
PHYSICAL REVIEW B 67, 205108 ~2003!
Strongly correlated fermions with nonlinear energy dispersion
and spontaneous generation of anisotropic phases
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Using the bosonization approach, we study fermionic systems with a nonlinear dispersion relation in dimen-
siond>2. We explicitly show how the band curvature gives rise to interaction terms in the bosonic version of
the model. Although these terms are perturbatively irrelevant in relation to the Landau Fermi-liquid fixed point,
they become relevant perturbations when instabilities take place. Using a coherent-state path-integral tech-
nique, we built up the effective action that governs the dynamics of the Fermi-surface fluctuations. We consider
the combined effect of fermionic interactions and band curvature on possible anisotropic phases triggered by
negative Landau parameters~Pomeranchuck instabilities!. In particular, we study in some detail the phase
diagram for the isotropic/nematic/hexatic quantum phase transition.
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I. INTRODUCTION

One commonly used approximation for studying stron
correlated fermions at low energies is the linearization of
fermion energy dispersion relation near the Fermi surfa
For example, its implementation in the context of bosoni
tion leads, together with the renormalization group~RG!, to a
powerful nonperturbative technique to deal with many-bo
problems. In one dimension this approximation gives rise
the Tomonaga-Luttinger model,1 while in d.1 the Landau
theory of Fermi liquids comes up as a fixed point in the R
sense.2–5 In both cases, the bosonized Hamiltonian is qu
dratic and the model can be solved exactly, while small p
turbations can be studied using the RG. In particular, non
ear terms in the dispersion relation are perturbativ
irrelevant, that is, they do not modify the long-waveleng
properties of the system.

However, in some cases, the linear approximation mus
improved. Induced nonlinear terms in the quasiparticle
ergy dispersion become important when fermions
coupled to transverse fluctuating gauge fields. This is
case of some models of high-Tc superconductors6 and gauge
theories of the half-filled (n51/2) quantum Hall effect.7

More recently, the possibility of having anisotrop
ground states driven by spontaneous rotational symm
breaking~quantum liquid crystals!8,9 was suggested. Thes
new phases were proposed to describe transport prope
of half-filled quantum Hall systems9 and high-Tc super-
conductors.8 They can be associated to Pomeranchuk in
bilities10 of the isotropic Fermi surface and for these nov
ground states become stable, it is essential to cons
nonlinear fermion dispersion relations.11 An interesting
related phenomenon was also pointed out in Ref. 12, whe
Hubbard model is studied using RG techniques. Ther
was shown that for a certain region of the parameter sp
strong forward-scattering interactions favor Pomeranc
0163-1829/2003/67~20!/205108~9!/$20.00 67 2051
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instabilities leading to a breakdown of the discrete rotatio
symmetry.

With these motivations in mind, we will present a syste
atic study of the bosonization of fermionic systems with
nonlinear energy dispersion relation in any number of dim
sions.

Concerning the Luttinger model case (d51), the first
work, included nonlinear dispersion terms that were tak
into account, was carried out by Haldane.1 He showed that
the resulting bosonized Hamiltonian is modified by the ad
tion of nonquadratic terms in the bosonic variables. Expl
corrections to the corresponding one-particle Green func
were recently computed in Ref. 13. For dimensions grea
than one, the influence of nonlinear dispersion terms on
one-particle Green function was studied by Kopietz in t
framework of functional bosonization.14

In this work we are interested in studying the dynamics
the Fermi surface in dimensiond>2 and getting an explicit
understanding of how the nonlinear dispersion relation co
stabilize possible phases, other than the isotropic Fermi
uid one.

The idea of a Fermi surface as a dynamical quantum
tended object was originally introduced by Luther15 and im-
proved by Haldane.16,17This concept was developed in gre
detail by Castro Neto and Fradkin2,3 and by Houghton and
Marston.4 In Ref. 2, the bosonized theory is written in
coherent state basisuf& representing deformations of th
Fermi surface. In this way, the quantum dynamics of
system~the partition function! is expressed as a Feynma
path integral where the ‘‘sum over paths’’ corresponds
summing up the contributions coming from all possible d
formations of the Fermi surface.

