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Integer quantum Hall effect in isotropic three-dimensional crystals
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We show that a series of energy gaps as in Hofstadter’s butterfly, which have been shown to exist by
Koshinoet al. [Phys. Rev. Lett86, 1062(2001)] for anisotropicthree-dimensional periodic systems in mag-
netic fieldsB, also arise in thesotropic case unles® points in high-symmetry crystallographic directions.
Accompanying integer quantum Hall conductivitieso,(,oy,,0,) can, surprisingly, take values
«(1,00),(0,10),(0,0,1) even for a fixed direction d& unlike in the anisotropic case. We also propose here
to intuitively explain the spectra and the quantization of the Hall conductivity in terms of the quantum-
mechanicahoppingbetween semiclassical orbits in the momentum space, which is usually ignored for weak
magnetic fields.

DOI: 10.1103/PhysRevB.67.195336 PACS nuntder73.43—f, 72.20.My

I. INTRODUCTION shown that the butterflylike spectrum indeed appearanin
isotropic 3D (quasi-1D lattices and have derived the quan-

Appearance of energy gaps in three-dimensi¢8B) sys-  tized Hall tensor for each gdpFor the anisotropic case we
tems is a hallmark of quantum mechanics in crystals. Theregan intuitively understand this in terms of a mapping be-
a periodicity, be it atomic or density-wave formation from tween the 3D case and a 2D case. For igwropic case,
some mechanism, gives rise to a Bragg’s reflection accomhowever, it should seem difficult to have the energy gaps
panied by energy gaps as Bloch’s theorem dictates. Apagince the magnetic subbands are likely to be overlapped by
from this, there are few occurrences of energy gaps in 30he dispersion due to the motion along the magnetic field.
(unless, of course, nonperturbative, many-body states such &veral authofs® have computed the energy spectra of the
the BCS state are involved isotropic 3D tight-binding system in magnetic fielgsoint-

In 2D systems, by contrast, we do have a remarkable rdng to high-symmetry crystallographic directionsand
alization of gaps when a magnetic field is applied. For a fre&kunszt® concluded that there are in general no energy gaps
2D electron gas the spectrum even coalesces into a series @though the possibility of gaps cannot be excluded. So the
sharp Landau levels. When the 2D system has some perio@xistence of gaps and IQHE has remained an open question.
icity (thought of as arising from a periodic potential or tight-  In this paper, we show that we do have energy gaps in
binding array of atoms application of a magnetic field gives isotropic 3D lattices rather universally, in that all we have to
rise to a fractal energy gap, which is called “Hofstadter's have is a sufficiently large magnetic figBdpointing togen-
butterfly.”* One way to understand why the butterfly appearseral directions(i.e., off the high-symmetry axgsWe first
is that the two quantizations, one being Bloch’s band strucshow this by calculating energy spectra for various directions
ture and the other the Landau quantization, interfere wittof B. We have also calculated the Hall tensors,
each other. The interference should occur when the band gafgxy,oy,,0,,), when the Fermi energy is in each energy
#2/(ma?) (mis electron massy is lattice constant and the gap. They turn  out to have values, e.g.,
cyclotron energyi w. are similar, which indeed amounts to (1,00),(0,10),(0,0,1) in an appropriate unit, even for a
the condition for the appearance of the butterfby;- ¢, fixed direction ofB, which is surprising and unlike in the
where ¢ is the magnetic flux penetrating a unit cell asg ~ anisotropic case. We intuitively explain the energy spectra
=h/e is the flux quantum. and the quantization of the Hall conductivity in terms of the

Once we have an energy gap in a 2D system it is knowrfluantum-mechanical hopping between semiclassical orbits in
that the integer quantum Hall effe@QHE) should occur. the 3D momentum space.

