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Spin-orbit interaction and electron elastic scattering from impurities in quantum wells

H. C. Huang, O. Voskoboynikov, and C. P. Lee
National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan, Republic of China

~Received 4 November 2002; revised manuscript received 24 February 2003; published 30 May 2003!

We present a theoretical study of the spin-dependent scattering of electrons from screened impurities in III-V
semiconductor quantum wells. Our calculation is based on the effective one-electronic-band Hamiltonian and
the spin-orbit coupling with the Coulombic potential of the impurities. We demonstrate that the spin-orbit
interaction can lead to recognizable magnitudes of spin asymmetry in the elastic-scattering cross section. Fairly
large values of the Sherman function~about 0.01! are obtained for repulsive and attractive impurities in
quantum wells of narrow gap semiconductors.
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I. INTRODUCTION

A large number of studies of the electron transport
two-dimensional~2-D! semiconductor systems has been c
ried out over the past 40 years~see, for instance, Refs. 1–8!.
This is especially important for electronic application
Progress in modern semiconductor technologies has allo
us to experimentally and theoretically model the vario
scattering mechanisms in 2-D semiconductor structu
within a wide range of material parameters.4–8 It is com-
monly accepted now that the electron mobility of a semic
ductor 2-D heterostructure is determined by impurity scat
ing at low temperatures and by the phonon scattering at h
temperatures.

Recently there has been renewed interest in s
dependent scattering and transport phenomena in sem
ductor heterostructures because a branch of semicond
electronics so called spintronics, has become a focus o
terest ~see Refs. 9–12, and references therein!. The extra
degree of freedom provided by the electron spin opens a
field for the development of semiconductor devices. In pr
ciple, one can use the semiconductor approach to gene
control, and detect electron-spin polarization.11,13 This ap-
proach has the advantage of being compatible with conv
tional semiconductor technology.

In the absence of magnetic impurities, the main source
spin-dependent scattering processes at low temperatur
spin-orbit coupling to local defects. The effect of spin-or
interaction on spin relaxation for semiconductor 2-D syste
also has been studied for a long time.14–17Recently coheren
spin transport has been demonstrated in homogeneous s
conductors and heterostructures.19,18 Unfortunately, the
theory of spin-dependent transport for semiconductor 2
systems is still far from being complete. For this reason
recently investigated spin-dependent elastic-scattering
cesses in semiconductors in the presence of spin-o
interaction.20,21 In 2-D quantum wells,20 this effect is ex-
pected to be stronger than that in the bulk21 because of the
localization of electronic wave functions in the conducti
channel. It should be noted that the problem remains c
plicated even for the simplest models of 2-D electron mot
because, in general, spin-orbit interaction should be
scribed by a three-dimensional model.

Using the delta-doping technique, Coulomb attractive a
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repulsive impurities can be precisely placed in heterostr
tures. Using this fact one can model theoretically the scat
ing from the impurities located inside2 or outside22 the con-
ductive channel. Most of the theoretical simulations of 2
electron elastic-scattering processes from the impurities w
conducted in detail in the first Born approximation.2,4 How-
ever, it is well known that when perturbation theory is use
the dependence on spin in the elastic cross section app
only in the approximation that follows the first Bor
approximation.23–26 For this reason, one should use oth
approaches in calculations of the spin-dependent scatte
cross section. In particular, this is the partial-wa
approach,25,27 which was also used in some simulations
the spin-independent elastic-scattering cross section w
the first Born approximation is not applicable.28–30

In this paper we calculate the spin-dependent elas
scattering cross section for electrons scattered by impur
in 2-D heterostructures of III-V semiconductors. We use
effective one-electronic-band Hamiltonian23 with Ben-
Daniel-Duke boundary conditions for electronic envelo
functions to calculate the spin-dependent cross section
electrons scattered from repulsive and attractive isolated
purities with spin-orbit coupling.24–26 The impurities are lo-
cated inside the quantum well. For narrow gap semicond
tor quantum wells~systems with large spin-orbit couplin
parameters! we found a large spin-related asymmetry in t
cross section.

