplest in-j, the |ow-energy limit, which is the most interesting to us.
teresting situation is obtained for the sunrise graph, for selfgte that the renormalizability constraint disappears in RG
energy insertions which are assumed not to depenl_d“m’T schemes based on Wilson’s idea of gradual mode elimina-
onw, since it is then easy to perform the frequency integralsijon several groups have recently implemented Wilson’s ap-
In the more general case of an arbitrary frequency deperoach to the RG, expressed via the Polchinski equation,
dence for the insertions, the natural procedure would be tg, jis one-particle irreducible versidri2 Although these
Taylor-expand them in the vicinity gio. The strongest ef- o ations are exact, they are quite complicated, since effec-
fect is obtained for the constant term in these expansiongjye interactions involving an arbitrary number of particles
and this leads to our toy example. For a total numb@f 576 generated along the RG flow. Any numerical computation
constant msertlon(i), we get a cor:]trl(tg)utmn to afk, @) pro-  therefore requires drastic truncations in the effective action.
portional  to  py3(K,w)—(—1)"p15(—k,—w), where By contrast, the field-theory approach involves only a much
p((k, ) stands for thenth partial derivative ofp, n(k,@)  smaller set of effective or running couplings, which is a good
with respect tow. Using the fact thap, i(k,0) and p,,  feature for practical implementations.
(—k,— w) behave asd — u,)? for w close tou,, we notice
that a single self-energy insertion in the sunrise graph pre-
serves the property that IBYk,w) vanishes forw= u,.
More generally, this implies that IB(k,w=ug)=0 up to First of all, we have to define the renormalized couplings.
third order in perturbation theory. However, a Fermi surfaceThe two corresponding Green’s functiofia real space for
deformation already occurs usually for the simplest Hartredhe direction parallel to the chainare
and Fock graphs, which are first order in the coupling
strength. In the standard perturbation scheme, the dressed G“(X4'X3,X2,X1)=—<0|T[¢R,|+5,T(X4)¢L,J—5,p(xs)
chemical potential and the dressed Fermi surface are deter-

p h
><(27T)d5<k—2 ki+ > kj’)
i=1 j=1

In the usual “field-theoretical” RG, the high-energy
Hamiltonian is given and fixed, and one parametrizes the
theory by low-energy values of proper Green'’s functitfios

2. Renormalization of the interactions

mined by solving the infinite set of equations X lﬂ[,lpr(xz)lﬂ:e,l,w(xl)ﬂo), (D1)
—eo(kp) —ReX (kg ,u)=0, C2
#=eolke) (ke ) (€2 U(X4,X3,X2,X1) = = (O T[ R 1+ 5,(Xa) ¥R 3— 5,,(X3)
with the constraint that the total volume of the Fermi surface + t
does not change as interactions are switched on. We there- ~ lf/jL,J,p/(XZ)d/L,I,r’(xl)]|o>' (D2)
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In the above equation§)) is the interacting ground state, T Akg’(l J)
is the time ordering operator arXlis a shorthand notation Ki=—|Kg,+ —a )
for (t,x). The renormalized couplings are the values of the

amputated one-particle irreducible parts of these Green's Akg(l J)
functions, divided by. In fact, the charge and spin couplings kp=—{Kggt 4 |
are the coefficients obtained from the Fourier transform of

G!, factor of 1, .1,, and o, @, , , respectively. The ek Ak3(1,9)
Umklapp couplingJ 4(1,J) is defined similarly, but this time 3= Kp oo 4
from the expression dfi, as the coefficient of, /1, . [the AKY(]
one in front ofl, /1, ,, being —U;_,_41,J)]. K=K |45+ L_ (D5)
The set of external frequencies is chosen to be the same ’ 4
for all types of couplings. We have decided to take The next task is to draw all possible Feynman diagrams,
and compute them. One can then establish the field theoret-
v v 3v ical RG flows, requiring the couplings measured at two dif-
W1T5, @275, 3750 (D3)  ferent scales should correspond to the same high-energy

theory. The couplings’ flow equations are given in Appendix
and by energy conservation we have, of couregr wq El, and are obtained in the one-loop approximation. As ar-
+w,— wg=— /2. v is the typical energy scale of the inter- gued in Sec. Il, the most interesting effects connected to

action process, and is the quantity to be varied to get R&€rmi surface deformation appear at the two-loop level for
flows. the single-electron propagator. For the sake of simplicity, we

