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Exactly solvable model of three interacting particles in an external magnetic field
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The quantum mechanical problem of three identical particles, moving in a plane and interacting pairwise via
a spring potential, is solved exactly in the presence of a magnetic field. Calculations of the pair-correlation
function, mean distance, and the cluster area show a quantization of these parameters. Especially the pair-
correlation function exhibits a certain number of maxima given by a quantum number. We obtain Jastrow
prefactors that lead to an exchange-correlation hole of liquid type, even in the presence of the attractive
interaction between the identical electrons.
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I. INTRODUCTION

The Laughlin wave function1,2 was introduced to describ
the ground state of a two-dimensional~2D! long-range cor-
related electron gas in the fractional quantum Hall regim
The strong short-distance repulsion between any two
ticles is described by the Jastrow prefactor in the wave fu
tion. The same Jastrow prefactor appears also in the e
wave functions forN particles interacting pairwise through
potential of the form 1/(xi2xj )

2, first obtained in one
dimension by Calogero,3,4 and later extended to two an
higher dimensions.5–7 These wave functions lead to th
Wigner-Dyson distribution function8 for N particles. An ap-
proximative solution for particles interacting pairwis
through a string-like potential has been found9 leading to an
Ansatz for theN-particle wave function including Jastrow
prefactors.

A natural question therefore is whether the origin of th
Jastrow prefactor is due to special features of the interact
mentioned above, or is it a generic property of models w
short-range interactions.

The recent advances in the theory of disordered syst
show that the distribution function of physical paramet
of the mesoscopic system, such as the density of state
the conductance, is represented by the Wigner-Dyson fu
tion in the weak localization regime~see, e.g., Ref. 10 for a
review!. Physically, this describes a repulsion betwe
the energy levels. Averaging the partition function of a d
ordered system over the Gaussian-distributed one-par
impurity potentials results in an effective Hamiltonia
with short-range interactions. This clearly shows that le
repulsion is not a property of just few special interacti
potentials.

In a recent paper,11 a new mechanism for the formatio
of three-particle clusters in Si-MOSFET~metal-oxide-
semiconductor field-effect, transistor! structures and GaAs
AlGaAs heterojunctions has been studied. The excha
type interactions between 2D band electrons in the invers
layer and charged impurities in the oxide of the MOSF
can lead to an effective three-particle attractive interacti
0163-1829/2003/67~20!/205106~7!/$20.00 67 2051
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A qualitative analysis shows that the ground state of
three particles becomes unstable with respect to arbit
small attractive interactions between them. An attract
between three particles leads to the formation of bou
states with negative energies.11 Although a weakly attractive
three-particle interaction does not produce a transition t
liquid state of the electron gas as described in Laughl
approach, the ground state with three-particle cluster
could be energetically favored in the fractional quantu
Hall regime. This is a consequence of the occurrence o
effective pairing,11 which further reduces the ground-sta
energy.

It is interesting to study the internal structure of a partic
lar cluster with three particles, in order to find out if its wav
function contains a Jastrow prefactor. This would prevent
particles from approaching each other even in the attrac
case. In this paper we study this question by modelin
generic three-particle attractive potential by a pairw
springlike interaction. We show that this choice of potent
allows for an exact solution even in the presence of a c
stant external magnetic field.

Exact results obtained for solvable models are import
to understand general features of three-particle problems
to test approximate solutions, such as the ones obtained
the widely used Fadeev’s equations.12 Very few exact solu-
tions of three-particle problems have been found, mostly
one-dimensional13–15 or for three-dimensional16–18 spinless
particles. In this paper we present an exact solution fo
model of particles with spin.