The paper is organized as follows: Section II begins w
an introduction to the effective one-electronic-band 2
Hamiltonian with impurities located inside semiconduct
quantum wells. Section III gives details of the variable pha
approach to spin-dependent elastic scattering in 2-D syste
The calculation results are presented in Sec. IV and con
sions are given in Sec. V.

II. BASIC EQUATIONS

We consider electrons in semiconductor heterostructu
with charged impurities and use the approximate o
electronic-band effective Hamiltonian for the electron env
lope wave functions

Ĥ5Ĥ01V̂im~r !. ~1!
©2003 The American Physical Society37-1
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In Eq. ~1! Ĥ0 is the Hamiltonian of the system withou
impurities,31–34

Ĥ052
\2

2
“ rF 1

m~E,r !G“ r1V~r !,

where“ r stands for the spatial gradient;m(E,r ) is the en-
ergy and position-dependent electron effective mass,

1

m~E,r !
5

2P2

3\2 F 2

E1Eg~r !2V~r !

1
1

E1Eg~r !1D~r !2V~r !G ,
whereV(r ) is the confinement potential of the well;E is the
electron energy;Eg(r ) and D(r ) stand for the position-
dependent band gap and the spin-orbit splitting in the
lence band;P is the momentum matrix element; andV̂im(r )
is the scattering potential of the impurity.

The impurity scattering potential consists of two parts,

Vi~r !5Vic~r !1Viso~r !,

whereVic(r ) is the Coulomb potential of the charged imp
rity and Viso(r ) describes the spin-orbit interaction of ele
trons with the impurity

Viso~r !52 ig~E,r !“Vic~r !•@ŝ3“ r#, ~2!

where32,34

g~E,r !5
P2

3 H 1

@E1Eg~r !2V~r !#2

2
1

@E1Eg~r !1D~r !2V~r !#2J . ~3!

The spin-orbit interaction in the form of Eq.~2! is the
generalization of the well-known Rashba spin-or
interaction,33 which comes from system inversio
asymmetry.32,34 In semiconductor structures with the avera
uniform electric fieldF one can consider

FÄÀ
1

e
“Ṽp~r !,

where e is the electron charge andṼp(r ) is the average
space-charge electric potential. When the electron with
wave vectork'F is moving in the field, one can readil
obtain from Eq.~2! the well-known Rashba interaction

Vso~r !5an•@ŝ3k#,

where a52egF and n is the unit vector parallel to the
field.33

Here we consider III-V semiconductor symmetrical qua
tum wells of thicknessL. In the structure we denote byz the
direction perpendicular to the well interfaces, andr5(x,y)
is the position vector parallel to the interfaces (z50 is the
center of the well!. For systems with sharp discontinuity i
19533
-

t

e

-

the conduction-band edge between the quantum well~mate-
rial 1) and the barrier region~material 2) the potential can
be presented as

V~r !5H 0, 2
L

2
<z<

L

2
; ~rP1!,

V0 , uzu.
L

2
; ~rP2!.

~4!

We assume that an isolated impurity is located atz5d and
the unscreened Coulomb potential of the impurity is given

Vic
0 ~r !5

Ze2

«s@r21~z2d!2#1/2
, ~5!

where«s is the relative permittivity of the system andZ is
the charge of the impurity. For most III-V quantum wells w
can neglect the image potential and use for simplicity«s
5(«11«2)/2 («1 and«2 are the dielectric constants of ma
terials 1 and 2, correspondingly!.

Following Refs. 1, 2, and 31 we present the solution
the confinement problem with the HamiltonianĤ0 as

Cn,s~r,z!5cs~r!wn~z!,

where n labels the eigenenergies in the normal directi
(En), ands561 is the quantum number related to the sp
polarization along thez direction.

