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Integer quantum Hall effect in isotropic three-dimensional crystals

M. Koshino and H. Aoki
Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan

~Received 23 October 2002; revised manuscript received 14 January 2003; published 30 May 2003!

We show that a series of energy gaps as in Hofstadter’s butterfly, which have been shown to exist by
Koshinoet al. @Phys. Rev. Lett.86, 1062~2001!# for anisotropicthree-dimensional periodic systems in mag-
netic fieldsB, also arise in theisotropic case unlessB points in high-symmetry crystallographic directions.
Accompanying integer quantum Hall conductivities (sxy ,syz ,szx) can, surprisingly, take values
}(1,0,0),(0,1,0),(0,0,1) even for a fixed direction ofB unlike in the anisotropic case. We also propose here
to intuitively explain the spectra and the quantization of the Hall conductivity in terms of the quantum-
mechanicalhoppingbetween semiclassical orbits in the momentum space, which is usually ignored for weak
magnetic fields.

DOI: 10.1103/PhysRevB.67.195336 PACS number~s!: 73.43.2f, 72.20.My
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I. INTRODUCTION

Appearance of energy gaps in three-dimensional~3D! sys-
tems is a hallmark of quantum mechanics in crystals. Th
a periodicity, be it atomic or density-wave formation fro
some mechanism, gives rise to a Bragg’s reflection acc
panied by energy gaps as Bloch’s theorem dictates. A
from this, there are few occurrences of energy gaps in
~unless, of course, nonperturbative, many-body states suc
the BCS state are involved!.

In 2D systems, by contrast, we do have a remarkable
alization of gaps when a magnetic field is applied. For a f
2D electron gas the spectrum even coalesces into a seri
sharp Landau levels. When the 2D system has some pe
icity ~thought of as arising from a periodic potential or tigh
binding array of atoms!, application of a magnetic field give
rise to a fractal energy gap, which is called ‘‘Hofstadte
butterfly.’’1 One way to understand why the butterfly appe
is that the two quantizations, one being Bloch’s band str
ture and the other the Landau quantization, interfere w
each other. The interference should occur when the band
\2/(ma2) (m is electron mass,a is lattice constant!, and the
cyclotron energy\vc are similar, which indeed amounts t
the condition for the appearance of the butterfly,f;f0 ,
wheref is the magnetic flux penetrating a unit cell andf0
5h/e is the flux quantum.

Once we have an energy gap in a 2D system it is kno
that the integer quantum Hall effect~IQHE! should occur.
Thoulesset al.2 in fact have derived a general formula fo
the quantized Hall conductance in 2D periodic systems w
out any assumption on the detail of the periodic potent
and have shown that the Hall conductance can be writte
terms of some topological invariants.

A natural question is whether we can extend such ar
ments to 3D systems. Avronet al.3 showed that the topologi
cal invariants found by Thoulesset al. apply not only to the
two-dimensional case, but also to any dimensions includ
3D. Several authors4–7 have specifically shown that,if an
energy gap exists in a 3D Bloch system, it should accomp
an IQHE where each component of the Hall tensors i j is
quantized as a topological invariant. A big question, then
whether and how gaps can appear in 3D. We have previo
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shown that the butterflylike spectrum indeed appears inan-
isotropic 3D ~quasi-1D! lattices and have derived the qua
tized Hall tensor for each gap.8 For the anisotropic case w
can intuitively understand this in terms of a mapping b
tween the 3D case and a 2D case. For theisotropic case,
however, it should seem difficult to have the energy ga
since the magnetic subbands are likely to be overlapped
the dispersion due to the motion along the magnetic fie
Several authors9,10 have computed the energy spectra of t
isotropic 3D tight-binding system in magnetic fields~point-
ing to high-symmetry crystallographic directions!, and
Kunszt10 concluded that there are in general no energy g
although the possibility of gaps cannot be excluded. So
existence of gaps and IQHE has remained an open ques

In this paper, we show that we do have energy gaps
isotropic 3D lattices rather universally, in that all we have
have is a sufficiently large magnetic fieldB pointing togen-
eral directions ~i.e., off the high-symmetry axes!. We first
show this by calculating energy spectra for various directio
of B. We have also calculated the Hall tenso
(sxy ,syz ,szx), when the Fermi energy is in each ener
gap. They turn out to have values, e.g
(1,0,0),(0,1,0),(0,0,1) in an appropriate unit, even for
fixed direction ofB, which is surprising and unlike in the
anisotropic case. We intuitively explain the energy spec
and the quantization of the Hall conductivity in terms of t
quantum-mechanical hopping between semiclassical orbi
the 3D momentum space.