It is a bit more difficult to choose the external momenta,Shall use a hybrid scheme, involving a one-loop approxima-

because of the warping of the Fermi surface. Our choice halio" for the couplings and a two-loop approximation for the

been dictated by a few natural requirements. First the sym(—EIECtroniC self-energy. In the case where all the couplings

metries of the Fermi surface should be respected, as tHgain Weak, itis reasonable to keep only the dominant term
right-left symmetry, the up-down symmetrji.e., k ’(_} In the corresponding flow equation. If by contrast couplings
- ) - ey y

kit £ th ginal t it have a tendency to grow and become large at low energies,
_ Ky, In terms of the onginal transverse momentaterac- xperience from the Kondo problem suggests adding the
tions processes for which it is possible to choose all eXtemaiubleading terms to the couplings’ flow does not provide a

momenta on the Fermi surface, should be computed for thigetter physical picture. For the Kondo problem, the two-loop
special choice, because it would otherwise mean the introapproximation predicts an intermediate coupling fixed
duction of a spurious energy scale. Let us first considepoint3*>whereas the low-energy physics corresponds to an
G5¥(1,9). It is possible to choosé;=Kg,, ko=—Kkg 3, infinite coupling fixed poinf3°

k3= —Kg -5, andky=Kg |4 5, only if momentum conserva- We shall not give any technical detail on the derivation of
tion kg | —Kg ;=Kg 1+ 5~ Kg - s Is respected. In general, this these couplings’ flow equations which is stand#rdhe

will not be possible, for we will haveAk,(1,J)=(kg,+s  main new feature is the use of special sets of external mo-
+Ke 5)— (ke +Ke ;) #0. Notice that up to a minus sign menta, described in EqéD4) and(D5) above. However, it is
and a factor of 2Ak,(1,J) is simply the generalization of Worth focusing on thd function that appears in these equa-
Ak in the two-chain model. It is then natural to split this tions (the f function is defined byf[t=In(Ao/v),5]=1 if v
quantity equally among the four momenta. One can checie |9l and 0 otherwise, see Appendix E1n fact, the “true”
that the following choice fulfills all the conditions we have RCG €quations do not involve this function, but rather
mentioned: _ 1 v "

A1) f[t—ln(Aolu),é]—2 v—5+i7]+v+5—i77 .
==, (D6)

k1=K
It is obvious that thesé diverge forr=|4|, so that some
AK(1J couplings will diverge or vanish singularly at the scales
Ky= _(kF - o0 )) given in Egs.(E4) to (E12). Though this physically signals
: 4 ' the crossing of the characteristic scales, it is practically un-
pleasant for the numerical simulations. Furthermore, if we
Aky(1,) did not work at zero temperature, the energy scale given by
ks= —(kF,J_5+ T) the temperatur@ would suppress these divergences. Notice
that the presence of; factors also implies that the couplings
will not remain real.

For all these reasons, it is thus natural to try to find a way
to get rid of these singular behaviors. This can be achieved
by replacingf by a function that extends its asymptotic be-

For the Umklapps, the choice of external momenta is dichaviors(for »> || andv<|d|) up tov=|4|. This is exactly
tated by the same requirements. The equivalentlof(1,J)  what the functionf does. The quality of the approximation
is now Ak3(I J)=2m— (kg |+ Kr 3+ Ke 145+ Ke 3—5), and  can be checked on a very simple flow equation, for which
the natural choice of momenta reads one knows the exact solution