Thoulesset al? in fact have derived a general formula for

the quantized Hall conductance in 2D periodic systems with- || FORMULATION OF 3D BLOCH ELECTRONS

out any assumption on the detail of the periodic potential, IN MAGNETIC EIELDS

and have shown that the Hall conductance can be written in

terms of some topological invariants. We take a noninteracting tight-binding model in a uniform

A natural question is whether we can extend such argumagnetic field3=(B,,By,B;) pointing to an arbitrary direc-
ments to 3D systems. Avret al2 showed that the topologi- tion. Schfalinger's equation is- =;t;;e'‘iy;=E;, where
cal invariants found by Thoules al. apply not only to the  #; is the wave function at site, the summation is over
two-dimensional case, but also to any dimensions includingearest-neighbor sites, arf = —e/hf}A-dI is the Peierls
3D. Several authofs’ have specifically shown thaif an  phase withA being the vector potentiaf X A=B. We con-
energy gap exists in a 3D Bloch system, it should accompangider a simple-cubic lattice with a lattice constantollow-
an IQHE where each component of the Hall tensgris  ing Kunszt and Zed® we take a gaugé\ = (B,y—Bx)(0,
quantized as a topological invariant. A big question, then, is-B,/By,1), wherez is cyclic. Schralinger's equation then
whether and how gaps can appear in 3D. We have previouslyecomes
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—t (Y1 1mnt ¢I+1’m’n)—ty{e_zm‘f’z[l_(¢x/‘f’y)(m_1/2)] gapful case as fom(,n,,n,)=(1,2,3), the subbands tend to
21t ol = (o L) (M4 12)] overlap with each other so that only the main gaps remain.
X m—1nt TR Ty Y ,m+1nf While we shall discuss the physical origin of the gaps
_t fa—2mi(dym—dy) 4 @27 (dm—dyl) later, let us first look at the quantum Hall effect. As men-
tfe Y hmn-ate P mnsad tioned, E¢ in an energy gap dictatés® quantized Hall con-

=E¢1mn, (1)  ductivities,

where (,m,n) and (,,t,,t,) are the site indices and the

hopping parameters along,y,z, respectively, anddg; e2

=B;a%/ ¢, with ¢o=h/e is respective number of flux quanta (Oyz, 025, 0xy) = — El(mX ,m,,my), (4

penetrating the facet of the unit cell normaléa Here we
consider rational fluxes,

(¢x1¢yi¢z):q)x(nx1nyinz)a ®=P/Q 2

with P,Q being integers and,;’s are mutually prime inte-

gers. If we introduce new lattice indicgs=n,l—nym, the v=mMyd,+m p,+m,p,+s. 5)

phase factorgexponents in Eq(1)] become dependent gn

alone, so we can writej,,=e'"2™""3"G; , whereG;’s are _ _ o N

determined by a one-dimensional equation, Heres is another Integer, while is the fllllng factor for the
tight-binding band, i.e., the ratio of the number of states

where the integem;’s satisfy a Diophantine equation,

Pn, Ny below the gap to the total number of states in the whole
_tx(GJ+ny+Gj—ny)_ty ex Zwan_y it 2 +A2 band.m;’s assigned to each gap are topological invariants,
i.e., they never change when external paramdimagnetic
P n, Ny field, transfer energies, efcare changed continuously as
XGJ’*”x“LeXp( 2776 n_y(]_ 2|t A2||Gjn ] long as the gap remains.

b We determine the Hall integers=(m,,m,,m,) by trac-

: _ ing v as a linear function o= (¢,,¢,,¢,). In Fig. 1, we
B ZtZCOS( 2775] B M’) Gi=EG;. ®  can readily estimate (0<v<1) for each of gaps by count-
ing the number of subbands below the gapg., if there are
wo subbands beloW g out of five in total,»=2/5) and the
gradientdv/d® for each gap givesn. We can determine
m,,m,,m, by scanning the direction @ (keeping track of
{ p ) the gap in questionwhich is exactly how we have obtained

J=As],
Q

While we have a doubly periodic equation in 2D, the reduce
equation for 3D is triply periodic iy, where three periodici-

ties come from
exp{ —i|27m=— the Hall integers here.