The topology of the three-particle cluster may be either
a string form, when two particles with opposite spin a
placed in the same spatial point, or of a triangle form wh
all three particles lie far from each others. In the former ca
the number of the spin configurations is equal to two~dou-
blet states! with total spinS51/2. Apart from thesedoublet
states, a triangular clustering ofquartet statesmay also be
realized. This would correspond to four different symmet
spin wave functions with a total spinS53/2. In a strong
magnetic field these quartet states are the only relevant o
©2003 The American Physical Society06-1
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II. THE MODEL

The Hamiltonian of the model is

Ĥ52
\2

2m*
(
a51

3 S ]

]ra
2 i

e

\c
AaD 2

1
k

2
@~r12r2!21~r12r3!21~r22r3!2#, ~1!

wherera (a51,2,3) are the 2D position vectors of electro
with effective massm* . The spring strength is chosen ask
5m* v0

2/3, wherev0 is the specific frequency of the elec
tron’s relative vibration. Aa5(B/2)$2y,x,0% is the
symmetric-gauge vector potential at the position of theath
particle for a magnetic fieldB5$0,0,B/2% perpendicular to
the electronic inversion layer.

In order to diagonalize the Hamiltonian we introduce t
new coordinates$r ,j,h%,

r5
1

A3
~r11r21r3!,

j5
1

A2
~r12r2!,

h5A2

3S r11r2

2
2r3D , ~2!

where r is the center-of-mass coordinate,j is the relative
coordinate of the particles 1 and 2, andh is the relative
coordinate of the third particle with respect to the center
mass of the particles 1 and 2. In the new coordinates,
Hamiltonian is decoupled,

Ĥ5Ĥ r1Ĥj1Ĥh , ~3!

where

Ĥ r52
\2

2m*

]2

]r2
1

3\2

8m* l B
4

r21 i
\2

2m* l B
2 ~r3“ r !z , ~4!

Ĥj52
\2

2m*

]2

]j2
1S \2

8m* l B
4

1
3k

2 D j21 i
\2

2m* l B
2 ~j3¹j!z ,

~5!

Ĥh52
\2

2m*

]2

]h2
1S \2

8m* l B
4

1
3k

2 D h21 i
\2

2m* l B
2 ~h3¹h!z .

~6!

The last terms in the Hamiltonians given by Eqs.~4!–~6! are
proportional to the angular momentum andl B

25\c/eB is the
magnetic length.

The wave functionC of the initial Hamiltonian, Eq.~1!,
can be presented as the product of three wave functionc
which are eigenfunctions of Eqs.~4!–~6!,

C~r1 ,r2 ,r3!5c~r !c~j!c~h!. ~7!
20510
f
e

Schrödinger’s equationĤc5Ec with the Hamiltonian given
by one of the Equations~4!–~6! is easily solved in a polar
coordinate system where, e.g., Eq.~5! is written as

Ĥr52
\2

2m* S ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]w2D 2 i
\2

2m* l B
2

]

]w

1S \2

8m* l B
4

1
3k

2 D r2 ~8!

andr andw are the radial and angular variables in the po
coordinate systems.

The Hamiltonian~8! commutes with the angular momen
tum operator L̂z52 i\]/]w, @H r̂,L̂z#50. Therefore the
wave functionc(r,w) of the HamiltonianĤr can be chosen
to be of the form

cm~r,w!5eimwR~r!, ~9!

wherem is the angular momentum for a 2D system andm
561,62,63, . . . .

The asymptotic behavior of the radial wave functionR(r)
can be separated as

R̄~z!5zumu/2e21/2zf ~z!, ~10!

wherez5r2/2l B
2A114v0

2/vB
2 is a dimensionless coordinate

andvB5eB/m* c is the cyclotron frequency.
The function f (z) satisfies the confluent hypergeometr

equation

f ~z!5FH 2S b

A114v0
2/vB

2
2

1

2
~ umu11!D ,11umu,zJ ,

~11!

where b5E/4vB2m/2 is the dimensionless energy spe
trum. Convergence requires the first coefficient of the c
fluent hypergeometric function to be a negative integer. T
function then reduces to the generalized Laguerre polyno
als and gives the following energy spectrum:

Eni ,mi
5\vBA11

4v0
2

vB
2 S ni1

umi u11

2 D1
\vB

2
mi ,

~12!

wherei 51,2,3 denotes the number of noninteracting qua
particles introduced by means of a normal coordinate tra
formation. The total energy of a three-particle cluster is e
pressed as a sum of the energies of three noninterac
quasiparticles. Redefining the initial quantum numbers
n05n11 1

2 (um1u1m1), n52(n21n3)1um2u1um3u, and m
5m21m3, the total energy becomes dependent on three
act quantum numbers,

E~n0 ,n,m!5\vBS n01
1

2D1
\vB

2 A11
4v0

2

vB
2 ~n12!

1
\vB

2
m. ~13!
6-2



rn
er

e

ar
t

ve
.

the

the

sis

on
tes

is

rtet

nal

v-

e

n
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The case corresponding to three free particles in an exte
magnetic field is given by the two exact quantum numb
n5( i 51

3 (ni1umi u/2) and m5( i 51
3 mi . The normalized

wave function of thei th quasiparticle can be written in th
form

cni ,mi
~r,w!5

1

Ap
SA11

4v0
2

vB
2

2l B
2

D (umi u11)/2

F n!

~ni1umi u!!
G 1/2

3eimiwr umi uexpS2A11
4v0

2

vB
2

r2

4l B
2 D

3Lni

umi uSA11
4v0

2

vB
2

r2

2l B
2D . ~14!

In order to construct the total wave function for a three p
ticles cluster, the spatial wave functions corresponding
Eqs.~4!–~6! must be multiplied by the appropriate spin wa
functions and the final expression must be antisymmetric

III. WAVE FUNCTIONS AND CORRELATORS

All spin wave functions of the quartet statesuS5 3
2 ,sz&,

corresponding to the total spin numberS53/2 and itsz com-
ponentsz , are symmetric

u3/2,3/2&5a1a2a3 , ~15!

u3/2,1/2&5
1

A3
$a1a2b31a1b2a31b1a2a3%,

~16!

FIG. 1. The normalized pair-correlation functiong(j* ) versus
the dimensionless distance between two particlesj* for n251 and
different values of the quantum numbersn3 ,m3. The dotted lines
are the pair-correlation functions only from the diagonal eleme
of uCu2 according to Eq.~25!.
20510
al
s

-
o

u3/2,21/2&5
1

A3
$a1b2b31b1b2a31b1a2b3%,

~17!

u3/2,23/2&5b1b2b3 , ~18!

where a i and b i are the spinors of thei th electron corre-
sponding to spin up and down, respectively. Therefore,
antisymmetric orbital part of the wave function reads

CQ~r1 ,r2 ,r3!5CCn1 ,m1
~r ;v050!

3$Cn2 ,m2
~j!Cn3 ,m3

~h!2Cn2 ,m2
~2j!Cn3 ,m3

~h!

1Cn2 ,m2
~ j̃ !Cn3 ,m3

~ h̃ !2Cn2 ,m2
~2 j̃ !Cn3 ,m3

~ h̃ !

1Cn2 ,m2
~ j̃̃ !Cn3 ,m3

~ h̃̃ !2Cn2 ,m2
~2 j̃̃ !Cn3 ,m3

~ h̃̃ !%,

~19!

whereC is a normalization constant and we have used
notation

j̃5
r22r3

A2
5A3

2
h2

j

2
,

h̃5A2

3S r21r3

2
2r1D52

h

2
2A3

2
j,

j̃̃5
r32r1

A2
52A3

2
h2

j

2
,

h̃̃5A2

3S r11r3

2
2r2D52

h

2
1A3

2
j. ~20!

Notice that the inversion of the coordinates in polar ba
leads tor→r andw→w1p. Under this transformation, the
wave function acquires a factor (21)m, which defines its
parity. It is easy to see thatCA(r1 ,r2 ,r3)50 for m25 even
integer. The privileged dependence of the wave function
m2 is originated by the asymmetry in the new coordina
~2!. For m2 5 odd integer, we get

CQ~r1 ,r2 ,r3!5CCn1 ,m1
~r ;vo50!$Cn2 ,m2

~j!Cn3 ,m3
~h!