II. FORMULATION OF 3D BLOCH ELECTRONS
IN MAGNETIC FIELDS

We take a noninteracting tight-binding model in a unifor
magnetic fieldB5(Bx ,By ,Bz) pointing to an arbitrary direc-
tion. Schrödinger’s equation is2( j t i j e

iu i j c j5Ec i , where
c i is the wave function at sitei, the summation is over
nearest-neighbor sites, andu i j 52e/\* j

i A•dl is the Peierls
phase withA being the vector potential,“3A5B. We con-
sider a simple-cubic lattice with a lattice constanta. Follow-
ing Kunszt and Zee,10 we take a gaugeA5(Bxy2Byx)(0,
2Bz /By ,1), wherez is cyclic. Schro¨dinger’s equation then
becomes
©2003 The American Physical Society36-1
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2tx~c l 21,m,n1c l 11,m,n!2ty$e
22p ifz[ l 2(fx /fy)(m21/2)]

3c l ,m21,n1e2p ifz[ l 2(fx /fy)(m11/2)]c l ,m11,n%

2tz$e
22p i (fxm2fyl )c l ,m,n211e2p i (fxm2fyl )c l ,m,n11%

5Ec l ,m,n , ~1!

where (l ,m,n) and (tx ,ty ,tz) are the site indices and th
hopping parameters alongx,y,z, respectively, andf i
5Bia

2/f0 with f0[h/e is respective number of flux quant
penetrating the facet of the unit cell normal toêi . Here we
consider rational fluxes,

~fx ,fy ,fz!5F3~nx ,ny ,nz!, F5P/Q ~2!

with P,Q being integers andni ’s are mutually prime inte-
gers. If we introduce new lattice indicesj 5nxl 2nym, the
phase factors@exponents in Eq.~1!# become dependent onj
alone, so we can writec jmn5eil2m1 il3nGj , whereGj ’s are
determined by a one-dimensional equation,

2tx~Gj 1ny
1Gj 2ny

!2tyH expS 2 i F2p
P

Q

nz

ny
S j 1

nx

2 D1l2G D
3Gj 1nx

1expS i F2p
P

Q

nz

ny
S j 2

nx

2 D1l2G DGj 2nxJ
22tzcosS 2p

P

Q
j 2l3DGj5EGj . ~3!

While we have a doubly periodic equation in 2D, the reduc
equation for 3D is triply periodic inj, where three periodici-
ties come from

expH 2 i F2p
P

Q

nz

ny
S j 1

nx

2 D1l2G J , cosS 2p
P

Q
j 2l3D ,

and the discreteness ofj. Since the equation has a commo
periodicitynyQ, we can apply the Bloch-Floquet theorem
haveGj 1nyQ5eil1nyQGj , and the Hamiltonian is reduced t

an nyQ3nyQ matrix.

III. ENERGY SPECTRA AND HALL CONDUCTIVITIES

Our aim is to search systematically for gapful spectra
the isotropic case and to determine the Hall conductivi
for each energy gap. We take a simple-cubic tight-bind
lattice with isotropic hopping parameterstx5ty5tz[t and a
lattice constanta. We have numerically solved Eq.~3! and
obtained the energy spectra versusF. Figure 1 shows the
result for several field directions: (nx ,ny ,nz)
5(1,2,3),(1,1,2),(1,1,1), and (0,1,2), to represent typic
crystallographic directions ofB.

We can immediately see that a series of gaps appea
(nx ,ny ,nz)5(1,2,3), while otherwise we have at most so
tary gaps. From such results we have found that the spec
has a series of gaps when no twoni ’s coincide and every
niÞ0; namely, the gapful spectrum arises whenB points to
general directions~i.e., off high-symmetry crystallographi
axes!, although the gaps obviously shrink whenuBu is too
small (Ba2/f0!1). Unlike anisotropic cases, even in th
19533
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gapful case as for (nx ,ny ,nz)5(1,2,3), the subbands tend t
overlap with each other so that only the main gaps rema

While we shall discuss the physical origin of the ga
later, let us first look at the quantum Hall effect. As me
tioned,EF in an energy gap dictates4–6 quantized Hall con-
ductivities,

~syz ,szx ,sxy!52
e2

ha
~mx ,my ,mz!, ~4!

where the integermi ’s satisfy a Diophantine equation,

n5mxfx1myfy1mzfz1s. ~5!