Qny The result for (,,m,,m,) is shown as triple integers in
and the discreteness pfSince the equation has a common Fig. 1. We can see that the largest series of gaps has
periodicity ny,Q, we can apply the Bloch-Floquet theorem to (m,,m,,m,)=(+1,00),(0,~1,0), or (0,0:=1), which may
haveG,+n Qo= =e 1”yQG and the Hamiltonian is reduced to look indicative of the 2D IQHE since only one of the Hall
ann Q><n Q matrix. components is nonzero. However, the direction of the Hall
currentjeemXx E changes even for a fixel8 as we increase
the number of occupied states. This means that the Hall cur-
rent contributed byach subbandan have various directions

Our aim is to search systematically for gapful spectra forin the 3D spacéfor instance, the contribution from the band
the isotropic case and to determine the Hall conductivitiedbetween the gap havingh=(1,0,0) and another having
for each energy gap. We take a simple-cubic tight-binding(0,1,0) isjo(—1,1,0)X E]. Hence we conclude that this is
lattice with isotropic hopping parameters=t,=t,=t and a  indeed a3D-specific quantum Hall effect
lattice constant. We have numerically solved E@3) and When at least twon;’s coincide as in (,ny,n,)
obtained the energy spectra vershs Figure 1 shows the =(1,1,2)[Fig. (b)] and (1,1,1)[Fig. 1(c)] or onen;=0 as
result for several field directions: n¢,ny,n,) in (0,1,2) [Fig. 1(d)], only solitary gaps or zero gaps
=(1,23),(1,12),(1,1,1), and (0,1,2), to represent typical (marked with dashed lingsppear. The zero gaps for (1,1,2)
crystallographic directions d8. and (1,1,1) are associated with the band touching at a Bloch

We can immediately see that a series of gaps appear foumber §,,A»,A3) in Eqg. (3), as first suggested by
(ny,ny,Nn,)=(1,2,3), while otherwise we have at most soli- Hasegawa for the case of (1,1,1). A detailed calculation
tary gaps. From such results we have found that the spectrushows that the dispersion around the band touching is indeed
has a series of gaps when no twgs coincide and every linear in\’s, which is analogous to a zero-mass Dirac par-
n;#0; namely, the gapful spectrum arises whpoints to  ticle. The reason for the band touching in 3D can be ac-
general directiong(i.e., off high-symmetry crystallographic counted for as follows. Fom(,n,,n,)=(1,1,2), the gap for
axes, although the gaps obviously shrink whéB| is too  (my,m,,m,)=(m,0,0) and that for (®n,0) appear along the
small (Ba?/¢y<1). Unlike anisotropic cases, even in the same line in thee-® diagram(Fig. 1), since the problem is

Pn,

Ny
J+2

+X,

Ill. ENERGY SPECTRA AND HALL CONDUCTIVITIES
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FIG. 1. Energy spectra for the isotropic simple-cubic lattice in the magnetic fyxd, , ¢,) = ® X (n,,ny,n,). Each spectrum is plotted
against® with the direction ofB fixed at(a) (ny,ny,n,)=(1,2,3), (b) (1,1,2, (¢) (1,1,, (d) (0,1,2. Triple integers represent the Hall
integers @y ,0y,,0,,) in units of (—e e?/ha). Dashed lines infb),(c) delineate the zero gap.
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symmetric against—y. If there were no band touching, the quantum equatiof6), in that the quantum fluctuation, which
Hall integers would become indefinite, which contradictscauses the quantum mixing of different semiclassical orbits,
with the topological argument that we can always uniquelyis not taken into account.

determinem;’s when the gap is finite. So we can conclude Here we instead propose a fully quantum-mechanical
that the band touching always occurs when twie coincide, treatment for Eq(6), which directly gives, for the first time
which explains why the series of gaps in céaedisappears to the best of our knowledge, Harper’s equattdfrom the

as we maken,=n, (b) and furthern,=ny=n, in (c). The  commutation relation betweeli, andIl,, we can express
band touching also occurs in 2D whenin the flux ¢  II, as a derivative inll,, namely, Il,=—ifieB(d/dll,),
=plq penetrating the 2D unit cell is evéh! but this is  just asp=—i#%d/dx with [x,p]=i# for the canonically con-
distinct from the present case, since what matters here is thegate &,p). Schralinger’s equation in the I1, representa-
direction of the magnetic field. In addition to the band touch-tion” becomes

ing, the energy gaps disappear simply due to the overlapping

between subbands as in the cédewith one ofn;’s being i d
zero. The problem of why the band overlapping occurs ex- & _'heBﬁva)q’(Hy):Eq’(Hy)’ ©)
tensively in (d), but not in(a), will be addressed from a Y
different viewpoint in the following section. which is the equation to be solved. If we take the dispersion
for the 2D tight-binding model with nearest-neighbor hop-
IV. THE MOMENTUM SPACE PICTURE ping,
Electrons in weak magnetic fields are usually described in e(px,py)=—2t,co8ap,/h)—2t,codap,/f), (10)

