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Phase structure of„2¿1…-dimensional compact lattice gauge theories and the transition from Mott
insulator to fractionalized insulator
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Large-scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional
compact Abelian Higgs model in adjoint representations of the matter field, labeled by an integerq, for q
52,3,4,5. We also study various limiting cases of the model, such as theZq lattice gauge theory, dual to the
three-dimensional~3D! spin model, and the 3DXY spin model which is dual to theZq lattice gauge theory in
the limit q→`. In addition, for benchmark purposes, we study the square lattice eight-vertex model, which is
exactly solvable and features nonuniversal critical exponents. We have computed the first, second, and third
moments of the action to locate the phase transition of the compact Abelian Higgs model in the parameter
space (b,k), whereb is the coupling constant of the matter term andk is the coupling constant of the gauge
term. We have found that forq53, the three-dimensional compact Abelian Higgs model has a phase-transition
line bc(k) which is first order fork below a finitetricritical valuek tri and second order above. Theb5` first
order phase transition persists for finiteb and joins the second order phase transition at a tricritical point
(b tri ,k tri)5(1.2360.03,1.7360.03). For all other integerq>2 we have considered, the entire phase-transition
line bc(k) is critical. We have used finite-size scaling of the second and third moments of the action to extract
critical exponentsa and n without invoking hyperscaling, for theXY model, theZ2 spin and lattice gauge
models, as well as the compact Abelian Higgs model forq52 andq53. In all cases, we have found that for
practical system sizes, the third moment gives scaling of superior quality compared to the second moment. We
have also computed the exponent ratio for theq52 compactU(1) Higgs model along the critical line, finding
a continuously varying ratio(11a)/n, as well as continuously varyinga andn ask is increased from 0.76
to `, with the Ising universality class (11a)/n51.763 as a limiting case forb→`,k→0.761, and theXY
universality class (11a)/n51.467 as a limiting case forb→0.454,k→`. However, the critical line exhibits
a remarkable resilience ofZ2 criticality as b is reduced along the critical line. Thus, the three-dimensional
compact Abelian Higgs model forq52 appears to represent afixed-line theory defining a new universality
class. We relate these results to a recent microscopic description of zero-temperature quantum phase transitions
within insulating phases of strongly correlated systems in two spatial dimensions, proposing the above to be
the universality class of the zero-temperaturequantum phase transitionfrom a Mott-Hubbard insulator to a
charge-fractionalized insulator in two spatial dimensions, which thus is that of the 3D Ising model for a
considerable range of parameters.

DOI: 10.1103/PhysRevB.67.205104 PACS number~s!: 74.20.2z, 05.10.Cc, 11.25.Hf
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I. INTRODUCTION

Lattice gauge theories in 211 dimensions with compac
gauge fields coupled to matter fields, have recently co
under close scrutiny as effective theories of strongly co
lated fermion systems in two spatial dimensions at zero t
perature. Phase transitions in such three-dimensional mo
then correspond to quantum phase transitions in a syste
zero temperature in two spatial dimensions. A central issu
whether such systems of strongly correlated fermions
suffer quantum phase transitions from Fermi-liquid meta
states to states where the quasiparticle concept has br
down and given way to singular Fermi liquids1 or electron-
splintered states.2,3 Such quantum phase transitions may
related to phase transitions such as confinem
deconfinement transitions in~211!-dimensional compac
gauge theories. This fact has resulted in focused attentio
effective gauge theories of matter fields representing cha
doped into Mott-Hubbard insulators, coupled to fluctuati
gauge fields representing strong constraints on the dyna
of the fermions on the underlying lattice on which the mo
0163-1829/2003/67~20!/205104~16!/$20.00 67 2051
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els are defined.4–8 Since these are lattice models, the cor
sponding gauge fields are necessarily compact. Com
U(1) gauge fields in 211 dimensions support stable topo
logical defects in the form of monopole configurations, and
has been suggested that the unbinding of such monopol
confinement-deconfinement transition, may be relevant
such phenomena as spin-charge separation in strongly c
lated systems.9,5,8 Confinement here refers to the confin
ment of test charges in the problem, not of topological d
fects of the gauge field~which are space-time instantons, an
will hereafter be referred to as ‘‘monopole’’ configurations!.
Alternative formulations in terms of a lattice Ising gaug
theory10 coupled to matter fields, have also been p
forth.11,12,2This is largely motivated, it would appear, by th
fact that it is highly controversial whether a~211!-
dimensionalU(1) gauge theory with matter fieldsin the fun-
damental representationwill undergo a confinement-
deconfinement transition. In the absence of matter fie
compactU(1) gauge theories are known to be permanen
confined in d5211, while the pureZ2 gauge theory is
known to have a second order phase transition in the inve
©2003 The American Physical Society04-1
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3D Ising universality class. It is sometimes stated, with
much justification, that the presence of matter fields in
fundamental representation will not alter the picture t
emerges in their absence, both for theU(1) case and theZ2
case in 211 dimensions.

One major problem that arises in this context, is that
Wilson loop nonlocal gauge-invariant order parame
which has proven itself to be very useful in the absence
dynamical matter fields to distinguish confined from deco
fined phases, is rendered useless by the presence of the
particular, when the symmetry group of the matter field
contained in the symmetry group of the gauge field, one
demonstrate rigorously under otherwise quite general co
tions, that the Wilson loop is bounded from below by a p
rimeter law, not an area law, despite the fact that models w
this property definitely has phase transitions from confined
deconfined phases.13 Hence, the Wilson loop and the relate
Polyakov loop, are no longer useful order parameters for
problem. Physically, this is due to the fact that in the pr
ence of a dynamically fluctuating matter field coupled to
gauge field, particle-hole excitations are generated from
vacuum and will effectively screen the interaction betwe
two static test charges introduced into the system, which
Wilson loop is a measure of. Hence, a perimeter law is
ways obtained.

Recently, two of us have shown that a confineme
deconfinement transition may take place in thre
dimensional compactU(1) gauge theory coupled to matte
fields, when the matter field exhibitscritical fluctuations.14,15

Such matter-field fluctuations endow the gauge-field with
anomalous scaling dimensionhA with a value16,17

hA542d, ~1!

whered is the dimensionality of the system. This value f
hA is protected by gauge invariance. Ind53, this transforms
the gauge-field propagator in a striking manner such a
allow a confinement-deconfinement transition to take pl
via a three-dimensional Kosterlitz-Thouless like phase tr
sition of unbinding of pointlike monopole configurations
the gauge field.14,15The treatment of Refs. 14,15 closely pa
allels that of Ref. 18 and is based on a dual description in
continuum. However, it is far from obvious what the corr
spondinglattice gauge theory, if any, that would yield such
results, could be.

