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Using the bosonization approach, we study fermionic systems with a nonlinear dispersion relation in dimen-
siond=2. We explicitly show how the band curvature gives rise to interaction terms in the bosonic version of
the model. Although these terms are perturbatively irrelevant in relation to the Landau Fermi-liquid fixed point,
they become relevant perturbations when instabilities take place. Using a coherent-state path-integral tech-
nique, we built up the effective action that governs the dynamics of the Fermi-surface fluctuations. We consider
the combined effect of fermionic interactions and band curvature on possible anisotropic phases triggered by
negative Landau parametef@omeranchuck instabilitigsin particular, we study in some detail the phase
diagram for the isotropic/nematic/hexatic quantum phase transition.
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I. INTRODUCTION instabilities leading to a breakdown of the discrete rotational
symmetry.

One commonly used approximation for studying strongly ~_ With these motivations in mind, we will present a system-
correlated fermions at low energies is the linearization of thetic study of the bosonization of fermionic systems with a

fermion energy dispersion relation near the Fermi surfaceionlinear energy dispersion relation in any number of dimen-

G P .__sions.
For example, its implementation in the context of bosoniza Concerning the Luttinger model casé<1), the first

tion leads, together with the renormalization grai), to a work, included nonlinear dispersion terms that were taken

powerful nonperturbative technique to deal with many-body; .. account, was carried out by Haldahele showed that

problems. In one dimension this approximation gives rise tqne resulting bosonized Hamiltonian is modified by the addi-

the Tomonaga-Luttinger modélwhile in d>1 the Landau  tion of nonquadratic terms in the bosonic variables. Explicit

theory of Fermi liquids comes up as a fixed point in the RGcorrections to the corresponding one-particle Green function
sens€° In both cases, the bosonized Hamiltonian is quawere recently computed in Ref. 13. For dimensions greater
dratic and the model can be solved exactly, while small perthan one, the influence of nonlinear dispersion terms on the
turbations can be studied using the RG. In particular, nonlinone-particle Green function was studied by Kopietz in the

ear terms in the dispersion relation are perturbativelyframework of functional bosonizatiof!.

imelevant, that is, they do not modify the long-wavelength InFthis _worI; we are di_nteresgiig stu((jjying_the dynamI@c_s of
oroperties of the System. the Fermi surface in dimensi and getting an explicit

. . S understanding of how the nonlinear dispersion relation could
However, in some cases, the linear approximation must b

_ i . o Stabilize possible phases, other than the isotropic Fermi lig-
improved. Induced nonlinear terms in the quasiparticle eng;q one.
ergy dispersion become important when fermions aré The jdea of a Fermi surface as a dynamical quantum ex-

coupled to transverse fluctuating gauge fields. This is th@apnded object was originally introduced by Lutieand im-
case of some models of high superconductofsand gauge  proved by Haldané®!" This concept was developed in great
theories of the half-filled ¢=1/2) quantum Hall effect. detail by Castro Neto and Fradkifhand by Houghton and
More recently, the possibility of having anisotropic Marston? In Ref. 2, the bosonized theory is written in a
ground states driven by spontaneous rotational symmetryoherent state basigp) representing deformations of the
breaking (quantum liquid crysta}§® was suggested. These Fermi surface. In this way, the quantum dynamics of the
new phases were proposed to describe transport propertiggstem(the partition functioh is expressed as a Feynman
of half-filled quantum Hall systemsand highT, super- path integral where the “sum over paths” corresponds to
conductor€ They can be associated to Pomeranchuk instasumming up the contributions coming from all possible de-
bilities'® of the isotropic Fermi surface and for these novelformations of the Fermi surface.
ground states become stable, it is essential to consider The first part of this paper is devoted to apply the above-
nonlinear fermion dispersion relatiohs.An interesting mentioned formalism to explicitly show how nonlinear terms
related phenomenon was also pointed out in Ref. 12, whereia the energy dispersion relation contribute with interacting
Hubbard model is studied using RG techniques. There ihonquadratic terms in the bosonized action, in arbitrary di-
was shown that for a certain region of the parameter spacenensions. Equatio(¥.7) below is one of the main results of
strong forward-scattering interactions favor Pomeranchukhis paper, showing the effective low-energy Lagrangian of
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FIG. 1. Phase diagram of an electron gas with nematic and FIG. 2. Phase diagram of an electron gas with nematic and
hexatic instabilities. In this cas;,|<1 for n#2,6. The bold and hexatic instabilities. In this case, the Landau parameters are not
dotted lines represent second- and first-order transitions, respetestricted to small values angk> y3/16. The bold lines represent
tively. The origin BP is a bicritical point second-order phase transitions and TB is a tetracritical point