Heres is another integer, whilen is the filling factor for the
tight-binding band, i.e., the ratio of the number of sta
below the gap to the total number of states in the wh
band.mi ’s assigned to each gap are topological invarian
i.e., they never change when external parameters~magnetic
field, transfer energies, etc.! are changed continuously a
long as the gap remains.

We determine the Hall integersm[(mx ,my ,mz) by trac-
ing n as a linear function ofF[(fx ,fy ,fz). In Fig. 1, we
can readily estimaten (0<n<1) for each of gaps by count
ing the number of subbands below the gap,~e.g., if there are
two subbands belowEF out of five in total,n52/5) and the
gradientdn/dF for each gap givesm. We can determine
mx ,my ,mz by scanning the direction ofB ~keeping track of
the gap in question!, which is exactly how we have obtaine
the Hall integers here.

The result for (mx ,my ,mz) is shown as triple integers in
Fig. 1. We can see that the largest series of gaps
(mx ,my ,mz)5(61,0,0),(0,61,0), or (0,0,61), which may
look indicative of the 2D IQHE since only one of the Ha
components is nonzero. However, the direction of the H
current j}m3E changes even for a fixedB as we increase
the number of occupied states. This means that the Hall
rent contributed byeach subbandcan have various direction
in the 3D space@for instance, the contribution from the ban
between the gap havingm5(1,0,0) and another having
(0,1,0) is j}(21,1,0)3E]. Hence we conclude that this i
indeed a3D-specific quantum Hall effect.

When at least twoni ’s coincide as in (nx ,ny ,nz)
5(1,1,2) @Fig. 1~b!# and (1,1,1)@Fig. 1~c!# or oneni50 as
in (0,1,2) @Fig. 1~d!#, only solitary gaps or zero gap
~marked with dashed lines! appear. The zero gaps for (1,1,2
and (1,1,1) are associated with the band touching at a B
number (l1 ,l2 ,l3) in Eq. ~3!, as first suggested by
Hasegawa9 for the case of (1,1,1). A detailed calculatio
shows that the dispersion around the band touching is ind
linear in l ’s, which is analogous to a zero-mass Dirac p
ticle. The reason for the band touching in 3D can be
counted for as follows. For (nx ,ny ,nz)5(1,1,2), the gap for
(mx ,my ,mz)5(m,0,0) and that for (0,m,0) appear along the
same line in theE-F diagram~Fig. 1!, since the problem is
6-2
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FIG. 1. Energy spectra for the isotropic simple-cubic lattice in the magnetic flux (fx ,fy ,fz)5F3(nx ,ny ,nz). Each spectrum is plotted
againstF with the direction ofB fixed at ~a! (nx ,ny ,nz)5(1,2,3), ~b! ~1,1,2!, ~c! ~1,1,1!, ~d! ~0,1,2!. Triple integers represent the Ha
integers (sxy ,syz ,szx) in units of (2e2/ha). Dashed lines in~b!,~c! delineate the zero gap.
195336-3
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M. KOSHINO AND H. AOKI PHYSICAL REVIEW B 67, 195336 ~2003!
symmetric againstx↔y. If there were no band touching, th
Hall integers would become indefinite, which contradic
with the topological argument that we can always uniqu
determinemi ’s when the gap is finite. So we can conclu
that the band touching always occurs when twoni ’s coincide,
which explains why the series of gaps in case~a! disappears
as we makenx5ny ~b! and furthernx5ny5nz in ~c!. The
band touching also occurs in 2D whenq in the flux f
5p/q penetrating the 2D unit cell is even,11,12 but this is
distinct from the present case, since what matters here is
direction of the magnetic field. In addition to the band touc
ing, the energy gaps disappear simply due to the overlap
between subbands as in the case~d! with one of ni ’s being
zero. The problem of why the band overlapping occurs
tensively in ~d!, but not in ~a!, will be addressed from a
different viewpoint in the following section.

IV. THE MOMENTUM SPACE PICTURE

Electrons in weak magnetic fields are usually describe
the momentum space. A textbook example is the semicla
cal picture, where an electron is treated as a classical par
driven in the momentum space by a weak magnetic field.
B becomes stronger, the semiclassical orbits begin to
mixed and the picture breaks down. Actually this quant
mixing plays a critical role in opening the gaps and in t
quantization of the Hall conductivity in 3D, as we show he

A. 2D momentum space picture

We start with the momentum space picture for 2D
heuristic purposes. Consider the quantum mechanics f
2D Bloch electron with the dispersion«(px ,py) in a mag-
netic field B. If we define the dynamical wavevectorP[p
1eA, the Hamiltonian is written as

H5«~Px ,Py!,

@Px ,Py#52 i\eB. ~6!

