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Large-scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional
compact Abelian Higgs model in adjoint representations of the matter field, labeled by an igtégenq
=2,3,4,5. We also study various limiting cases of the model, such agtlatice gauge theory, dual to the
three-dimensional3D) spin model, and the 3XY spin model which is dual to th&, lattice gauge theory in
the limit g—oe. In addition, for benchmark purposes, we study the square lattice eight-vertex model, which is
exactly solvable and features nonuniversal critical exponents. We have computed the first, second, and third
moments of the action to locate the phase transition of the compact Abelian Higgs model in the parameter
space f3,«), whereg is the coupling constant of the matter term and the coupling constant of the gauge
term. We have found that fay= 3, the three-dimensional compact Abelian Higgs model has a phase-transition
line B.(«) which is first order forx below a finitetricritical value x,; and second order above. Tie= = first
order phase transition persists for finjieand joins the second order phase transition at a tricritical point
(Bui ki) =(1.23+0.03,1.73:0.03). For all other integeg=2 we have considered, the entire phase-transition
line B.(«) is critical. We have used finite-size scaling of the second and third moments of the action to extract
critical exponentsx and v without invoking hyperscaling, for thXY model, theZ, spin and lattice gauge
models, as well as the compact Abelian Higgs modelkfer2 andgq=3. In all cases, we have found that for
practical system sizes, the third moment gives scaling of superior quality compared to the second moment. We
have also computed the exponent ratio fordgke2 compactJ(1) Higgs model along the critical line, finding
a continuously varying ratig1+ «)/v, as well as continuously varying and v as « is increased from 0.76
to «, with the Ising universality class (La)/v=1.763 as a limiting case fg8—«,x—0.761, and theXY
universality class (¥ «)/v=1.467 as a limiting case fg8— 0.454x— . However, the critical line exhibits
a remarkable resilience &, criticality as g is reduced along the critical line. Thus, the three-dimensional
compact Abelian Higgs model fay=2 appears to representfized-linetheory defining a new universality
class. We relate these results to a recent microscopic description of zero-temperature quantum phase transitions
within insulating phases of strongly correlated systems in two spatial dimensions, proposing the above to be
the universality class of the zero-temperatgentum phase transitiorom a Mott-Hubbard insulator to a
charge-fractionalized insulator in two spatial dimensions, which thus is that of the 3D Ising model for a
considerable range of parameters.
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[. INTRODUCTION els are defined-8 Since these are lattice models, the corre-
sponding gauge fields are necessarily compact. Compact
Lattice gauge theories in21 dimensions with compact U(1) gauge fields in 2 1 dimensions support stable topo-
gauge fields coupled to matter fields, have recently coméogical defects in the form of monopole configurations, and it
under close scrutiny as effective theories of strongly correhas been suggested that the unbinding of such monopoles, a
lated fermion systems in two spatial dimensions at zero temeonfinement-deconfinement transition, may be relevant for
perature. Phase transitions in such three-dimensional modetsich phenomena as spin-charge separation in strongly corre-
then correspond to quantum phase transitions in a system kted system&>® Confinement here refers to the confine-
zero temperature in two spatial dimensions. A central issue isent of test charges in the problem, not of topological de-
whether such systems of strongly correlated fermions cafects of the gauge fieltwhich are space-time instantons, and
suffer quantum phase transitions from Fermi-liquid metallicwill hereafter be referred to as “monopole” configurations
states to states where the quasiparticle concept has brokédiernative formulations in terms of a lattice Ising gauge
down and given way to singular Fermi liquidsr electron-  theory’® coupled to matter fields, have also been put
splintered state%® Such quantum phase transitions may beforth.'*122This is largely motivated, it would appear, by the
related to phase transitions such as confinementfact that it is highly controversial whether #2-+1)-
deconfinement transitions ii2+1)-dimensional compact dimensionall(1) gauge theory with matter fields the fun-
gauge theories. This fact has resulted in focused attention atamental representationwill undergo a confinement-
effective gauge theories of matter fields representing charggeconfinement transition. In the absence of matter fields,
doped into Mott-Hubbard insulators, coupled to fluctuatingcompactU(1) gauge theories are known to be permanently
gauge fields representing strong constraints on the dynamic®nfined ind=2+1, while the pureZ, gauge theory is
of the fermions on the underlying lattice on which the mod-known to have a second order phase transition in the inverted
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3D Ising universality class. It is sometimes stated, withoutbutions from the second moment. The second moment is
much justification, that the presence of matter fields in theknown to be a notoriously difficult quantity to use in particu-
fundamental representation will not alter the picture thatlar for extracting specific heat exponents, due to large cor-
emerges in their absence, both for thél) case and th&,  rections to scaling coming from confluent singularities for
case in 21 dimensions. practical system sizes. Moreover, the third moment is the

One major problem that arises in this context, is that thesimplest quantity to compute which has an extra feature
Wilson loop nonlocal gauge-invariant order parameterwhich even moments do not have. It has a double-peak struc-
which has proven itself to be very useful in the absence ofure where the widtbetweerthe peaks also exhibits scaling.
dynamical matter fields to distinguish confined from decon-This allows us to extract separadlyo exponentsae and v
fined phases, is rendered useless by the presence of them.ftom measurements of the third moment alone, without hav-
particular, when the symmetry group of the matter field ising to invoke hyperscaling.
contained in the symmetry group of the gauge field, one can A lattice model of particular interest in this context is the
demonstrate rigorously under otherwise quite general condiAbelian U(1) Higgs model with a compact gauge fi¥ld
tions, that the Wilson loop is bounded from below by a pe-coupled minimally to aJ(1) bosonic matter fiefd@?* with a
rimeter law, not an area law, despite the fact that models witlyauge charge. It is defined by the partition function given
this property definitely has phase transitions from confined tdy the following functional integral
deconfined phasés.Hence, the Wilson loop and the related
Polyakov loop, are no longer useful order parameters for the a N do;| (=
problem. Physically, this is due to the fact that in the pres- _f H f_w
ence of a dynamically fluctuating matter field coupled to the
gauge field, particle-hole excitations are generated from the
vacuum and will effectively screen the interaction between Hﬁzz [1-co90;,)],
two static test charges introduced into the system, which the Lp
Wilson loop is a measure of. Hence, a perimeter law is al-
ways obtained. _ _ ,

Recently, two of us have shown that a confinement- H.e % [1=cod A, @
deconfinement transition may take place in three- ) ) ) ,
dimensional compadt/(1) gauge theory coupled to matter whereN is the number of lattice sites and we have defined
fields, when the matter field exhibitsitical fluctuations:**°

Such matter-field fluctuations endow the gauge-field with an 0j,=Ru0i=AAu,
anomalous scaling dimensiop, with a valué®?*’ A