the Fermi surface at the Fermi poilﬁt(particle-hole excita- meet together. However, if the statfig's are not small, a

. . n . o coexisting nematic-hexatic phase with a tetracritical point is
tions with momentunt). The second and third derivatives possible 9 P P

of the_ dispersion reIaFion Iead_ to the CL_Jbic and quartic' |, the rest of the paper, we explicitly develop the math-
bosonic terms, respectively. Notice that this general formugmatical details leading to these results. In Sec. II, we

lation stands for arbitrary smooth Fermi surfaces, being pafpresent our Hamiltonian model for spinless fermions. In Sec.
t?cularly suitable for studying phases where shape deformaj|, we show how to apply the bosonization method to
tions are present. Hamiltonians with a nonlinear dispersion relation and explic-
These deformations can be classified according to thﬂly compute the corresponding nonquadratic bosonized
symmetries of an order parameter, similar to the classificaterms. Then, in Sec. IV, we analyze the Fermi-surface dy-
tion of classical liquid crystal€ In fact, we can think about namics, building up a coherent-state path-integral formula-
the quantum equivalent of smectit?® nematic?® or tion for the partition function of the system. Finally, in Sec.
hexati¢! phases and their corresponding quantum phas¥, we analyze the possibility of isotropic-nematic-hexatic
transitions. quantum phase transitions. Section VI is devoted to a discus-
In Ref. 11, Oganesiaat al. showed for the first time that sion of the results and to the presentation of our conclusions.
guantum isotropic/nematic and isotropic/hexatic phase tran-
sitions are possible in systems where the Landau parameters Il. THE HAMILTONIAN
F, andF¢ of the usual Fermi-liquid theofy take large and We consider a fermionic system characterized by a
negative valuegfor a definition of F,'s, see Eq.(5.5 be-  smooth Fermi surface given by the set of Fermi poks

Iow]_. In Ref. 22, one important factor to stabilize the aniso_'satisfying e(Ke) =, wheree(K) is an arbitrary energy dis-
tropic states is the consideration of a nonlinear energy dissersion relation. The one-particle excitations are associated

persion relation N the 'T‘Ode' Ham|Iton|an.. .The COITES-\ith a set of operators;f andcg, creating and destroying a
ponding electronic properties are very promising, since the

quantum nematic and hexatic states seem to present noff/mion with momentunk. These operators satisfy the usual

Fermi-liquid behaviot: fermionic anticommutation relations. For simplicity, we ig-
For these reasons, in the second part of this paper we u§@re the spin degree of freedom; however, the extension to

the nonperturbative bosonization approach to study quantursPinfull fermions is straightforward. o

phase transitions to anisotropic electronic states in two- In general, the Hamiltonian can be written in the form
dimensional systems. In particular, we will concentrate in H=Ho+Hip. (2.2
nematic and hexatic quantum liquid-crystal phases where t
order parameter is invariant underand =/3 rotations, re-
spectively. ” T