This is an exact quantum equation except that we take
one-band tight-binding approximation~i.e., we have ne-
glected the inter-Bloch-band mixing due to the magne
field!, which is allowed when the periodic potential is stro
enough~or the magnetic field is weak enough!. The equation
in the limit \eB→0 reduces to the classical Hamilton equ
tion,

Ṗ52e
]«

]P
3B. ~7!

This means that an electron in (Px ,Py) space moves along
contour of«. By imposing Bohr-Sommerfeld’s quantizatio
condition for a closed orbit, we have

R P3dP5nheB, ~8!

with an integern. The set of Eqs.~7! and~8! is thesemiclas-
sical approximation, where a closed orbit is identified as o
quantum state. This should be distinguished from the
19533
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quantum equation~6!, in that the quantum fluctuation, whic
causes the quantum mixing of different semiclassical orb
is not taken into account.

Here we instead propose a fully quantum-mechan
treatment for Eq.~6!, which directly gives, for the first time
to the best of our knowledge, Harper’s equation.13 From the
commutation relation betweenPx and Py , we can express
Px as a derivative inPy , namely, Px52 i\eB(]/]Py),
just asp52 i\]/]x with @x,p#5 i\ for the canonically con-
jugate (x,p). Schrödinger’s equation in the ‘‘Py representa-
tion’’ becomes

«S 2 i\eB
]

]Py
,PyDC~Py!5EC~Py!, ~9!

which is the equation to be solved. If we take the dispers
for the 2D tight-binding model with nearest-neighbor ho
ping,

«~px ,py!522txcos~apx /\!22tycos~apy /\!, ~10!

Eq. ~9! becomes

2tx@C~Py2eBa!1C~Py1eBa!#

22tycos~aPy /\!C~Py!5EC~Py!, ~11!

since cosA51
2(e

iA1e2iA) acts as a shift operator whenA
}]/]P. This equation is indeed equivalent to Harpe
equation.13

B. 3D momentum space picture

Now let us apply the above formulation to 3D system
We take a Bloch electron with the dispersion«(px ,py ,pz) in
a magnetic fieldB5(Bx ,By ,Bz). Let us again denote the
direction ofB asn[(nx ,ny ,nz) whose components will be
assigned a set of integers. We set a new frame (x8,y8,z8) in
which the magnetic field point to (0,0,1). If we take th
vector potentialA with Az850, we have

H5«~Px8 ,Py8 ,pz8!, ~12!

where P i5pi1eAi ( i 5x8,y8) with @Px8 ,Py8#52 i\eB
while pz8 remains a quantum number. Here we take a cu
dispersion,

«~px ,py ,pz!522txcos~apx /\!22tycos~apy /\!

22tzcos~apz /\!. ~13!

Equation~12! is then written in the new frame as

«~Px8 ,Py8 ,pz8!522txcos@cx•P' /\1~nx /unu!apz8 /\#

22tycos@cy•P' /\1~ny /unu!apz8 /\#

22tzcos@cz•P' /\1~nz /unu!apz8 /\#,

~14!

whereP'[(Px8 ,Py8) and
6-4
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INTEGER QUANTUM HALL EFFECT IN ISOTROPIC . . . PHYSICAL REVIEW B 67, 195336 ~2003!
cx5ã~nznx /unu,2ny!,

cy5ã~nynz /unu,nx!,

cz5ã~2~nx
21ny

2!/unu,0!, ~15!

with ã[a/(nx
21ny

2)1/2. Now we can see that our 3D proble
is reduced to a 2D problem having three periods@while the
Hofstadter problem~2D Bloch system inB) is reduced to a
1D system having two periods#.

If, following the above formulation, we now putPy8
5 i\eB]/]Px8 , Schrödinger’s equation in thePx8 represen-
tation becomes, after some algebra,

2txFexpH 2p iFñzñxS j 1
ny

2 D1 i
nx

unu
apz8

\ J C j 1ny

1expH 22p iFñzñxS j 2
ny

2 D2 i
nx

unu
apz8

\ J C j 2nyG
2tyFexpH 2p iFñyñzS j 2

nx

2 D1 i
ny

unu
apz8

\ J C j 2nx

1expH 22p iFñyñzS j 1
nx

2 D2 i
ny

unu
apz8

\ J C j 1nxG
22tzcosS 2pF j 1

nz

unu
apz8

\ DC j5EC j , ~16!

where j [(1/eBã)Px8 , ñi[ni /(nx
21ny

2)1/2, and F is de-
fined as before as (fx ,fy ,fz)5Fn. We can show that this
equation is equivalent to Eq.~3! through a certain phas
transformation, as it should.