H dAJ';L

u 2

j=1§ eXdﬁHB-FKHK],

-

jﬂzs,uv)\AvAj)\ . (3)
na=4—d, (1) Here, ¢ ,,,) is the completely antisymmetric tensor. More-
over,Z; , denotes a sum over sites of the lattice, whilg,,
whered is the dimensionality of the system. This value for denotes a sum over the plaquettes of the lattice. We will use
7, is protected by gauge invariance.drr 3, this transforms ~ the variables X=1/[«+1],y=1[8+1]) when discussing
the gauge-field propagator in a striking manner such as téhe possible phases of this modeIn Eq. (2), ¢ is the phase
allow a confinement-deconfinement transition to take plac®f a scalar matter field with unit norm representing holons,
via a three-dimensional Kosterlitz-Thouless like phase trand , is a forward lattice difference operator in directipn
sition of unbinding of pointlike monopole configurations of while A;, is the fluctuating gauge field enforcing the onsite
the gauge field*** The treatment of Refs. 14,15 closely par- constraints reflecting the strong correlations in the problem.
allels that of Ref. 18 and is based on a dual description in th&Ve are neglecting amplitude fluctuations of the matter fields,
continuum. However, it is far from obvious what the corre-working in the “London limit.”
spondinglattice gauge theoryif any, that would yield such Let us summarize what is known about this model. When
results, could be. g=0, the matter field decouples from the gauge field. It is
In the absence of a clear-cut order-parameter criterion fowell known that the model then has one critical point in the
distinguishing various phases of such matter-coupled gaugeniversality class of the 3IXY model, and in the Villain
fields, it would be advantageous to be able to distinguisiapproximation(which is most often used when dualizing the
various phases by direct “thermodynamic” measurementsnodef®), the critical valuey, is given byy.~3/4.2%%On
reliably exhibiting possible non-analytic behavior. In this pa-the other hand, the pure gauge theory is permanently con-
per, we will use one such measurement recently introducefined for all values of.® Consider nexg=1. Then, Eq(2)
by us!® namely, finite-size scaling of the third moment of the is trivial on the linex=1,0<y<1 with no phase transition
action of the lattice model. This will turn out to be a superiorfor any value ofy. On the line 6<x<1,y=1 the matter field
quantity to study for this purpose, compared to the seconis absent and the theory is permanently confitfeBor a
moment. It brings out nonanalytic thermodynamics and prefurther enumeration on rigourous results both on the non-
cision values of the specific heat critical exponerand the  compact and compact version of this model, see also Ref. 24.
correlation length exponent through finite-size scaling For arbitrary (3,«), the casel=3, q=1 is controversial.
analysis performed on practical system siz&Bhe third mo- It is, however, clear that no ordinary second order phase
ment has the advantage of not being contaminated by contriransition with a local order parameter exists for the model in
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this case. When matter fields are coupled to a compact gaudglkee bosonic model in Ref. 28, this phase corresponds to a
field in a continuum theory, the permanent confinement ofractionalized insulator. The confined phase, on the other
the pure gauge theory is destroyed and a confinementand, features excitations with chargeand should corre-
deconfinement transition may take place via a Kosterlitzspond to a conventional Mott insulaf$fThus, the mode(2)
Thouless-like unbinding of monopole configuratithsn can be thought as describing a particular case of insulator-
three dimensions. This is due to the appearance of an anoméiactionalized insulator transition. The full bosonic model
lous scaling dimension of the gauge-field induced by criticalconsidered in Ref. 28 has a more rich phase structure de-
matter-field fluctuation$®!’ The role of the anomalous di- pending on the values of the parameters. For example, a
mension has also been studied recently at finite temperatureyperfluid phase is also possible. We will not consider such a
in pure compact QED ind=3 with no matter fields situation here, but only a special limit of the bosonic model
present® In both Refs. 14 and 25, the anomalous scalingof Ref. 28.
dimension plays a crucial hole. However, in Ref. 25 the de- The purpose of this paper is to make a detailed numerical
confinement transition occurs due to finite temperature, andtudy of the phase structure of E@). An important point
there are no matter fields. concerns the universality class of the phase transition. This
The role of an anomalous scaling dimensions in driving awill be the main topic discussed in this paper. We have per-
recombination of monopole defects of the gauge field intdormed a large scale Monte Carlo study which gives a very
dipole configurations, corresponding to a confinementcomplete picture of the universality class of the transition.
deconfinement transition, has been studied numerically fofhe present study complements and goes far beyond our
the casej=1 in the presence of matter fiel#The authors previous large scale Monte Carlo study of the mdddh
of Ref. 26 in this case reach conclusions in agreement wittiRef. 19, we have shown that the Ising,] universality class
Ref. 14. Thus, even putting the issue of whether this signaldominates over a significant portion of the critical line of the
a phase transition or not aside, it is clear that also mattetheory. Moreover, we have shown that there is a region of
fields in the fundamental representatidn matter in this parameters where the critical exponents are continuously
problem. It is also interesting to note in this context, thatvarying. This was interpreted as evidence for the existence of
some time ago a rather remarkable papes, Kosterlitz-  a line of fixed points in the renormalization gro(RG) flow
Thouless transition was claimed in a three-dimensionatliagram. To the portions of the critical line corresponding
theory of integer point charges interacting via a logarithmicrespectively toZ, and XY critical behavior, are associated
potential. There, however, the origin of the logarithmic inter-I1sing and XY fixed points. In addition to these two fixed
action was due to higher order anisotropic gradient termspoints there exists a fixed line corresponding to a critical
essentially an input to the theory, and notresult of an  phase. As discussed recentlglectron fractionalization in
anomalous scaling dimension appearing due to criticality inL+1 dimensions is associated to a quantum critical phase.
the mass-sector of a compdé{1l) gauge theory. This, how- Ordinarily, in more than one spatial dimension quantum
ever, contrasts with the case considered in Ref. 14. The agphase transitions are associated with a critical point. Thus,
isotropy effectively leads to a dimensional reduction and ave would expect that electron fractionalization would occur
resulting standard Kosterlitz-Thouless phase transition it a critical point. Our analysis clearly shows that a critical
two dimensions. phase exists for the mod€2) at q=2. This becomes par-
For g>1 the model in Eq(2) exhibits a behavior that ticularly clear on the portion of the critical line correspond-
completely sets it apart from the cage=1. The reason is ing to large values ok, where we find that the critical ex-
that forq>1, the matter field is no longer in the fundamental ponents vary smoothly with coupling constants, approaching
representation. Thus, in contrast to the no-compact case tiie 3DXY value only slowly. The three-dimensional KT-like
the standard Maxwell term of the gauge sector, the gaugscenarid®!*for theq=1 model is also an example of critical
charge cannot be simply scaled away. The egs® is par- phase occuring in higher dimensions. However, due to the
ticularly interesting in the context of electron vortex content of the model @=1, it is not entirely obvi-
fractionalizatior?® This is a case that we will consider in ous that the corresponding deconfinement transition is really
detail in this paper. This theory arises as a special limit of aassociated with electron fractionalizatith.
bosonic model exhibiting fractionalized phases considered In this paper the casep=3, 4, and 5 will also be consid-
recently’® The phase diagram fay=2 was briefly discussed ered. The casg=3 is particularly interesting. While foq
long ago by Fradkin and ShenKerFor d=3 the phase dia- =2,4, and 5 theentire line separating the two phases are
gram is divided into two phases, a confined and acritical, this is not true whem=3. In this case there is a
deconfined-Higgs phase. There is no Coulomb phase in thraglue of x below which the transition is first order, being
dimensions. The model become<ga gauge theory on the second order otherwise. This point where the transition
line y=0. This limit suffices to bring out the fundamental changes from second order to first order, is clearly a tricriti-
difference between thg=1 andq=2 cases, since on the cal point. We emphasize that among the situations analyzed
line y=0, theq=1 case is trivial. We will discuss this in in this paper, only the casg=3 exhibits a tricritical point.
more detail below. The vortex content of tle=2 case is Whenqg=3, charge is fractionalized in such a way that ex-
different: Z, vortices, orvisons may arise in the deconfined- citations carry charge/3. This situation is reminiscent of the
Higgs phase. Due to the visons the flux is quantized in units'=1/3 state in the fractional quantum Hall effé®in gen-
of 27 instead ofw. This means that the excitations in the eral the charge for arbitrary will fractionalize ase/q. This
deconfined-Higgs phase have charj2. In the context of gives an elementary flux quantughy,=2mq/e, contrasting
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with the more familiar situation of flux quantization in a dance with the discussion in the previous section. gor
superconductor. Indeed, if we take the example ofghe2 =2, the model is equivalent to the lattizg gauge theorﬁf
theory, we see that the flux quantum is doubled, while in aand the critical point of the model in this limit is thus in the
superconductor it is halved because the Cooper pair hasverted Ising universality clage analogy with the inverted
charge 2. Other interesting possibilities of vortex/charge XY universality class of the dualized 3XY modef®).
fractionalization were considered recently in certain JosephThereforea and v are those of the global 3D Ising model.
son junction array3! For integerq=3, the critical exponenta and v we will find