As is shown in Ref. 32, due to the reflection symmetry
the well in thez direction~there are no built-in electric fields!
the Rahsba spin splitting in the electron spectrum does
occur and one can use the conventional Ben-Daniel-D
boundary conditions31 for the wave functionwn(z),

wn~z!,
1

m~E,z!

d

dz
wn~z!

continuous at

z56
L

2
. ~6!

Considering for simplification only the first subband
being populated we describe only intrasubband elas
scattering processes. First we obtain the ground state~the
first subband withn51). The wave function of this ground
state has the well-known form

w
1
~z!5H A coskz, uzu<

L

2
;

B exp~2mz!, uzu.
L

2
;

~7!

where

k5A2m1~E!E1/\,

m5A2m2~E!~V02E1!/\,
7-2
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andE5Er1E1 consists of the energies of ther andz direc-
tions of motion, correspondingly. From the Ben-Daniel-Du
boundary conditions~6! we obtain the spinless transcende
tal equation

tan@k~Er ,E1!L/2#5
m1~E!m~Er ,E1!

m2~E!k~Er ,E1!
. ~8!

Equation~8! gives us the eigenenergy in thez direction in an
implicit form.

The wave function~7! ~after proper normalization!, we
substitute into the three-dimensional Schro¨dinger equation
with the Hamiltonian~1! and integrate out thez coordinate
by taking the average,

Ĥr5E
2`

1`

dzw1* ~z!Ĥw1~z!.

After the averaging and introducing the screening of the
purity at low temperatures by means of Refs. 1 and 23
quasi-2-D Schro¨dinger equation in the polar coordinate
rÄ(r,f) is given by

F1

r

]

]r S r
]

]r D2
1

r2

]2

]f2
2Ṽ~r!1 isW̃~r!

]

]f
1k2Gcs~r!50,

~9!

where

Ṽ~r!5
2Z

aB*

m̃~E!

m1~0!
E

0

` dq

«~q!
J0~qr!E

2`

1`

dzuw1~z!u2e2quz2du

is the statically screened Coulomb potential in the quan
well plane,

W̃~r!52
2Z

aB* r

m̃~E!

m1~0!
E

0

` qdq

«~q!
J1~qr!

3Fa1~E!E
z<uL/2u

dzuw1~z!u2e2quz2du

1a2~E!E
z>uL/2u

dzuw1~z!u2e2quz2duG
is the screened spin-orbit interaction,aB* 5«s\

2/e2m1(0) is
the effective Bohr radius in the well,

k25
2m̃~E!Er

\2
,

1

m̃~E!
5

1

m1~E!
E

z<uL/2u
dzuw1~z!u2

1
1

m2~E!
E

z>uL/2u
dzuw1~z!u2,

Jn(x) is the Bessel function,
19533
-

-
e

m

«~q!511
q

f

q

is the 2-D electronic dielectric function,

q
f
5

e2m1~EF!

2p\2«s
H 11

d

dE
ln@m1~E!#UEFJ

is the 2-D Thomas-Fermi screening constant in the dege
ated electronic system, andEF is the Fermi energy of the
system.35 The Fermi wave vectorkF(EF) must be defined by
means of the solution of the following equation:

EF5
\2kF

2

2m1~EF!
.

III. TWO-DIMENSIONAL ELASTIC SCATTERING
AND SHERMAN FUNCTION

Due to the radial symmetry of the potentialsṼc(r) and
W̃(r) in Eq. ~9! the method of partial waves is convenie
for our consideration. One can separate variables in the
pression for the wave function as the following:23–25

cs~r!5 (
l 52`

l 51`

Rl
s~r!eil fxs,

where l is the orbital momentum number andxs is a spin
function upon which the Pauli matrix vector operates,

x115S 1

0D , x215S 0

1D .

The Schro¨dinger equation for the radial wave function b
comes of the following form:

F1

r

d

dr S r
d

dr D2
l 2

r2
2Ṽ~r!2slW̃~r!1k2GRl

s~r!50.

