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Exactly solvable model of three interacting particles in an external magnetic field
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The quantum mechanical problem of three identical particles, moving in a plane and interacting pairwise via
a spring potential, is solved exactly in the presence of a magnetic field. Calculations of the pair-correlation
function, mean distance, and the cluster area show a quantization of these parameters. Especially the pair-
correlation function exhibits a certain number of maxima given by a quantum number. We obtain Jastrow
prefactors that lead to an exchange-correlation hole of liquid type, even in the presence of the attractive
interaction between the identical electrons.
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[. INTRODUCTION A qualitative analysis shows that the ground state of the

three particles becomes unstable with respect to arbitrary

The Laughlin wave functioh? was introduced to describe small attractive interactions between them. An attraction

the ground state of a two-dimension@D) long-range cor- between three particles leads to the formation of bound
related electron gas in the fractional quantum Hall regimestates with negative energi€salthough a weakly attractive

The strong short-distance repulsion between any two parthree-particle interaction does not produce a transition to a

ticles is described by the Jastrow prefactor in the wave functiquid state of the electron gas as described in Laughlin’s

tion. The same Jastrow prefactor appears also in the exagpproach, the ground state with three-particle clustering

wave functions foN particles interacting pairwise through a could be energetically favored in the fractional quantum

potential of the form 1k —x;)? first obtained in one Hall regime. This is a consequence of the occurrence of an

dimension by palog7er6f‘ and later extended to two and effective pairing'' which further reduces the ground-state
higher dimensions>’ These wave functions lead to the energy.

Wigner-Dyson distribution functidhfor N particles. An ap-
proximative solution for particles interacting pairwise
through a string-like potential has been fodiheading to an
Ansatz for theN-particle wave function including Jastrow
prefactors.

It is interesting to study the internal structure of a particu-
lar cluster with three particles, in order to find out if its wave
function contains a Jastrow prefactor. This would prevent the
particles from approaching each other even in the attractive

A natural question therefore is whether the origin of this ©35€- In this paper we study this quesiion by modeling a

Jastrow prefactor is due to special features of the interactiondcerc three-particle attractive potential by a pairwise

mentioned above, or is it a generic property of models Withspringlike interaction. We show that this choice of potential

short-range interactions. allows for an exact sqlut!on even in the presence of a con-
The recent advances in the theory of disordered systemgant external magnetic field. _
show that the distribution function of physical parameters EXact results obtained for solvable models are important
of the mesoscopic system, such as the density of states & understand general features of three-particle problems and
the conductance, is represented by the Wigner-Dyson fund® test approximate solutions, such as the ones obtained from
tion in the weak localization regimeee, e.g., Ref. 10 for a the widely used Fadeev's equatiorisvery few exact solu-
review). Physically, this describes a repulsion betweentions of three-particle problems have been found, mostly for
the energy levels. Averaging the partition function of a dis-one-dimensiona?° or for three-dimension#i—*8 spinless
ordered system over the Gaussian-distributed one-particlgarticles. In this paper we present an exact solution for a
impurity potentials results in an effective Hamiltonian model of particles with spin.
with short-range interactions. This clearly shows that level The topology of the three-particle cluster may be either of
repulsion is not a property of just few special interactiona string form, when two particles with opposite spin are
potentials. placed in the same spatial point, or of a triangle form when
In a recent papet a new mechanism for the formation all three particles lie far from each others. In the former case
of three-particle clusters in Si-MOSFETmetal-oxide- the number of the spin configurations is equal to tidou-
semiconductor field-effect, transistastructures and GaAs/ blet stateg with total spinS=1/2. Apart from theseoublet
AlGaAs heterojunctions has been studied. The exchangstates a triangular clustering ofjuartet statesmay also be
type interactions between 2D band electrons in the inversionealized. This would correspond to four different symmetric
layer and charged impurities in the oxide of the MOSFETspin wave functions with a total spi8=3/2. In a strong
can lead to an effective three-particle attractive interactionmagnetic field these quartet states are the only relevant ones.
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Il. THE MODEL Schradinger’s equatiort = E with the Hamiltonian given
The Hamiltonian of the model is by one of the Equationé4)—(6) is easily solved in a polar
coordinate system where, e.g., Ef) is written as
2 3 2
qo_ " 9 & . R (P 19 1 R\ B2 4
om* a=1\adr, Hhc “ H,=— —t——t—=— - 5 o
2m* \ 9p? P I p? 9¢? 2m*1g d¢
K
+ E[(rl—r2)2+(rl—r3)2+(r2—r3)2], oY) h? N 3k, ®
gm1d 2 )°