In all these examples, it is readily seen that the type ofn the limit 3—c, « fixed, will be those of theZ, spin
flux quantization involved depends on specifying whethemodel, since as we shall see below, fyggauge theory is
charge is fractionalized or not. Therefore, in order to detectiual to theZ, spin model ind=3.
charge fractionalization, experimental measurements of flux For arbitrary integer-valued gauge chamé.e., labeling
as the one proposed in Ref. 32 in the context of underdopedf matter-field representation whege=1 means fundamen-
cuprates are important. The experiment proposed in Ref. 3@l representation, whilg=2 means higher representatipns
has now been performédbut has failed in detecting elec- we may write the action in Eq2) in the Villain approxima-
tron fractionalization. The failure of this experiment doestion, replacing the cosine terms by periodic quadratic parts,
not, however, entirely rule out charge fractionalization in theafter which the model may be written in terms of its topo-
cuprates for the following deep reason. In the zero dopindogical defects &#88
insulating regime, the system can effectively be described by
the antiferromagnetic quantum Heisenberg model. This
model is known to have a loc8U(2) gauge symmetr}f Z:ZO{%} {JE,} Oa
Upon doping, this symmetry is broken downligl1). Since e
thisU(1) is a subgroup o§U(2), it is compact and carries
the “charge” labelq corresponding to the different represen- X E
tations. Within theq=2 represention, the double broken Tk
symmetry patten$U(2)—U(1)—Z; is possible. In such a where D(j —k,mz):(—A§+m2)‘1ajk and m?=q?Bl .
situation, there would be no stable vison and any experimen-ere Z, is the partition function for massive spin waveds,
tal attempt based on a vison trapping experiment would failand is an analytic function of coupling constants which will
However, this does not mean that charge is not fractionalbe omitted from now on. Note the appearance of the con-
ized. TheZ, residual subgroup will imply the existence of straint
magnetic monopoles which, by duality, accounts for the ex-
istence of fractional charges2. In the perspective of such a A,J,=0Q;; geN (6)

possible scenario, alternative experimental proposals shoulgl the summation, which will be important in what follows.

be envisioned and the identification of the universality clasgere, Q;eZ is the monopole charge oftlua) lattice site

of possible phase transitions tige=2 case is important in  numberj, while J;, are topological currents representing seg-

this context. ments of open-ended strings terminating on monopoles, or
The plan of the paper is the following. In Sec. Il, we closed loops. These are the only stable topological objects of

discuss the limits of the model, pointing out the differencesthe theory’® For a recent treatment of the interplay between

with respect to theg=1 case. In Sec. Ill, we explain the Apelian monopole condensation and vortex condensation in

finite-size scaling analysis of the third moment of the freejattice gauge theories, see Ref. 36.

energy used in this paper. In Sec. IV we discuss the details of |n the limit 84— at fixed «, the partition function in Eq.

our large-scale Monte Carlo simulations. As a check on thgs) takes the form

quality of the simulations, we have performed several bench-

_ 2
V‘]jv’qu eX[{ 4 B

D(j—km?) |, (5

q2
JJ,+ —0QiQ
jvk 5 jk

mark simulations which we present in parallel with our new 2K )
results on the model defined by E@). Section V concludes Z= E Z 5AVJ,-V,qQJ- exp ——— 2 Wl @
Q) {3t q j
the paper.
This is easily seen to be the loop-gas representation of the
II. LIMITS OF THE COMPACT GAUGE THEORY glObal Zq theory in the Villain apprOXimatiOﬁ? USing the
integral representation of the Kronecker delta and summing
A. B— =, K finite overJ;, using the Poisson formula, we obtain up to an over-
In terms of the formulation of the model in E(@), this  all nonsingular factor
limit leads to the constraink , 0, —qA,=2ml; , wherel; , 1N qe
is integer valued. Substituting this into the gauge-field term, 7_ 2 f { et}
we find N J=n|i=1 27
N o0 2 q2
z=11 > exp{KE 1—C05(—7T£j u) ], (4) Xex;{— > > (A,0-27N;,)2+i0> Q6.
=11y e = q " 8wk jv i

whereL; ,=¢€,,,A,l;, is also integer valued. Far=1 the ®
model is therefore trivial in this particular limit, in accor- By employing the Poisson identity
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* _ * Poisson summation formula, integrating owgr, and per-
2 e'dQl=27 E 8(0—2mllq), (99  forming a partial integration, leads to the partition function
Q= I==e which is equivalent to an ordinary loop gas with completely
we obtain suppressed gauge-field fluctuations wigga an integer. The
gauge-field fluctuations of the compact sector produce closed

al q® 2 2 vortex loops with long-range interactions such that the loop
Z= - A VIJ - 27TN] v

2 E tangle is incompressible, entirely equivalent to ordinary mat-
8wk 1w 10 ter field vortex loops. No screening of their test charges is
(10 produced by these constrained gauge-field fluctuations and
The above is precisely the Villain form of 4, model®’ monopole configurations are suppressed. Hence, the model
Since Eqs(7) and (4) are dual(up to a Villain approxi- in this limit is, after all, equivalent to the 3®Y model, as it
mation, and Eq.(7) is a loop-gas representation of the glo- also is in the noncompact case where gauge-field fluctuations
bal Z, theory while Eq.(4) is theZ, lattice gauge theory, we are entirely suppressed.
conclude that the global and locdl, theories are dual to Ideally, to explore the entire phase diagram of the model
each other ird=3, in agreement with the results of Ref. 38. Eg. (2), we could carry out Monte CarldMC) simulations in
Hence, again we conclude that the model &j.in the limit  conjunction with finite-size scaling analysis of standard
B—oo, «k fixed, should have critical exponenisandv con-  quantities such as the susceptibility or the specific heat. The
sistent with theg-state clock model universality class. Since problem with the former quantity is that we have no candi-
limg_.Zq=U(1), the above fits nicely in with what is date gauge-invariant order parameter for this model, in view
known for theU(1) case ind=3, where the global 3IXY  of the results of Refs. 13,43,44. The problem with the latter
model dualizes into & (1) gauge theory>39-% is that the second moment of the action is marred with huge
From Eq.(7), it is seen that the casgs=1 andg#1 are  corrections to scaling and is hence unsuitable to extract criti-
fundamentally different. Folg=1, the summations over cal exponents from simulations on practical system sizes. To
{Q;} may be performed to produce a unit factor at each ofcircumvent this difficulty, we will consider various higher
the N dual lattice site, thus completely eliminating the ordermomentsof the action appearing in the partition func-

constrain®® Hence, we hav&=[ 95(0 e72772K)]N where the  tion in order to obtain quantities with good scaling for prac-
elliptic  Jacobi functions are given by 94(z,q) tical system sizes we can handle in Monte Carlo simulations.