IOThe myain result of this paper is displayed by the phase HO_EE Le(k) = n]cy k. 2.2
diagrams in Figs. 1 and 2. By integrating out all the stable . . .
moges we obte?in an effective ¥ree e%lergygat zero temperatuf%general twa-body interaction term can be writien as

hFhe free(quadrati¢ term is given by

as a function of the Landau parametésandFg. We find 1 S o (g
different behaviors depending on the relative values of the Hint_ﬁlz = kpvk'F(q)CIEF—(d/z)
stable Landau parameteFs, (n#2,6). When these param- FokE g
eters are small, the phase diagram has a tricritical point « ci 1 -
' . . c i12)Cr o (5 CK. = (6/2) » 2.3
where two second-order phase transitidisstropic/nematic, ket (@2) %Ki+ (d72) ke~ (0/2) 23
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where f'ZFJZ’F(q) is the scattering amplitude among two In this space, the operatof8.3 satisfy the following

particle-hole pairs with momentui at the Fermi point&F commutation relatiofi

andk . > >, .
. [Ng(K),n_g/(K")]=6k k855G - Ugd(u—€g), (3.9
In Eq. (2.2, the energy dispersion relatios{k) can be g ! Kiead F “
expanded in powers a@f=Kk—Kkg, where due to the lastfunction,k is constrained to lie on the
) Fermi surface. For an arbitrary value gf the operators
~ J%€e ” i
)= u+ie-G+= . ng(k,t) .do not annihilate the reference state. However, we
cK)=p+ve-q 2 9k ok, R:EFquJ can define the operators
1 % (K, Kg)
31 Fkiakgak|_ AT (2.4 ag(ke) =2, —\/aiﬁ{nq(k)e(ﬁ A)
F k VN(kp)V[q- v
WherEU,::v,:(k,:)=V6(k)||2:|2F is the Fermi velocity. +n_q(l2) 0(—qg-h)} (3.5
Ill. THE BOSONIZED HAMILTONIAN @(E EF)
TRy I b LAY SR NP
Bosonization is a powerful nonperturbative technique to aq(kF)_EI;‘ /N(Iz W|G-o |{n,q(k) 6(d-n)
deal with interacting fermions. In the case of two- FIVIG-vr
dimensional parity breaking systems, it can be implemented +n+q(IZ) o(—G-h)} (3.6)

in terms of a dual gauge theofgee, for instance, Ref. 23
and references therginOn the other hand, the bosonization (f, js a unit vector normal to the Fermi surfaceka). The
of a parity preserving system at finite density can be accomy, . ino functionb (K,K.) is one, ifk belongs to the patch
plished by introducing a restricted Hilbert space of small N i )
energy particle-hole fluctuations around the Fermi surface. IffiP€led byke and zero otherwise. In the thermodynamic
this case, the general formalism was developed in Refs. 2—4Mit, we have

In this section, we find a bosonic representation for the .
Hamiltonian systen{2.1) when a general energy dispersion lim ®(k,ke) = ok k., 3.7
relation[Eq. (2.4)] is considered. In order to establish nota- D.A—0
tion and to make this paper self-contained, we will first sum- . R
marize the main concepts of bosonization by following Refs € local density of stateN(k) is given by
2 and 3.

We define a reference sta€S) by applying fermionic N(kg) =2 |D(K,Ke)[2(n— e(K)), (3.8
creation operators to the vacuum st so as to occupy all K

the states up to the Fermi surface R R
and the operatoraq(k),ag(k) satisfy

ke
IFS)=I] cllo). (3. ag(ke)|FS)=0, (3.9
k
We use this state to normal order all the relevant operators of [aq(lzp),a,;/(l%)]= . ,gé(ﬁq,q, +8g-g), (3.10
the theory according to
o R generating the whole restricted Hilbert space of states. In this
:0:=0—(FS|O|FS). (3.2  space, the fermion operator

The low-energy behavior of the system is essentially de- - i o
scribed in terms of the particle-hole bosonic operator l/’(r!kF):% e%cy(ke), a<A (3.1)

nq(IZ,t):cE_(q/Z)(t)c|;+(q,2)(t), (3.3  can be written in bosonic form &s

wherek~Kkg and smallg fluctuations are restricted to a thin R N(ke)
shell around the Fermi surface. In fact, the approximation — ¥(F,Kg)=
that defines the restricted Hilbert space of interest can be

defined by the conditiog<<D <A <k, whereD is the shell e idq 7
thickness and\ is the width of the finite amount of patches Xe F{ —2 - - N
used to cover the Fermi surfateThese restrictions mean T N(kp)VI|G- U

>

U(kg)