The first part of this paper is devoted to apply the abo
mentioned formalism to explicitly show how nonlinear term
in the energy dispersion relation contribute with interacti
nonquadratic terms in the bosonized action, in arbitrary
mensions. Equation~4.7! below is one of the main results o
this paper, showing the effective low-energy Lagrangian
©2003 The American Physical Society08-1
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the system. In Eq.~4.7!, fq(kW ) represents deformations o
the Fermi surface at the Fermi pointkW ~particle-hole excita-
tions with momentumqW ). The second and third derivative
of the dispersion relation lead to the cubic and qua
bosonic terms, respectively. Notice that this general form
lation stands for arbitrary smooth Fermi surfaces, being p
ticularly suitable for studying phases where shape defor
tions are present.

These deformations can be classified according to
symmetries of an order parameter, similar to the classifi
tion of classical liquid crystals.18 In fact, we can think abou
the quantum equivalent of smectic,19,20 nematic,21 or
hexatic11 phases and their corresponding quantum ph
transitions.

In Ref. 11, Oganesianet al. showed for the first time tha
quantum isotropic/nematic and isotropic/hexatic phase t
sitions are possible in systems where the Landau param
F2 andF6 of the usual Fermi-liquid theory22 take large and
negative values@for a definition ofFn’s, see Eq.~5.5! be-
low#. In Ref. 22, one important factor to stabilize the anis
tropic states is the consideration of a nonlinear energy
persion relation in the model Hamiltonian. The corre
ponding electronic properties are very promising, since
quantum nematic and hexatic states seem to present
Fermi-liquid behavior.11

For these reasons, in the second part of this paper we
the nonperturbative bosonization approach to study quan
phase transitions to anisotropic electronic states in t
dimensional systems. In particular, we will concentrate
nematic and hexatic quantum liquid-crystal phases where
order parameter is invariant underp and p/3 rotations, re-
spectively.

The main result of this paper is displayed by the ph
diagrams in Figs. 1 and 2. By integrating out all the sta
modes we obtain an effective free energy at zero tempera
as a function of the Landau parametersF2 andF6. We find
different behaviors depending on the relative values of
stable Landau parametersFn (nÞ2,6!. When these param
eters are small, the phase diagram has a tricritical p
where two second-order phase transitions~isotropic/nematic,

FIG. 1. Phase diagram of an electron gas with nematic
hexatic instabilities. In this case,uFnu!1 for nÞ2,6. The bold and
dotted lines represent second- and first-order transitions, res
tively. The origin BP is a bicritical point
20510
c
-
r-
a-

e
a-

e

n-
ers

-
s-
-
e
n-

se
m
-

he

e
e
re

e

nt

isotropic/hexatic! and a first-order one~nematic/hexatic!
meet together. However, if the stableFn’s are not small, a
coexisting nematic-hexatic phase with a tetracritical poin
possible.

In the rest of the paper, we explicitly develop the ma
ematical details leading to these results. In Sec. II,
present our Hamiltonian model for spinless fermions. In S
III, we show how to apply the bosonization method
Hamiltonians with a nonlinear dispersion relation and exp
itly compute the corresponding nonquadratic bosoniz
terms. Then, in Sec. IV, we analyze the Fermi-surface
namics, building up a coherent-state path-integral formu
tion for the partition function of the system. Finally, in Se
V, we analyze the possibility of isotropic-nematic-hexa
quantum phase transitions. Section VI is devoted to a disc
sion of the results and to the presentation of our conclusio

II. THE HAMILTONIAN

We consider a fermionic system characterized by
smooth Fermi surface given by the set of Fermi pointskWF

satisfyinge(kWF)5m, wheree(kW ) is an arbitrary energy dis
persion relation. The one-particle excitations are associa
with a set of operatorsckW

† andckW , creating and destroying a

fermion with momentumkW . These operators satisfy the usu
fermionic anticommutation relations. For simplicity, we ig
nore the spin degree of freedom; however, the extensio
spinfull fermions is straightforward.

In general, the Hamiltonian can be written in the form

H5H01H int . ~2.1!

The free~quadratic! term is given by

H05(
kW

@e~kW !2m#ckW
†
ckW . ~2.2!

A general two-body interaction term can be written as

H int5
1

2V (
kWF ,kWF8 ,qW

f kWF ,kW
F8
~qW !ckWF2(qW /2)

†

3ckWF1(qW /2)ckW
F81(qW /2)

†
ckW

F82(qW /2) , ~2.3!

d

c-

FIG. 2. Phase diagram of an electron gas with nematic
hexatic instabilities. In this case, the Landau parameters are
restricted to small values andmR.gR

2/16. The bold lines represen
second-order phase transitions and TB is a tetracritical point
8-2
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STRONGLY CORRELATED FERMIONS WITH NONLINEAR . . . PHYSICAL REVIEW B 67, 205108 ~2003!
where f kWF ,kW
F8
(qW ) is the scattering amplitude among tw

particle-hole pairs with momentumqW at the Fermi pointskWF

andkWF8 .