=2;°:_mq”2 exp(27inz), which are analytic functions and
hence no phase transition occurs at any valuecdbr q
=1 in this limit. For (intege) =2, a phase transition is  Gijven a singular contribution to the free energy-
}(nown to survwé. T_he restoration of a phase transition for _ |,z of a system with an inverse temperature couplig
integerg>1 is, in this language, crucially dependent on the

presence of the constraint E@) for g# 1. Even when one Fsing~|t|27a }'i(h/lt|A), (12
sums ovenll possible values ofQ;}, this still represents a ) ) )

real constraint on the vortex configurations of the systemWhereh plays the role of a scaling variabl, is some scal-
since it cannot be eliminated by summation as in the case dfg _exponent, lim_..F. (x)~xZ~ %, lim,_oF.(X)
q=1. This suffices to convert the theory to a strongly inter-=A% , AL are critical amplitudes, and=(8— )/ is
acting one capable of sustaining a phase transition, in corfome deviation from a critical coupling, then the nonanalytic
trast to the effectively(discrete Gaussiannoninteracting contribution to the susceptibility of the action is given by
caseq=1.

{;="a+1y (N}

IIl. MOMENTS OF THE ACTION

C~tl™ Co(h/]t]%), (13

B. B finite, xe— e where lim_..C.(x)~x"%*, and lim,_oC.(x)=A% . At a

We now discuss the limiB finite, k—o. Note from Eq. critical point, this quantity will scale a€~ L, where the
(2), that whenk— =, we haves ,,,\A,Aj\=27M; ,, where  volume of the system is given byXL XL, provided the
M; , is integer valued. This shows that in this limit, the system exhibits one diverging length scale at the phase tran-
gauge-field fluctuations are very similar to transverse phasgition. Here,v is the correlation length critical exponerg,
fluctuations in the 3DXY model*? and the integeM; , ~|t| =¥ close to a critical point. A problem arisesdf<0, as
plays the role of vorticity. Thus, even when—«, gauge- in the 3DXY model, since one then gets an increasing peak
field fluctuations are not completely suppressed, we are ndn C itself with increasind-, which, however, eventually will
allowed to setM; ,=0, and hence we cannot séf , no longer scale with.. Unfortunately, but quite typically,
=A,x; in the first term in Eq(2). However, we may write impractically large system sizes are needed to eventually dis-
the partition function on the form tinguish corrections to scaling from actual scaling in the sec-
N dA, finite cusp nonanalyticity which does scale, superposed on a
H exdBHel, (11 large regular background which eventually will not. It would
where the functional integral over the gauge field is nowor at the very least bring out the leading non-analyticity
constrained. Introducing the Villain approximation, using thedominating the scaling more clearly relative to confluent sin-

ju 2T

ond moment, particularly so when<<0. Thus,C exhibits a
m do;| (=
[ 5
Tt 7 be advantageous to be able to subtract out this background,
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gularities, or corrections to scaling. This can effectively beangle 6,4 providing a new set of coordinates which are lin-
achieved by taking one further derivative of the action withear combinations of coupling constants
respect to the coupling constant as
X;=X; COSO+ X, siné,
aaniﬂg —(1+ A
=[O G (hrt]Y), (14) _
apB X5=—X1 SiN 6+ X, C0S¥, (18
where the scaling functiong.(x) has the properties
limy .G (X) ~x~ AT and lim_ (G- (x)—AY , which
will scale asL*" %' at a critical point.
More generally, theaith moment

with the corresponding uncorrelated operators

H;=H, cosf+H,sing,

"F. H,=—H,sin#+H, cosé. 19
T an'”g~|t|*‘”*2*“> G- (hi]t|%), (15) : ' ’ 49
P This yields

will scale asL(""2*9)/” at a critical point, and therefore by
computing two moments, say the thind=€ 3) and the fourth N 0\ [
(n=4), it is also possible to extract and v separately F@=(6x],6%)) 0 )(5)(,)
without utilizing the hyperscaling relation=2—dwv. N 2

In fact, this may be obtained from the third momévhg =(6X])2N L+ (Ox5)°N _, (20)
alone, since the width between the negative and positive
peaks scales ds . ThusM yields independent measure- where A, and A_ are the larger and smaller eigenvalue,
ments of both (} «)/v and 1. The above procedures may respectively. I\ . >\ _ the first term will dominate the lead-
serve ascheckson the validity of hyperscaling. This is ing order corrections td-({x.}). Hence, to obtain proper
known to be violated above the upper critical dimension inscaling, the second derivative of the free energy should be
spin models and systems with long-range interactions due tevaluated along the direction of the corresponding eigenvec-
the presence of dangerous irrelevant variafildong-range  tor
interactions are features of tlteial models of some of the

theories we consider and little is known about the presence 2

- . J°F
of dangerous irrelevant operators in some of the models we —5 X=Xl 7 (21)
study in this paper. Hence, caution is necessary in extracting 281

individual exponents. At any rate, the above seems to be a _ . _

useful way of extracting two exponends » from measure- When crossing the critical line. _
ments of one quantity, namely]5. The procedure described ~ From EQ.(2), we get the standard expressions
above will presumably turn out to be useful in a host of other

models in statistical physics. oF

Consider next a model with two coupling constaxtsand ﬁ =—(H,),
X, defined by its action
_ 9°F
= + .
S XlHl X2H2 (16) F:<Gi>y (22)
In this case, the scaling oizF/&xi&xj could conceivably M

depend on the direction in parameter space in which the Criti\'/vhere,u is the rotated coordinate along the eigenvector cor-

cal I|r_1e is crossed.'To take this complication into account, W.eresponding to the largest eigenvalue, and where we have
consider contributions to the free energy to second order in

devitations in the coupling constants from their critical val- definedG,, =H,, —(H,,) with rotated operator, defined by

. " . Eq.(19). The above expressions essentially represent gener-
ues, by expanding to second order around the critical IOOIntalizations of the expressions for internal energy and specific