wherer, (a«=1,2,3) are the 2D position vectors of electrons
with effective massn*. The spring strength is chosen as andp 'andcp are the radial and angular variables in the polar
=m* w3/3, wherew, is the specific frequency of the elec- coordinate systems. _

tron’s relative vibration. A,=(B/2){—y,x,0} is the The Ham|lt(2n|an(8) commut’e\s VYIth the angular momen-
symmetric-gauge vector potential at the position of &tk tum operatorL,=—i%d/de, [H,L,]=0. Therefore the

particle for a magnetic fiel®={0,0B/2} perpendicular to wave functiony(p,¢) of the HamiltoniarH , can be chosen
the electronic inversion layer. to be of the form
In order to diagonalize the Hamiltonian we introduce the

new coordinatesr, ¢, 7}, Ym(p @) =€MR(p), 9
1 wherem is the angular momentum for a 2D system and
r=—=(ry+ry+rs), =+1,+2+3,....
V3 The asymptotic behavior of the radial wave functiR{p)
can be separated as

§=—=(r1—rp), _
2t e R(z)=2IM"%e" Y2 (z), (10
\/5 ry+ro WhereZ=p2/2|§\/l+4w02/w28 is a dimensionless coordinate,
T=N3\ "2 '3 @ andwg=eB/m*c is the cyclotron frequency.

The functionf(z) satisfies the confluent hypergeometric
wherer is the center-of-mass coordinatg,is the relative  equation

coordinate of the particles 1 and 2, andis the relative

coordinate of the third particle with respect to the center of B 1
mass of the particles 1 and 2. In the new coordinates, the f(2)=F{ — ——§(|m|+1) 1+|ml,zp,
S 1+4wilw
Hamiltonian is decoupled, 0B
(11)
|:|=|2|r+|2|§+|2|7], (3) Where B=E/4dwg—m/2 is the dimensionless energy spec-

trum. Convergence requires the first coefficient of the con-

where fluent hypergeometric function to be a negative integer. The
function then reduces to the generalized Laguerre polynomi-
. n g 3w h? als and gives the following energy spectrum:
H=- —+ vl 5 (rXV,)g, (4)
2m* gr?  8m*lg 2m*lg >
4(1)0/ |m|| +1 h(,()B
Eni'mi:ﬁwB 1+ D) \ni 2 2 m;,
i h? 9 h? 3k 2 h? (£xY)) wp 12
= — —_— —_— | s
© omr g2 \smrlf 2 2m*13 e _ . . .
(5)  wherei=1,2,3 denotes the number of noninteracting quasi-
particles introduced by means of a normal coordinate trans-
72 g2 22 3k 72 formation. The total energy of a three-particle cluster is ex-
= — ( Z _) 2+i 5(7XV,),.  pressed as a sum of the energies of three noninteracting
2m* gn* |\ 8m*lg 2 2m*lg quasiparticles. Redefining the initial quantum numbers as

6  ng=n;+i(Imy|+my), n=2(n,+n3)+|my|+|ms|, andm
The last terms in the Hamiltonians given by EG§—(6) are M+ ms, the total energy becomes dependent on three ex-

proportional to the angular momentum d@e# fic/eBis the act quantum numbers,
magnetic length.