At a large distance from the scattering center the asymt
value of the radial function is given by

Rl
s~r!→Al

s@cosd l
sJl~kr!2sind l

sNl~kr!#; r→`,

where d l
s is the spin-dependent scattering phase shift24–27

andNl is the Neumann function.
In the variable phase approach27,36 the phase function

d l
s(r) at the pointr determines the phase shift produced

the part of the potential contained within the cycle of a rad
r. The scattering phase shift for the total potential is equa
the asymptotic value

d l
s5 lim

r→`

d l
s~r!.

The phase functiond l
s(r) satisfies the following differentia

equation:27,36
7-3
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dd l
s~r!

dr
52

p

2
r@Ṽ~r!1slW̃~r!#@cosd l

s~r!Jl~kr!

2sind l
s~r!Nl~kr!#2 ~10!

with the boundary condition

d l
s~0!50. ~11!

The complex 2-D scattering amplitude can be expres
as20,24,25

Fs~u!5@ f ~u!1szg~u!#xs, ~12!

where f s(u) and g(u) describe scattering without and wit
electron-spin reorientation, and they are determined by
expressions

f ~u!5(
l 50

`

f l cos~ lu!, ~13!

g~u!5(
l>1

`

glsin~ lu!, ~14!

where

f l5A 1

2pk H exp~2id0!21; l 50;

exp~ i2d l
1!1exp~ i2d l

2!22; l>1;

gl5 iA 1

2pk
@exp~ i2d l

1!2exp~ i2d l
2!#,

whereu is the scattering angle between initial (k i) and final
(k f) wave vectors.

The Mott scattering24 cross section for electrons spin p
larized parallel to thez axis can be expressed in terms of t
incident electron-beam spin polarizationPi along thez direc-
tion as the following:

s~u!5I ~u!@11S~u!Pi #, ~15!

where I (u) is the differential cross section for unpolarize
incident electrons,

I ~u!5u f ~u!u21ug~u!u2, ~16!

and

S~u!5
f * ~u!g~u!1 f ~u!g* ~u!

u f ~u!u21ug~u!u2
~17!

is the Sherman function for 2-D electrons. The Sherm
function is an important characteristic of the spin-depend
scattering~see Refs. 37 and 38, and references therein!. It
presents the left-right asymmetry in the scattering cross
tion for initially polarized electron beams and the avera
polarization of unpolarized electrons after the scatteri
This characteristic is important in the evaluations of t
anomalous Hall effect in different materials and structur
19533
d

e

n
nt

c-
e
.

.

For degenerated electronic systems, for instance, the
angle is proportional to the Sherman function at the Fe
energy shell.26,39–41

IV. CALCULATION RESULTS

To present the realistic estimation of the effect of the sp
orbit coupling on the electron elastic cross section we cho
two types of symmetrical quantum well structures: ty
I is Al 0.48In 0.52As/In0.53Ga0.47As/Al 0.48In 0.52As ~where
Eg150.813 eV, Eg251.508 eV, D150.361 eV, D2
50.332 eV, m1(0)50.041m0 , m2(0)50.075m0 , «1514,
«2512.5,V050.504 eV,41 m0is the free-electron mass! and
type II is CdTe/InSb/CdTe@where Eg150.24 eV, Eg2
51.59 eV, D150.81 eV, D250.8 eV, m1(0)50.015m0 ,
m2(0)50.08m0 , «1516.8, «2510.2, V050.55 eV ~Refs.
42 and 43!#. While type I presents quantum well structur
with well-developed growth technology, type II demonstra

FIG. 1. The scattering cross section for the screened impur
in the type-I structure (L520 nm): ~a! repulsive (Z511) impu-
rity; ~b! attractive (Z521) impurity; ~c! the ratio between the
complete numerical result (sexact) and the first Born approximation
(sBorn) for the repulsive impurity whenkaB* 51.8 (Er50.01 eV).
7-4
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the largest spin-coupling effects. In all calculations we ass
the validity of the one-subband scattering model,when
intersubband gap is larger than the energy of ther-direction
motion: Er,E22E1. This allows us to consider scatterin
of electrons with the following wave vectors: for type
structures withL<30 nm, k<kF

I 52.5(aB* )21 ~the electron
concentrationns53.531011 cm22); for type-II structures
with L<30 nm, k<kF

II 56.6(aB* )21 (ns5331011 cm22).
Notice thataB* is taken to be different according to the de
nitions for the different types of the systems.