1Cn2 ,m2
~ j̃ !Cn3 ,m3

~ h̃ !

1Cn2 ,m2
~ j̃̃ !Cn3 ,m3

~ h̃̃ !%. ~21!

In high magnetic fields the polarized spin structure
characterized by thesequartet statessince all states are
aligned. The valuable feature of the spin-polarized qua
states is that they permit only odd values ofm2 and exclude
even ones, which is the situation observed in the fractio
quantum Hall experiments. The wave functionCQ given by
Eq. ~21! has the property thatCQ(r1 ,r2 ,r3)ur i→r j

50 for ar-

bitrarily choseniÞ j 51,2,3. This corresponds to the beha
ior of the Jastrow prefactorf (r i2r j ) in Laughlin’s ground
state wave function.1,2

In order to get more insight into the wave function w
plot in Figs. 1–3 the~radial! pair-correlation function,

ts
6-3
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G~ uju!5E
0

2p

dfjE d2r E d2huCQu2

5

A11
4v0

2

vB
2

l B
2

g~ uj* u!, ~22!

where the dimensionless coordinatej* is

j* 5

S 11
4vo

2

vB
2 D 1/4

A2l B

j. ~23!

FIG. 2. The pair-correlation functiong(j* ) versusj* for n2

52 and different values ofn3 andm3.

FIG. 3. The dependence ofg(j* ) on space coordinate forn2

53 and different values ofn3 andm3.
20510
This pair-correlation function gives the probability of findin
two particles at a given distance in the presence of a th
particle. We find that, owing to the presence of the th
particle, a shell structure appears with certain maxima in
probability at special distances. The number of these max
~shells! is defined by the quantum numbern2 and is equal to
n211. Therefore, the quantum numbern2 can be interpreted
as the main characteristic of the number of resonant state
the number of nearest neighbors if one considers this as
onset of a liquidlike behavior.

This interpretation is supported by the following reaso
ing. The pair-correlation function starts at zero since the
tisymmetrization due to Pauli blocking induces th
exchange-correlation hole. A smallj expansion then yields
~Appendix!

g~ uj* u!5auj* u2m21~b1cuj* u2m2!uj* u21o~ uj* u3!

5H ~a1b!uj* u2, m251

buj* u21auj* u2m2, m2.1
1o~ uj* u3!,

~24!

sincem2 is odd. The regime ofj* ,1 can be realized, ac
cording to Eq.~23!, for an arbitrary finite distance betwee
particles by sufficiently reducing bothv0 andvH .

The characteristic property of the Laughlin wave functi
is thatg(z) goes to zero asz2m, whereas in the case of th
Wigner crystal the pair-correlation function goes to zero
12exp(2az2)}z2. This was the reason for the superiority
the variational Laughlin wave function. In our direct comp
tation, starting from the expression of antisymmetric wa
function CQ, we obtain the Wigner crystal behavior. How
ever, the Laughlin exchange-correlation hole becomes tra
parent if we use only the first diagonal term inuCQu2
}C2uCn1 ,m1

(r ;v050)u2uCn2 ,m2
(j)u2uCn3 ,m3

(h)u2 which is
the first term in Eq.~A1!. We obtain the analytical result

gdiag1~ uj* u!5
n2!

~n21um2u!!
j* 2um2u@Ln2

um2u
~j* 2!#2e2j* 2

.

~25!
Representing the Laguerre polynomials as

Ln
m~x!5 (

k50

n S n1m

n2k D ~2x!k

k!
,

the following asymptotic behavior ofgdiag is obtained:

gdiag~ uj* u!5
~n21um2u!!

n2!m2! 2 j* 2um2u@11o~j2!#. ~26!