2
The wave function¥ of the initial Hamiltonian, Eq(1), E(no,n,m) =% wg| ng+ 1 Mkl P ﬂ(nJrZ)
can be presented as the product of three wave functjons o 2 2 w3
which are eigenfunctions of Eq&)—(6), 5
B + ﬂm. (13
W(ry,ra,r3)=¢(r) (&) (). (7 2
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a§) 1
- 13/2,— 1/2) = —={ a1 8,83+ B1Braz+ BrasBs},
0.6 I«/ \ n,=1m,=1 n,=0 m,=0 \/§
04t/ i (17)
0.2 b Y h
o X RN 13/2,~312)= B1B23. (18)
06 [ /7 n=tm=1n=1m=1 1 1 where a; and B; are the spinors of théth electron corre-
0al // \ ] sponding to spin up and down, respectively. Therefore, the
PP A N antisymmetric orbital part of the wave function reads
o ' e WOry,r5,r3)=C¥, n (r;we=0)
06 7\ n=1mztne2met S
E: :’/'I \ - ><{\I’nz,mz(g)q’ng,ms( 77)_\Pn2,m2(_g)\yng,m3( 7)
0 - e += '/N\ +q’n2,m2(~é)wn3,m3(;])_q,nz,mz(_E)‘Pns,ma(’;])
0.6 I n,=1m,=1 n=2 m;=2 T A N b _ _ ~ ~
Z:: : ," \ S : /,’I \ ll ‘\\ : +\Pn2,m2(§)wn3,m3( n)_\l,nz,mz(_g)q’na,mS( 77)},
o I\\ 7 ) S NS |\\\ ) (19)
0 1 2 ., 3 4 0 1 2 . 8 4 5 i i .
S £ whereC is a normalization constant and we have used the
i : . . notation
FIG. 1. The normalized pair-correlation functigfé*) versus
the dimensionless distance between two parti¢fe$or n,=1 and - Ty—TIg 3 &
different values of the quantum numberg,m;. The dotted lines =———= 515
are the pair-correlation functions only from the diagonal elements \/E
of |W|? according to Eq(25).
¥ g to Eq(25) _ 3yt 1s . 3
i icles i 7=N3l Tz T2 Vg
The case corresponding to three free particles in an external
magnetic field is given by the two exact quantum numbers
n=3% ,(n+|m]/2) and m=33,m;. The normalized 3 rs—r \ﬁ £
wave function of theth quasiparticle can be written in the V2 272

form
2\ (Imil+1)72 ~ 2
4wh l n= \[5

I’l+r3 _ n \/§
— I’Z)— 2+ 25. (20

1+— 172
U o (pr@)= 1 wg n! Notice that the inversion of the coordinates in polar basis
nj mi P @ N 212 (nj+|m;|)! leads top— p ando— ¢+ ar. Under this transformation, the
wave function acquires a factor-(1)™, which defines its
_ 4w§ p? parity. It is easy to see that”(r,,r,,r;)=0 for m,= even
xeMeplmlexpg — 4/ 1+ — 3 integer. The privileged dependence of the wave function on
wg 45 m, is originated by the asymmetry in the new coordinates
2 o (2). Form, = odd integer, we get
mi « [1,.390P
ANz ) @4 WOry, 1y 1) =CWy i (F0o=0){W o o (W, m(7)
In order to construct the total wave function for a three par- +‘1’n2,m2(~§)‘1’n3,m3(7/)
ticles cluster, the spatial wave functions corresponding to
Egs.(4)—(6) must be multiplied by the appropriate spin wave W (?)“Pn " ('";'])}_ (21
27072 33

functions and the final expression must be antisymmetric.
In high magnetic fields the polarized spin structure is

I1l. WAVE EUNCTIONS AND CORRELATORS characterized by thesgquartet statessince all states are
) ) . aligned. The valuable feature of the spin-polarized quartet

All spin wave functions of the quartet staté8=3,s,),  states is that they permit only odd valuesnof and exclude
corresponding to the total spin numkg* 3/2 and itszcom-  even ones, which is the situation observed in the fractional

ponents,, are symmetric quantum Hall experiments. The wave functié? given by

Q = .

132,313 = ayapas, (15 E_q. (2_1) has thg pr_operty thf:ttf_(rl,rz,rg)hi_,rj 0 for ar
bitrarily choseni #j=1,2,3. This corresponds to the behav-

ior of the Jastrow prefactof(r;—r;) in Laughlin’s ground
state wave functiof?
In order to get more insight into the wave function we

1
|3/2’1/3:—3{a1a2ﬂ3+0132a3+,31a26¥3}'
(16 plot in Figs. 1-3 the(radia) pair-correlation function,

5
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FIG. 2. The pair-correlation functiog(&*) versusé* for n,
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FIG. 3. The dependence @f(¢*) on space coordinate far,
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This pair-correlation function gives the probability of finding
two particles at a given distance in the presence of a third
particle. We find that, owing to the presence of the third
particle, a shell structure appears with certain maxima in the
probability at special distances. The number of these maxima
(shells is defined by the quantum numbmeys and is equal to
n,+1. Therefore, the quantum numb®yr can be interpreted

as the main characteristic of the number of resonant states or
the number of nearest neighbors if one considers this as the
onset of a liquidlike behavior.