In the absence of a clear-cut order-parameter criterion
distinguishing various phases of such matter-coupled ga
fields, it would be advantageous to be able to distingu
various phases by direct ‘‘thermodynamic’’ measureme
reliably exhibiting possible non-analytic behavior. In this p
per, we will use one such measurement recently introdu
by us,19 namely, finite-size scaling of the third moment of th
action of the lattice model. This will turn out to be a super
quantity to study for this purpose, compared to the sec
moment. It brings out nonanalytic thermodynamics and p
cision values of the specific heat critical exponenta and the
correlation length exponentn through finite-size scaling
analysis performed on practical system sizes.19 The third mo-
ment has the advantage of not being contaminated by co
20510
t
e
t

e
r,
f
-
. In
s
n
i-
-
th
o

e
-
e
e

n
e

l-

t-
-

n

to
e
-

e

r
ge
h
s
-
d

r
d
-

ri-

butions from the second moment. The second momen
known to be a notoriously difficult quantity to use in partic
lar for extracting specific heat exponents, due to large c
rections to scaling coming from confluent singularities f
practical system sizes. Moreover, the third moment is
simplest quantity to compute which has an extra feat
which even moments do not have. It has a double-peak st
ture where the widthbetweenthe peaks also exhibits scaling
This allows us to extract separaelytwo exponentsa and n
from measurements of the third moment alone, without h
ing to invoke hyperscaling.

A lattice model of particular interest in this context is th
Abelian U(1) Higgs model with a compact gauge field18

coupled minimally to aU(1) bosonic matter field20,21with a
gauge chargeq. It is defined by the partition function given
by the following functional integral

Z5E
2p

p F)
j 51

N
du j

2p G E
2p

p F)
j ,m

dAj m

2p Gexp@bHb1kHk#,

Hb5(
j ,m

@12cos~Q j m!#,

Hk5(
P,m

@12cos~Aj m!#, ~2!

whereN is the number of lattice sites and we have define

Q j m5Dmu j2qAj m ,

Aj m5«mnlDnAj l . ~3!

Here, «mnl is the completely antisymmetric tensor. Mor
over,( j ,m denotes a sum over sites of the lattice, while(P,m
denotes a sum over the plaquettes of the lattice. We will
the variables (x51/@k11#,y51/@b11#) when discussing
the possible phases of this model.20 In Eq. ~2!, u is the phase
of a scalar matter field with unit norm representing holo
Dm is a forward lattice difference operator in directionm,
while Aj m is the fluctuating gauge field enforcing the ons
constraints reflecting the strong correlations in the proble
We are neglecting amplitude fluctuations of the matter fiel
working in the ‘‘London limit.’’

Let us summarize what is known about this model. Wh
q50, the matter field decouples from the gauge field. It
well known that the model then has one critical point in t
universality class of the 3DXY model, and in the Villain
approximation~which is most often used when dualizing th
model20!, the critical valueyc is given byyc'3/4.22,23 On
the other hand, the pure gauge theory is permanently c
fined for all values ofk.18 Consider nextq51. Then, Eq.~2!
is trivial on the linex51,0,y,1 with no phase transition
for any value ofy. On the line 0,x,1,y51 the matter field
is absent and the theory is permanently confined.18 For a
further enumeration on rigourous results both on the n
compact and compact version of this model, see also Ref

For arbitrary (b,k), the cased53, q51 is controversial.
It is, however, clear that no ordinary second order ph
transition with a local order parameter exists for the mode
4-2
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this case. When matter fields are coupled to a compact ga
field in a continuum theory, the permanent confinement
the pure gauge theory is destroyed and a confinem
deconfinement transition may take place via a Kosterl
Thouless-like unbinding of monopole configurations14 in
three dimensions. This is due to the appearance of an ano
lous scaling dimension of the gauge-field induced by criti
matter-field fluctuations.16,17 The role of the anomalous di
mension has also been studied recently at finite tempera
in pure compact QED ind53 with no matter fields
present.25 In both Refs. 14 and 25, the anomalous scal
dimension plays a crucial hole. However, in Ref. 25 the
confinement transition occurs due to finite temperature,
there are no matter fields.

The role of an anomalous scaling dimensions in drivin
recombination of monopole defects of the gauge field i
dipole configurations, corresponding to a confineme
deconfinement transition, has been studied numerically
the caseq51 in the presence of matter fields.26 The authors
of Ref. 26 in this case reach conclusions in agreement w
Ref. 14. Thus, even putting the issue of whether this sign
a phase transition or not aside, it is clear that also ma
fields in the fundamental representationdo matter in this
problem. It is also interesting to note in this context, th
some time ago a rather remarkable paper,27 a Kosterlitz-
Thouless transition was claimed in a three-dimensio
theory of integer point charges interacting via a logarithm
potential. There, however, the origin of the logarithmic int
action was due to higher order anisotropic gradient ter
essentially an input to the theory, and not aresult of an
anomalous scaling dimension appearing due to criticality
the mass-sector of a compactU(1) gauge theory. This, how
ever, contrasts with the case considered in Ref. 14. The
isotropy effectively leads to a dimensional reduction an
resulting standard Kosterlitz-Thouless phase transition
two dimensions.

For q.1 the model in Eq.~2! exhibits a behavior tha
completely sets it apart from the caseq51. The reason is
that forq.1, the matter field is no longer in the fundamen
representation. Thus, in contrast to the no-compact cas
the standard Maxwell term of the gauge sector, the ga
charge cannot be simply scaled away. The caseq52 is par-
ticularly interesting in the context of electro
fractionalization.28 This is a case that we will consider i
detail in this paper. This theory arises as a special limit o
bosonic model exhibiting fractionalized phases conside
recently.28 The phase diagram forq52 was briefly discussed
long ago by Fradkin and Shenker.21 For d53 the phase dia-
gram is divided into two phases, a confined and
deconfined-Higgs phase. There is no Coulomb phase in t
dimensions. The model becomes aZ2 gauge theory on the
line y50. This limit suffices to bring out the fundament
difference between theq51 and q52 cases, since on th
line y50, the q51 case is trivial. We will discuss this in
more detail below. The vortex content of theq52 case is
different:Z2 vortices, orvisons, may arise in the deconfined
Higgs phase. Due to the visons the flux is quantized in u
of 2p instead ofp. This means that the excitations in th
deconfined-Higgs phase have chargee/2. In the context of
20510
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the bosonic model in Ref. 28, this phase corresponds
fractionalized insulator. The confined phase, on the ot
hand, features excitations with chargee and should corre-
spond to a conventional Mott insulator.28 Thus, the model~2!
can be thought as describing a particular case of insula
fractionalized insulator transition. The full bosonic mod
considered in Ref. 28 has a more rich phase structure
pending on the values of the parameters. For exampl
superfluid phase is also possible. We will not consider suc
situation here, but only a special limit of the bosonic mod
of Ref. 28.

The purpose of this paper is to make a detailed numer
study of the phase structure of Eq.~2!. An important point
concerns the universality class of the phase transition. T
will be the main topic discussed in this paper. We have p
formed a large scale Monte Carlo study which gives a v
complete picture of the universality class of the transitio
The present study complements and goes far beyond
previous large scale Monte Carlo study of the model.19 In
Ref. 19, we have shown that the Ising (Z2) universality class
dominates over a significant portion of the critical line of t
theory. Moreover, we have shown that there is a region
parameters where the critical exponents are continuo
varying. This was interpreted as evidence for the existenc
a line of fixed points in the renormalization group~RG! flow
diagram. To the portions of the critical line correspondi
respectively toZ2 and XY critical behavior, are associate
Ising andXY fixed points. In addition to these two fixe
points there exists a fixed line corresponding to a criti
phase. As discussed recently,3 electron fractionalization in
111 dimensions is associated to a quantum critical pha
Ordinarily, in more than one spatial dimension quantu
phase transitions are associated with a critical point. Th
we would expect that electron fractionalization would occ
at a critical point. Our analysis clearly shows that a critic
phase exists for the model~2! at q52. This becomes par
ticularly clear on the portion of the critical line correspon
ing to large values ofk, where we find that the critical ex
ponents vary smoothly with coupling constants, approach
the 3DXY value only slowly. The three-dimensional KT-lik
scenario14,15for theq51 model is also an example of critica
phase occuring in higher dimensions. However, due to
vortex content of the model atq51, it is not entirely obvi-
ous that the corresponding deconfinement transition is re
associated with electron fractionalization.29