Aky(1,J)
k4:kF,I+(S—§T' (D4)
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T T T T gram here, with all the information about the internal lines,
0.1 0.0684692 ————— 1 for the “G?” contribution, on Fig. 39. There is of course a
0.0684691 - T “ U?” contribution, and the spin algebra has to be taken into
0.068469 |- / . account. In order to simplify the expressions, we have com-
R{g(£)] 0.08 | 0.0684689 ," i puted the §elf-energy &= kF,,_, and not for a genergl mo--
0.0684688 ——L—1—I mentum, since we have decided not to take Fermi velocity
8 10 12 14 16 ST ) !
renormalization into account. We give the expression of the
N self-energy in Appendix E2. From this, the first thing to do is
0.06 H _ to compute the counterterms, so that the inverse propagators
vanish on the dressed Fermi surface. Focusing on second
L L L ! order terms only, this amounts to require
0 2 4 6 8 10
t Vie{l,...N},—S@(k=ke,,0=p)
FIG. 38. The dashed curve is the real part of the coupling —suP+vpskP=0, (D8)

Satisiyzing Eq.(D7), with initial condition g(p):o.l. Here /Ao together with the conservation of the total particle number.
=104, so that the coupling goes to zero singularly fer4.6. The 5M(2) is found by summing all these equationép(z)

solid line represents the solution of the approximate equation where’ _[Elg(rez,?(k: ke, ,0=p)]/N. We let the reader check

fflol\?vsreplaced byf. The inserted plot is a zoom on the end of the v, jt s in fact sufficient to take the Umklapp contribution in
: this last equation, because tlecontribution sums to zero.
This is true because of the following propertiesk (1,J)
5 (V):} r 1 2. o7~ Ak, G¢9(1,)=6%%(J,1) and G*®(1+a,J
/9 2\v=o+iyg vto—in I —a)=G9(J—a,l +a), so that in the sum over, J, and

o , , «a, the terms (,J,«) and @,1,— «) will cancel each other.
This is simply a RPA-like flow, for only one coupling We Once the chemical potential is known, the Fermi mo-
will not study this in detail, but we show the good quality of ,enta counterterms can be found:

the approximate solution for a positive initial coupling, on
Fig. 38.

The approximation we use is in fact nothing but a loga-
rithmic approximation. Indeed. appears in the flow equa- 1
tions, after we have differentiated [(m—5+in)(v+o - )1 — _

—in)l(2veAg)?] factors(with respect to the scale), coming N Z SRik=Ke 0=p)). (©9)
fronl the Eeynman graphs Iogar|t_hm|c @verger_rces. Changl—n order to save space, we will not give the full expressions
ing f in f just amounts to replacing this logarithm by the 4 these counterterms.

1
5k,(2)=; S (k=ke |, 0=p)

approximation 2 IfMax(v,|])/(2veAo)]- From all this, we can deduce a dressed propagator, as we
did in Eq. (46) for the two-chain model. As in Ed46), the
3. Renormalization of the propagator result is still divergent when q is sent to infinity. This sim-

For reasons explained at the end of Sec. Il B 1, the onePly means that the counterterms are not sufficient. Something
loop self-energy correction does not have much influence of’0'€ iS needed, and as is well known, this is wave function
the Fermi surface deformation for the quasi-1D Hubbard sysf€nermalization. The renormalize®{l) propagator is de-
tems considered in this paper. Therefore, we will only focudined as usual by
on the tyvo—loop sunrise diagraifthe Kohn-Luttinger diq- G(Fﬁ)’l(k,w)=ZR.G§,l(k,w), (D10)
gram being equal to zeroWe only show the Feynman dia- T R _

and the wave function renormalization factg  is found

by imposing the following renormalization prescription:

J; p;
_kF,J + Aka(I,J) + k,, _
pt GRY H(k=Kg,0=p+v)=Zg Gri(k=Kg |,0=p+ )
-7 ‘\\ =. (D11)
rd
P We have not written which variabledr, depends on, in
RS - Phd order to make the equations lighter, but it should be clear that
S -7 it is a function of the couplings at scale of the dressed
Gol(l, J) J o Gl+teJ-q) Fermi momenta, ofv and of A,. The calculation of the

_ Aka(T,J) r_ . . A
- poTR g renormalized propagator is achieved thanks to the standard