the momentum space. A textbook example is the semiclassi-

cal picture, where an electron is treated as a classical particleg. (9) becomes

driven in the momentum space by a weak magnetic field. As

B becomes stronger, the semiclassical orbits begin to be -tV (Il,—eBa+V¥(Il,+eBa)]
mixed and the picture breaks down. Actually this quantum

mixing plays a critical role in opening the gaps and in the —2tycodally /A)W(Il,)=EW(Il),  (11)

guantization of the Hall conductivity in 3D, as we show here'since cofA=Le*+e ) acts as a shift operator whek

i «gd/dll. This equation is indeed equivalent to Harper’s
A. 2D momentum space picture equation1.3
We start with the momentum space picture for 2D for
heuristic purposes. Consider the quantum mechanics for a B. 3D momentum space picture
2D Bloch electron with the dispersia(p,,py) in a mag-
netic fieldB. If we define the dynamical wavevectbl=p
+eA, the Hamiltonian is written as

Now let us apply the above formulation to 3D systems.
We take a Bloch electron with the dispersiofp,,py ,p,) in
a magnetic fieldB=(B,,By,B,). Let us again denote the

H=e(I,,I1,), direction of B asn=(n,,n,,n,) whose components will be
assigned a set of integers. We set a new frarigy(,z") in
[, II,]=—i%eB. (6)  which the magnetic field point to (0,0,1). If we take the

o . vector potentialA with A, =0, we have
This is an exact quantum equation except that we take the

one-band tight-binding approximatiofi.e., we have ne- H=g(Il, ,IL,/ ,p,) (12
glected the inter-Bloch-band mixing due to the magnetic e

field), which is allowed when the periodic potential is strongwhere IT,=p;+eA (i=x’,y’) with [IL, ALy J=—i%heB
enough(or the magnetic field is weak enougfihe equation  while p,, remains a quantum number. Here we take a cubic
in the limit ie B— 0 reduces to the classical Hamilton equa- dispersion,

tion,

2 e(Px.Py,P,) = —2t,cogapy/f)—2t,cogapy /%)
= —e—=xB. (7) —2t,coqap,/#). (13

This means that an electron ifl(,I1,) space moves along a Equation(12) is then written in the new frame as
contour ofe. By imposing Bohr-Sommerfeld’s quantization

condition for a closed orbit, we have e(Il, Iy ,p,) = —2t,cod ¢ - L, 7+ (n,/|n|)ap, /1]
—2t,cogc,- I, /:+(n,/|n|)ap, /%]

45 Nxdl=nheB ) yEORG y ’
—2t,codc, I, /fi+(n,/|n))ap, /%],

with an integem. The set of Eqs(7) and(8) is thesemiclas- (14)
sical approximation, where a closed orbit is identified as one
quantum state. This should be distinguished from the fulwherell, =(II,, ,II,) and
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1/8(1, 2, 3)

c=a(n,n,/[n|,—ny),

Cyza(nynz/|n|1nx)y
c,=a(—(nz+nf)/[n[,0), (15)

with a=a/(n2+n2)"2. Now we can see that our 3D problem
is reduced to a 2D problem having three peripdsile the
Hofstadter problen{2D Bloch system irB) is reduced to a
1D system having two periogls

If, following the above formulation, we now puil,,
=iheBdldll,, , Schralinger’'s equation in thé&l,, represen-
tation becomes, after some algebra,

~ o~ n ny, ap,
—t, exp{Zn-iCDnan j+?y +iﬁ%]qu+ny
pz/h 2m/a
L~ ~ r]y . Ny apy
+9XF’|‘2”"D”2”X Y R T cf. 1/45(1, 2, 3)
e~ o~ Ny . ny apy
—ty exp{Zdenynz(j—? +I|7|T]\I’j_nx

L~ ~ Ny
+exp —2midnyn, ]+?

iy ae
Tl w )Y

. n; ap,
— 2tZC05( 27T(I)j + W T

where j=(1/eBa)Il,, m=n;/(nf+n?)* and @ is de-
fined as before asd;, ¢, ,¢,)=Pn. We can show that this
equation is equivalent to Ed3) through a certain phase
transformation, as it should.