In this paper the casesq53, 4, and 5 will also be consid
ered. The caseq53 is particularly interesting. While forq
52,4, and 5 theentire line separating the two phases a
critical, this is not true whenq53. In this case there is a
value of k below which the transition is first order, bein
second order otherwise. This point where the transit
changes from second order to first order, is clearly a tricr
cal point. We emphasize that among the situations analy
in this paper, only the caseq53 exhibits a tricritical point.
Whenq53, charge is fractionalized in such a way that e
citations carry chargee/3. This situation is reminiscent of th
n51/3 state in the fractional quantum Hall effect.30 In gen-
eral the charge for arbitraryq will fractionalize ase/q. This
gives an elementary flux quantumf052pq/e, contrasting
4-3
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with the more familiar situation of flux quantization in
superconductor. Indeed, if we take the example of theq52
theory, we see that the flux quantum is doubled, while i
superconductor it is halved because the Cooper pair
charge 2e. Other interesting possibilities of vortex/charg
fractionalization were considered recently in certain Jose
son junction arrays.31

In all these examples, it is readily seen that the type
flux quantization involved depends on specifying wheth
charge is fractionalized or not. Therefore, in order to det
charge fractionalization, experimental measurements of
as the one proposed in Ref. 32 in the context of underdo
cuprates are important. The experiment proposed in Ref
has now been performed,33 but has failed in detecting elec
tron fractionalization. The failure of this experiment do
not, however, entirely rule out charge fractionalization in t
cuprates for the following deep reason. In the zero dop
insulating regime, the system can effectively be described
the antiferromagnetic quantum Heisenberg model. T
model is known to have a localSU(2) gauge symmetry.34

Upon doping, this symmetry is broken down toU(1). Since
this U(1) is a subgroup ofSU(2), it is compact and carries
the ‘‘charge’’ labelq corresponding to the different represe
tations. Within theq52 represention, the double broke
symmetry patternSU(2)→U(1)→Z2 is possible. In such a
situation, there would be no stable vison and any experim
tal attempt based on a vison trapping experiment would f
However, this does not mean that charge is not fraction
ized. TheZ2 residual subgroup will imply the existence o
magnetic monopoles which, by duality, accounts for the
istence of fractional chargese/2. In the perspective of such
possible scenario, alternative experimental proposals sh
be envisioned and the identification of the universality cl
of possible phase transitions theq52 case is important in
this context.

The plan of the paper is the following. In Sec. II, w
discuss the limits of the model, pointing out the differenc
with respect to theq51 case. In Sec. III, we explain th
finite-size scaling analysis of the third moment of the fr
energy used in this paper. In Sec. IV we discuss the detai
our large-scale Monte Carlo simulations. As a check on
quality of the simulations, we have performed several ben
mark simulations which we present in parallel with our ne
results on the model defined by Eq.~2!. Section V concludes
the paper.

II. LIMITS OF THE COMPACT GAUGE THEORY

A. b\`, k finite

In terms of the formulation of the model in Eq.~2!, this
limit leads to the constraintDmu j2qAj m52p l i ,m wherel i ,m
is integer valued. Substituting this into the gauge-field te
we find

Z5)
j 51

N

(
l j ,m52`

`

expH k(
P,m

F12cosS 2p

q
Lj ,mD G J , ~4!

whereLj ,m5«mnlDnl j ,l is also integer valued. Forq51 the
model is therefore trivial in this particular limit, in acco
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dance with the discussion in the previous section. Foq
52, the model is equivalent to the latticeZ2 gauge theory,10

and the critical point of the model in this limit is thus in th
inverted Ising universality class~in analogy with the inverted
XY universality class of the dualized 3DXY model35!.
Thereforea and n are those of the global 3D Ising mode
For integerq>3, the critical exponentsa andn we will find
in the limit b→`, k fixed, will be those of theZq spin
model, since as we shall see below, theZq gauge theory is
dual to theZq spin model ind53.

For arbitrary integer-valued gauge chargeq ~i.e., labeling
of matter-field representation whereq51 means fundamen
tal representation, whileq>2 means higher representations!,
we may write the action in Eq.~2! in the Villain approxima-
tion, replacing the cosine terms by periodic quadratic pa
after which the model may be written in terms of its top
logical defects as20,8

Z5Z0(
$Qj %

(
$Jj n%

dDnJj n ,qQj
expF24p2b

3(
j ,k

S Jj nJkn1
q2

m2
QjQkD D~ j 2k,m2!G , ~5!

where D( j 2k,m2)5(2Dl
21m2)21d jk and m25q2b/k.

Here Z0 is the partition function for massive spin waves20

and is an analytic function of coupling constants which w
be omitted from now on. Note the appearance of the c
straint

DnJj n5qQj ; qPN ~6!

in the summation, which will be important in what follows
Here, QjPZ is the monopole charge on~dual! lattice site
numberj, while Jj n are topological currents representing se
ments of open-ended strings terminating on monopoles
closed loops. These are the only stable topological object
the theory.20 For a recent treatment of the interplay betwe
Abelian monopole condensation and vortex condensatio
lattice gauge theories, see Ref. 36.

In the limit b→` at fixedk, the partition function in Eq.
~5! takes the form

Z5(
$Qj %

(
$Jj n%

dDnJj n ,qQj
expS 2

2p2k

q2 (
j

Jj n
2 D . ~7!

This is easily seen to be the loop-gas representation of
global Zq theory in the Villain approximation.37 Using the
integral representation of the Kronecker delta and summ
overJj n using the Poisson formula, we obtain up to an ov
all nonsingular factor

Z5 (
$Nj n%

E
2p

p F)
j 51

N
du j

2p G
3expF2

q2

8p2k
(
j ,n

~Dnu j22pNj n!21 iq(
j

Qju j G .

~8!

By employing the Poisson identity
4-4



o-

8.

ce

r
o
e

d

or
he

m
e
er
o

e
a

n

ow
he

n
ly

sed
op
at-
is

and
odel

ions

del

rd
The
di-
iew
ter
uge
riti-
. To
r
-
c-
ns.

tic

ran-

ak

dis-
ec-

n a
ld
und,
ity
in-

PHASE STRUCTURE~211!-DIMENSIONAL COMPACT . . . PHYSICAL REVIEW B 67, 205104 ~2003!
(
Q52`

`

eiqQu52p (
l 52`

`

d~u22p l /q!, ~9!

we obtain

Z5 (
$ l j 52q11%

q21

(
$Nj n%

expF2
q2

8p2k
(
j ,n

S 2p

q
Dnl j22pNj nD 2G .

~10!