This momentum picture enables us to see how the t
spectrum comes from dispersion relations versuspz8 , which
eventually helps in intuitively understanding how the ene
gaps open and how the Hall conductivities are quantized.
examine the situation where the gaps begin to open in
quantum regime as approached from the semiclassical s

Let us first look at how the energy spectra can have g
for general directions ofn @}(1,2,3) in Fig. 2#. We show in
Fig. 2 the band structure versuspz8 in Eq. ~16!, along with
contour plots of the dispersion«(Px8 ,Py8 ,pz8) @Eq. ~14!#,
for various values ofpz8 . « accommodates closed orbi
around its peaks and dips in the semiclassical picture, wh
the area enclosed by each orbit must be a multiple ofheB.
So the different wells have different sets of discrete leve
and each level moves on the energy axis aspz8 is changed
since« changes its form withpz8 . When the levels belong
ing to different wells in (Px8 ,Py8) space coincide, the state
will strongly resonate quantum mechanically and an ene
gap will arise. In Fig. 2 we show the case where the g
begin to open with (fx ,fy ,fz)5(1/8)(1,2,3), for which
the strong mixing of orbits is seen to result in significa
level repulsions. We attach for comparison the result for
almost semiclassical case when the magnetic fi
(fx ,fy ,fz)5(1/45)(1,2,3), is so small that the mixing
weak and the level repulsion is almost negligible.
19533
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In terms of the semiclassical orbits, the change inpz8
causes the orbits to hop to adjacent positions at every r
nance. A virtue of this picture is thatthe distance and the
direction of the hopping exactly indicates the Hall intege,
as shown in the following. If we apply an infinitesimal ele

FIG. 2. Left: Energy spectra versuspz8 for Eq. ~16!
(fx ,fy ,fz)5(1/8)(1,2,3) @along with a weak field case o
(1/45)(1,2,3) for comparison#. The final band structure is indicate
as bars at the right-hand edge of each spectrum. The energy sp
are periodic inpz8 with period 2p\/(aunu) with n5(1,2,3) here.
The values ofpz labeled asA,B,C correspond to the plots on th
right panel. Right: Gray scale plot~with lighter areas correspondin
to dips! of the dispersion«(Px8 ,Py8 ,pz8) @Eq. ~14!# versus
(Px8 ,Py8) for n5(1,2,3), for various values ofpz8 ~labeled
A,B,C on the left panel!. Three sets of white lines represent th
intersections of the boundaries of the reciprocal unit cells norma
px ,py ,pz , respectively. These lines also move aspz8 is changed,
since the zone faces are oblique withz8iB. Motion of the orbits
with pz8 for the lowest and the second subbands are indicated
and 2, respectively, where the jumps to adjacent orbits are re
sented as arrows and the resulting energy gaps encircled on th
panel.
6-5
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M. KOSHINO AND H. AOKI PHYSICAL REVIEW B 67, 195336 ~2003!
tric field E to the system,pz8 is dragged adiabatically accord
ing to an equation,dpz8 /dt52eEz8 , whereEz8 is the com-
ponent along z8. After pz8 is changed by dpz8 /\
[2p/(aunu) ~the period with which the spectrum repea
itself!, every state must come back to an equivalent posi
in the reciprocal unit cell. The increment in the momentu
space,dP5(dPx8 ,dPy8 ,dpz8), with which the orbit is
shifted over the one period satisfies

dP

\
57

2p

a
dm,

dm5dmxêx1dmyêy1dmzêz , ~17!

where7 corresponds to positive and negativeEz8 , respec-
tively, anddmi ’s are integers assigned to each subband.
integers satisfy a relationdm•n51, since dpz8 /\
52p/(aunu).

We can immediately translatedP into the motion in the
real space normal toz8 using the relationship between th
relative coordinatej of the cyclotron motion and the dy
namical wave vectorP,

dj52
1

eB
êz83dP. ~18!