The phase shifts were obtained by the numerical solu
of Eq. ~10! with the initial condition of Eq.~11! and then
used in Eqs.~12!–~17! to calculate the elastic-scatterin
cross section. From our calculation experience the con
gence criteria on the cross section~the maximum net error is
less than 1024) can be reached by taking the necessary nu
ber u l u<70 of the partial waves included Eqs.~13! and~14!.
Figure 1 shows energy and angle dependencies of the ela
scattering cross section for 2-D electrons scattered from
tractive (Z511) and repulsive (Z521) impurities located
in the center of the type-I structure. The cross sections d
onstrate the well-known logarithmic divergence at zero
ergy (Er→0) for both types of impurities~repulsive and
attractive!.28 In Fig. 1~c! we compare our results with th
cross section obtained within the first Bo
approximation27,28 when

f l'2Ap

2kE0

`

Jl
2~kr!Ṽ~r!rdr3H 1, l 50;

2, l>1;
~18!

FIG. 2. The Sherman function for the type-I structureL
520 nm): ~a! repulsive impurity;~b! attractive impurity.
19533
re
e
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-

gl' i lAp

2kE0

`

Jl
2~kr!W̃~r!rdr3H 1, l 50;

2, l>1.
~19!

It is known1,44 that the first Born approximation is valid fo
2-D elastic scattering when

kaB* @1.

It is worth noting, that the numerically calculated cross s
tion for the 2-D screened Coulomb potential is different fro
that obtained in the first Born approximation near the edge
the approximation validity (kaB* 51.8). In addition, it can be
seen from Eqs.~18! and ~19! that in the first Born approxi-
mation all spin-polarization effects in the elastic cross s
tion vanish:23,24,26

S~u!; f * ~u!g~u!1 f ~u!g* ~u!50.

Thus, the Sherman function should be calculated only
going beyond the first Born approximation and taking in
consideration the higher partial waves (u l u.0). The com-
plete numerical solution allows us to do that.

Figure 2 shows the Sherman functions for the typ
structure, when the repulsive@Fig. 1~a!# and attractive@Fig.
1~b!# impurities are located in the center of the well with th
width L520 nm. We first note that, in the energy range co
sidered, the effect is slightly larger for the repulsive scatt
ing center. SinceS(u) is closely connected to the cross se

FIG. 3. The Sherman function for the type-I structures w
different well widths (Er50.02 eV): ~a! repulsive impurity;~b!
attractive impurity. Insets: the dependencies of the Sherman fu
tion amplitude on the well width.
7-5



cu
n

e-
e

t
o

io
th

y
ia
ll
lu

e
tte
t
th
ha
s
g
is

ar-

by

all
, as
es.
ose
rate
ell.
the
e

de-
le
(

try
lo-

im-
ent
lts
ys-

ial
.

s
ith

nc-
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tion curves, the high values of the Sherman function oc
where the cross-section is small and vice versa. The cha
of the impurity sign leads to inversion in the thre
dimensional plots. This is a direct and clear consequenc
sign altering in the potentialsṼ(r) andW̃(r) @see Eq.~10!#.
It can be seen that with suitable electron energies and
large scattering angles one can reach polarizations of m
than 0.1%.