The above is precisely the Villain form of aZq model.37

Since Eqs.~7! and ~4! are dual~up to a Villain approxi-
mation!, and Eq.~7! is a loop-gas representation of the gl
bal Zq theory while Eq.~4! is theZq lattice gauge theory, we
conclude that the global and localZq theories are dual to
each other ind53, in agreement with the results of Ref. 3
Hence, again we conclude that the model Eq.~2! in the limit
b→`, k fixed, should have critical exponentsa andn con-
sistent with theq-state clock model universality class. Sin
limq→`Zq5U(1), the above fits nicely in with what is
known for theU(1) case ind53, where the global 3DXY
model dualizes into aU(1) gauge theory.35,39–41

From Eq.~7!, it is seen that the casesq51 andqÞ1 are
fundamentally different. Forq51, the summations ove
$Qi% may be performed to produce a unit factor at each
the N dual lattice site, thus completely eliminating th
constraint.23 Hence, we haveZ5@q3(0,e22p2k)#N where the
elliptic Jacobi functions are given by q3(z,q)
5(n52`

` qn2
exp(2pinz), which are analytic functions an

hence no phase transition occurs at any value ofk for q
51 in this limit. For ~integer! q>2, a phase transition is
known to survive.21 The restoration of a phase transition f
integerq.1 is, in this language, crucially dependent on t
presence of the constraint Eq.~6! for qÞ1. Even when one
sums overall possible values of$Qj%, this still represents a
real constraint on the vortex configurations of the syste
since it cannot be eliminated by summation as in the cas
q51. This suffices to convert the theory to a strongly int
acting one capable of sustaining a phase transition, in c
trast to the effectively~discrete Gaussian! noninteracting
caseq51.

B. b finite, k\`

We now discuss the limitb finite, k→`. Note from Eq.
~2!, that whenk→`, we have«mnlDnAj l52pM j ,m , where
M j ,m is integer valued. This shows that in this limit, th
gauge-field fluctuations are very similar to transverse ph
fluctuations in the 3DXY model,42 and the integerM j ,m
plays the role of vorticity. Thus, even whenk→`, gauge-
field fluctuations are not completely suppressed, we are
allowed to setM j ,m50, and hence we cannot setAj ,m
5Dmx j in the first term in Eq.~2!. However, we may write
the partition function on the form

Z5E
2p

p F)
j 51

N
du j

2p G E
2p

p F)
j ,m

dAj m

2p Gexp@bHQ#, ~11!

where the functional integral over the gauge field is n
constrained. Introducing the Villain approximation, using t
20510
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Poisson summation formula, integrating overu j , and per-
forming a partial integration, leads to the partition functio
which is equivalent to an ordinary loop gas with complete
suppressed gauge-field fluctuations whenq is an integer. The
gauge-field fluctuations of the compact sector produce clo
vortex loops with long-range interactions such that the lo
tangle is incompressible, entirely equivalent to ordinary m
ter field vortex loops. No screening of their test charges
produced by these constrained gauge-field fluctuations
monopole configurations are suppressed. Hence, the m
in this limit is, after all, equivalent to the 3DXY model, as it
also is in the noncompact case where gauge-field fluctuat
are entirely suppressed.

Ideally, to explore the entire phase diagram of the mo
Eq. ~2!, we could carry out Monte Carlo~MC! simulations in
conjunction with finite-size scaling analysis of standa
quantities such as the susceptibility or the specific heat.
problem with the former quantity is that we have no can
date gauge-invariant order parameter for this model, in v
of the results of Refs. 13,43,44. The problem with the lat
is that the second moment of the action is marred with h
corrections to scaling and is hence unsuitable to extract c
cal exponents from simulations on practical system sizes
circumvent this difficulty, we will consider various highe
ordermomentsof the action appearing in the partition func
tion in order to obtain quantities with good scaling for pra
tical system sizes we can handle in Monte Carlo simulatio

III. MOMENTS OF THE ACTION

Given a singular contribution to the free energyF5
2 ln Z of a system with an inverse temperature couplingb,

Fsing;utu22a F6~h/utuD!, ~12!

whereh plays the role of a scaling variable,D is some scal-
ing exponent, limx→`F6(x);x(22a)/D, limx→0F6(x)
5A6

F , A6
F are critical amplitudes, andt5(b2bc)/b is

some deviation from a critical coupling, then the nonanaly
contribution to the susceptibility of the action is given by

C;utu2a C6~h/utuD!, ~13!

where limx→`C6(x);x2a/D, and limx→0C6(x)5A6
C . At a

critical point, this quantity will scale asC;La/n, where the
volume of the system is given byL3L3L, provided the
system exhibits one diverging length scale at the phase t
sition. Here,n is the correlation length critical exponent,j
;utu2n close to a critical point. A problem arises ifa,0, as
in the 3DXY model, since one then gets an increasing pe
in C itself with increasingL, which, however, eventually will
no longer scale withL. Unfortunately, but quite typically,
impractically large system sizes are needed to eventually
tinguish corrections to scaling from actual scaling in the s
ond moment, particularly so whena,0. Thus,C exhibits a
finite cusp nonanalyticity which does scale, superposed o
large regular background which eventually will not. It wou
be advantageous to be able to subtract out this backgro
or at the very least bring out the leading non-analytic
dominating the scaling more clearly relative to confluent s
4-5
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gularities, or corrections to scaling. This can effectively
achieved by taking one further derivative of the action w
respect to the coupling constant as

]3Fsing

]b3
;utu2(11a) G6~h/utuD!, ~14!

where the scaling functionG6(x) has the properties
limx→`G6(x);x2(11a)/D and limx→0G6(x)→A6

G , which
will scale asL (11a)/n at a critical point.

More generally, thenth moment

]nFsing

]bn
;utu2(n221a) G6~h/utuD!, ~15!

will scale asL (n221a)/n at a critical point, and therefore b
computing two moments, say the third (n53) and the fourth
(n54), it is also possible to extracta and n separately
without utilizing the hyperscaling relationa522dn.

In fact, this may be obtained from the third momentM3
alone, since the width between the negative and posi
peaks scales asL21/n. ThusM3 yields independent measure
ments of both (11a)/n and 1/n. The above procedures ma
serve ascheckson the validity of hyperscaling. This is
known to be violated above the upper critical dimension
spin models and systems with long-range interactions du
the presence of dangerous irrelevant variables.45 Long-range
interactions are features of thedual models of some of the
theories we consider and little is known about the prese
of dangerous irrelevant operators in some of the models
study in this paper. Hence, caution is necessary in extrac
individual exponents. At any rate, the above seems to b
useful way of extracting two exponentsa,n from measure-
ments of one quantity, namely,M3. The procedure describe
above will presumably turn out to be useful in a host of oth
models in statistical physics.

Consider next a model with two coupling constantsx1 and
x2 defined by its action

S5x1H11x2H2 . ~16!

In this case, the scaling of]2F/]xi]xj could conceivably
depend on the direction in parameter space in which the c
cal line is crossed. To take this complication into account,
consider contributions to the free energy to second orde
devitations in the coupling constants from their critical v
ues, by expanding to second order around the critical po

F52 ln Z5F~$xc%!1
1

2 (
i , j

dxidxj

d2F

dxidxj
U
$xc%

1O~dxi
3!.

This contribution to the free energy can be writt
dW xTFi j dW x[F (2), whereFi j is the ‘‘fluctuation matrix’’ de-
fined by

Fi j [^HiH j&2^Hi&^H j&5
]2F

]xi]xj
. ~17!