We see that the typicalz2um2u behavior of Laughlin states
appears. Therefore, we consider the quantum numberum2u as
the filling factor in analogy to Laughlin’s exchange
correlation hole behavior.

The approximation leading to this behavior has consis
in neglecting certain crossed terms. Here we should note
when considering the pair-correlation function we design
principle, two out of the three particles differently than th
third particle. In this case we do not need to antisymmetr
6-4
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TABLE I. The normalization constantC, the dimensionless
mean distance, and the area for different quantum numbers.
corresponding second lines give the analytical values~27! and~28!,
respectively.

n2m2n3m3 1/C Distance Area

1100 2.24 2.49 1.13
3 2.5 1.5

1111 3.37 4.00 2.25
3 4 6

1121 1.83 5.00 7.35
3 5 9

1122 4.81 5.49 11.03
3 5.5 10.5

2100 2.79 3.50 2.11
3 3.5 2.25

2110 1.12 4.49 8.07
3 4.5 6.75

2111 1.83 5.00 7.35
3 5 9

2120 3.22 5.48 5.07
3 5.5 11.25

2121 2.67 5.99 9.94
3 6 13.5

2122 3.10 6.46 25.10
3 6.5 15.75

2130 2.17 6.44 16.12
3 6.5 15.75

2131 3.26 6.92 10.88
3 7 18

2132 3.28 7.26 28.59
3 7.5 20.25

2133 2.27 7.68 14.47
3 8 22.5

3110 1.96 5.48 9.90
3 5.5 9

3310 2.59 6.46 12.41
3 6.5 11.25

3111 1.55 5.99 14.72
3 6 12

3311 1.83 6.98 17.45
3 7 15

3130 2.58 7.36 16.19
3 7.5 21

3330 3.90 8.29 26.75
3 8.5 26.25

3131 2.20 7.65 23.02
3 8 24

3331 2.40 8.46 23.18
3 9 30

3132 3.92 8.18 30.50
3 8.5 27

3332 2.28 8.64 32.36
3 9.5 33.75

3133 2.37 8.15 23.10
3 9 30

3333 3.70 9.29 41.88
3 10 37.5
20510
the wave function. One can therefore argue that all terms
Eq. ~A1! except the first one do not count and the result~25!
is exact. With increasing number of particles these ter
become probably more and more negligible such that
Laughlin behavior is describing the true ground state.9

The functiongdiag1 in Eq. ~25! is plotted in Figs. 1–3 with
dashed lines. We see that the places of the maxima are
described by this approximation. Note here that the appro
mation gdiag1 indeed shows the Laughlin exchang
correlation hole ofj2m2.

In order to obtain analytical results for observables
can use all three diagonal elementsuCQdiagu2

5C2uC1u2(uC2u2uC3u21uC̃2u2uC̃3u21uC̃̃2u2uC̃̃3u2). The
advantage of this approximation is that one can compute
expectation values of observables analytically and ge
fairly good approximation.

We consider the mean distance of the particles

K ~r12r2!2

2 L5E d2jd2rd2hj2uCQ diagu2

5
3C2l B

2

A11
4vo

2

vB
2

@~112n21um2u!

1~112n31um3u!#, ~27!

he

FIG. 4. The particular Young diagrams contributing to the sp
stateuS51/2,sz51/2& are shown on the left with the correspondin
contributions to the spatial wave function on the right. The indic
in one row are understood to be symmetrized and the indices in
column are antisymmetrized. The diagrams foruS51/2,sz521/2&
are obtained by interchanginga↔b.
6-5
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as well as the area spanned by the three particles,

K 1

4 U~r22r1!3~r32r1!U2L
5E d2jd2rd2h

3

4
uj3hu2 uCQdiagu2

5
9

4

C2l B
4

11
4vo

2

vB
2

@~112n21um2u!~112n31um3u!#. ~28!