(¢4

M

that the physical Hilbert space considered corresponds to a (3.12
subset of excitations aboVES) mainly generated by small- .
angle scattering processes. or equivalently, in terms oé4(kg),
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The bosonization of the free fermionic Hamiltonian is less
U(IZF) trivial. First, let us see what kind of terms appeaHp [EQ.
(2.2]. The tensor structure of the Hamiltonian is conve-
L . niently written in terms of a local reference frame defined by
{e7"9"aj(ke) — €T Tag(ke)} the unit vectorsh andt, normal and tangent to the Fermi
xexg — > . ’ gent to the
§he0 N(Ke)V|G- o] ’ surface, respectively. In terms of these directions, it is easy to
FIVIG-ve see that when considering expansi@d), the first term in
(3.13 Hg only contains the normal field derivative

N(K)

i

lr/l('?ka) =

where a is an ultraviolet cutoff andJ(IZF) are the “Klein

factors” that guarantee anticommutation relations among op- f d™ " (%, Ke) - V gh(x,Ke). (3.19
erators with differenllz,: (for an explicit expression of the
Klein factors, see Ref.)4 For the second-order derivatives of the dispersion relation,

Using the fermion-boson mappin.13 and the bosonic we can write
commutation relation$3.10 we can get the bosonized pro-
jection of any fermionic operator onto the restricted Hilbert e
space of states. For instance, the interacting part of the
Hamiltonian[Eq. (2. 3)] is simply bosonized, since it can be JKiokK |

written in terms ofnq(kF) provided we restrict the momen-

tum space considering only small-angle scattering processeshereé;, &,, and¢; are functions okg . A similar expres-

By normal ordering of the projected E(.3), we find sion can be written for the third-order rank tensor containing
the third-order derivatives. Therefore, tRespace represen-
tation of the dispersive part of the Hamiltonian contains nor-

=§1ninj+§2titj +§3(nit]‘+njti), (316)

1/2] 1/2 > A >
Hine= 2 Fie. ki (@G- 06| ™G 0| mal (h-V) as well as tangential field derivativet-¥).
kF Fd In order to obtain the bosonized form Hf,, we consider
> = . = the point-splitted product of the fermion field and its adjoint

xfal - . .

{83(ke)aq(ke)O(q-ke) O(G-ke) along a general directiodi. Using Eq.(3.12 and the Baker-
+aq(kF)aq(kF)®( kF)®(q |( )+ h. C} Hausdorff formula

(3.14 eheB o A+ B g(AB+(12(A2+52) (3.17)

where we have introduced the adimensional Landau function )

Fé, (@) =N"(Kp)NYAKL) Fi_i2(d), and © is the usual e OPtain

Heaviside function. 1
The restriction of the Hilbert space is usually justified by ;l/,‘r( F—=a,ke

RG argumenté? The long-angle scattering coupling con- 2

stants flow to zero at long distances, leaving only a

bosonized Hamiltonian that contains small-angle scattering :e—ziz _

excitations. That is, the long-angle scattering operators are d N(kp)VG-vf

perturbatively irrelevant in the renormalization-group sense.

However, they renormalize the parameters in the Hamil- (3.18

tonian. For this reason, the couplin@gF‘ng(q) in Eq.(3.19 where

should be considered as phenomenological inputs with no

trivial connection with the microscopic ones. This limitation R (eldd_1)

is at the heart of the bosonization procedure. However, this G(d,kg)= _— (3.19

technique gives very general and powerful results concerning a7>0 N(kg)V|G- U

phase diagrams and the universal structure of fermionic cor-

relation functions. Of course, to make contact with micro-Let us first consider a directiailocally tangent to the Fermi

scopic models, nontrivial numerical computations are necessurface f= et). In this case, when summing in E€8.19

sary. _ . . over the normal §y=§-f) and tangentdq;=¢-t) compo-
Notice that for a fixedj, the first term in Eq(3.14) rep- nents, we get

resents interactions among particle-hole pairs in the same

hemisphere of the Fermi surfa¢eith respect to the direc-

tion of §), while in the second term the interaction mixes the (e,Ke)= 1 2 (eicdr—1) 2 1