In Eq. ~2.2!, the energy dispersion relatione(kW ) can be
expanded in powers ofqW 5kW2kWF ,

e~kW !5m1vW F•qW 1
1

2

]2e

]ki]kj
U

kW5kWF

qiqj

1
1

3!

]3e

]ki]kj]kl
U

kW5kWF

qiqjql1•••, ~2.4!

wherevW F5vW F(kWF)5¹W e(kW )ukW5kWF
is the Fermi velocity.

III. THE BOSONIZED HAMILTONIAN

Bosonization is a powerful nonperturbative technique
deal with interacting fermions. In the case of tw
dimensional parity breaking systems, it can be implemen
in terms of a dual gauge theory~see, for instance, Ref. 2
and references therein!. On the other hand, the bosonizatio
of a parity preserving system at finite density can be acc
plished by introducing a restricted Hilbert space of sm
energy particle-hole fluctuations around the Fermi surface
this case, the general formalism was developed in Refs. 2

In this section, we find a bosonic representation for
Hamiltonian system~2.1! when a general energy dispersio
relation @Eq. ~2.4!# is considered. In order to establish not
tion and to make this paper self-contained, we will first su
marize the main concepts of bosonization by following Re
2 and 3.

We define a reference stateuFS& by applying fermionic
creation operators to the vacuum stateu0& so as to occupy al
the states up to the Fermi surface

uFS&5)
kW

kWF

ckW
†u0&. ~3.1!

We use this state to normal order all the relevant operator
the theory according to

:ÔªÔ2^FSuÔuFS&. ~3.2!

The low-energy behavior of the system is essentially
scribed in terms of the particle-hole bosonic operator

nqW~kW ,t !5ckW2(qW /2)
†

~ t !ckW1(qW /2)~ t !, ~3.3!

wherekW'kWF and smallqW fluctuations are restricted to a thi
shell around the Fermi surface. In fact, the approximat
that defines the restricted Hilbert space of interest can
defined by the conditionq,D,L!kF , whereD is the shell
thickness andL is the width of the finite amount of patche
used to cover the Fermi surface.17 These restrictions mea
that the physical Hilbert space considered corresponds
subset of excitations aboveuFS& mainly generated by small
angle scattering processes.
20510
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In this space, the operators~3.3! satisfy the following
commutation relation.2

@nqW~kW !,n2qW 8~kW8!#5dkW ,kW8dqW ,qW 8qW •vW Fd~m2ekW !, ~3.4!

where due to the lastd function,kW is constrained to lie on the
Fermi surface. For an arbitrary value ofqW , the operators
nqW(kW ,t) do not annihilate the reference state. However,
can define the operators

aqW~kWF!5(
kW

F~kW ,kWF!

AN~kWF!VuqW •vW Fu
$nqW~kW !u~qW •n̂!

1n2qW~kW !u~2qqW •n̂!% ~3.5!

aqW
†~kWF!5(

kW

F~kW ,kWF!

AN~kWF!VuqW •vW Fu
$n2qW~kW !u~qW •n̂!

1n1qW~kW !u~2qW •n̂!% ~3.6!

(n̂ is a unit vector normal to the Fermi surface atkWF). The
smearing functionF(kW ,kWF) is one, ifkW belongs to the patch
labeled bykWF and zero otherwise. In the thermodynam
limit, we have

lim
D,L→0

F~kW ,kWF!5dkW ,kWF
, ~3.7!

the local density of statesN(kWF) is given by

N~kWF!5(
kW

uF~kW ,kWF!u2d„m2e~kW !…, ~3.8!

and the operatorsaqW(kW ),aqW
†(kW ) satisfy

aqW~kWF!uFS&50, ~3.9!

@aqW~kWF!,aqW 8
†

~kWF8 !#5dkWF ,kW
F8
~dqW ,qW 81dqW ,2qW 8!, ~3.10!

generating the whole restricted Hilbert space of states. In
space, the fermion operator

c~rW,kWF!5(
qW

eiqW •rWcqW~kWF!, q!L ~3.11!

can be written in bosonic form as3

c~rW,kWF!5AN~kWF!

a
U~kWF!