This can be diagonalized via an orthogonal transforma
by rotating the original coupling constant basis through
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angleu,46 providing a new set of coordinates which are li
ear combinations of coupling constants

x18[x1 cosu1x2 sinu,

x28[2x1 sinu1x2 cosu, ~18!

with the corresponding uncorrelated operators

H18[H1 cosu1H2 sinu,

H28[2H1 sinu1H2 cosu. ~19!

This yields

F (2)5~dx18 ,dx28!S l1 0

0 l2
D S dx18

dx28
D

5~dx18!2l11~dx28!2l2 , ~20!

where l1 and l2 are the larger and smaller eigenvalu
respectively. Ifl1@l2 the first term will dominate the lead
ing order corrections toF($xc%). Hence, to obtain prope
scaling, the second derivative of the free energy should
evaluated along the direction of the corresponding eigenv
tor

]2F

]x18
2
;ux182x1c8 u2a, ~21!

when crossing the critical line.
From Eq.~2!, we get the standard expressions

]F

]m
52^Hm&,

]2F

]m2
5^Gm

2 &, ~22!

wherem is the rotated coordinate along the eigenvector c
responding to the largest eigenvalue, and where we h
definedGm5Hm2^Hm& with rotated operatorHm defined by
Eq. ~19!. The above expressions essentially represent ge
alizations of the expressions for internal energy and spec
heat. The second derivative contributes toCm which we will
refer to as the singular part of the second moment of
action, or the action susceptibility. Similarly, we obtain

]3F

]m3
5^Gm

3 &, ~23!

and in general we have for thenth moment

]nF

]mn
5^Gm

n &. ~24!
4-6



us
ith
at
y
t

as
s
re
-
y
h
o
ll
w

th
u

s
um

ut
la

s
e
g

. W

I
ch
tio
ti-
ti-
c

lu
he
om

he
ex
of
for

ts
re
s

st
e
, we
ori-
cal

s
the
to
nt.
ak

ns
re
re-

ent
ex-
our
h-
ark
act-

a
er-
ure-
ter
del
n,
o-
re-

of

PHASE STRUCTURE~211!-DIMENSIONAL COMPACT . . . PHYSICAL REVIEW B 67, 205104 ~2003!
IV. MONTE CARLO SIMULATIONS

A. Details of the MC simulations

The critical properties of the models are investigated
ing large scale Monte Carlo simulations in conjunction w
finite-size scaling analysis. A Monte Carlo move is an
tempt to replace the field value at one particular point b
randomly chosen value. The move is rejected or accep
according to the standard Metropolis algorithm. In the c
of the XY model, the phaseu j is the relevant field, wherea
in the full Abelian Higgs model both the phase and the th
components of the gauge fieldAj ,m are subjected to the Me
tropolis algorithm. One sweep consists of traversing the s
tem L3L3L while attempting a Metropolis update of eac
field component once. The acceptance rate of the Metrop
algorithm is kept fixed between 60 and 70 % by dynamica
adjusting the maximum allowed changes in the fields. Ho
ever, for the model defined in Eq.~2! at largeb, whereZq
gauge behavior is expected, the algorithm for controlling
acceptance rate has been relaxed by fixing the maxim
allowed change to 2p. There is no gauge fixing involved in
these simulations, and periodic boundary conditions are u
in all directions. The excess gauge volume due to the s
mation in the partition function over~redundant! gauge-
equivalent field configurations, will cancel out when comp
ing all averages of gauge-invariant quantities, in particu
when computing moments of the gauge-invariant action.

The third moment of the action will typically behave a
shown in Fig. 1. The MC simulations for the compact Ab
lian Higgs model will be performed for a set of couplin
constants that span a line across the phase transition
diagonalize the ‘‘fluctuation’’ matrix~17! and simulate along
the trajectoryb(k)5bc1a(k2kc), with a being deter-
mined from the eigenvector with the largest eigenvalue.
all models that we consider in this paper, including ben
marks models, we then compute the moments of the ac
according to Eq.~24! applying Ferrenberg-Swendsen mul
histogram reweighting analysis with jackknifing error es
mate. For the benchmark models, this procedure produ
curves as shown in Figs. 3 and 4. The top and bottom va
as well as their positions for different system sizes are t
used to produce scaling plots as shown in Fig. 5. The c
binations of critical exponents (11a)/n and 1/n are then
extracted by bootstrap regression analysis.

FIG. 1. Generic third moment of actionM3 showing how finite-
size scaling is used to extracta andn.
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B. Simulations of the eight-vertex model

As a first benchmark on our method of extracting t
exponentsn and a separately, we consider the eight-vert
model47 on a square lattice. This model has the virtue
being exactly solvable, and hence an analytic expression
the exponentn is known. Moreover, it has critical exponen
that are nonuniversal.47 The eight-vertex model on a squa
lattice may be formulated as a generalized Ising model a47

Z8V5(
$s i %

exp@bH8V#,

H8V5J1 (
^^ i , j &&

s is j1J2(
P

s is jsks l , ~25!

where s i561, ^^ i , j && denotes a summation over neare
neighbors~diagonal bonds! and (P denotes a sum over th
elementary plaquettes on the square lattice. In the above
have specialized to the case where spin couplings along h
zontal and vertical bonds have been omitted. The criti
temperature andn are given by

e22bcJ25sinh~2bcJ1!,

1

n
522

2

p
cos21@ tanh~2bcJ2!#. ~26!

We have computedM3 for this model, using system size
L3L, with L58,12,20,40,60,80,120,200. We have used
Metropolis algorithm with single-spin updates, and up
5.03105 sweeps over the lattice for each coupling consta
From this, we have extracted scaling plots of the pe
heights and width between peaks ofM3 as a function of
system size. From this, we directly extract the combinatio
1/n and (11a)/n, the final results for the exponents a
given in Fig. 2. The agreement between our simulation
sults and the analytical result Eq.~26! is excellent. The above
demonstrates that for this model, the third order mom
provides an excellent means of extracting nonuniversal
ponents from practically accessible system sizes, and in
view provides a first excellent and highly nontrivial benc
mark test on the method. We next provide further benchm
tests on a number of 3D systems, before going on to extr
ing exponents for the~211!-dimensional compact Abelian
Higgs model.

C. Simulations of the 3DXY-, Ising-, and Ising „Z2… gauge
models

We reemphasize that what follows in this section is
benchmark on the method of bringing out nonanalytic th
modynamics without recourse to order parameter meas
ments, by measuring third moments of the action. In la
sections the method will be applied to a lattice gauge mo
for which no nonlocal order parameter currently is know
and where we will obtain precise values of critical exp
nents. In the present section, we will reproduce known
sults for the critical exponentsa andn for the 3DXY model,
and the two 3D Ising models, directly from third moments
4-7
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the action, thus benchmarking the method. We will dem
strate that the method of using the third moment of the ac
is far superior to using the second moment, for practi
system sizes accesible in numerical simulations. This is
to the fact that the third moment is not contaminated
contributions from the second moment, which unfortunat
often is marred by contributions from confluent, or subdom
nant, singularities.