two hemispheres. This second term does not contribute to the F N(IZF)VUF ar an=0 |G|
asymptotic fermionic correlation functiodshowever, we (3.20
will keep this term, since it could become relevant in the

case of nested Fermi surfaces. and consideringgr<<1, we obtain
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. (GA)ZJD 1 v
G(ekp)=———| dogyv— 3.2 hy=———— G1- A|Y4d,- 7| Y465 0| Y96, A2
(€,kp) 20 Jo QN|qN| (3.2 3 AIN(Ke) Vo %i: |G1- Al M9 d2- A M9 s A MG, A
(for an anisotropic Fermi surfaag:-=|7¢| is ke dependent X 8(Gy+ o+ s+ da){4ad (Ke)ag,(Ke)ag,(Ke)ag,(Ke)
Note that the remaining integral iy has a logarithmic in- o . o .
e >< — . H . . H; .

frared divergenceG(e,kg)=—In(V), and since the normal O(=a- OG- M)O(Gs-MO(Qs-)
order in Eq.(3.18 is a regular function we conclude that in +3al (ke)al (Ko)as (Ke)as (Ke)O(—d,- R
the thermodynamic limit, a,(KF)ag, (Ke)g,(ke)aq,(Ke) O(~ G1-1)

. ) XO(—q,-N)O(G3-N)O(G,-H)+h.cl, (3.28

Yl F—Eef,IZF)w r+ EEE,EF :=0. (3.22  where
_r

This result implies that the tangent derivatives do not con- = J E(k)ﬁiﬁ.mﬁ , (3.29
tribute to the projected bosonized Hamiltonian. In this re- akjok; T
gard, we recall that the bosonic particle-hole excitations, tan- R
gent to the Fermi surface, do not contribute to the asymptotic Pe(k)
form of the correlation function;however, they do contrib- Y= W in |||Z:|2F- (3.30

ute to the density of states and they are crucial to obtain the

correct specific heat and other thermodynamic propetties.
We will now concentrate on the bosonization of fermionic

The coefficient3 is related to the particle-hole asymmetry.
In fact, in a system invariant under charge conjugation,

terms containing normal derivatives. In this case, we can(k.+q)— is odd under the transformatiodi— —g. In

generalize a calculation proposed by Haldane in one spati
dimensior to the case of arbitrary dimensions. Let us con
sider the integral

1. 1.
Azf dF:wT(F—Eeﬁ,kF)w F+§eﬁ,kp):. (3.23

Introducing Eq(3.11) into Eq.(3.23 and expanding in pow-
ers of e, we find on one hand,

(_

n

iHn
€

A=

On the other hand, choosird@y= eh in Eq. (3.18), replacing
into Eq. (3.23, and expanding in powers @f we find the
bosonic version oA. Thus, comparing these two expressions
order by order ine, we find the bosonized projected Hamil-

%is case, the even derivatives efat the Fermi level IZ

=kg) vanish. For stability reasons, we will considgr0. If

v happens to be negative, then we should continue expand-
ing the fermion dispersion relation until a well-defined result
be achieved.

Equations(3.25—(3.28 display the main results of this
section. Theh; term corresponds to the bosonized free-
fermion Hamiltonian when a linear dispersion relation is
considered and coincides with the one computed in Refs. 2
and 4. Then, the final bosonized Hamiltonian contains a qua-
dratic part (2th1+ Hin) plus a nonquadratich; + h3) term

which is related to dispersive effects on free fermions. In
order to calculate any observable, the dispersive part should
be treated by means of perturbation theory. In the Fermi-
liquid regime, the nonquadratic terms are irrelevant, although
interesting effects were studied in the context of the Landau
theory®®

tonian. When expanding the dispersion relation up to the Here, we are interested in understanding the role played

third order in the derivatives, we get

Ho=2 hy(Ke) +ho(Ke)+hs(ke) (3.29

ke
with

1% N N

hy=— > |d-flal(ke)ag(ke), (3.26
2 470

AN C— R WS R NE
2[N(kp)Vue]¥2 q

X 8(Gy+ G+ da){ag, (Ke)ag,(Ke)ag,(Ke)

X0(—q;-NO(-q-NO(Gs-A)+hecy, (327

by the presence of dispersion effects when the interacting
system is otherwise unstable. The next two sections are de-
voted to study this issue.