3expF2(
qW

e2 iqW •rW

N~kWF!VuqW •vW Fu
n2qW~kWF!G ,

~3.12!

or equivalently, in terms ofaqW(kWF),
8-3
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DANIEL G. BARCI AND LUIS E. OXMAN PHYSICAL REVIEW B 67, 205108 ~2003!
c~rW,kWF!5AN~kWF!

a
U~kWF!

3expF2 (
qW •n̂.0

$e2 iqW •rWaqW
†~kWF!2eiqW •rWaqW~kWF!%

AN~kWF!VuqW •vW Fu
G ,

~3.13!

wherea is an ultraviolet cutoff andU(kWF) are the ‘‘Klein
factors’’ that guarantee anticommutation relations among
erators with differentkWF ~for an explicit expression of the
Klein factors, see Ref. 4!.

Using the fermion-boson mapping~3.13! and the bosonic
commutation relations~3.10! we can get the bosonized pro
jection of any fermionic operator onto the restricted Hilb
space of states. For instance, the interacting part of
Hamiltonian@Eq. ~2.3!# is simply bosonized, since it can b
written in terms ofnq(kWF), provided we restrict the momen
tum space considering only small-angle scattering proces
By normal ordering of the projected Eq.~2.3!, we find

Hint5
1

2 (
kWF ,kWF8 ,qW

FkWF ,kW
F8
~qW !uqW •vW Fu1/2uqW •vW F8 u1/2

3$aqW
†~kWF!aqW~kWF8 !Q~qW •kWF!Q~qW •kWF8 !

1aqW~kWF!aqW~kWF8 !Q~2qW •kWF!Q~qW •kWF8 !1h.c.%,

~3.14!

where we have introduced the adimensional Landau func
FkWF ,kW

F8
(qW )5N1/2(kWF)N1/2(kWF8 ) f kWF ,kW

F8
(qW ), and Q is the usual

Heaviside function.
The restriction of the Hilbert space is usually justified

RG arguments.24 The long-angle scattering coupling co
stants flow to zero at long distances, leaving only
bosonized Hamiltonian that contains small-angle scatte
excitations. That is, the long-angle scattering operators
perturbatively irrelevant in the renormalization-group sen
However, they renormalize the parameters in the Ham
tonian. For this reason, the couplingsFkWF ,kW

F8
(qW ) in Eq. ~3.14!

should be considered as phenomenological inputs with
trivial connection with the microscopic ones. This limitatio
is at the heart of the bosonization procedure. However,
technique gives very general and powerful results concern
phase diagrams and the universal structure of fermionic
relation functions. Of course, to make contact with mic
scopic models, nontrivial numerical computations are nec
sary.

Notice that for a fixedqW , the first term in Eq.~3.14! rep-
resents interactions among particle-hole pairs in the s
hemisphere of the Fermi surface~with respect to the direc
tion of qW ), while in the second term the interaction mixes t
two hemispheres. This second term does not contribute to
asymptotic fermionic correlation functions,3 however, we
will keep this term, since it could become relevant in t
case of nested Fermi surfaces.
20510
-

t
e

es.

n

a
g
re
.

l-

o

is
g
r-
-
s-

e

he

The bosonization of the free fermionic Hamiltonian is le
trivial. First, let us see what kind of terms appear inH0 @Eq.
~2.2!#. The tensor structure of the Hamiltonian is conv
niently written in terms of a local reference frame defined
the unit vectorsn̂ and t̂ , normal and tangent to the Ferm
surface, respectively. In terms of these directions, it is eas
see that when considering expansion~2.4!, the first term in
H0 only contains the normal field derivative

E dnxc†~x,kWF!n̂•¹W c~x,kWF!. ~3.15!

For the second-order derivatives of the dispersion relat
we can write

]2e

]ki]kj
U

kW5kWF

5j1ninj1j2t i t j1j3~nit j1nj t i !, ~3.16!

wherej1 , j2, andj3 are functions ofkWF . A similar expres-
sion can be written for the third-order rank tensor contain
the third-order derivatives. Therefore, thex-space represen
tation of the dispersive part of the Hamiltonian contains n
mal (n̂•¹W ) as well as tangential field derivatives (t̂•¹W ).

In order to obtain the bosonized form ofH0, we consider
the point-splitted product of the fermion field and its adjo
along a general directionaW . Using Eq.~3.12! and the Baker-
Hausdorff formula

eÂeB̂5:eÂ1B̂:e^ÂB̂1~1/2!(Â21B̂2)&, ~3.17!

we obtain

:c†S rW2
1

2
aW ,kWFDcS rW1

1

2
aW ,kWFDªeG(aW ,kWF)

:e22i(
qW

eiqW •rW

N~kWF!VqW •vW F

sinS qW •aW

2
nqW~kWF! D ,

~3.18!

where

G~aW ,kWF!5 (
qW •n̂.0

~eiqW •aW21!