The XY and Ising models are defined by the followin
two partition functions

ZXY5E
2p

p F)
j 51

N
du j

2p Gexp~bHXY!,

HXY5(
j,m

cos~Dmu j !,

FIG. 2. ~a! (11a)/n from FSS finite-size ofM3 for Eq. ~25! as
a function ofJ2 /J1. ~b! Same for the exponentn, computed di-
rectly from M3 (n) and combining results for (11a)/n with hy-
perscaling (s). ~c! a as computed directly fromM3 (n) and using
results for (11a)/n with hyperscaling (s). The solid line in~b!
represent the analytical result Eq.~26!. The solid lines in~a! and~c!
are obtained from Eq.~26! and using hyperscalinga5222n. The
above results thus also provide a check on hyperscaling in
model.
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ZI5 (
$s i561%

exp~bHI !,

HI5(
^ i , j &

s is j .

In addition, we consider the three-dimensional Ising latt
gauge theory10

ZIGT5 (
$Ui j 561%

exp~bH IGT!,

H IGT5(
P

Ui j U jl UlkUki ,

where the summation in the last expression runs over
plaquettesP of the lattice. We note for later use that the Isin
model (Z2 spin model! defined byZI and the Ising gauge
theory (Z2 gauge theory! defined byZIGT are dual to each
other ind53.37

The second and third momentsM2 andM3 we will con-
sider for these models are given by

M25
]2F

]b2
5^Gl

2&,

M35
]3F

]b3
5^Gl

3&, ~27!

wherelP(XY,I ,IGT) and whereI and IGT denote the Ising
and Ising gauge theories, respectively. In all these ca
scaling;La/n is expected for the peak in the second m
ment, while scaling;L (11a)/n and ;L21/n is expected for
the third moment peak-to-peak height and width, resp
tively, as indicated in Fig. 1. We mention in passing that
the 3D XY model, we have (11a)/n51.467, while (1
1a)/n51.763 for the 3D Ising model and 3DZ2 lattice
gauge theory. The latter follows from the fact that mod
which are connected by duality transformations have ide
cal values ofa,n, since these two exponents can be obtain
from scaling of the free energy. On the other hand, cert
combinations of the remaining critical exponents, which d
pend on the degrees of freedom one chooses to describ
transition with, remain invariant. These invariant combin
tions are given by48

g

22h
, 2b1g, b~d11!. ~28!

The first is a consequence of Fisher’s scaling law, the ot
two follow from Rushbrooke4s scaling law. Figure 3 show
the second and third moments for the 3D Ising model
system sizesL512,20,32,40 as a function ofb, while Fig. 4
shows the corresponding quantities for the 3DXY model.

D. Finite-size scaling ofM 2 and M 3

We first consider the second moments of the 3DXY
model and the 3D Ising model. These exhibit peaks atTc

is
4-8
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which in principle are amenable to finite size scaling. Figu
5 upper panel shows the finite-size scaling plots of the pe
in the second moment of both models. As is seen from
figure, the peaks grow asL increases. However, it is clea
that none of the scaling plots have reached their asymp
behavior.

For the 3DXY model, the apparent scaling for small
intermediate values ofL is clearly spurious, as it levels of
for large system sizes. In principle, anegativeslope should
eventually be obtained for asymptotically large system siz
but the general experience is that impractically large sys
sizes are required to see this, let alone estimate the slig
negative value ofa with any precision.

For the 3D Ising model, the situation is different in th
the peak height grows steadily asL increases, eventually
approaching a straight line on a double-logarithmic plot. A
though the quality of the scaling improves with increasingL,
an approximate evaluation of the slope yieldsa/n50.3
whereas the known value isa/n50.175. Hence, it is clea

FIG. 3. Second moment~upper panel! and third moment~lower
panel! of the action for the 3D Ising model for system sizesL
512,20,32,40.
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that inaccesibly large systems are required to obtain the
cific heat exponent with any accuracy from the second m
ment scaling analysis.

Consider now the third moment of the action for the 3
XY and Ising models. The results are given in Fig. 5, mid
panel. It is obvious that the quality of the scaling in bo
cases is vastly improved compared to the results obta
from the second moment. This demonstrates rather conv
ingly that finite-size scaling of the third moment of the a
tion, i.e., a purely thermodynamic measurement without
course to order parameters, suffices to bring out tha
singular part of the free energy exists in both cases. T
would have been difficult to conclude based on the sec
moment of the action, at least for the 3DXY model. Note
that scaling such as this would not have been found had t
not been a nonanalytic part of the free energy. Thus,
quality of the scaling alone suffices to demonstrate the e
tence of a phase transition. Moreover, the double-peak st
ture in M3 permits a separation ofa andn without recourse

FIG. 4. Second moment~upper panel! and third moment~lower
panel! of the action for the 3DXY model for system sizesL
512,20,32,40.
4-9
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to hyperscaling. The results for the widths between the pe
in the histrograms are given in Fig. 5, bottom panel. Note
good quality of the scaling.

The benchmark results for the three models are given
Table I. We see that the error bars of these benchmark va
all include the known values ofa andn. Finally, the expo-
nents obtained for the 3D Ising spin model and the 3D Is
gauge theory, are within error bars found to be the same
they should be from duality of the two theories in three
mensions. Since the degrees of freedom used in the sim

FIG. 5. Finite-size scaling plots for the 3DXY, 3D Ising, and
3D Z2 lattice gauge model defined in Eq.~27!. ~a! The peaks in the
second moment of the action demonstrating that very large sys
sizes are necessary to obtain correct scaling results. For clarity
of the plots are lowered with a multiplicative factor of 0.7 and 0.
for the Ising and Ising lattice gauge models, respectively.~b! The
peak to peak values of the third moment of the action, demons
ing that correct scaling results are obtained for much smaller sys
sizes than what is the case for the second moment. Note also
close similarity of the scaling results for the Ising andZ2 lattice
gauge models, which should be indentical, up to constants, du
duality. This serves as a quality check on the simulations.~c! The
width between peaks in the third moment.
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tions are vastly different, this serves as a highly nontriv
quality check on the simulations.

E. Benchmark simulations of a 3DXY model coupled to aZ2

clock model

To investigate the scaling behavior of the third moment
the action in a well studied 3D theory49 with two coupling
constants and two fixed points of typeZ2 andXY, we have
considered the model

Z5E
2p

p F)
j 51

N
du j

2p Gexp@bHXY1hHZq#,

HXY5(
j ,m

cos~¹mu j !,

HZq5(
j

cos~qu j !, ~29!

defined on a (d53)-dimensional cubic lattice withN sites.
The phaseu j resides on every sitej andq is integer valued.

Let us consider theq52 theory. By simple inspection o
the model we find that the limith→` leads to a twofold
symmetry constraint on the phase, and the model beco
exactly the 3D Ising model. The limitsb→` andb50 are
trivial theories. From renormalization group theory, theq
52 model is found to have aXY phase transition withh
50, while it exhibits Ising exponents for any otherhÞ0 ~at
least in the vicinity ofh50.!

We have performed Monte Carlo simulations on t
model Eq.~29!, q52 with system sizes up toL532. The
resulting exponents from the third moment scaling analy
are given in Fig. 6. We measureZ2 critical exponents down
to very small values ofh. However, it is clear that the critica
coupling approaches the 3DXY value as shown in the uppe
panel. Note the dramatic increase in both (11a)/n and 1/n
for h50.01 in the vicinity of theXY fixed point, where we
find that the exponents become even lessXY-like. The value
for a shows a more smooth crossover behavior from 3DXY
value to 3D Ising value ash is increased from 0. However
the scaling appears not to have reached its asymptotic be
ior and the slopes are clearly decreasing for increasing
tem sizes. We expect this to be due to a cross-over regim
which the cross-over exponent contaminates our estima
but that all the combinations of exponents eventually w
converge towards Ising values, whenhÞ0.

ms
o

t-
m

the

to

TABLE I. Critical exponents extracted for the benchmark mo
els, wherea is computed by combining the (11a)/n and 1/n
results.