+uw' - . . .
HE T observation that Eq(D11) implies
L I+o57' I G(Rﬁ)’l(k,w;g;v,/\o)
kpr+r,p+v kp14a + KT, ke + K, p+v '
p+v+w, :(PR,I(g;V,V',Ao)Ggﬁ)il(k,w;g’;V',AO)
FIG. 39. Sunrise diagram involving tw@ interactions. (D12
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with GRY H(k=Ke, ;9% v,A0) = 09r (% V,0,A).
o, Zr1(9;v,Aq) (D15
eri(Qiv, v Ag) = ———— : : , .
Zr (9", v",Ap) For theN chains we are interested in, the flow equations of
pr, are given in Appendix E2, EqE14). The flow equa-
_ Zr,(9;v,Ap) tions of ¢_; can be checked to be exactly the saftigs is
N Zn |[§(9'V v Ag)i v Agl ' due to the Left-Right symmetry of the system we study
o , (D13) APPENDIX E: RG FLOW EQUATIONS

In these equationgy is a shorthand notation for all the cou-
plings, at scaley, andg’ is the same at scalg’. In the last 1. Flows of the couplings

equation, the functiog is relating the value of the couplings The flow equations for the couplings that are given below
at two different scales by’ =g(g;v,»',A,). Finally, the are the field-theoretical RG equations, obtained after the gen-
RG flow equations for thep functions are found by differ- eral analysis of Appendix D has been performed. In these,
entiating the multiplicative relation g, (g;v,»",A,)  the RG timetis given byt=In(A/») (Ao being the ultra-
= or (g, Ag)er (g v, v, Ag), and one obtains \{lolet cutoff and v _the typ|cal energy scale of th_e interac-

' ' tion), and the running couplings are low-energy interactions

i A G(v).
I Feri(Giv v Ao) The high-energy flow equations of the couplings in the
cutoff scaling scheme are easily deduced from the ones in the
=@ri(g;v, v, Ag) X field theoretical version. They are in fact the same, with the

sole difference that thefunctions appearing in the flows are

to be replaced by fwhich is the value theskfunctions take

at high energigs Notice, however, that the quantities enter-
vi=v! ing the flow equations now have different physical meanings.

(D14)  The cutoff scaling time i$=In(Aq/A) (A being the running

Notice that the importance of the functions lay in the close cutoff), and the couplings are running bare couplings
link between these and the renormalized propagator, that or@g(A).
can deduce from EqD12) and the renormalization prescrip-  The field theoretical RG flow equations for the charge,
tion of Eq.(D11): spin and Umklapp couplings are given below:

J (B ’ '
7¢R,l[9(9 v v Ag) v v Ag]

aths(I,J)=%2 [f(t,Zv KPR, INGE(1,d+ a— 8)GS_ (1 +a,d)+3GS(1,d+ a— 8)GS_ (1 +a,J)]
—f(t,20eKPP(1,)[GS(1,9)GS_ (1 + @,d— @) = 3G3(1,9)GS_ (I + @, 3~ )]

+(1,20 K ,J))[UQ(I J+a—8)Us (1 +a,)+U;_ _s(1,d+a— U _,_ 51 +a,d)

1 1
2U5 a(l-l—a J)U_] | — 5(' J+a— 5) U_] | — 5(|+CY J)Ua(l J+a— 5):|] (El)

3G3(1,d)= % > (f(t,ZuFKg?ﬁ(l IN[2GS(1,d+ a—8)GS_ (1 +a,) +G3(1,d+ a— 8)GS_ (I + a,J)

a

+G(1,J+a—8)G3_ (I +a,d)]+f(t,20¢ Kgpa LIN[2GE(1,I) G (1 +a,d—«)

—G3(1,9)GS_ (1 +a,d—a)—G%(1,1)GS_ (I + a,d— a) ]+ f(t,20,KY! (|,J))[UJ,5(|,J+a—5)

1 1
XUJ,|,5(I+C¥,J)_EU&,Q(I+C¥,J)UJ,|,5(I,J+a_6)_EUJ,|,5(I +a,J)Ua(|,J+a—5) ] (EZ)