N~kWF!VuqW •vW Fu
. ~3.19!

Let us first consider a directionaW locally tangent to the Ferm
surface (aW 5e t̂ ). In this case, when summing in Eq.~3.19!
over the normal (qN5qW •n̂) and tangent (qT5qW • t̂ ) compo-
nents, we get

G~e,kWF!5
1

N~kWF!VvF
(
qW T

~ei eqW T21! (
qN.0

1

uqW Nu
,

~3.20!

and consideringeqW T!1, we obtain
8-4
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G~e,kWF!52
~eL!2

2vF
E

0

D

dqN

1

uqW Nu
~3.21!

~for an anisotropic Fermi surfacevF5uvW Fu is kWF dependent!.
Note that the remaining integral inqN has a logarithmic in-
frared divergence,G(e,kWF)}2 ln(V), and since the norma
order in Eq.~3.18! is a regular function we conclude that
the thermodynamic limit,

:c†S rW2
1

2
e t̂ ,kWFDcS rW1

1

2
e t̂ ,kWFDª0. ~3.22!

This result implies that the tangent derivatives do not c
tribute to the projected bosonized Hamiltonian. In this
gard, we recall that the bosonic particle-hole excitations, t
gent to the Fermi surface, do not contribute to the asympt
form of the correlation function;3 however, they do contrib-
ute to the density of states and they are crucial to obtain
correct specific heat and other thermodynamic properties2

We will now concentrate on the bosonization of fermion
terms containing normal derivatives. In this case, we
generalize a calculation proposed by Haldane in one sp
dimension1 to the case of arbitrary dimensions. Let us co
sider the integral

A5E drW:c†S rW2
1

2
en̂,kWFDcS rW1

1

2
en̂,kWFD :. ~3.23!

Introducing Eq.~3.11! into Eq.~3.23! and expanding in pow-
ers ofe, we find on one hand,

A5(
n

~2 i !n

n!
en(

qW
~qW •n̂!n:cqW

†~kWF!cqW~kWF!:. ~3.24!

On the other hand, choosingaW 5en̂ in Eq. ~3.18!, replacing
into Eq. ~3.23!, and expanding in powers ofe we find the
bosonic version ofA. Thus, comparing these two expressio
order by order ine, we find the bosonized projected Ham
tonian. When expanding the dispersion relation up to
third order in the derivatives, we get

H05(
kWF

h1~kWF!1h2~kWF!1h3~kWF! ~3.25!

with

h15
vF

2 (
qW •n̂.0

uqW •n̂uaqW
†~kWF!aqW~kWF!, ~3.26!

h25
b

2@N~kWF!VvF#1/2 (
qW i

uqW 1•n̂u1/2uqW 2•n̂u1/2uqW 3•n̂u1/2

3d~qW 11qW 21qW 3!$aqW 1

† ~kWF!aqW 2

† ~kWF!aqW 3
~kWF!

3Q~2qW 1•n̂!Q~2qW 2•n̂!Q~qW 3•n̂!1h.c.%, ~3.27!
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4!N~kWF!VvF
(
qW i

uqW 1•n̂u1/2uqW 2•n̂u1/2uqW 3•n̂u1/2uqW 4•n̂u1/2

3d~qW 11qW 21qW 31qW 4!$4aqW 1

† ~kWF!aqW 2
~kWF!aqW 3

~kWF!aqW 4
~kWF!

3Q~2qW 1•n̂!Q~qW 2•n̂!Q~qW 3•n̂!Q~qW 4•n̂!

13aqW 1

† ~kWF!aqW 2

† ~kWF!aqW 3
~kWF!aqW 4

~kWF!Q~2qW 1•n̂!

3Q~2qW 2•n̂!Q~qW 3•n̂!Q~qW 4•n̂!1h.c.%, ~3.28!

where

b5
]2e~kW !

]kj]ki
n̂i n̂ j ukW5kWF

, ~3.29!

g5
]3e~kW !

]kl]kj]ki
n̂i n̂ j n̂l ukW5kWF

. ~3.30!