This momentum picture enables us to see how the tota AN AN
spectrum comes from dispersion relations versus which 0 pz/h  2n/a
eventually helps in intuitively understanding how the energy
gaps open and how the Hall conductivities are quantized. We FIG. 2. Left: Energy spectra versup, for Eq. (16)
examine the situation where the gaps begin to open in thép., #y,¢,)=(1/8)(1,2,3) [along with a weak field case of
quantum regime as approached from the semiclassical sidé1/45)(1,2,3) for comparisgnThe final band structure is indicated

Let us first look at how the energy spectra can have gapas bars at the right-hand edge of each spectrum. The energy spectra
for general directions ofi [(1,2,3) in Fig. 3. We show in  are periodic inp,, with period 2rhil(aln]) with n=(1,2,3) here.

Fig. 2 the band structure versps, in Eg. (16), along with The values ofpZ labeled asA,B,C (_:orr_espond to the plots on _the
contour plots of the dispersios(Il,. [T,/ ,p,) [Eq. (14)], rlght_panel. Right: (_Bray spale pléwith lighter areas corresponding
for various values ofp, . & accommodates closed orbits © diPS of the dispersione (Il 11, ,p,/) [Eq. (14)] versus
around its peaks and dips in the semiclassical picture, whergx :Ily) for n=(1,2,3), for various values op, (labeled
the area enclosed by each orbit must be a multiplb e, / ,B,C on the left panel Th_ree sets of vyhlte Ilnes_ represent the
So the different wells have different sets of discrete Ievelslntersectlons of the boundaries of the reciprocal unit cells normal to

. . px.Py,P;, respectively. These lines also movegs is changed,
and each level moves on the energy axipasis changed since the zone faces are oblique wit|B. Motion of the orbits

sinces changes its form witlp,: . When the levels belong- \ith ., for the lowest and the second subbands are indicated as 1
ing to different wells in {1, ,I1,,) space coincide, the states ang 2, respectively, where the jumps to adjacent orbits are repre-

will strongly resonate quantum mechanically and an energ¥ented as arrows and the resulting energy gaps encircled on the left
gap will arise. In Fig. 2 we show the case where the gapganel.

begin to open with é,,¢,,¢,)=(1/8)(1,2,3), for which

the strong mixing of orbits is seen to result in significant In terms of the semiclassical orbits, the changepin
level repulsions. We attach for comparison the result for artauses the orbits to hop to adjacent positions at every reso-
almost semiclassical case when the magnetic fieldnance. A virtue of this picture is thahe distance and the
(px: by, ¢,)=(1/45)(1,2,3), is so small that the mixing is direction of the hopping exactly indicates the Hall integers
weak and the level repulsion is almost negligible. as shown in the following. If we apply an infinitesimal elec-
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tric field E to the systemp,, is dragged adiabatically accord- of a fictitious 1D system having two periodic potentials that
ing to an equationdp, /dt= —eE,,, whereE, is the com-  slide adiabatically with each other. The discussion we have
ponent along z'. After p, is changed by p, /% given here to describe the 3D QHE may be regarded as a
=2/(aln|) (the period with which the spectrum repeats two-dimensional version of the Thouless pumping.

itself), every state must come back to an equivalent position We can actually identify the Hall intege@m; for each

in the reciprocal unit cell. The increment in the momentumsubband by keeping track of the motion of the orbits with
space, 8I1= (411, , 611y, ,8p,/), with which the orbit is Pz - Figure 2 typically depicts how a state in the first band

shifted over the one period satisfies moves by(1,0,0, by which we mean the state jumps once
across a reciprocal cell boundary normalptp(whose inter-
oll 27w section is shown as one of the white linésit not acrosp,
7=+?5m, or p,. The state in the second band moves by1(1,0).