Since the system has no dissipation as long asEF is in a gap,
Ez8 should cause no net current alongz8. Therefore the ve-
locity averaged over one period in time,T5dpz8 /(euEz8u),
is v5dj/T5(unu/B)Ez83dm. The Hall current due toEz8 is
then calculated as

j52rev5
e2

ha
dm3Ez8 , ~19!

where r5eB/(haunu) is the density of states per subba
and per unit volume. From this expression we can write
Hall tensor asŝ'52(e2/ha)dm' , where we have ex-
pressed the Hall conductivities as

s i j [« i jk ŝk

with the unit antisymmetric tensor« i jk and' represents the
component normal toz8. The normal component of the elec
tric field E' , on the other hand, causes a classical drift w
the velocity v5(E'3B)/B25(unu/B)E'3dm, which im-
mediately leads toŝz852(e2/ha)dmz8 . Combining these,
we end up with a simple formula for the quantized H
conductivity carried by the corresponding subband,

ŝ52
e2

ha
dm. ~20!

We have thus derived the quantization of the 3D Hall co
ductivity from the momentum space hopping, as an appro
alternative to the usual Kubo formula.

The problem of the transport in adiabatically varying p
tentials~so-calledThouless pumping! was first considered by
Thouless14 for the one-dimensional case. He showed that
2D QHE in periodic potentials may be understood in ter
19533
n

e

e

l

-
ch

-

e
s

of a fictitious 1D system having two periodic potentials th
slide adiabatically with each other. The discussion we h
given here to describe the 3D QHE may be regarded a
two-dimensional version of the Thouless pumping.

We can actually identify the Hall integersdmi for each
subband by keeping track of the motion of the orbits w
pz8 . Figure 2 typically depicts how a state in the first ba
moves by~1,0,0!, by which we mean the state jumps on
across a reciprocal cell boundary normal topx ~whose inter-
section is shown as one of the white lines! but not acrosspy
or pz . The state in the second band moves by (21,1,0).
These triple numbers are the very Hall intege
(dmx ,dmy ,dmz), carried by each subband@not to be con-
fused with the total Hall integer, (mx ,my ,mz) as we re-
marked above#, and are in accordance with the result in F
1~a!.

We can now comment on the relation with the usual tre
ment of 3D QHE.4–6 By summing updm•n51 over the
occupied subbands, we havem•n5r , wherer is the number
of occupied subbands andm is the summation ofdm over
them. Sincer is related to the filling of the tight-binding
band asn5r 3r/(1/a3), we obtain

n5mxfx1myfy1mzfz , ~21!

which coincides with the Diophantine equation~5! with s
50. While the discussion here is for the lower half of th
tight-binding band, we can make a similar argument for
upper half in terms of hole orbits, which in turn correspon
to s51. So in our picture above, only the gaps withs
50(1) are taken into account for the lower~upper! half
band, and the rest are neglected. We can actually show
the widths of the neglected gaps are much smaller than th
of the main gaps when the magnetic field is weak (F!1),
which is exactly the situation considered here, since we
proached the quantum regime from the semiclassical sid

The mapped picture also gives an intuitive explanat
why we have so few gaps for the symmetric casen
}(1,1,2), (1,1,1) and zero-component casen}(0,1,2) as
seen in Fig. 3. When two components inn coincide as in
(1,1,2), two levels can cross~for the value ofpz8 labeled as
B!, but a gap does not open because the couplings betw
semiclassical orbits alongpx andpy occur symmetrically~in
a zigzag fashion!, so that the bands do not split. This
exactly the band touching discussed in Sec III. When
symmetry is even higher as inn}(1,1,1), couplings along
px , py , andpz all become symmetric and the band touchi
occurs at every crossing. Ifn contains a zero component a
in (0,1,2), two of the plane waves for« become parallel and
the wells having the same depth become connected along
perpendicular direction. This results in a strong mixing b
tween the states along that trough, so that the minibands
each value ofpz8 become wider. So, while the energy ga
do arise when the energies of the adjacent troughs coinc
these gaps tend to be overlapped in energy by other w
bands.

The momentum space picture introduced here can be
terpreted from another description. In the Appendix, we p
pose a ‘‘duality,’’ a quantum mapping between the mome
6-6
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FIG. 3. The plots similar to Fig. 2 for the case of (fx ,fy ,fz)
5(1/8)(nx ,ny ,nz): (nx ,ny ,nz)5(1,1,2), (1,1,1), and (0,1,2).
19533
tum space description for the weakB problem and the real-
space picture for the strongB case.