The coefficientb is related to the particle-hole asymmetr
In fact, in a system invariant under charge conjugati
e(kWF1qW )2m is odd under the transformationqW→2qW . In
this case, the even derivatives ofe at the Fermi level (kW

5kWF) vanish. For stability reasons, we will considerg.0. If
g happens to be negative, then we should continue expa
ing the fermion dispersion relation until a well-defined res
be achieved.

Equations~3.25!–~3.28! display the main results of this
section. Theh1 term corresponds to the bosonized fre
fermion Hamiltonian when a linear dispersion relation
considered and coincides with the one computed in Ref
and 4. Then, the final bosonized Hamiltonian contains a q
dratic part ((kF

h11H int) plus a nonquadratic (h21h3) term
which is related to dispersive effects on free fermions.
order to calculate any observable, the dispersive part sh
be treated by means of perturbation theory. In the Fer
liquid regime, the nonquadratic terms are irrelevant, althou
interesting effects were studied in the context of the Land
theory.25

Here, we are interested in understanding the role pla
by the presence of dispersion effects when the interac
system is otherwise unstable. The next two sections are
voted to study this issue.

IV. DYNAMICS OF THE FERMI SURFACE

As shown in Ref. 2, the Fermi-surface deformations c
be associated to collective particle-hole excitations descri
by coherent states in the bosonized theory. In the stable c
contact is made with the Landau theory for Fermi liquids.
we will see, this procedure applies equally well to the ge
eral case where dispersion effects must be taken into
count.

Following Ref. 2, we define a many-body state that is
direct product of coherent states parametrized by a com
field fqW(kW ):

uf&5U~f!uFS&, ~4.1!
8-5
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where

U~f!5e2G(f) ~4.2!

and

G~f!5 (
kWF ,qW •kWF.0

S 1

N~kWF!VqW •vW F
D 1/2

$fqW~kWF!aqW
†~kWF!

2fqW* ~kWF!aqW~kWF!%. ~4.3!

The ‘‘deformation’’ fields satisfyfqW* (kWF)5f2qW(kWF), imply-
ing G* (f)52G(f) andU†(f)5U21(f).

The system’s partition function can be written in terms
this overcomplete coherent-state basis by means of the
integral

Z5E DfDf* eiS(f,f* ), ~4.4!

whereS(f,f* )5*dtL(f,f* ) and

L~f,f* !5 (
kWF ,qW

i

N~kWF!VuqW •vW Fu
S fqW* ~kWF ,t !

]fqW~kWF ,t !

]t
D

2^fuHuf&. ~4.5!

The evaluation of̂ fuHuf& is straightforward, since the
bosonized Hamiltonian@Eq. ~3.25!# is normal ordered and
the coherent states are eigenvalues of the destruction o
tor aqW(kWF):

aqW~kWF!uf&5
@fqW~kWF!Q~qW •kWF!1fqW* ~kWF!Q~2qW •kWF!#

AN~kWF!VuqW •vW Fu
uf&.

~4.6!

Using Eqs. ~3.14!, ~3.25!, and ~4.6!, we find the
following Lagrangian @after the field redefinition f

→„VN(kWF)vF…
1/2f]:

L5(
qW kW

S i

uqW •n̂u
D fqW* ~kW ,t !

]fqW~kW ,t !

]t

1
1

2 (
qW kWkW8

fqW* ~kW !$vFdkW ,kW81FkW ,kW8~qW !AvFvF8 %fqW~kW8!

1ReS b

3! (
kqi

fq1
~k!fq2

~k!fq3
~k!d~q11q21q3!

1
g

4! (
kqi

fq1
~k!fq2

~k!fq3
~k!fq4

~k!d~q11•••1q4! D ,

~4.7!

wherekW and kW8 lie on the Fermi surface, and we have a
sorbed powers ofN(0)VvF ~Ref. 26! into the definition ofb
andg.
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The Lagrangian in Eq.~4.7! controls the low-energy dy-
namics of the Fermi surface. Note that this dynamics is
tremely nonlocal due to the factor 1/uq•n̂u in the kinetic
term. In the region where the quadratic term is stable~posi-
tive definite!, the first two lines represent the usual Land
theory of Fermi liquids. This is a fixed point in the RG sens
that is, the nonquadratic dispersive terms do not modify
asymptotic correlation functions. However, if interactions a
such that the quadratic term is unstable, the nonquadr
terms become relevant, thus stabilizing the theory in ano
fixed point.