These triple numbers are the very Hall integers,
(ém,,émy,6m,), carried by each subbarjdot to be con-
fused with the total Hall integer,nf,,m,,m,) as we re-
where & corresponds to positive and negatig , respec- marked abovg and are in accordance with the result in Fig.
tively, and ém;’s are integers assigned to each subband. The(a).
integers satisfy a relationém-n=1, since dp, /h We can now comment on the relation with the usual treat-
=2/(aln|). ment of 3D QHE!"® By summing updm-n=1 over the
We can immediately translatll into the motion in the occupied subbands, we hawe n=r, wherer is the number
real space normal ta’ using the relationship between the of occupied subbands and is the summation ofm over
relative coordinate of the cyclotron motion and the dy- them. Sincer is related to the filling of the tight-binding
namical wave vectoll, band asv=r X p/(1/a%), we obtain

sm=dmye,+ dmye,+ dm,e, 17

Sé=— i'\ , X SIL (18) v=Mydyt myd’y"’ m, e, (21)
eB

which coincides with the Diophantine equati@®) with s
=0. While the discussion here is for the lower half of the
tight-binding band, we can make a similar argument for the
upper half in terms of hole orbits, which in turn corresponds
to s=1. So in our picture above, only the gaps wish
=0(1) aretaken into account for the loweuppe) half

Since the system has no dissipation as long@ass in a gap,
E, should cause no net current along Therefore the ve-
locity averaged over one period in tim€&z= op,: /(e|E,/|),
isv=6&T=(|n|/B)E, X ém. The Hall current due t&, is
then calculated as

o2 band, and the rest are neglected. We can actually show that
j=—pev=—SmXxE, , (190  the widths of the neglected gaps are much smaller than those
ha of the main gaps when the magnetic field is wedk<1),

where p=eB/(haln|) is the density of states per subband which is exactly the situation considered here, since we ap-

and per unit volume. From this expression we can write théroached the quantum regime from the semiclassical side.
Hall tensor asé, — —(e2/ha)ém, . where we have ex- The mapped picture also gives an intuitive explanation

7= L Lo why we have so few gaps for the symmetric case
pressed the Hall conductivities as

«(1,1,2), (1,1,1) and zero-component case(0,1,2) as
seen in Fig. 3. When two components rnincoincide as in
(1,1,2), two levels can crogéor the value ofp,: labeled as

with the unit antisymmetric tensar;, and_L represents the B), but a gap does not open because the couplings between
component normal ta’. The normal component of the elec- semiclassical orbits along, andp, occur symmetricallyin

tric field E, , on the other hand, causes a classical drift witha zigzag fashion so that the bands do not split. This is
the velocity v=(E, X B)/B2=(|n|/B)E, X m, which im-  exactly the band touching discussed in Sec Ill. When the
mediately leads tar, = — (e2/ha) m,. . Combining these, symmetry is even higher as imoc(l.,l,l), couplings anng

we end up with a simple formula for the quantized Hall Px: Py, andp; all become symmetric and the band touching

conductivity carried by the corresponding subband, occurs at every crossing. If contains a zero component as
in (0,1,2), two of the plane waves ferbecome parallel and

N e? the wells having the same depth become connected along the
o= = E&’ﬂ- (20 perpendicular direction. This results in a strong mixing be-
tween the states along that trough, so that the minibands for
We have thus derived the quantization of the 3D Hall con-each value ob,, become wider. So, while the energy gaps
ductivity from the momentum space hopping, as an approactio arise when the energies of the adjacent troughs coincide,
alternative to the usual Kubo formula. these gaps tend to be overlapped in energy by other wide
The problem of the transport in adiabatically varying po-bands.
tentials(so-calledThouless pumpingwas first considered by The momentum space picture introduced here can be in-
Thoules$* for the one-dimensional case. He showed that theerpreted from another description. In the Appendix, we pro-
2D QHE in periodic potentials may be understood in termgpose a “duality,” a quantum mapping between the momen-

Oij= &ijkOk
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. ~3 B g} W@[ﬁ“ Hofstadter’s butterfly arise§) as a function of thdilting
"|: @ angle 6 in magnetic field tilted in theyz plane(ii) in aniso-
_2/,,-13 g\ tropic (t,>t,,t,) 3D lattices. We can reinterpret the physics
g} » Q(g of the 3D butterfly in terms of the momentum space picture
-4 DQ &D introduced above. In Fig. 4, we show a contour plot 0p)
g}D Q@D O@ on a cross section along with the energy spectra plotted
e g againstp,, . We can see that the dominant term associated

(b) O pz/h 2mn/a

with t, gives troughs and ridges, and a small perturbation
due tot, andt, gives small corrugations to each of them. The
semiclassical orbits in the pockets in the corrugation hop
onto each other and form a one-dimensional chain. So the
system can be regarded as an array of independent chains
with two periods ¢1/¢,,%1/¢,), which is just equivalent

to a Harper's equation for the 2D Hofstadter’s probfém.
Thus we can understand why the butterfly appears around the
top and the bottom of the band.