We see that the mean distance and the mean area are
mined by the quantum numbers 112n21um2u and 112n3
1um3u. The mean distance is given by their sum while t
mean area is given by their product. The nondiagonal te
give smaller and smaller contributions. In Table I we co
pare the analytical approximate results~27! and~28! with the
numerical value of the full wave function. The agreeme
especially for the mean distance, suggests that this is qu
good approximation.

Although the states in high magnetic fields are charac
ized by spin alignment and are therefore described by
quartet states, we now give for completeness the other
sible state, the doublet state. The wave functions corresp
ing to the doublet states can be constructed accordin
Young’s scheme.19 For the stateuS51/2,sz51/2& it is given
in Fig. 4. The expressions corresponding to the configu
tions ~a!, ~b!, and ~c! in Fig. 4 are obtained by antisymme
trizing the spin wave function with respect to the row indic
and symmetrizing with respect to the column ones,

u1/2,1/2&a5c~a2$a1b32a3b1%1a1$a2b32a3b2%!
~29!

and correspondingly for~b! and~c!. It is possible to see tha
one particular spin wave function transforms into the ot
one when two particle indices are interchanged, formin
group.

The spatial wave functions for each spin diagram are
tained by transposition of the Young tableaux of Fig. 4. On
again, the elements in a row must be symmetrized and
elements in a column antisymmetrized. The spatial w
function corresponding to~a! in Fig. 4, Eq.~29!, reads

Ca
D~r1 ,r2 ,r3!5CCn1 ,m1

~r ;v050!

3$Cn2 ,m2
~2j!Cn3 ,m3

~h!1Cn2 ,m2
~ j̃ !Cn3 ,m3

~ h̃ !

2Cn2 ,m2
~j!Cn3 ,m3

~h!2Cn2 ,m2
~2 j̃̃ !Cn3 ,m3

~ h̃̃ !%.

~30!

Denoting only the spatial indices, the coordinatesj,h de-
fined in Eq.~2! can be abbreviated as (1,23). The coordin

j̃,h̃ of Eq. ~20! would correspond to~2,31!, j̃̃,h̃̃ to ~3,12!,
and 2 j̃,h̃ to ~3,21! respectively. In this short notation th
three orbital wave functions of Fig. 4 read
20510
ter-
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Ca
D5~2,13!1~2,31!2~1,23!2~1,32!,

Cb
D5~1,32!1~1,23!2~3,21!2~3,12!,

Cc
D5~3,21!1~3,12!2~2,31!2~2,13!. ~31!

Multiplying the spin and spatial components and adding
three particular expressions, we get the final wave funct
for the doublet state. The final result depends on the parit
m2. For m2 odd it reads

CD~r1 ,r2 ,r3!5C1Cn1 ,m1
~r ;v050!

3$~b1a2a31a1b2a322a1a2b3!Cn2 ,m2
~j!Cn3 ,m3

~h!

1~a1b2a31a1a2b322b1a2a3!Cn2 ,m2
~ j̃ !Cn3 ,m3

~ h̃ !

1~b1a2a31a1a2b322a1b2a3!Cn2 ,m2
~ j̃̃ !Cn3 ,m3

~ h̃̃ !%,

~32!

while for m2 even the wave function is given by

CD~r1 ,r2 ,r3!5C2Cn1 ,m1
~r ;v050!

3$~a1b2a32b1a2a3!Cn2 ,m2
~j!Cn3 ,m3

~h!

1~a1a2b32a1b2a3!Cn2 ,m2
~ j̃ !Cn3 ,m3

~ h̃ !

1~b1a2a32a1a2b3!Cn2 ,m2
~ j̃̃ !Cn3 ,m3

~ h̃̃ !%. ~33!

It is easy to check that the expression for the probabi
distribution uCDu2 in the doublet state differs from the on
for the quartet state by the coefficients in front of the cros
terms. Our estimate shows that the character of quantiza
of the two-particle correlator, the cluster area, mean dista
for doublet states is qualitatively similar to that for quar
states. Since the contributions of the crossed terms in
quartet states are smaller than those in the doublet states
maxima in the pair-correlation function are more pronounc
in the former case.