This interpretation is supported by the following reason-
ing. The pair-correlation function starts at zero since the an-
tisymmetrization due to Pauli blocking induces the
exchange-correlation hole. A smallexpansion then yields
(Appendix)

g(|€*])=al&*|?M+ (b+c| &™) | &% >+ o(€*]°)

(a+b)[&?, my=1

— * |3
bl&*|2+a| & 2™, m2>1+0(|§ %),

(24)

sincem, is odd. The regime of* <1 can be realized, ac-
cording to Eq.(23), for an arbitrary finite distance between
particles by sufficiently reducing both, and w, .

The characteristic property of the Laughlin wave function
is thatg(z) goes to zero ag®™, whereas in the case of the
Wigner crystal the pair-correlation function goes to zero as
1—exp(—aZ)=xZ. This was the reason for the superiority of
the variational Laughlin wave function. In our direct compu-
tation, starting from the expression of antisymmetric wave
function ¥, we obtain the Wigner crystal behavior. How-
ever, the Laughlin exchange-correlation hole becomes trans-
parent if we use only the first diagonal term [¥°|?
OCC2|\I}n1,m1(r;‘UO:0)|2|\I,n2,m2(§)|2|\1,n3,m3( 77)|2 which is
the first term in Eq(Al). We obtain the analytical result

: n,!
diag x|\ — 2 % 2\my|ry 1Mol px 2\ 20— %2
(25)
Representing the Laguerre polynomials as

n

LMx) = >,

k=0

n+m
n—k

the following asymptotic behavior @9 is obtained:

(—x)¥
K

|
g¥ey| &) = —(nrf +,r|nm,2|2) g2Aml1+0(e2)]. (26
PARRAVE
We see that the typicat2|”‘2‘ behavior of Laughlin states
appears. Therefore, we consider the quantum nufmbgras
the filling factor in analogy to Laughlin’s exchange-
correlation hole behavior.

The approximation leading to this behavior has consisted
in neglecting certain crossed terms. Here we should note that
when considering the pair-correlation function we design, in
principle, two out of the three particles differently than the
third particle. In this case we do not need to antisymmetrize
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TABLE |. The normalization constan€, the dimensionless

mean distance, and the area for different quantum numbers. The o o 1 3

corresponding second lines give the analytical val@@sand(28),

respectively.

N,M,Nsms 1/C Distance Area
1100 2.24 2.49 1.13
3 2.5 1.5
1111 3.37 4.00 2.25
3 4 6
1121 1.83 5.00 7.35
3 5 9
1122 4.81 5.49 11.03
3 5.5 10.5
2100 2.79 3.50 211
3 3.5 2.25
2110 1.12 4.49 8.07
3 4.5 6.75
2111 1.83 5.00 7.35
3 5 9
2120 3.22 5.48 5.07
3 55 11.25
2121 2.67 5.99 9.94
3 6 13.5
2122 3.10 6.46 25.10
3 6.5 15.75
2130 2.17 6.44 16.12
3 6.5 15.75
2131 3.26 6.92 10.88
3 7 18
2132 3.28 7.26 28.59
3 7.5 20.25
2133 2.27 7.68 14.47
3 8 22.5
3110 1.96 5.48 9.90
3 5.5 9
3310 2.59 6.46 12.41
3 6.5 11.25
3111 1.55 5.99 14.72
3 6 12
3311 1.83 6.98 17.45
3 7 15
3130 2.58 7.36 16.19
3 7.5 21
3330 3.90 8.29 26.75
3 8.5 26.25
3131 2.20 7.65 23.02
3 8 24
3331 2.40 8.46 23.18
3 9 30
3132 3.92 8.18 30.50
3 8.5 27
3332 2.28 8.64 32.36
3 9.5 33.75
3133 2.37 8.15 23.10
3 9 30
3333 3.70 9.29 41.88
3 10 375
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FIG. 4. The particular Young diagrams contributing to the spin
state|S=1/2s,= 1/2) are shown on the left with the corresponding
contributions to the spatial wave function on the right. The indices
in one row are understood to be symmetrized and the indices in one
column are antisymmetrized. The diagrams [®# 1/2;s,= — 1/2)
are obtained by interchanging— .