1/8(0, 1, 2)
AN
vt

o%

o o
' ' |||

V. EXPERIMENTAL FEASIBILITY

Let us comment on the magnitude of the magnetic field
required to observe the energy gaps in isotropic 3D systems.
As mentioned, it is essential for the existence of the energy
gaps that the quantum coupling exists between the semiclas-
sical orbits in the different wells. For that, zero-point energy
of the bound states in wells should be of the order of the
typical depth of the wells. In other words, the typical “well”

FIG. 3. The plots similar to Fig. 2 for the case @b, ¢y ,®,) area in the momentum space should be of the order of a
=(1/8)(ny,ny,n,): (ne,ny,n,)=(1,1,2), (1,1,1), and (0,1,2). quantized aredeB. For the isotropic crystals considered

%

| E
! ]
'I,i' \ :

|
A B
© 0 pz/ih 2ma
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here, this condition leads td(a)?>~heB[h/a is the period 1 ) 1, 1.
in £(p)], which is simplyBa’/¢o~1. The situation is the ~ H=75_(p+eA)"+V(r)= 5 _II"+V| R— eIl
same as in the 2D Hofstadter problem, so the required field (A1)

for atomic lattice constants is hugB{10° T for a=2 A). _ _ e _

If we consider systems with larger unit cells, as in solidWhereV(r), with r=(x,y), is a periodic potentiall1=p
fullerene or zeolites wita= 10 A, the required is reduced +_eA, and R=_r—§ the_ cyclotron-motlon guiding center
to 10® T but is still large. In the anisotropic case discussed inWith the relative coordinate given ag= —(1/eB)e,XIL
Ref. 8, by contrast, the condition is much less stringent. Thi¥Vhen the magnetic field is strong enoug the potentiaV
is because the typical well area is/@)d with d being the 'S Weak enough so that (i) the magnetic lengthl

typical valley width, so the condition relaxes td/@)d =\/h/_(eB) is much._shorter than the length scale over which
~heB, whereB can be made as small as one wishes byV varies, and tha(n_) the different Landau Ievels_, are not
mixed, we can considdd to be frozen. More precisely, the
kinetic energy[the first term in Eq(A1)] reduces to a con-
Stant from(ii), while the second term can be approximated as

V(R) from (i). The Hamiltonian then becomes, up to a con-

have here is a trade-off between la@eequired with large-
energy gaps(isotropic casg and smallerB suffices with

. : stant,
small gapganisotropig.
Another point is that a real 3D sample has always sur- H~V(X,Y),
faces. Halperin and the present authors have shown, in gen- .
eral, that the 3D integer QHE should accompany quantized [X,Y]=i#l(eB). (A2)

wrapping current, whose intensity and direction are dictatedwe can see that Eq&) and(A2) are identical if we translate

by the quantum Hall integers-.® This should apply to the as
present case of isotropic QHE as well.

h
=X, &<V, heB<—>e—B. (A3)

VI. CONCLUSION So we recognize that there exists a duality between the 2D

. . . . .system with a strong periodic potential in a weBk(one
We have investigated the energy spectra in the isotropigz tight-binding modgland the 2D system with a weak

3D Iatt_|ce in magnetic fields applied in arbitrary d'TeCt'onSvperiodic potential in a strong fielone Landau level ap-
for which we have shown that the energy gaps arise unlessyoximation. For the Landau level in the latter case, we
the magnetic field points to high-symmetry crystallographicexpect that the duality holds best in the lowest Landau level,
directions. We have also identified the quantum Hall integersince the wave function is most localized in that level to
for each of gaps. In the latter part of the paper we havénake Eq.(A2) valid. In the semiclassical sense, the latter
examined a momentum space picture and found that the mixpicture describes the drifts, the guiding center of the cyclo-
ing of the different momentum space orbits beyond the semitron motion along equipotential contours in the real space,
classical approximation is essential for the gap formationwhile the former represents the motion along contours of
This picture further provides a perspective for the quantune(p) in the momentum space.
Hall effect in 3D, where the Hall current is estimated from  The duality introduced here provides a physical basis for
the geometry of adiabatic jumps of the orbit. Hofstadter’s observatidron the mapping between the tight-
binding and weak-potential systemdor the square lattice,
and also generally applicable to any 2D lattices, or, remark-
ACKNOWLEDGMENT ably, 3D cases as well, as we shall see below. Another duality
is found by Ishikawaet al,'® which is distinct from ours, in
M.K. would like to thank the Japan Society for Promotion that one Landau level is mapped to one Landau level in the
of Science for a financial support. latter while one Landau level is mapped to one Bloch band in
the present case.
Specifically, it is interesting to see how the Hall conduc-
APPENDIX: DUALITY BETWEEN THE MOMENTUM tivities are related between them for the corresponding en-
SPACE AND REAL SPACE ergy gaps. For the 2D case, Thoulessl? have shown the