In our previous paper8 we have shown that an analog o
Hofstadter’s butterfly arises~i! as a function of thetilting
angleu in magnetic field tilted in theyz plane~ii ! in aniso-
tropic (tx@ty ,tz) 3D lattices. We can reinterpret the physi
of the 3D butterfly in terms of the momentum space pictu
introduced above. In Fig. 4, we show a contour plot of«(p)
on a cross section along with the energy spectra plo
againstpz8 . We can see that the dominant term associa
with tx gives troughs and ridges, and a small perturbat
due toty andtz gives small corrugations to each of them. T
semiclassical orbits in the pockets in the corrugation h
onto each other and form a one-dimensional chain. So
system can be regarded as an array of independent ch
with two periods (}1/fy ,}1/fz), which is just equivalent
to a Harper’s equation for the 2D Hofstadter’s problem8

Thus we can understand why the butterfly appears around
top and the bottom of the band.

V. EXPERIMENTAL FEASIBILITY

Let us comment on the magnitude of the magnetic fi
required to observe the energy gaps in isotropic 3D syste
As mentioned, it is essential for the existence of the ene
gaps that the quantum coupling exists between the semic
sical orbits in the different wells. For that, zero-point ener
of the bound states in wells should be of the order of
typical depth of the wells. In other words, the typical ‘‘well
area in the momentum space should be of the order o
quantized areaheB. For the isotropic crystals considere

FIG. 4. A plot similar to Fig. 2 for an anisotropic 3D syste
with (tx ,ty ,tz)5(1.0,0.1,0.1) for (fx ,fy ,fz)5(1/15)(0,1,4). The
contours highlight the troughs.
6-7
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here, this condition leads to (h/a)2;heB @h/a is the period
in «(p)], which is simply Ba2/f0;1. The situation is the
same as in the 2D Hofstadter problem, so the required fi
for atomic lattice constants is huge (B;105 T for a52 Å).
If we consider systems with larger unit cells, as in so
fullerene or zeolites witha510 Å, the requiredB is reduced
to 103 T but is still large. In the anisotropic case discussed
Ref. 8, by contrast, the condition is much less stringent. T
is because the typical well area is (h/a)d with d being the
typical valley width, so the condition relaxes to (h/a)d
;heB, where B can be made as small as one wishes
increasing the anisotropy~since ty ,tz→0 leads tod→0),
although the scale of the energy gap shrinks. So what
have here is a trade-off between largeB required with large-
energy gaps~isotropic case! and smallerB suffices with
small gaps~anisotropic!.

Another point is that a real 3D sample has always s
faces. Halperin and the present authors have shown, in
eral, that the 3D integer QHE should accompany quanti
wrappingcurrent, whose intensity and direction are dictat
by the quantum Hall integersŝ.19 This should apply to the
present case of isotropic QHE as well.

VI. CONCLUSION

We have investigated the energy spectra in the isotro
3D lattice in magnetic fields applied in arbitrary direction
for which we have shown that the energy gaps arise un
the magnetic field points to high-symmetry crystallograp
directions. We have also identified the quantum Hall integ
for each of gaps. In the latter part of the paper we ha
examined a momentum space picture and found that the
ing of the different momentum space orbits beyond the se
classical approximation is essential for the gap formati
This picture further provides a perspective for the quant
Hall effect in 3D, where the Hall current is estimated fro
the geometry of adiabatic jumps of the orbit.
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APPENDIX: DUALITY BETWEEN THE MOMENTUM
SPACE AND REAL SPACE

We propose here that there exists a duality that relates
momentum space picture~Sec. IV! in a weak magnetic field
to the real-space picture in a strong magnetic field, wherB
translates into 1/B. Using a quantum-mechanical mappin
between the two cases, we are able to discuss the relation
between the energy spectra and the Hall conductivities
the both systems.

We first discuss the duality in 2D and then extend it to 3
As a counterpart to the momentum space picture~6!, we
consider another 2D Bloch system in a magnetic fieldB. The
Hamiltonian is written in real space as
19533
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H5
1

2m
~p1eA!21V~r !5

1

2m
P21VS R2

1

eB
êz3PD ,

~A1!

where V(r ), with r[(x,y), is a periodic potential,P[p
1eA, and R5r2j the cyclotron-motion guiding cente
with the relative coordinate given asj52(1/eB)êz3P.
When the magnetic field is strong enough~or the potentialV
is weak enough! so that ~i! the magnetic lengthl
5A\/(eB) is much shorter than the length scale over wh
V varies, and that~ii ! the different Landau levels are no
mixed, we can considerP to be frozen. More precisely, th
kinetic energy@the first term in Eq.~A1!# reduces to a con-
stant from~ii !, while the second term can be approximated
V(R) from ~i!. The Hamiltonian then becomes, up to a co
stant,

H'V~X,Y!,

@X,Y#5 i\/~eB!. ~A2!