1 5°F heat. The second derivative contributetp which we will
F=—=InZ=F({x.})+ > E X &jm +0O(6x3). refer to as the singular part of the second moment of the
L P9 x action, or the action susceptibility. Similarly, we obtain
This contribution to the free energy can be written 3
oxTF;;ox=F@, whereF;; is the “fluctuation matrix” de- £=(G3> 23
fined by 3 el
9°F and in general we have for theh moment
Fiy=(HiH) = (H)(Hj)= - ——. (17) J
0%

n

This can be diagonalized via an orthogonal transformation

. o : : =(Gp)- (24)
by rotating the original coupling constant basis through an du" a
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——— B. Simulations of the eight-vertex model

v As a first benchmark on our method of extracting the
exponentsy and a separately, we consider the eight-vertex
modef’ on a square lattice. This model has the virtue of
M, being exactly solvable, and hence an analytic expression for
the exponent is known. Moreover, it has critical exponents
(e that are nonuniversél. The eight-vertex model on a square
lattice may be formulated as a generalized Ising mod¥€| as

X

Zgy= >, exf BHey],

Coupling constant {oi}

FIG. 1. Generic third moment of actidvl; showing how finite-
size scaling is used to extraetand v. Hey=J1 >, o o +3,, o TjoyOy (25
) P

IV. MONTE CARLO SIMULATIONS where o;=*1, ((i,j)) denotes a summation over nearest
A. Details of the MC simulations neighbors(diagonal bondsand 2, denotes a sum over the
elementary plaquettes on the square lattice. In the above, we

. . : . : ! ~~have specialized to the case where spin couplings along hori-
Ing Iarge scale_ Monte Ca_rlo simulations in conjunction WIthzontal and vertical bonds have been omitted. The critical
finite-size scaling analysis. A Monte Carlo move is an at'temperature ang are given by

tempt to replace the field value at one particular point by a
randomly chosen value. The move is rejected or accepted e 2h2=sinh(28.J,),

according to the standard Metropolis algorithm. In the case

of the XY model, the phasé; is the relevant field, whereas 1 2

in the full Abelian Higgs model both the phase and the three —=2——cos [tanh(28.J,)]. (26)
components of the gauge fielj , are subjected to the Me- v ™

tropolis algorithm. One sweep consists of traversing the syspe pave computed 5 for this model, using system sizes
tem L XL XL while attempting a Metropolis update of each | »| with L=812.20.40,60.80,120,200. We have used the
field component once. The acceptance rate of the Metr_OPO"ﬁ'letropolis algorithm with single-spin updates, and up to
algorithm is kept fixed between 60 and 70 % by dynamicallys o 105 sweeps over the lattice for each coupling constant.
adjusting the maximum aIIov_ved changes in the fields. Howg g, this, we have extracted scaling plots of the peak
ever, for the model defined in E(R) at larges, whereZ,  peights and width between peaks M, as a function of
gauge behavior is expected, the algorithm for controlling thesy siem size. From this, we directly extract the combinations
acceptance rate has been relaxed by fixing the maximuniy, ang (1+«)/v, the final results for the exponents are
allowed change to 2. There is no gauge fixing involved in  given in Fig. 2. The agreement between our simulation re-

these simulations, and periodic boundary conditions are Useg,jts and the analytical result E@6) is excellent. The above

in all directions. The excess gauge volume due to the sUMgemonstrates that for this model, the third order moment

mation in the partition function ovefredundant gauge- provides an excellent means of extracting nonuniversal ex-

equivalent field configurations, will cancel out when comput—ponemS from practically accessible system sizes, and in our

ing all averages of gauge-invariant quantities, in particulay;iey provides a first excellent and highly nontrivial bench-

when computing moments of the gauge-invariant action. 4k test on the method. We next provide further benchmark
The third moment of the action will typically behave as et on a number of 3D systems, before going on to extract-

shown in Fig. 1. The MC simulations for the compact Abe-jng exponents for thé2+1)-dimensional compact Abelian
lian Higgs model will be performed for a set of coupling Higgs model.

constants that span a line across the phase transition. We
diagonalize the “fluctuation” matrix17) and simulate along
the trajectory B(«)=B.+a(xk—«;), with a being deter-
mined from the eigenvector with the largest eigenvalue. In
all models that we consider in this paper, including bench- We reemphasize that what follows in this section is a
marks models, we then compute the moments of the actiohenchmark on the method of bringing out nonanalytic ther-
according to Eq(24) applying Ferrenberg-Swendsen multi- modynamics without recourse to order parameter measure-
histogram reweighting analysis with jackknifing error esti- ments, by measuring third moments of the action. In later
mate. For the benchmark models, this procedure producesections the method will be applied to a lattice gauge model
curves as shown in Figs. 3 and 4. The top and bottom valuef®r which no nonlocal order parameter currently is known,
as well as their positions for different system sizes are themnd where we will obtain precise values of critical expo-
used to produce scaling plots as shown in Fig. 5. The comrents. In the present section, we will reproduce known re-
binations of critical exponents (l«a)/v and 1# are then sults for the critical exponents andv for the 3DXY model,
extracted by bootstrap regression analysis. and the two 3D Ising models, directly from third moments of

The critical properties of the models are investigated us

C. Simulations of the 3DXY-, Ising-, and Ising (Z,) gauge
models

205104-7
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7 —

Z= 21} exp(BH)),

ogi==*

(1+apv

H|:Z (TiO'j .
{5

In addition, we consider the three-dimensional Ising lattice
gauge theor}

Zir= 2 expBHier),
U =1

o=+
ij= =

09 | b) i
os L ] HlGTZEP UijUjUpUyi,
>
07 | . where the summation in the last expression runs over all
plaguetted of the lattice. We note for later use that the Ising

06 - . model Z, spin model defined byZ, and the Ising gauge
05 . . 1 theory (Z, gauge theorydefined byZ,st are dual to each

' other ind=3.%"

1

The second and third moments, and M ; we will con-
sider for these models are given by

9°F
= Mz_aﬁ _<G )
M= () @
s i , 3 ape ’
0.1 1 10 100
WA where\ e (XY,1,IGT) and wherd and IGT denote the Ising

and Ising gauge theories, respectively. In all these cases,
FIG. 2. (a) (1+ a)/v from FSS finite-size oM 5 for Eq. (25) as scaling~L“”’ is expected for the peak in the second mo-
a function ofJ,/J;. (b) Same for the exponent, computed di- ment, while sca"ngwl_(lJra)/v and~L" is expected for
rectly fromMj; (A) and combining results for (£ «)/v with hy- the third moment peak-to-peak height and width, respec-
perscaling ©). (c) a as computed directly froMs (A) and using ey as indicated in Fig. 1. We mention in passing that for
results for (+ «)/v with hyperscaling ©). The solid line in(b) the :?:D XY model, we have (& a)/v=1.467, while (1
represent the analyti;al )result E@6). The solid lines i@ and(c) +a)lv=1.763 for’the 3D Ising model a.nd 3’.2 lattice
are obtained from Eq26) and using hyperscaling=2—2v. The
above results thus also provide a check on hyperscaling in thlgiu%? theory. The :;itgerdfolllows fronf1 the fact tr]at mgdels
model. which are connected by duality transformations have identi-
cal values ofw, v, since these two exponents can be obtained

from scaling of the free energy. On the other hand, certain
the action, thus benchmarking the method. We will demone combinations of the remaining critical exponents, which de-

strate that the method of using the third momentoftheactlo?)end on the degrees of freedom one chooses to describe the

is far superior to using the second moment, for practica
Svstem inazes accesiblegin numerical simulatio;ws Tr?is i< du ransition with, remain invariant. These invariant combina-
y Yons are given b

to the fact that the third moment is not contaminated by
contributions from the second moment, which unfortunately y
often is marred by contributions from confluent, or subdomi- >, 2B+y, B(6+1). (28
nant, singularities. K
The XY and Ising models are defined by the following The first is a consequence of Fisher’s scaling law, the other
two partition functions two follow from Rushbrooke4s scaling law. Figure 3 shows
the second and third moments for the 3D Ising model for
N system sizet =12,20,32,40 as a function @f, while Fig. 4
zXY:f {H 2—J exp( BHxy), shows the corresponding quantities for the 8% model.