relationship between the Hall integers in the tight-binding

We propose here that there exists a duality that relates the, q iy the strong-field limits. Here we first review this in the
momentum space pictur&ec. IV) in a weak magnetic field et of our duality. Diophantine’s equation for an energy

to the real-space picture in a strong magnetic field, wigere gap in the 2D tight-binding cada 2D version of Eq(5)] is
translates into B. Using a quantum-mechanical mapping

between the two cases, we are able to discuss the relationship vg=to+s, (A4)

between the energy spectra and the Hall conductivities fo&vheres,t are integersyg is the tight-binding band filling,
the both systems.

: i - . and ¢ is the number of fluxes penetrating the 2D unit cell.
We first discuss the duality in 2D and then extend it to 3D. . ; ;
. Th for th he 2D -
As a counterpart to the momentum space pict{fe we e equation for the corresponding gap in the strong

. . . field case is written with the sanst as
consider another 2D Bloch system in a magnetic fieldhe e
Hamiltonian is written in real space as v =t(1/p)+s, (A5)

195336-8
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where v, is the Landau-level filling factor, i.e., the fraction
of the filled states in the lowest Landau level, aads re-
placed with 1¢) according to the dualityEq. (A3)]. From
the relationv = vg/ ¢, we can translate EGA5) into

VB:S¢+t. (AG)

Now we can see that the two topological integeendt are
interchanged between the dual(tight-binding (A4) «
strong-field(A6)] cases. The Widom-Sida formuld®’

eZ ﬁVB

h 96

then gives— (e?/h)t in the former case; (e/h)s in the
latter.

The duality applies also to the 3D system. If we plug the
above discussion to the Hamiltoniah2), we immediately
see that the 3D system is mapped to a systemfintiéious
2D space Il ,II,/) with a potentiale(IL,. ,I1,,,p,/) in a
fictitious magnetic fielB* with AeB=7%/(eB*). The map-
ping is valid for largeB*, i.e., smallB. The fictitious poten-
tial is a cross section of the 3D dispersion incise@atby a
plane perpendicular tB. The Hamiltonian for the fictitious
2D system is

(A7)

Tyy

1
H=ﬁ(p*JreA*)ers(x*,y*,pz,), (A8)

PHYSICAL REVIEW B 67, 195336 (2003

where &*,y*)=(Il ,I1,), p*=—it(al/dlly, ,aldlly),
andA* is a vector potential for the fictitious magnetic field
(0,0B*). Since we assume a lardg®, the wave function
can be expanded within the basis for the lowest Landau
level,

(X* +KE1*2)2

21*2 (A9)

’

|k§)=exp(ik;‘x*)ex;{ -

with the fictitious magnetic length* =#A/(eB*). If we
take dispersion(14), Schralinger's equation becomes the
same as Eq.(16), except that we have nowj

=(\/nxz+ nyzla) k; and the hopping parameters

T,=te c4eB)  (j=xy7), (A10)
with c;=|c;| defined in Eq.(15). We can see that the equa-
tion reduces to Eq16) in the strongB* limit (i.e., weakB
limit) as expected.

The relationship in the Hall conductivities with respect to
the duality can be readily extended to the 3D case. If we take
an energy gap in the 3D system withor,o,y,0yy)
= —ezlha(mx,my,mz), the Hall conductivity in the corre-
sponding 2D system becomege?/h)s, wherem; ands are
related via Diophantine equatidb).
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