We can see that Eqs.~6! and~A2! are identical if we translate
as

P↔X, «↔V, \eB↔ \

eB
. ~A3!

So we recognize that there exists a duality between the
system with a strong periodic potential in a weakB ~one
band tight-binding model! and the 2D system with a wea
periodic potential in a strong field~one Landau level ap-
proximation!. For the Landau level in the latter case, w
expect that the duality holds best in the lowest Landau le
since the wave function is most localized in that level
make Eq.~A2! valid. In the semiclassical sense, the lat
picture describes the drifts, the guiding center of the cyc
tron motion along equipotential contours in the real spa
while the former represents the motion along contours
«(p) in the momentum space.

The duality introduced here provides a physical basis
Hofstadter’s observation1 on the mapping between the tigh
binding and weak-potential systems15 for the square lattice,
and also generally applicable to any 2D lattices, or, rema
ably, 3D cases as well, as we shall see below. Another dua
is found by Ishikawaet al.,18 which is distinct from ours, in
that one Landau level is mapped to one Landau level in
latter while one Landau level is mapped to one Bloch band
the present case.

Specifically, it is interesting to see how the Hall condu
tivities are related between them for the corresponding
ergy gaps. For the 2D case, Thoulesset al.2 have shown the
relationship between the Hall integers in the tight-bindi
and in the strong-field limits. Here we first review this in th
context of our duality. Diophantine’s equation for an ener
gap in the 2D tight-binding case@a 2D version of Eq.~5!# is

nB5tf1s, ~A4!

wheres,t are integers,nB is the tight-binding band filling,
and f is the number of fluxes penetrating the 2D unit ce
The equation for the corresponding gap in the 2D stro
field case is written with the sames,t as

nL5t~1/f!1s, ~A5!
6-8
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wherenL is the Landau-level filling factor, i.e., the fractio
of the filled states in the lowest Landau level, andf is re-
placed with 1/f according to the duality@Eq. ~A3!#. From
the relationnL5nB /f, we can translate Eq.~A5! into

nB5sf1t. ~A6!

Now we can see that the two topological integerss andt are
interchanged between the dual@~tight-binding ~A4! ↔
strong-field~A6!# cases. The Widom-Streˇda formula16,17

sxy52
e2

h

]nB

]f
~A7!

then gives2(e2/h)t in the former case,2(e2/h)s in the
latter.

The duality applies also to the 3D system. If we plug t
above discussion to the Hamiltonian~12!, we immediately
see that the 3D system is mapped to a system in afictitious
2D space (Px8 ,Py8) with a potential«(Px8 ,Py8 ,pz8) in a
fictitious magnetic fieldB* with \eB5\/(eB* ). The map-
ping is valid for largeB* , i.e., smallB. The fictitious poten-
tial is a cross section of the 3D dispersion incised atpz8 by a
plane perpendicular toB. The Hamiltonian for the fictitious
2D system is

H5
1

2m
~p* 1eA* !21«~x* ,y* ,pz8!, ~A8!
js

y’

a,

19533
where (x* ,y* )[(Px8 ,Py8), p* [2 i\(]/]Px8 ,]/]Py8),
andA* is a vector potential for the fictitious magnetic fie
(0,0,B* ). Since we assume a largeB* , the wave function
can be expanded within the basis for the lowest Land
level,

uky* &5exp~ iky* x* !expF2
~x* 1ky* l * 2!2

2l * 2 G , ~A9!

with the fictitious magnetic lengthl * [A\/(eB* ). If we
take dispersion~14!, Schrödinger’s equation becomes th
same as Eq. ~16!, except that we have nowj
5(Anx

21ny
2/a)ky* and the hopping parameters

t̃ i5t ie
2ci

2/(4\eB* ) ~ i 5x,y,z!, ~A10!

with ci[uci u defined in Eq.~15!. We can see that the equa
tion reduces to Eq.~16! in the strongB* limit ~i.e., weakB
limit ! as expected.

The relationship in the Hall conductivities with respect
the duality can be readily extended to the 3D case. If we t
an energy gap in the 3D system with (syz ,szx ,sxy)
52e2/ha(mx ,my ,mz), the Hall conductivity in the corre-
sponding 2D system becomes2(e2/h)s, wheremi ands are
related via Diophantine equation~5!.
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