IV. CONCLUSIONS

The investigation of the three-particle problem in t
presence of magnetic fields is essential to understand
phenomenon of the fractional quantum Hall effect.2 In this
paper we have solved exactly the problem of three ident
particles interacting via a spring potential in 2D space in
presence of an external magnetic field, neglecting the C
lomb interactions. We have shown that the wave funct
acquires the Jastrow prefactor even in the case of an at
tive potential as a consequence of the antisymmetric cha
ter of the total wave function. Calculations of the pa
6-6
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correlation function, the area of the three-particle cluster,
the mean distance show a quantization of these parame
Particularly, the pair-correlation function exhibits maxim
and minima controlled by a quantum number.

We have also found that the exchange-correlation hol
small distances shows the behavior known from the Wig
lattices rather than the Laughlin behavior if we start from
antisymmetrized wave function. However, neglecting cert
terms based on the physical consideration that the antis
metrization of the wave function fails when two particles a
fixed for the pair correlation, we obtain exactly the Laugh
exchange-correlation hole. The corresponding filling facto
identified with a quantum number appearing in the ex
solution of the model solved here.

APPENDIX: SMALL DISTANCE EXPANSION
OF THE PAIR-CORRELATION FUNCTION

The expansion of the pair-correlation function~22! for
small j can be performed straightforwardly with the help
MATHEMATICA . After trivial integrations aboutd2r we have
to calculate

g~ uj* u!5E d2h* ~ uC2u2uC3u212uC̃2u2uC̃3u2

12Re$2C2C3C̃2* C̃3* 12C̃2C̃3C̃̃2* C̃̃3* %!,

~A1!

where we have used symmetries in the variables and ab

viated C̃25Cn2 ,m2
( j̃), C̃̃35Cn3 ,m3

( h̃̃), and similarly for
the other combinations. Therefore we express the occur
variables~20! in the wave function in terms of the integra
tion variables

u j̃u25
1

4
@3uhu21uju222A3uhuuju cos~fj2fh!#,

eifj̃5
1

2u j̃u
~A3uhueifh2ujueifj!, ~A2!
-

20510
d
rs.

at
r

e
n

-

s
t

re-

g

and similarly forh̃ as well ash̃̃ and j̃̃. Using the dimension-
less coordinates~23! in the wave function~9! and changing
variables~A2!, the integral~A1! is quite bulky. However,
expanding in smallj* the angular dependencefh2fj

drops out and we obtain the form~24!

g~ uj* u!5auj* u2m21~b1cuj* u2m2!uj* u21o~ uj* u3!,
~A3!

where the remaining modulus integralduhu can be performed
for the constantsa andc with the result

a52
~n21m2!!

m2! 2n2!
,

c52
2~n21m2!!

n2!m2! S 2
n2

~11m2!!
1

1

m2! D . ~A4!

Therefore we see that the constanta is not vanishing, which
means that the Laughlin liquid behavior is not resumed if f
antisymmetrization is pertained for the pair-correlation fun
tion.

For completeness, let us also give the constantb whose
integral can be done only numerically@x5uh* u2#,

b5
~21!2m33m221

4m21m3

n2!n3!

~m21n2!! ~m31n3!!
I,

I5E
0

`

dxxm21m321e2xH 8~m223m3!2Ln2

m2S 3x

4 D 2

Ln3

m3S x

4D 2

112~m223m3!xLn2

m2S 3x

4 DLn3

m3S x

4D FLn2

m2S 3x

4 DLn321
m311S x

4D
2Ln221

m211S 3x

4 DLn3

m3S x

4D G19x2FLn2

m2S 3x

4 DLn321
m311S x

4D
2Ln221

m211S 3x

4 DLn3

m3S x

4D G2J . ~A5!
a

-
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