Model (11a)/n n a

XY 1.4660.01 0.6760.01 20.0160.01
Ising 1.7760.01 0.6360.01 0.1160.01
Z2 gauge 1.7860.02 0.6360.01 0.1260.02
4-10
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F. Simulations of the 3D compact Abelian Higgs modelqÄ2

We next consider the third moment of the model defin
by Eq.~2!. The model withq52 has previously been studie
by Monte Carlo simulations on small systemsL3, with L
52,3,4 many years ago50 using second moments of the a
tion. A short version of the results to be presented in t
section, has already appeared.19 To our knowledge, no simu
lations have been performed ind53 between those pre
sented in Ref. 50 and the much more recent large-scale s
lations that have been performed.19 Due to our observation
that scaling of the second moment requires much larger
tems than those studied in Ref. 50 in order to obtain relia

FIG. 6. Upper panel: The phase diagram of the model Eq.~29!.
The open circles denote points where only the phase transition
been located, while the filled triangles denote points where also
critical exponents have been measured. Lower panels: The
lower panels show the combination of exponents (11a)/n, as well
as n and a, as a function ofh/b. Note the rapid crossover ina
from the 3DXY value ath50 to the 3D Ising value ash is in-
creased. The dotted and horizontal lines denote 3DXY and 3D
Ising values, respectively, for the various quantities.
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results for exponents, a revisit to the problem seems v
appropriate. This is particularly true given the importance
model now has acquired in condensed matter system as a
model for strongly correlated quantum systems at zero t
perature in two spatial dimensions.11,12,2,28In Ref. 28, pre-
cisely such an effective model withq52 was derived from a
proposed microscopic description of charge-fractionaliz
phases in strongly correlated systems. Specifically, the c
fined phase of theq52 model was interpreted as a Mot
Hubbard insulating phase, while the deconfined-Higgs ph
was interpreted as a charge-fractionalized insulating pha

The critical exponents obtained from third moment F
analysis are presented in Fig. 7. The exponentsa, n, and the
combination (11a)/n vary continuously along the critica
line showing 3DXY and Z2 universality in thek→` and
b→` limits, respectively. TheZ2 behavior persists deep int
the phase diagram, while we find a broad nonuniversal a
in the large-k region. These two areas are joined by a peak
the exponents. To check the dependence of the trajectory
performed simulations for several slopes at the two extrem
using a5`, a51, a521 and the direction given by the
diagonalization of the fluctuation matrix. Within error bar
all slopes consistently produced the same exponents.

The results appear to rule out thatZ2- and XY-critical
behaviors are isolated points at the extreme ends of the c
cal line. However, a feasible suggestion could be that t
types of universality,Z2 and XY, are separated at a mult
critical point on the critical line. We believe this to be rule
out by the strong deviation in (11a)/n from Z2 and XY
values at intermediatek/b. On balance, we thus conclud
that the model Eq.~2! defines a fixed-line theory, rather tha
exhibiting two scaling regimes separated by a multicritic
point. However, theZ2 character of the confinemen
deconfinement transition persists to surprisingly large val
of k/b on the critical line, see also Fig. 5 of Ref. 50. Fixe
line theories in 211 dimensions are known,51 and nonuni-
versal exponents imply the existence of marginal operator
Eq. ~2!, yet to be identified.

G. Simulations of the 3D compact Abelian Higgs modelqÄ3

TheZq spin model andq-state Potts model are easily se
to be equivalent forq52 andq53.52 For theq-state Potts
model, it is known that when one generalizesq to be real-
valued, the phase transition in the model ind53 changes
from continuous to discontinuous whenq is increased be-
yond the valueq52.625.53 Hence, both theZ3 lattice gauge
theory and theZ3 spin model have first order phase tran
tions. In the limitsb→` and k→` the model defined by
Eq. ~2! reduces to theZ3-spin model and 3DXY model,
respectively. If these phase transitions survive on the crit
line for finite coupling values, a tricritical point joining th
first and second order critical lines is expected to exist.
we shall see, this is precisely what happens.

Therefore, we reach the important conclusion that
model exhibits a first order phase-transition not only forb
5`, Eq. ~7!, but also for finite values ofb. To identify and
investigate the first order phase transitions we have c
puted histograms of the action~2! at critical coupling con-
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e
ee
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stants. These have a double-peak structure due to the
coexistiting phases that characterize a first-order phase
sition. The histograms have been produced from large s
Monte Carlo simulations followed by multihistogram r
weighting and jackknife error analysis.42 The results are
shown in Fig. 8.

FIG. 7. ~a! (11a)/n from FSS finite size ofM3 for Eq. ~2! for
q52. Note the variation relative to theZ2 limit 1.76 ~dotted hori-
zontal line! and theU(1) limit 1.467 ~solid horizontal line!. ~b!
Same for the exponentn, computed directly fromM3 (n) and
combining results for (11a)/n with hyperscaling (s). ~c! a as
computed directly fromM3 (n) and using results for (11a)/n
with hyperscaling (s). The maximum and minimum in~a! have
been obtained by crossing the critical line along the traject
b(k)5bc1a(k2kc) with a5` (n), a51 (j), and a521
(m) using bc50.665,kc52.125 ~max.!, and bc50.525,kc55.0
~min.!.
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A first-order phase transition is characterized by two c
existing phases with the same free energy. There sho
therefore exist domain walls separating the two phases.
area of the domain walls is related to the energy differe
DF(L) required to keep the two phases separated thro
the expression

DF~L !5 ln P~S,L !max2 ln P~S,L !min;Ld21, ~30!

whereP(S,L) is the probability for a valueSof the action in
a system of sizeLd and Ld21 is the cross-section area be
tween the ordered and disordered phases.54 The results
shown in Fig. 9 confirm this for system sizesL>24.

The discontinuity of the action or equivalently the wid
between the peaks in the histograms is, strictly speaking,
the latent heat. Nonetheless, it can be taken as a reason
accurate measure of this quantity along a sufficiently sm
part of the phase transtion line. It is important to ascert
whether or not the first-order character of systems persis
the thermodynamic limit. Hence, we plot the discontinuity
the action as a function of system size in Fig. 9, upper pa
and find that the discontinuity of the action is finite at lea
up to kc51.65. The first order phase transition becomes
creasingly weaker, i.e., the latent heat in the transition
reduced as we approachkc51.65 from below.

Approaching the tricritical point along the first order lin
the discontinuity in the action, equivalently the width b
tween the peaks in the histograms, must vanish. From Fi
we have extrapolated the thermodynamic limit of this qua
tity, and plotted them as a function of the critical coupling
Fig. 10. A linear extrapolation yields an estimate for the t
critical point k tri /b tri51.3960.06 corresponding to
(b tri ,k tri)5(1.2360,03,1.7360.03).