D. Finite-size scaling ofM, and M,

H :E cog A, 0)) We first consider the second moments of the X
xY I wE model and the 3D Ising model. These exhibit peakd at
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FIG. 3. Second momerttpper pangland third momentlower FIG. 4. Second momertpper pangland third momentlower
pane) of the action for the 3D Ising model for system sizes pane) of the action for the 3DXY model for system sizes
=12,20,32,40. =12,20,32,40.

which in principle are amenable to finite size scaling. Figurethat inaccesibly large systems are required to obtain the spe-
5 upper panel shows the finite-size scaling plots of the peaksific heat exponent with any accuracy from the second mo-
in the second moment of both models. As is seen from thenent scaling analysis.
figure, the peaks grow ds increases. However, it is clear Consider now the third moment of the action for the 3D
that none of the scaling plots have reached their asymptotiXY and Ising models. The results are given in Fig. 5, middle
behavior. panel. It is obvious that the quality of the scaling in both
For the 3DXY model, the apparent scaling for small to cases is vastly improved compared to the results obtained
intermediate values df is clearly spurious, as it levels off from the second moment. This demonstrates rather convinc-
for large system sizes. In principle,reegativeslope should ingly that finite-size scaling of the third moment of the ac-
eventually be obtained for asymptotically large system sizegjon, i.e., a purely thermodynamic measurement without re-
but the general experience is that impractically large systeraourse to order parameters, suffices to bring out that a
sizes are required to see this, let alone estimate the slightlsingular part of the free energy exists in both cases. This
negative value ot with any precision. would have been difficult to conclude based on the second
For the 3D Ising model, the situation is different in that moment of the action, at least for the 3DY model. Note
the peak height grows steadily ésincreases, eventually that scaling such as this would not have been found had there
approaching a straight line on a double-logarithmic plot. Al-not been a nonanalytic part of the free energy. Thus, the
though the quality of the scaling improves with increading quality of the scaling alone suffices to demonstrate the exis-
an approximate evaluation of the slope vyieldér=0.3 tence of a phase transition. Moreover, the double-peak struc-
whereas the known value ig/v=0.175. Hence, it is clear ture inMj permits a separation af and » without recourse
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6.0 r—r—r—r T ———r TABLE I. Critical exponents extracted for the benchmark mod-
50r a) . 4 els, wherea is computed by combining the (la)/v and 1k
s - }-"f ] results.
. s
30l ,z”/ ...... puamns :.—5 . Model (I+a)lv v a
e I
A P XY 1.46+0.01 0.67-0.01 —0.01+0.01
20p - 1 Ising 1.77:0.01  0.63-0.01 0.110.01
" e Z, gauge 1.780.02  0.63-0.01 0.12-0.02
o
10 ' '1'0 ’ T 00 tions are vastly different, this serves as a highly nontrivial
10— —— quality check on the simulations.
1 04 = QQ_ . .
b) e ] E. Benchmark simulations of a 3DXY model coupled to aZ,
e P at s clock model
o 'l.,,r: ,,,, To investigate the scaling behavior of the third moment of
102k P i the action in a well studied 3D thedRywith two coupling
""""""""" a et constants and two fixed points of ty@e and XY, we have
10! ::A{,-.—:f—"' J considered the model
. e . NP N
100 z= " 11 i Hyy+hH
) = L1 5 1exfd BHxy+hHzg],
— T —m|j=1 2™
FoR S °
= . A
-1 HXY:_E COSVMGJ),
I
e Hzq=2 cogq)), (29
..... Q:: j
1 . R defined on a = 3)-dimensional cubic lattice witlN sites.
10 100 The phased; resides on every siteandq is integer valued.
L Let us consider thg=2 theory. By simple inspection of

the model we find that the limih— > leads to a twofold

FIG. 5. Finite-size scaling plots for the 3RY, 3D Ising, and .
: N . symmetry constraint on the phase, and the model becomes
3D Z, lattice gauge model defined in EQ7). (a) The peaks in the exactly the 3D Ising model. The limitg—oc and =0 are

second moment of the action demonstrating that very large systems).(. | theori E lizati i
sizes are necessary to obtain correct scaling results. For clarity, t/V1@l theories. From renormalization group theory, the

of the plots are lowered with a multiplicative factor of 0.7 and 0.45 =2 mode'_'s fO‘_Jf?d to_ have XY phase transition witth
for the Ising and Ising lattice gauge models, respectiviélyThe = 0. While it exhibits Ising exponents for any othe 0 (at
peak to peak values of the third moment of the action, demonstrat€ast in the vicinity oth=0.)
ing that correct scaling results are obtained for much smaller system We have performed Monte Carlo simulations on the
sizes than what is the case for the second moment. Note also thgodel Eq.(29), =2 with system sizes up th=32. The
close similarity of the scaling results for the Ising afg lattice ~ resulting exponents from the third moment scaling analysis
gauge models, which should be indentical, up to constants, due tare given in Fig. 6. We measu# critical exponents down
duality. This serves as a quality check on the simulatigaisThe  to very small values ofi. However, it is clear that the critical
width between peaks in the third moment. coupling approaches the 3RY value as shown in the upper
panel. Note the dramatic increase in both+(d)/v and 1

to hyperscaling. The results for the widths between the peaki®r h=0.01 in the vicinity of theXY fixed point, where we
in the histrograms are given in Fig. 5, bottom panel. Note thdind that the exponents become even [¥3slike. The value
good quality of the scaling. for @ shows a more smooth crossover behavior fromX3D