IV. DYNAMICS OF THE FERMI SURFACE

As shown in Ref. 2, the Fermi-surface deformations can
be associated to collective particle-hole excitations described
by coherent states in the bosonized theory. In the stable case,
contact is made with the Landau theory for Fermi liquids. As
we will see, this procedure applies equally well to the gen-
eral case where dispersion effects must be taken into ac-
count.

Following Ref. 2, we define a many-body state that is a
direct product of coherent states parametrized by a complex

field ¢q(K):

|$)=U(¢)|FS), (4.)

205108-5
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where
U(gp)=e T (4.2
and
1 ve o o
F(‘f’):ap,qzm NV oo {$g(ke)ag(ke)
— ¢k (Ke)ag(Ke) ). 4.3

The “deformation” fields satisfys? (Ke) = ¢ 4(Kg), imply-
ing I'* (¢) = —T(¢) andU"(¢)=U""(¢).

PHYSICAL REVIEW B 67, 205108 (2003

The Lagrangian in Eq(4.7) controls the low-energy dy-
namics of the Fermi surface. Note that this dynamics is ex-
tremely nonlocal due to the factor|@/f| in the kinetic
term. In the region where the quadratic term is stdplesi-
tive definitg, the first two lines represent the usual Landau
theory of Fermi liquids. This is a fixed point in the RG sense,
that is, the nonquadratic dispersive terms do not modify the
asymptotic correlation functions. However, if interactions are
such that the quadratic term is unstable, the nonquadratic
terms become relevant, thus stabilizing the theory in another
fixed point.

A word of caution is necessary to understand the validity
of Eq. (4.7). According to the renormalization-group theory,

The system’s partition function can be written in terms of Nt only the couplings=; . (q) but also the parameteys

this overcomplete coherent-state basis by means of the paft!

integral
z= f DpD* eS¢, (4.4
whereS( ¢, ¢*)= [dtL(p,d*) and
i . d¢g(Ke 1)
L(},dp*)= —— | PE (kg t)———
(#h)=2 N(kF>V|ci~ﬁF|(¢q( ST
—(#IH[ ). (4.9

d v will be renormalized by irrelevant operators. There-
fore, although we showed how the band curvature generates
the nonquadratic terms in Ed4.7) [see EQgs.(3.29 and
(3.30], the actual calculation of these parameters for a given
band structure is not at all trivial.

Also, in the present paper we are interested in understand-
ing how the band curvature can drive the system to a new
rotational symmetry-breaking ground state. For this reason,
in Eq. (4.7), we have only considered small-angle scattering
processes with small momentum transfer, disregarding any
irrelevant term coming from the interaction Hamiltonian. On
the other hand, it is well known that some interaction chan-
nels, although irrelevant, could give rise to different instabili-
ties. For instance, the Kohn-Luttinger instabifitycomes

The evaluation of #|H|#) is straightforward, since the from the competition of forward scattering with a BCS chan-
bosonized HamiltoniaEq. (3.25] is normal ordered and pg| even for repulsive interactions. Recently, a similar dy-
the coherent states are eigenvalues of the destruction opefggmical effect in two-dimensional Fermi liquids was re-

tor aq»(lz,:):

L [6q(ke)O(G-ke) + 0 (Ke)O(— G- k)]

aq(ke)| ) -
o N(Ke) VI

|#)
(4.6

Using Egs. (3.14, (3.29, and (4.6), we find the
following Lagrangian [after the field redefinition ¢

— (VN(kp)vp) 2]
i

wp o 9Pk
L= | — |t (k) ———
%(m-m)d’q( T

1 . ,
+3 2 930S+ Fii (@) Voo do(K')
q
B

+Re 5 2 D0,(K) B, (K)o, (K) Syt A )

Y
27 2 $0,(K) g, (K) b, (K) b, () (1 + - +7l)

kg;
4.7

wherek andk’ lie on the Fermi surface, and we have ab-

sorbed powers dN(0)Vug (Ref. 26 into the definition ofB
and y.

ported in Ref. 28. The interplay among the anisotropic
phases studied here and other interaction channels is a very
interesting issue, and the multidimensional bosonization
technique described in this paper seems to be a promising
tool to handle it.