the wave function. One can therefore argue that all terms of
Eq. (A1) except the first one do not count and the re&2f)

is exact. With increasing number of particles these terms
become probably more and more negligible such that the
Laughlin behavior is describing the true ground state.

The functiong®@9tin Eq. (25) is plotted in Figs. 1—3 with
dashed lines. We see that the places of the maxima are well
described by this approximation. Note here that the approxi-
mation g% indeed shows the Laughlin exchange-
correlation hole of?™2,

In order to obtain analytical results for observables we
can use all three diagonal elementdW Q9292
=C2W [2(| W2 W |2+ [Wo || W5 |>+ W, |?Wyl?).  The
advantage of this approximation is that one can compute the
expectation values of observables analytically and get a
fairly good approximation.

We consider the mean distance of the particles

_ 2
<(r1 2r2) >:f d2§d2rd27’§2|\PQdiag|2

3C?3
= —F——=I[(1+2n,+|my))

+(1+2n3+|mg))], (27
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as well as the area spanned by the three particles, qu:(2,13)+(2,3D_(1,23)_(1,32),
1 2
| (27X (rs=r) WP=(1,32+(1,23 (321~ (3,12,
— d2 d2 d2 3 2 \I,Qdia 2
= | d*&drd®y Z[&xn)” | 9 WP=(32D)+ (3,12 (2,3) —(2,13. (31
9 Ci Multiplyi i i i
_° ot oMt _ plying the spin and spatial components and adding all
4 402 [(1+2n,+[my))(1+2n5+|mg])].  (28) three particular expressions, we get the final wave function
1+— for the doublet state. The final result depends on the parity of

“g m,. Form, odd it reads

We see that the mean distance and the mean area are deter-
mined by the quantum numberst2n,+|m,| and 1+2n, WO(ry,rp,ra)=CiW, o (r;0o=0)
+|mg|. The mean distance is given by their sum while the e
mean area is given by their product. The nondiagonal terms x {( g, a,as+ a18ra3— 210283 Vh m (E)¥n. m(7)
give smaller and smaller contributions. In Table | we com- 22 33
pare the analytical approximate resy23) and(28) with the + (a1 Bras+t ararBa—2B1ara3) ¥, o (V. (1)
numerical value of the full wave function. The agreement, 272 38
gzgzc;)lg/r;%r;geﬂg?fan distance, suggests that this is quite a +(,81a2a3+ala2,83_2alﬂ2a3)q,n2,m2(§)q,n3,m3( oty
Although the states in high magnetic fields are character- (32)
ized by spin alignment and are therefore described by the
quartet states, we now give for completeness the other pos-
sible state, the doublet state. The wave functions correspon?ﬁ‘£
ing to the doublet states can be constructed according to
Young’s schemé® For the statdS=1/25s,=1/2) it is given WO(ry,ry,r3)=Co¥, 1 (r;wo=0)
in Fig. 4. The expressions corresponding to the configura- o

hile for m, even the wave function is given by

tions (a), (b), and(c) in Fig. 4 are obtained by antisymme- X{(e1fra3— Brazaz)Vy, m )V, m.(7)
trizing the spin wave function with respect to the row indices
and symmetrizing with respect to the column ones, +(ara2Bs— a1Boas) W, m,(H)Wn m (1)
11/2,1/12 ;= c(a{ a183— azBi}+ “1{02,33_61’3,32})(29) +(:81a2a'3_a1a2183)\1,n2,mz(z)wﬂgvmg(;})}- (33

and correspondingly fofb) and(c). It is possible to see that . . o
one particular spin wave function transforms into the other . It is easy 1o check that the expression for the probability

. . D 2 . .
one when two particle indices are interchanged, forming istribution|W®|* in the doublet' gtate Q|ﬁers from the one
group. or the quartet state by the coefficients in front of the crossed

terms. Our estimate shows that the character of quantization
The spatial wave functions for each spin diagram are obOf the two-particle correlator, the cluster area, mean distance
tained by transposition of the Young tableaux of Fig. 4. Oncdor doublet states is qualitatively similar to that for quartet
again, the elements in a row must be symmetrized and thetates. Since the contributions of the crossed terms in the
elements in a column antisymmetrized. The spatial wavéluartet states are smaller than those in the doublet states, the

function corresponding tég) in Fig. 4, Eq.(29), reads maxima in the pair-correlation function are more pronounced
in the former case.