A word of caution is necessary to understand the valid
of Eq. ~4.7!. According to the renormalization-group theor
not only the couplingsFkW ,kW8(qW ) but also the parametersb
and g will be renormalized by irrelevant operators. Ther
fore, although we showed how the band curvature gener
the nonquadratic terms in Eq.~4.7! @see Eqs.~3.29! and
~3.30!#, the actual calculation of these parameters for a giv
band structure is not at all trivial.

Also, in the present paper we are interested in understa
ing how the band curvature can drive the system to a n
rotational symmetry-breaking ground state. For this reas
in Eq. ~4.7!, we have only considered small-angle scatter
processes with small momentum transfer, disregarding
irrelevant term coming from the interaction Hamiltonian. O
the other hand, it is well known that some interaction cha
nels, although irrelevant, could give rise to different instab
ties. For instance, the Kohn-Luttinger instability27 comes
from the competition of forward scattering with a BCS cha
nel, even for repulsive interactions. Recently, a similar d
namical effect in two-dimensional Fermi liquids was r
ported in Ref. 28. The interplay among the anisotro
phases studied here and other interaction channels is a
interesting issue, and the multidimensional bosonizat
technique described in this paper seems to be a promi
tool to handle it.

With these comments in mind, we can study, for instan
the static deformations of the Fermi surface described by
system’s free energy, which can be computed as the ac
per unit time, when setting to zero the kinetic term in E
~4.7!. Introducing the Fourier-transformed field

w~x,kW !5E ddq

~2p!d
fqW~kW !e2 iqW •xW ~4.8!

at each point of the Fermi surface, the expression for the
energy is simplified to

F5
1

2E dxdx8(
kWkW8

w~x,k!M ~kW2kW8,x2x8!w~x8,k8!

1(
kW
E dxH b

3!
w~x,k!31

g

4!
w~x,k!4J , ~4.9!

where
8-6
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M ~kW2kW8,x2x8!

5$vFdkW ,kW8d~x2x8!1FkW ,kW8~x2x8!AvFvF8 %. ~4.10!

In the following section, using the framework provided b
bosonization, the problem of spontaneously broken rotatio
invariance is explored.

V. THE ISOTROPIC-NEMATIC-HEXATIC QUANTUM
PHASE TRANSITIONS

The order parameter of the two-dimensional nema
phase is a second-rank traceless antisymmetric tensor.
odd underp/2 spatial rotations, and the two independe
components can be cast in the form of a ‘‘headless’’ tw
dimensional vector called the ‘‘director.’’ The director is in
variant under ap rotation, characterizing in this way th
nematic state.18 On the other hand, a hexatic phase is ch
acterized by an order parameter that is invariant underp/3
rotations. These states are of great interest, since they
candidates to present non-Fermi-liquid behavior in t
dimensions.11

By means of the bosonization approach, we will stu
them as particular instabilities of an isotropic Fermi surfa
The important role played by the fermionic interactions
well as the dispersion effects for the establishment of th
phases will become explicit.

Let us begin by considering an isotropic Fermi surface
two dimensions and a short-ranged interaction. In this c
the Landau function only depends on the angle between
two Fermi vectorskW andkW8:

FkW ,kW8~x2x8!5Fu2u8d~x2x8!. ~5.1!

With these considerations, the ground state of Eq.~4.9! be-
comes homogeneous,^w(x,k)&5w(u), and the free energy
is simplified to

F5
vF

2 E dudu8w~u!$du2u81F~u2u8!%w~u8!

1E duH b

3!
w~u!31

g

4!
w~u!4J . ~5.2!

Now, introducing the representation

w~u!5(
n

wneinu, ~5.3!

F~u!5(
n

Fneinu, ~5.4!

(wn* 5w2n) and considering a particle-hole symmetric sy
tem ~b50!, we obtain

F5
vF

2 (
n

~11Fn!wnwn1
g

4! (
nmlp

wnwmw lwpdn1m1 l 1p .

~5.5!
In the case whereFn>21, it is clear that the only mini-

mum of Eq.~5.5! corresponds town50 for all n. This is the
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usual criterion for the Fermi-liquid stability.2,10,16,29 How-
ever, if for some channeln it happens thatFn,21, then it is
possible to develop quantum phase transitions to anisotr
states. Assume, for instance, that we have a ground s
characterized byw2Þ0, andwn50 for all nÞ2. In this case,
the deformation field would have the form

w~u!54w2$2 cos2~u!21%, ~5.6!

characterizing a two-dimensional nematic order.18 This
would correspond to a transition where, because of the in
actions, the otherwise circular shape of the Fermi surfac
deformed into an ellipse.