In our simulation we found a decrease in the polarizat
effect when well width increases. The dependence of
Sherman function on the well widthL for the type-I structure
is presented in Figs. 3~a! and 3~b! ~the impurity is located in
the center of the well:d50). This decrease is obviousl
connected to the form of the averaged effective potent
Ṽ(r) and W̃(r). The various potentials for different we
widths are shown in Fig. 4. The curves represent the abso
value of the potentials@for the repulsive centerṼ(r) is posi-
tive andW̃(r) is negative; for the attractive centerṼ(r) is
negative andW̃(r) is positive# and demonstrate the influenc
of the 2-D confinement and screening on the elastic sca
ing processes in quantum wells.2,3,28 The figure shows tha
the spin-orbit coupling potential becomes stronger near
impurity site when the well width decreases. Electrons t
are scattered at large angles~where the polarization effect
are expected to be higher! pass through the relatively stron
fields at fairly small distances from the impurity site. Th

FIG. 4. The dependencies of the effective averaged potential

the well width for the type-I structures:~a! spinless partṼ(r), ~b!

spin-orbit coupling partW̃(r).
19533
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causes the stronger polarization effects for the relatively n
row wells ~as is shown in the insets of the Fig. 3!. This result
suggests the possibility of controlling Sherman function
means of the well size.

The spin-orbit interaction is known to be larger in sm
gap semiconductors. Based on this fact, we show in Fig. 5
an example, the calculation results for the type-II structur
The asymmetry effect in the scattering cross section for th
structures can reach about 1% for electrons with mode
energy, when the impurity is located in the center of the w
The insets show the dependencies of the amplitude of
Sherman function on the position of the impurity in th
wells. Obviously, the magnitude of the Sherman function
creases whend increases. But the effect remains valuab
even for the impurities located at the edge of the welld
5L/2).

In addition, we notice that the spin-dependent asymme
for the elastic-scattering cross section for the impurities
cated in the wells~2-D systems! is significantly larger than
calculated for 3-D spin-dependent elastic scattering from
purities in the bulk. To demonstrate the difference we pres
in Table I our results for the type-II structure and resu
obtained in Ref. 26 and 39, when all parameters of the s
tems are chosen the same~the systems differ only in the
dimensionality!. In the table,d0 is the phase shift forl 50
and d1

spin is the correction to the phase shift of the part
wave with l 51 when the spin-orbit coupling is included

on
FIG. 5. The Sherman function for the type-II structures w

different well widths (Er50.04 eV): ~a! repulsive impurity;~b!
attractive impurity. Insets: the dependencies of the Sherman fu
tion amplitude on the impurity location in the well.
7-6
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This result suggests that the spin-orbit coupling with
charged impurities in 2-D systems can provide sufficien
larger spin-dependent effects than those in the bulk.

V. CONCLUSIONS

We have presented a theoretical study of the elastic s
dependent scattering of 2-D electrons from the scree
Coulomb centers located in quantum wells. The o
electronic-band effective Hamiltonian and spin-orbit co
pling potential of the impurities allow us to calculate th
left-right asymmetry in the electron elastic-scattering cr
section. We have found a large spin-dependent asymmet
the cross section for electrons scattered from impurities
AlInAs/InGaAsAs/AlInAs and CdTe/InSb/CdTe symmetric
quantum wells.

TABLE I. The ratio n5d1
spin/d0 for InSb structures

(L55 nm).

Impurity type n for 3-D systema n for 2-D system

Z521 3.731025 2.831022

Z511 2.331026 2.731022

aReference 26.
s,

ys

l.

J.

s.

, T

-

19533
e
y

n-
d
-
-

s
in

in

For the CdTe/InSb/CdTe quantum well we found that t
spin-orbit coupling in the two-dimensional systems leads
larger spin-dependent asymmetry in the scattering cross
tion than that in the bulk. The calculated amplitude of t
Sherman function for this structure is more than 0.01. T
could be detected in the measurements of the Hall effec
low temperatures26,39,40,45and this is potentially useful in in-
tegrated electron-spin polarization devices based on se
conductor heterostructures. It also can be used as a to
determine spin-coupling parameters in III-V narrow g
semiconductor heterostructures.

Finally, we would like to point out that the described e
fect is a clear analog of the well-known effect of spi
dependent scattering in magnetic materials~see Ref. 37!, but
it can also be realized in nonmagnetic semiconductor st
tures. Our model can be used as the starting point for m
detailed calculations. Experimental investigations need to
conducted to verify our theory predictions.