The benchmark results for the three models are given iwalue to 3D Ising value ak is increased from 0. However,
Table I. We see that the error bars of these benchmark valuéle scaling appears not to have reached its asymptotic behav-
all include the known values af andv. Finally, the expo- ior and the slopes are clearly decreasing for increasing sys-
nents obtained for the 3D Ising spin model and the 3D Isingem sizes. We expect this to be due to a cross-over regime in
gauge theory, are within error bars found to be the same, aghich the cross-over exponent contaminates our estimates,
they should be from duality of the two theories in three di-but that all the combinations of exponents eventually will
mensions. Since the degrees of freedom used in the simulaenverge towards Ising values, whig 0.
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0.5 ; T T T ; T results for exponents, a revisit to the problem seems very
0.45 appropriate. This is particularly true given the importance the
0.4 | - model now has acquired in condensed matter system as a real
< 035} . model for strongly correlated quantum systems at zero tem-
03 L . perature in two spatial dimensiofs%228|n Ref. 28, pre-
0.25 | i cisely such an effective model with=2 was derived from a
0.2 L b R Sk W PR . proposed microscopic description of charge-fractionalized
0 05 1 15 2 25 3 phases in strongly correlated systems. Specifically, the con-
h fined phase of the)=2 model was interpreted as a Mott-
2 — —T . T Hubbard insulating phase, while the deconfined-Higgs phase
1.9 4 was interpreted as a charge-fractionalized insulating phase.
1.8 x < The critical exponents obtained from third moment FSS
R § % s S TTTIITITTIIIITrer 23 ; P
= analysis are presented in Fig. 7. The exponents, and the
,?_‘ L7r 1 combination (& «)/v vary continuously along the critical
T 16 F 1 line showing 3DXY and Z, universality in thex—o and
15 = B—oe limits, respectively. Th&, behavior persists deep into
1.4 L I — ] the phase diagram, while we find a broad nonuniversal area
0 05 1 15 2 25 3 35 in the largex region. These two areas are joined by a peak in
oesf [ T T T T T the exponents. To check the dependence of the trajectory, we
' performed simulations for several slopes at the two extremas,
064 1] - j-I' usinga=«, a=1, a=—1 and the direction given by the
> 06 J diagonalization of the fluctuation matrix. Within error bars,
all slopes consistently produced the same exponents.
0.56 . The results appear to rule out thds- and XY-critical
osp b behaviors are isolated points at the extreme ends of the criti-
"0 05 1 15 2 25 3 35 cal line. However, a feasible suggestion could be that two
0.16 — T T T T types of universalityZ, and XY, are separated at a multi-
042 H I T_ critical point on the critical line. We believe this to be ruled
l out by the strong deviation in («)/v from Z, and XY
0.08 il . values at intermediate/3. On balance, we thus conclude
S that the model Eq(2) defines a fixed-line theory, rather than
0.04 | - . X - o
I exhibiting two scaling regimes separated by a multicritical
or . point. However, theZ, character of the confinement-
ooal— deconfinement t_rgnsit@on persists to _surprisingly large yalues
0 05 1 15 2 25 3 35 of /B on the critical line, see also Fig. 5 of Ref. 50. Fixed-
wp line theories in 2+ 1 dimensions are knowt,and nonuni-

) versal exponents imply the existence of marginal operators in
FIG. 6. Upper panel: The phase diagram of the model(Zg). ; .
- X " Eq. (2), yet to be identified.
The open circles denote points where only the phase transition has

been located, while the filled triangles denote points where also the

critical exponents have been measured. Lower panels: The thre€s. Simulations of the 3D compact Abelian Higgs modetj=3

lower panels show the combination of exponents-@l)/v, as well TheZ . del tate Pott del i
asv and a, as a function oh/B. Note the rapid crossover ia €£4 Spin mode andy-state Potts model are easily seen

: _ o 52
from the 3DXY value ath=0 to the 3D Ising value ah is in- O Pe equivalent fog=2 andq=3.”" For theg-state Potts

creased. The dotted and horizontal lines denoteX3pand 3p ~ Model, it is known that when one generalizgso be real-
Ising values, respectively, for the various quantities. valued, the phase transition in the modeldr 3 changes

from continuous to discontinuous whenis increased be-
yond the valueg=2.625%% Hence, both th&, lattice gauge
theory and theZ; spin model have first order phase transi-
We next consider the third moment of the model definedions. In the limits3— o and k— the model defined by
by Eq.(2). The model withg=2 has previously been studied Eq. (2) reduces to theZs-spin model and 3DXY model,
by Monte Carlo simulations on small systern3, with L respectively. If these phase transitions survive on the critical
=2,3,4 many years agdusing second moments of the ac- line for finite coupling values, a tricritical point joining the
tion. A short version of the results to be presented in thidirst and second order critical lines is expected to exist. As
section, has already appear@do our knowledge, no simu- we shall see, this is precisely what happens.
lations have been performed =3 between those pre- Therefore, we reach the important conclusion that the
sented in Ref. 50 and the much more recent large-scale simmodel exhibits a first order phase-transition not only for
lations that have been perform&tDue to our observation =, Eq.(7), but also for finite values of. To identify and
that scaling of the second moment requires much larger sysavestigate the first order phase transitions we have com-
tems than those studied in Ref. 50 in order to obtain reliablguted histograms of the actiq®) at critical coupling con-

F. Simulations of the 3D compact Abelian Higgs modedj=2
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FIG. 8. Normalized histograms of the acti(®) for g=3 at the
0.65F first order phase transition with various critical couplings and sys-
- tem sizesL=8,12,16,20,24,32,40,64. The histogram height in-

N . creases with system size. The horizontal axis shows the average

0.60 value of the action per unit volume, and the histograms have been

shifted horizontally for clarity.
0.55F

3 A first-order phase transition is characterized by two co-

050besl o v i el existing phases with the same free energy. There should
therefore exist domain walls separating the two phases. The
area of the domain walls is related to the energy difference
AF(L) required to keep the two phases separated through
the expression

AF(L)=INP(S,L)max— INP(S,L)min~L9"L, (30

whereP(S,L) is the probability for a valu& of the action in
a system of sizé.¢ and L9 ! is the cross-section area be-
tween the ordered and disordered ph&ée$he results

i é’ shown in Fig. 9 confirm this for system sizks=24.
Y vl —— The discontinuity of the action or equivalently the width
0.1 1 10 between the peaks in the histograms is, strictly speaking, not
B the latent heat. Nonetheless, it can be taken as a reasonably

accurate measure of this quantity along a sufficiently small

FIG. 7. (3 (1+ @)/v from FSS finite size oM3 for Eq.(2) for  part of the phase transtion line. It is important to ascertain

q=2. Note the variation relative to th&, limit 1.76 (dotted hori-  \hether or not the first-order character of systems persists in
zontal ling and theU(1) limit 1.467 (solid horizontal ling. (b)  the thermodynamic limit. Hence, we plot the discontinuity of
Same for the exponent, computed directly fromM3 (A) and  ne action as a function of system size in Fig. 9, upper panel,
combining results for (+ «)/v with hyperscaling ©). (¢) @ as  5nq find that the discontinuity of the action is finite at least

CQmpUted direptly fromMs (2) gnd using re.Sl.“tS for. (Fa)lv up to k.=1.65. The first order phase transition becomes in-
with hyperscaling (). The maximum and minimum ite) have creasingly weaker, i.e., the latent heat in the transition is

been obtained by crossing the critical line along the trajectory _
B(x)= Bot+a(k—kc) with a=o (A), a=1 (M), and a=—1 reduced as we approaeh=1.65 from below.