In general, as we mentioned above, it is interesting
study instabilities in the nematic/hexatic sector. They are
pected to occur whenF2 and F6 are large and negative.11

This case can be treated by integrating over all the sta
modeswn , nÞ2,6. As aresult of this integration, all the
relevant terms that are compatible with the symmetry will
generated, obtaining the following effective free energy
the modesf2 andf6:

F5l2w2
21l6w6

21
gR

4
$w2

41w6
4%1mRw2

2w6
2 , ~5.7!

which is written in terms of renormalized interaction co
stants @l25 v̄F(11F2),l65 v̄F(11F6)]. This free energy
presents the interesting possibility of quantum pha
transitions30 among isotropic (w25w650), nematic (w2
Þ0,w650), and hexatic states (w250,w6Þ0). There is also
the possibility of coexisting nematic-hexatic phases (w2
Þ0,w6Þ0).

It is important to note that while the phase transitions
triggered by the values ofF2 and F6, the structure of the
phase diagram depends on the other Landau parameterFn
(nÞ2,6) hidden ingR andmR . For instance, ifuFnu!1 ~for
all nÞ2,6!, then mR'gR/2, and the qualitative phase dia
gram is shown in Fig. 1. This diagram presents a bicriti
point at the origin of thel1-l2 plane. The bold lines repre
sent second-order phase transitions between the isotro
nematic and the isotropic/hexatic phases. Moreover, the
terphase nematic/hexatic~dotted line in Fig. 1! corresponds
to a first-order phase transition.

However, if Fn'1 there is the possibility of having
gR

2/16,mR . In this case, the phase diagram changes qu
tatively ~see Fig. 2!. There is a tetracritical point with fou
second-order phase transitions. Forl1,0,l2,0, there is a
region of coexisting phases, which is absent in the preced
case.

In order to study the electronic properties of these pha
we need to consider the dynamics associated with the
grangian, Eq.~4.7!, and to evaluate quantum fluctuation
around the saddle points found in these sections. This dis
sion will be presented elsewhere.
8-7
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VI. DISCUSSION AND CONCLUSIONS

In this work, we have constructed the bosonized action
a general fermionic system having a smooth Fermi surf
and a nonlinear energy dispersion relation in higher dim
sions. We have shown that the effect of the nonlinear te
in the energy dispersion is that of producing interactions
the bosonized theory. To the best of our knowledge, thi
the first explicit generalization to higher dimensions of t
well-known analogous result in one dimension.1

The Hamiltonian, Eq.~3.25!, the corresponding action in
the coherent-state basis, Eq.~4.7!, and the free energy in Eq
~4.9! are the main results of this paper.

From a physical point of view, dispersion effects are
relevant when the system is in the normal Fermi-liquid
gime, however, they are essential when due to some ferm
interactions an instability of the Fermi surface occurs, dr
ing the electronic system outside this regime. In the la
case, the induced nonquadratic terms in the bosonized
energy ~4.9! will stabilize the electronic system in a ne
ground state.

In particular, we have concentrated in two quantu
liquid-crystal states: nematic and hexatic. The correspond
phase transitions are triggered by negative values of the L
dau parametersF2 and F6, associated with the fermion
interaction.11 However, the qualitative structure of the pha
diagrams~Figs. 1 and 2! depends on the relative values of a
the other ‘‘stable’’ Landau parameters. When they are sm
the phase diagram has a tricritical point where two seco
order phase transitions~isotropic/nematic, isotropic/hexatic!
kin
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and a first-order one~nematic/hexatic! meet together. In the
opposite case, there is the possibility of having a coexist
nematic-hexatic phase with a tetracritical point.

These results were obtained by means of a mean-fi
saddle-point calculation on the bosonized action. It is cl
that some of the global features~especially, the first-order
phase transition in Fig. 1! could be modified by quantum
fluctuations.

In particular, it would be very interesting to investiga
the dynamical electronic properties of these phases. In
regard, it was shown11 that the Goldstone modes of the nem
atic phase are damped~except for certain Fermi points dic
tated by symmetry considerations!, while the fermion corre-
lation function shows a non-Fermi-liquid behavior. In ord
to address these points in the nonperturbative bosoniza
framework, it is necessary to introduce quantum fluctuatio
around each saddle point, and employ the Lagrangian,
~4.7!, and the fermionic operator~3.13! to compute fermion
correlators. We hope to present results on this issue soo
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