With these comments in mind, we can study, for instance,
the static deformations of the Fermi surface described by the
system’s free energy, which can be computed as the action
per unit time, when setting to zero the kinetic term in Eq.
(4.7). Introducing the Fourier-transformed field

ddq

(2m)¢

o(x,K) = J pq(K)e 10 4.9

at each point of the Fermi surface, the expression for the free
energy is simplified to

lef dxdx 2, o(x,k)M(k—K',x=x")@(x' k')
2 L
+2|2 fdx[§¢(x,k)3+%¢(x,k)4 , 4.9

where
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M (K=K’ x—x') usual criterion for the Fermi-liquid stability:®152° How-
ever, if for some channelit happens thaf,,<—1, thenitis
={vpdk i 6(X—X")+Fg (X=X )Vueve).  (4.10 possible to develop quantum phase transitions to anisotropic
states. Assume, for instance, that we have a ground state

In the following section, using the framework provided by haracterized by,#0, ande, =0 for all n%2. In this case
bosonization, the problem of spontaneously broken rotationa} e deformation f?eld ;/vould erave the form '

invariance is explored.

V. THE ISOTROFI:LCXSEE'\-?QE,\?;?TEQQQC QUANTUM @(0)=4¢,{2 CO§( 9)—1}, (5.6

The order parameter of the two-dimensional nematic . _ _ . r’d‘ .
phase is a second-rank traceless antisymmetric tensor. It f1aracterizing a two-dimensional nematic orderThis

odd underm/2 spatial rotations, and the two independentWOUld correspond to a transition where, because of the inter-
components can be cast in the form of a *headless” two-actions, the otherwise circular shape of the Fermi surface is
dimensional vector called the “director.” The director is in- deformed into an ellipse.
variant under asr rotation, characterizing in this way the  In general, as we mentioned above, it is interesting to
nematic staté® On the other hand, a hexatic phase is charstudy instabilities in the nematic/hexatic sector. They are ex-
acterized by an order parameter that is invariant und8r  pected to occur whefr, and Fg are large and negative.
rotations. These states are of great interest, since they afidis case can be treated by integrating over all the stable
candidates to present non-Fermi-liquid behavior in twomodes¢,, n#2,6. As aresult of this integration, all the
dimensions'! relevant terms that are compatible with the symmetry will be
By means of the bosonization approach, we will studygenerated, obtaining the following effective free energy for
them. as particular instabilities of an |so§rop|c.Ferm| ;urface{he modesp, and ¢g:
The important role played by the fermionic interactions as
well as the dispersion effects for the establishment of these
phases will become explicit. Ve
Let us begin by considering an isotropic Fermi surface in F=\p3+ )\6<p§+7{<p‘2‘+ oe}+ preses, (5.7
two dimensions and a short-ranged interaction. In this case,
the Landau function only depends on the angle between the

two Fermi vectorsk andk': which is written in terms of renormalized interaction con-
stants[A,=ve(1+F,),A\g=ve(1l+Fg)]. This free energy
presents the interesting possibility of quantum phase
With these considerations, the ground state of @) be- transitions’ among isotropic ¢,=@s=0), nematic (,
comes homogeneouép(x,k))=¢(6), and the free energy #0,906=0), and hexatic statespt= 0,967 0). There is also

Fig(X=x")=F _g o(x—x"). (5.2

is simplified to the possibility of coexisting nematic-hexatic phases, (
7&0,(,067& O)
_UF , , , It is important to note that while the phase transitions are
F= ?j d6do’ ¢(6){8p- o +F(6—0")}e(6') triggered by the values df, and Fg4, the structure of the

phase diagram depends on the other Landau paranteters

(n#2,6) hidden inyg andug. For instance, ifF,|<1 (for

all n#2,6), then ug~ yg/2, and the qualitative phase dia-

gram is shown in Fig. 1. This diagram presents a bicritical

point at the origin of thex1-\, plane. The bold lines repre-

sent second-order phase transitions between the isotropic/

e(0)=> e’ (5.3 nematic and the isotropic/hexatic phases. Moreover, the in-
n terphase nematic/hexatidotted line in Fig. 1 corresponds

to a first-order phase transition.