On the other side of the tricritical point we have pe
formed a third moment analysis. The exponents are expe

y

FIG. 8. Normalized histograms of the action~2! for q53 at the
first order phase transition with various critical couplings and s
tem sizesL58,12,16,20,24,32,40,64. The histogram height
creases with system size. The horizontal axis shows the ave
value of the action per unit volume, and the histograms have b
shifted horizontally for clarity.
4-12
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to be those of 3DXY in the large-k limit. Strictly speaking,
critical exponents are properties of second order phase
sitions. For a first order transition the correlation length st
finite and hence there is no scale-invariance. Howe
bounds for some of the exponents can be obtained and

FIG. 9. Upper panel: The discontinuity of the action~2! as a
function of system size. Note that the plots seem to be conver
towards a finite energy value. Lower panel: The energy differe
between the two coexisting phasesDF(L) as a function of system
size, same labeling as in the upper panel.

FIG. 10. Width of peaks in histograms as a function ofkc /bc .
The solid line is a linear fit to the data points forkc /bc.0.8.
20510
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limits of these bounds correspond to the exponents
would get by relaxing the definitions and formally conside
ing first order transitions.48 One finds that the limits area
51 and n51/d, respectivly. Hence when approaching t
tricritical point we expect (11a)/n56 andn51/3.

The critical exponents, given in Fig. 11, agree with t
expectations. The exponents areXY-like in the largek limit
while in the region 2.4&k&50 the quantity (11a)/n is
lower than theXY value and hence exhibits nonuniversiali
similar to what we found forq52. At approximatelyk

g
e

FIG. 11. ~a! (11a)/n from FSS finite-size ofM3 for Eq. ~2! for
q53. Note the variation relative to theU(1) limit 1.467 ~solid
horizontal line! and the violent behavior near the critical pointk tri .
~b! Same for the exponentn, computed directly fromM3 (n) and
combining results for (11a)/n with hyperscaling (s). ~c! a as
computed directly fromM3 (n) and combining results for (1
1a)/n with hyperscaling (s).
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;2.4 the exponents rise abruptly towards the first order l
iting values. Due to supercritical slowing down, obtaini
good quality third moment scaling plots becomes diffic
when approaching the tricritical point. Thus, locating t
critical point by deciding where the exponents have reac
the values one expect in thelimit of a first order phase tran
sition, is not feasible.

For q53, which is a special case in this context~see
below!, this is very similar to what is now known to happe
in the noncompact Abelian Higgs model ind53. In that
system, a first order phase transition characteristic of typ
superconductivity at small values of the Ginzburg-Land
parameter, is converted to a second order phase trans
characteristic of type-II superconductivity. The tricritic
value of the Ginzburg-Landau parameter where this cha
in the character of the phase transition occurs, has rece
been determined with precision in large-scale Monte Ca
simulations, to be given by 0.8/A2.55 This is in remarkable
agreement with previous analytical results using dua
arguments.56

H. The phase diagram forqÄ2,3,4

Let us summarize what has been discussed above.
phase structure of the model is given in Fig. 12. From
early Monte Carlo simulations on the model50 for q52, it is
known that the critical linebc(k) approaches limk→`bc
50.454 while whenb→`, there is a critical value ofk
given bykc50.761. Asq increases, the vertical part of th
phase-transition line moves up ink, while for the values ofq
we have considered, the lines are critical except for the c
q53 which is a first order line for large values ofb. Forany

FIG. 12. The phase diagram for thed53 compact Abelian
Higgs model in three dimensions forq52,3,4,5. All lines are criti-
cal for all values ofk except for the caseq53, which is first order
for k,k tri and second order otherwise. The thick solid portion
the q53 line denotes a first-order transition. Detailed finite-s
scaling analysis of the lineq52 shows that the critical exponentsa
and n vary continuously along the critical line. This makes t
theory defined by Eq.~2! a fixed-line theory with nonuniversal criti
cal exponents, as opposed to a fixed-point theory with unive
exponents. The critical line approaches the 3DXY value bc

50.453 ask→` for all values ofqPN.
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q, however, we know that the limitk→` represents the
U(1) limit, which must exhibit a second order phase tran
tion. Hence, the line forq53 in Fig. 12 must contain a
tricritical point. The first order line for largeb terminates at
a tricritical point, and is second order for larger values ofk.
For q54, which is also shown, the phase-transition line
second order. The limitb→` corresponds to thed53 Z4
lattice model which is dual to theZ4 spin model. Using the
fact that the symmetry groupZ45Z2^ Z2, the universality
class of theq54 phase transition line is expected to inte
polate between the Ising case in the limitb→` and the 3D
XY universality class in the limitk→`.

Based on what is presented above, we conclude that
qÞ3, the model Eq.~2! exhibits a critical linebc(k) for all
values ofk, while for q53 the phase transition of the mod
is first order for small values ofk and is converted to a
second order phase transition whenk is increased beyond a
finite tricritical value.

V. CONCLUSIONS

In this paper we have, in addition to a number of benc
mark models, considered various lattice gauge models i
11 Euclidean dimensions, with particular emphasis on
compact Abelian Higgs model with integer gauge chargeq
>2. We have seen that that for allq>2;qÞ3, the phase
transition for the model in Eq.~2! is second order such tha
the entire phase transition linebPT(k) is critical, i.e.,
bPT(k)5bc(k). The exponentsa andn which are given by
the 3DXY values in the limitk@b, and globalZq values in
the limit b@k. For the special caseq52 and for intermedi-
ate values ofb andk on the critical line, the exponents var
continuously from the value (11a)/n51.76 in theZ2 limit
b@k to the value (11a)/n51.467 in theU(1) limit k
@b. This constitutes a rare example of afixed-line theory
with nonuniversal exponents in a three-dimensio
system.51 What the connection to the work of Refs. 14,15
where a Kosterlitz-Thouless-like phase transition of unbin
ing of monopoles in a three-dimensional compactU(1)
gauge theory was found, remains to be investigated. M
work is also required to elucidate the special role ofq53 in
the compact Abelian Higgs lattice gauge model. Note t
this is fundamentally different from what happens in t
q-state Potts model, to which theZq spin model is equivalen
only for q52,3. In constrast to the compact Abelian Hig
model, theq-state Potts model has a first order phase tra
tion for all q.2.625.53

Based on the connection between the model Eq.~2! for
q52 and a recently proposed model of fractionalized pha
in strongly correlated systems28 which is essentially given by
Eq. ~2!, we propose that the universality class of the putat
quantum phase transition from a Mott-Hubbard insulator t
charge-fractionalized insulator which the model is suppo
to describe, is in the universality class of theq52 compact
Abelian Higgs model characterized by a fixed line of no
universal critical exponents varying continuously betwe
the values (11a)/n51.76 in the limitb→`, k finite, and
(11a)/n51.467 in the limitk→`, b finite. However, we

f
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have found that over a significant portion of the critical li
of the q52 compact Abelian Higgs model, the exponen
take on values consistent with those of the 3D Ising mode
microscopic models describing such Mott insulato
fractionalized insulator transitions yield theq52 compact
Abelian Higgs model with sufficiently large values ofb and
small values ofk as an effective theory, then the resultin
insulator-insulator transition is in the 3D Ising universal
class.28

It appears that the study of matter-coupled compact ga
theories would benefit greatly from a precise formulation
a nonlocal order parameter represented by generalized r
ity for such models, as a substitute for the Wilson or Pol
kov loops which have proved useful in the pure gauge th
ries, but which are always perimeter-law bounded in
matter coupled case when the symmetry group of the ma
field is a subgroup of the symmetry group for the gauge fie
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