ACKNOWLEDGMENTS

This work was supported by the National Science Coun
of the Republic of China under Contract Nos. NSC-90-221
E-009-022 and NSC-91-2119-M-009-003.
d

k,

ate

g

ro-

hys.

nd
1F. Stern and W. E. Howard, Phys. Rev.163, 816 ~1967!.
2T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437

~1982!.
3C. Weisbuch and B. Vinter,Quantum Semiconductor Structure

Fundamental and Applications~Academic, New York, 1991!.
4W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Ph

Rev. B30, 4571~1984!.
5L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, App

Phys. Lett.33, 665 ~1978!.
6M. Kudo, T. Mishima, T. Tanitomo, and M. Washima, Jpn.

Appl. Phys., Part 133, 971 ~1994!.
7M. L. Ke, D. Westwood, R. H. Williams, and M. J. Godfrey, Phy

Rev. B51, 5038~1995!.
8J. Dickman, Appl. Phys. Lett.60, 88 ~1992!.
9G. A. Prinz, Science282, 1660~1998!.

10J. Fabian and S. Das Sarma, J. Vac. Sci. Technol. B17, 1708
~1999!.

11H. Ohno, J. Vac. Sci. Technol. B18, 2039~2000!.
12P. R. Hammar and M. Johnson, Phys. Rev. B61, 7207~2000!.
13C. M. Hu, J. Nitta, A. Jensen, J. B. Hansen, H. Takayanagi

Matsuyama, D. Heitman, and U. Merkt, J. Appl. Phys.97, 7251
~2002!.

14M. I. D’yakonov and V. Yu. Kachorovskii, Fiz. Tekh. Polupro
vodn.20, 178 ~1986! @Sov. Phys. Semicond.20, 100 ~1986!#.

15Y. A. Bychkov and E. I. Rashba, Pis’ma Zh. E´ksp. Teor. Fiz.39,
66 ~1984! @JETP Lett.39, 78 ~1984!#.

16V. M. Edelstein, Physica B284–288, 1217~2000!.
17T. P. Pareek and P. Bruno, Pramana, J. Phys.57, 1 ~2002!.
18J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett.80, 4313

~1998!.
.

.

19I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, an
N. Samarth, Phys. Rev. Lett.84, 1015~2000!.

20O. Voskoboynikov, H. C. Huang, C. P. Lee, and O. Tretya
Physica E~Amsterdam! 12, 252 ~2002!.

21Edward Chen, O. Voskoboynikov, and C. P. Lee, Solid St
Commun.125, 381 ~2003!.

22W. T. Masselink, Phys. Rev. Lett.66, 1513~1991!.
23A. S. Davydov,Quantum Mechanics~Pergamon, London, 1965!.
24N. F. Mott and H. S. Massey,The Theory of Atomic Collisions,

3rd ed.~Oxford University, London, 1987!.
25C. J. Joachain,Quantum Collision Theory~North-Holland, Am-

sterdam, 1979!.
26V. N. Abakumov and I. N. Yassievich, Zh. E´ksp. Teor. Fiz.61,

2571 ~1972! @Sov. Phys. JETP34, 1375~1972!#.
27F. Cologero,Variable Phase Approach to Potential Scatterin

~Academic, New York, 1967!.
28P. G. Averbuch, J. Phys. A19, 2325~1986!.
29I. A. Larkin, Fiz. Tekh. Poluprovodn.22, 2008~1988! @Sov. Phys.

Semicond.22, 1271~1988!.
30M. E. Portnoi and I. Galbreith, Solid State Commun.103, 325

~1997!.
31G. Bastard,Wave Mechanics Applied to Semiconductor Hete

structures~Les Editions de Physique, Les Ulis, 1990!.
32E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, P

Rev. B55, 16 293~1997!.
33Yu. A. Bychkov and E. I. Rashba, J. Phys. C17, 6039~1984!.
34Th. Scha¨pers, G. Engels, J. Lange, Th. Klocke, M. Hollfelder, a
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