U 41,d)= % > (6, 20eKESH1L,IN[GE LI+ a—6,1) =G (J+a—8,1)]U;_ (1 +a,d)+ f(t,20eKE%(1,))

X[GS_ (1 +a,0)—G5_ ,(1+ @,) U ,(1,3+ a— &) — f(1,20eKES3(1,0)[2G}_ (a+ 8,)U;_ o s(a,)]
—f(t,20KES (1,265, s(@, DU, _o(a+ 8,11+ (1, 20KEP(1,I[GE (1 + 5+ a,l)
+3G° (I+8+a,)JUs(1+a,d)+f(t,20KEP(1,I))[GS_(a—8,d)+3G5_(a—8)]Uxl,a)}. (EI
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In the above three flow equations, we have used the fol-

lowing notations: KSH(, J)_—[Ak (1,J)=2AK,1 5-5(3,@)], (EL0
KE;%(I,J)=%[Aka(l,J)—ZAka(l.J)], (E4)

KEL(I, J)——[Akg(I,J)—ZAka(I,I+a+ N1,
th‘a(l,.])=%[Akﬁ(I,J)—ZAka(I,J+a—6)], (E5) (E1)
KOS, J)——[Aké(l 1)—2AKY(1,3+a—6)], (E6) KSSo, J)——[Ak“(l J)—2Ak,_5(J,a—8)].

(E12

KES(1,9)= —[Ak;’u,J)—zAka(l,J+a—5)], (E?) . -
We refer the reader to Appendix D2 for the definitions of

Akg(l,J) andAklg(I ,J). Thef function is defined as follows:
KGU2(| J)— —[Ak (I J) ZAka 5(:] I-I-a)] (E8) f[tzln(AolV),é]zl if V2|5| and 0 otherwise.

cUs U 2. Renormalization of the propagator
Ko (1,9)= _[Ak (1) =28ke (1, at8)], (B9 The two-loop self-energy has the following expression:

2[GS(1,9)GE (1 +a,d—a)+3G5(1,J)G® (I +a,J—a)]

1

S@(k=Ke |, 0=pu+v)= —
RiI( FlLo0=ptv) 4N2%
| V2~ [vrAky(1,9)]7

(ZUFAO)2

|v2—[vFAk2<l,a>]2|H
(2vgA )2 '

X[v+veAk,(1,3)]In

Ua(l 1‘])[2Ua(| 1‘])_ UJ*I*a(l !‘])]

X (v+veAkY(1,3))In

(E13

The ¢ functions relating renormalized propagators at two different scales satisfy the gene(BllBg.which in the case
of N chains read

g In(g)= i % [Z[G‘;(I )G (1+a,d—a)+3G3(1,0)G° (I + a,d—a)]

x[(u —UFAk;‘(' ’”) flv,veAk,(1,d)]— —UFAk:(' ) [v,veAk,(1,9)]

U
" (1+UFAka(I,J)>
14

TULLD[2U,(1,0) = Uy _o(1,9)]

AKY(1,3
flv,weAKY(1,3)]- WI[MUFAKS(I 9]

] , (E19

where the function is defined byl (v,8) =In(|2/4)) if v=|5| and=0 otherwise. This function is, &sa logarithmic approxi-
mation of a more complex function, diverging at sdale From the definition ofp, [see Eq(D13)], it is clear that if the initial
high-energy quasiparticle weight is equal to one, then one simplyZHas= 1/¢,(t).

The flow equation for the running Fermi surface in the cutoff scaling scheme is also obtained thanks to the self-energy, and
we find

k)= 2—2 20KQ(1L,D[GE ,(1,D)GE (1 +a,d—a)+3G] ,(1,)GE _ (1 +a,d—a)]+AKYO(1,9)U ,(1,J)

X[zua(li‘])_UJflfa(la‘])]_%ZI Akg(O)(IIJ)Ua(l1‘])[2Ua(|!‘])_UJflfa(I:J)] . (E15)
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