However, if F,~1 there is the possibility of having
'yZR/16<,uR. In this case, the phase diagram changes quali-
tatively (see Fig. 2 There is a tetracritical point with four
second-order phase transitions. Rgr<O\,<<0, there is a
region of coexisting phases, which is absent in the preceding
case.

_F e In order to study the electronic properties of these phases,
k=2 zn: (1+Fn) onent 41 n%:lp #n@m®I@pon-meip- we need to consider the dynamics associated with the La-

(5.5  grangian, Eq.(4.7), and to evaluate quantum fluctuations

In the case wheré,=—1, it is clear that the only mini- around the saddle points found in these sections. This discus-

mum of Eq.(5.5) corresponds t@,=0 for all n. This is the  sion will be presented elsewhere.

+Jd0[§<p(0)3+ 4—7!<p(0)4 . (5.2

Now, introducing the representation

F(9)=>, Fen, (5.4)

(¢r=¢_,) and considering a particle-hole symmetric sys-
tem (B8=0), we obtain
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VI. DISCUSSION AND CONCLUSIONS and a first-order onénematic/hexaticmeet together. In the
opposite case, there is the possibility of having a coexisting

In this work, we have constructed the bosonized action fornematic—hexatic phase with a tetracritical point,

a general ferm|on|c system ha\(lng a sr_noo'th F_erml SL_Jrface These results were obtained by means of a mean-field
and a nonlinear energy dispersion relation in higher dimen-

sions. We have shown that the effect of the nonlinear termsaddle-point calculation on the bosonized action. It is clear
\ that some of the global featurésspecially, the first-order

in the energy dispersion is that of producing interactions in TR g4
the bosonized theory. To the best of our knowledge, this i lﬂgtsuztfgir;smon in Fig.)1could be modified by quantum

the first explicit generalization to higher dimensions of the In particular, it would be very interesting to investigate

well-known gnalpgous result in one d|mensi‘on. .. the dynamical electronic properties of these phases. In this
The Hamiltonian, Eq(S.ZS, the corresponding action in regard, it was shown that the Goldstone modes of the nem-
t(geg)cg?fﬁgtﬁ;tf rk()aassulﬁs %?-tai’sang tgre free energy in Eq. atic phase are dampédxcept for certain Fermi points dic-
.From a phvsical point of viewp d?s érsion effects are ir_tated by symmetry considerationsvhile the fermion corre-
pny P ' View, disp C lation function shows a non-Fermi-liquid behavior. In order
relevant when the system is in the normal Fermi-liquid re-

: . - to address these points in the nonperturbative bosonization
gime, however, they are essential when due to some fermio

interactions an instability of the Fermi surface occurs, driv_ﬁamework, itis necessary to introduce quantum fluctuations

ing the electronic system outside this regime. In the Iatteraround each saddle point, and employ the Lagrangian, Eq.
case, the induced nonquadratic terms in the bosonized fre(g"n' and the fermionic operatd8.13 to compute fermion

energy (4.9 will stabilize the electronic system in a new correlators. We hope to present results on this issue soon.
ground state.

In particular, we have concentrated in two quantum
liquid-crystal states: nematic and hexatic. The corresponding
phase transitions are triggered by negative values of the Lan-
dau parameters-, and Fg, associated with the fermion We are very grateful to Eduardo Fradkin and A. H. Castro
interaction* However, the qualitative structure of the phaseNeto for useful comments. The Conselho Nacional de De-
diagramgFigs. 1 and 2depends on the relative values of all senvolvimento Cientico e Tecnolgico CNPg-Brazil, the
the other “stable” Landau parameters. When they are smallFunda@o de Amparo @esquisa do Estado do Rio de Janeiro
the phase diagram has a tricritical point where two seconddaper), and the SR2-UERJ are acknowledged for the finan-
order phase transitiongsotropic/nematic, isotropic/hexatic cial support.
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