\Ifg(rl,r2,r3)=C\I’n1'm1(r;w0=0)
X {\I’nz ,mz( - f)\I’n3 ,m3( 7))+ \Pnz ,mz( f)q’n3 ,m3( 7) V. CONCLUSIONS
_ _ The investigation of the three-particle problem in the
=W, m(E W, m (1) =W, m,( —E)Wn31m3(77)}. presence of magnetic fields is essential to understand the
phenomenon of the fractional quantum Hall effedn this
(30) paper we have solved exactly the problem of three identical

particles interacting via a spring potential in 2D space in the
resence of an external magnetic field, neglecting the Cou-
—— =~ omb interactions. We have shown that the wave function
¢ of Eq. (20) would correspond t@2,31), &7 10 (3,12,  acquires the Jastrow prefactor even in the case of an attrac-
and — ¢, 7 to (3,21 respectively. In this short notation the tive potential as a consequence of the antisymmetric charac-
three orbital wave functions of Fig. 4 read ter of the total wave function. Calculations of the pair-

Denoting only the spatial indices, the coordinates de-
fined in Eq.(2) can be abbreviated as (1,23). The coordinat

205106-6
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correlation function, the area of the three-particle cluster, and 4 similarly for7 as well as?y andzé. Using the dimension-

the mean distance show a quantization of these parametejggg coordinate€3) in the wave function(9) and changing
Particularly, the pair-correlation function exhibits maXimavariables(AZ) the integral(Al) is quite bulky. However

and minima controlled by a quantum number. expandina in smallé* the anaular dependence. —
We have also found that the exchange-correlation hole a&rgps outgand we o§tain the fogr]fﬁ4) P by~ b

small distances shows the behavior known from the Wigner

Iattl_ces rathe_r than the Laug_hlm behavior if we start from th_e g(|&|) =al&* |22+ (b+c| €% |2Mm2) | &% |2+ o(| €% ]3),
antisymmetrized wave function. However, neglecting certain

terms based on the physical consideration that the antisym-

metrization of the wave function fails when two particles arewhere the remaining modulus integtiby| can be performed
fixed for the pair correlation, we obtain exactly the Laughlin for the constants andc with the result
exchange-correlation hole. The corresponding filling factor is

identified with a quantum number appearing in the exact (ny+my)!
solution of the model solved here. a= My 2n,!
APPENDIX: SMALL DISTANCE EXPANSION 2(N,+m,)! n
OF THE PAIR-CORRELATION FUNCTION =2 2 2~ (A4)
n,!m,! (1+my)! my!

The expansion of the pair-correlation functi¢®2) for _ o _
small £ can be performed straightforwardly with the help of Therefore we see that the constaris not vanishing, which

MATHEMATICA . After trivial integrations aboudzr we have means that the Laughlin ||qU|d behavior is not resumed if full
to calculate antisymmetrization is pertained for the pair-correlation func-

tion.
For completeness, let us also give the constanthose

_ 2 2 2 ST TR
9(|§*|)—f A2 7% (| W 5| ?| W] "+ 2| W 5| | Wy integral can be done only numerically=|7*|?],

+2Re2W, W T TS + 2T, U3 WYY, _(—1)2ms3me? N, ng! .
(Al) - 4m2+m3 (m2+ nz)!(m3+ n3)! ’
where we have used symmetries in the variables and abbre- ) ,
X Lm3 5
N3\ 4

viated ¥,=W,, . (&), T5=, . (7), and similarly for ~ 7_ fxdxxm2+m31ex(8(m2_3m3)2|_nm2(3_
the other combinations. Therefore we express the occurring 70 2\ 4
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