. _ _ Z _ Approaching the tricritical point along the first order line,
A =0.665x.=2.125 ) d B.=0.525¢,=5.0 . L2 . . .
Emi)n-)llemg Ao fe (max), and B, fre the discontinuity in the action, equivalently the width be-

tween the peaks in the histograms, must vanish. From Fig. 9

we have extrapolated the thermodynamic limit of this quan-
stants. These have a double-peak structure due to the twgy and plotted them as a function of the critical coupling in
coexistiting phases that characterize a first-order phase tragig. 10. A linear extrapolation yields an estimate for the tri-
sition. The histograms have been produced from large scalgritical point /By =1.39-0.06 corresponding to
Monte Carlo simulations followed by multihistogram re- (B, ,«yi)=(1.23+0,03,1.73-0.03).
weighting and jackknife error analysis.The results are On the other side of the tricritical point we have per-
shown in Fig. 8. formed a third moment analysis. The exponents are expected
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FIG. 9. Upper panel: The discontinuity of the acti®) as a 0.4F ?“L T
function of system size. Note that the plots seem to be converging 0.3 j,‘é,l. .
towards a finite energy value. Lower panel: The energy difference 3 i) |
L. . 0.2 1y
between the two coexisting phas&f (L) as a function of system J?
size, same labeling as in the upper panel. 01F H .
H!
0.0k 4
to be those of 3IXY in the largex limit. Strictly speaking, ;—' -
critical exponents are properties of second order phase tran- '0'1',“, TR + S v
sitions. For a first order transition the correlation length stays 0.1 1 10 100
finite and hence there is no scale-invariance. However, /B

bounds for some of the exponents can be obtained and the
FIG. 11. (8 (1+ a)/v from FSS finite-size oM 3 for Eq. (2) for

0.18 - g=3. Note the variation relative to thg/(1) limit 1.467 (solid
0.16 4 horizontal ling and the violent behavior near the critical poiqj; .
(b) Same for the exponent, computed directly fronM 5 (A) and
0.14 ] combining results for (* «)/v with hyperscaling Q). (c) « as
0.12 . computed directly fromM; (A) and combining results for (1
01 i + a)/v with hyperscaling Q).
0.08 -
limits of these bounds correspond to the exponents one
0.06 ] would get by relaxing the definitions and formally consider-
0.04 - ing first order transition&® One finds that the limits are
0.02 J =1 andv=1/d, respectivly. Hence when approaching the
0 ' . . . . . g tricritical point we expect (* «)/v=6 andv=1/3.
02 04 06 08 1 12 1.4 The c.r|t|cal exponents, given in Flg. 11, agree yvlth the
K /B, expectations. The exponents &¥-like in the largex limit
while in the region 2.4 k<50 the quantity (¥ a)/v is
FIG. 10. Width of peaks in histograms as a functiorwef 3. . lower than theXY value and hence exhibits nonuniversiality
The solid line is a linear fit to the data points feg/3.>0.8. similar to what we found forg=2. At approximately
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' ] g, however, we know that the limik—o represents the
g=2\ g=3 U(1) limit, which must exhibit a second order phase transi-
tion. Hence, the line fog=3 in Fig. 12 must contain a
tricritical point. The first order line for larg@ terminates at

a tricritical point, and is second order for larger valuescof
For g=4, which is also shown, the phase-transition line is
second order. The limiB—o corresponds to thd=3 Z,
lattice model which is dual to th&, spin model. Using the
fact that the symmetry groug,=2,®Z,, the universality
class of theq=4 phase transition line is expected to inter-
polate between the Ising case in the limgit- and the 3D
XY universality class in the limik— .

Based on what is presented above, we conclude that for
g+ 3, the model Eq(2) exhibits a critical lineB.(«) for all
values ofx, while for g=3 the phase transition of the model

FIG. 12. The phase diagram for the=3 compact Abelian s first order for small values ok and is converted to a
Higgs model in three dimensions fqr=2,3,4,5. All lines are criti-  second order phase transition wheris increased beyond a
cal for all values ofx except for the casg=3, which is first order  finite tricritical value.
for k<« and second order otherwise. The thick solid portion of
the g=3 line denotes a first-order transition. Detailed finite-size
scaling analysis of the ling=2 shows that the critical exponents
and v vary continuously along the critical line. This makes the
theory defined by Eq2) a fixed-line theory with nonuniversal criti- In this paper we have, in addition to a number of bench-
cal exponents, as opposed to a fixed-point theory with universainark models, considered various lattice gauge models in 2
exponents. The critical line approaches the 3Y value 8. 11 Eyclidean dimensions, with particular emphasis on the
=0.453 ask— for all values ofge N. compact Abelian Higgs model with integer gauge chagge
=2. We have seen that that for al=2;q#3, the phase

~2.4 the exponents rise abruptly towards the first order "m_transmon for the model in Eq2) is second order such that

. o+ . .. the entire phase transition lin@p(x) is critical, i.e.,
iting values. Due to supercritical slowing down, obtalmngB (k)= B.(k). The exponents: and which are given b
good quality third moment scaling plots becomes difficult’ " K e\ k) P 9 y

when approaching the tricritical point. Thus, locating theth: ﬁnlz?tw;aluii;quesl'g‘g’;ig ai‘g %l'ggaf‘grqixi‘rjrisegi‘_
critical point by deciding where the exponents have reacheH1 B> x. P =

the values one expect in thieit of a first order phase tran- ate values ofs and« on the critical line, the exponents vary
sition. is not feasible continuously from the value (£ «)/v=1.76 in theZ, limit

For g=3, which is a special case in this contagee P> K 10 the value (I @)/v=1.467 in theU(1) limit «

below), this is very similar to what is now known to happen > (. This constitutes a rare example offiged-linetheory

in the noncompact Abelian Higgs model @=3. In that with nonuniversal exponents in a three-dimensional

l . .
system, a first order phase transition characteristic of type-?yStemE? What the connection to the work of Refs. 14,15 is,

superconductivity at small values of the Ginzburg—LandauWhere a Kosterlitz-Thouless-like phase transition of unbind-
itidnd of monopoles in a three-dimensional compatfl)

characteristic of type-ll superconductivity. The tricritical 9349€ theory was found, remains to be i'nvestigated'. More
yp P Y ork is also required to elucidate the special roleef3 in

value of the Ginzburg-Landau parameter where this chang . . )
in the character of the phase transition occurs, has recent e compact Abelian Higgs lattice gauge model. Note that

been determined with precision in large-scale Monte Carl is is fundamentally different from what happens in the

; : ; 55 Thic ic i g-state Potts model, to which tizg, spin model is equivalent
simulations, to be given by 0.2.°° This is in remarkable only for q=2,3. In constrast to the compact Abelian Higgs

agreement6 with previous analytical results using dualltymodel, theg-state Potts model has a first order phase transi-
arguments’ ) 23
tion for all q>2.625:

Based on the connection between the model @y for
g=2 and a recently proposed model of fractionalized phases
Let us summarize what has been discussed above. The strongly correlated systeffavhich is essentially given by
phase structure of the model is given in Fig. 12. From theEqg. (2), we propose that the universality class of the putative
early Monte Carlo simulations on the motfdor =2, itis  quantum phase transition from a Mott-Hubbard insulator to a
known that the critical lineB.(«) approaches lim,..B.  charge-fractionalized insulator which the model is supposed

=0.454 while whenB—, there is a critical value ok  to describe, is in the universality class of the2 compact
given by x.=0.761. Asq increases, the vertical part of the Abelian Higgs model characterized by a fixed line of non-
phase-transition line moves up iy while for the values off  universal critical exponents varying continuously between
we have considered, the lines are critical except for the case values (¥ «)/v=1.76 in the limit3—o, « finite, and
g=3 which is a first order line for large values 8f Forany  (1+ «)/v=1.467 in the limitk—x, B finite. However, we

Deconfined

Confined

K

V. CONCLUSIONS

H. The phase diagram forq=2,3,4
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