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Electron spin evolution induced by interaction with nuclei in a quantum dot
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We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine
interaction with nuclei for times smaller than the nuclear spin relaxation time. The decay is caused by the
spatial variation of the electron envelope wave function within the dot, leading to a non-uniform hyperfine
coupling. We show that the usual treatment of the problem based on the Markovian approximation is impos-
sible because the correlation time for the nuclear magnetic field seen by the electron spin is itself determined
by the flip-flop processes. The decay of the electron spin correlation function is not exponential but rather
power(inverse logarithmlaw-like. For polarized nuclei we find an exact solution and show that the precession
amplitude and the decay behavior can be tuned by the magnetic field. The decay time is givétbyhere
N is the number of nuclei inside the dot aAds a hyperfine constant. The amplitude of precession, reached as
a result of the decay, is finite. We show that there is a striking difference between the decoherence time for a
single dot and the dephasing time for an ensemble of dots.
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[. INTRODUCTION nuclei in turn interact with each other via dipolar interaction,
which does not conserve the total nuclear spin and thus leads

The spin dynamics of electrons in semiconducting nanoto a change of a given nuclear spin configuration within the
structures has become of central interest in recent yéars.time T,,~10 * s, which is just the period of precession of a
The controlled manipulation of a spin, and in particular of itsnuclear spin in the local magnetic field generated by its
phase, is the primary prerequisite needed for applications ineighbors. Below we will see that the time scale associated
conventional computer hardware as well as in quantum inwith a decoherence mechanism due to a nonuniform hyper-
formation processing. It is thus desirable to understand théne coupling is much shorter thah,,; therefore the above
mechanisms which limit the spin phase coherence of eleanentioned fluctuating nuclear magnetic field is a frozen one.
trons, in particular in GaAs semiconductors, which have We note that there are two different regimes of interest,
been showh to exhibit unusually long spin decoherence depending on the parameter,r., wherer, is the correla-
timesT, exceeding 100 ns. Since in GaAs each nucleus cattion time of the nuclear magnetic fieldy(t) seen by the
ries spin, the hyperfine interaction between electron anelectron spin via the hyperfine interaction. The simplest case
nuclear spins is unavoidable, and it is therefore important tés the perturbative regimevy7.<1, characterized by dy-
underdffect on the electron spin dynamfchis is particu- namical narrowing: different random nuclear configurations
larly so for electrons which are confined to a closed systenchange quickly in time, and, as a result, the spin dynamics is
such as a quantum dot with a spin 1/2 ground state, sinceliffusive with a dephasing time=1/(w%7.). This case is
besides fundamental interest, these systems are promisingalized, for example, for a system of quantum dotsshal-
candidates for scalable spin qubitBor recent work on spin  ow donorg when the hopping rate 4/ of the electron be-
relaxation (characterized byr; times in GaAs nanostruc- tween neighboring dots is high. The problem of electron spin
tures we refer to Refs. 6-8. relaxation for the case of electron hopping between shallow

Motivated by this, in the following we investigate the spin donors in GaAs was studied in Ref. 12. Using a perturbative
dynamics of a single electron confined to a quantum dot impproach, we easily obtain the following formulas for the
the presence of nuclear spitsee Fig. 1° We treat the case longitudinal (T;) and transverse T,) spin relaxation
of unpolarized nuclei perturbatively, while for the fully po- timeg?12
larized case we present an exact solution for the spin dynam- )
ics and show that the decay is nonexponential and can bel (gug)® 1 [+= .
strongly influenced by external magnetic fields. We use the T, ~ ~ ;2 EJ . d7exp(—iw,7)RE(Hn (O Hny( 7))
term “decoherence” to describe the case with a single dot,

and the term “dephasing” for an ensemble of dttsThe +(Hny(0)Hyy( 7)1,

typical fluctuating nuclear magnetic field seen by the elec-

tron spin via the hyperfine interaction is of the ordet'of 1 1 (gug)?1l(+=

~A/(Ngug), with an associated electron precession fre- T, 2_-|-1+ 2 5]_06 dr(HNAO)HnA 7)), (1)

quencywy=A/+/N, whereA is a hyperfine constany the

electrong factor, ug the Bohr magneton, and the number wherew,=gugB/#% is the Larmor spin precession frequency
of nuclei inside the dot. For a typical dot size the electronin the external magnetic field directed along the axis, and
wave function covers approximately=10° nuclei, then this (- - -) means the ensemble average of the fluctuating nuclear
field is of the order of 100 G in a GaAs quantum dot. Themagnetic field correlatorgin the limit w,7.<1 we obtain

0163-1829/2003/671.9)/19532911)/$20.00 67 195329-1 ©2003 The American Physical Society



ALEXANDER KHAETSKII, DANIEL LOSS, AND LEONID GLAZMAN PHYSICAL REVIEW B 67, 195329 (2003

Confinement action, described by the Hamiltonian

H=gugS B+S-hy, hy=2> All=gugHy,
|

whereH,, is the nuclear field. Note that the sum in Eg)
Envelope electron runs over the entire space. The coupling constant withitthe
wave function ¥ nucleus, A;=Av,|¥(r;)|?, contains the electron envelope
wave functionW¥(r;) at the nuclear site;, andv, is the
volume of the crystal cell. For simplicity we consider nuclear
spin 1/2. Neglecting dipolar interactions between the nuclei,
we consider some particular nuclear configuration, described
in thel, eigenbasis a1'}), with I,=+1/2 1 Moreover,

we assume an unpolarized configuration with a typical net
nuclear magnetic field\/(\/Ngug), being much less than
Al/(gug) (fully polarized casg for the precise definition of

N see below. We study the decay of the electron spin from its

FIG. 1. (Color onling A single electron spin localized in a quan- iNitial (t=0) S, eigenstaté). For this we evaluate the cor-
tum dot described by a parabolic confinement potentigl plane. relator
The electron is assumed to be in the orbital ground state described
by the envelope wave functiow, and interacts with the nuclear . ~
spins(located alﬂ) via a hyperfine interactioA; ~ |\P(Fi)|2 which Ca(h)= <n| 5SZ(t)SZ|n>’ (3
varies as a function of position .

where (|- --|) means the diagonal matrix element. Here

from the above formulas the well known resy=T,,  6S,(t)=5,(t)—S,, andS,(t)=exp(tH)S,exp(itH). This
where we took into account the fact that the fluctuatingcorrelator is proportional th|sZ(t) Sz(0)|n> Since att
nuclear field is isotropig. =0 the total(electron and nucleastate|n)=|f, {I}) is an

A more difficult situation arises whemwy7.>1, which
e| enstate ofH{y= +S,hy, (with eigenener , here
requires a nonperturbative approach. It is this regime that w 9 Fo= €S+ Sy, ( 9 g¥en

will consider in this paper, i.e., the electron is localized in a2~ 9#8B2), we can expand in the perturbatidf-= (1/2)
quantum dot, and the correlation time is due to the internak(5: An_+5_fy.) (with 7= H0+V) Introducmﬂg the
nuclear spin dynamics, i.ez.=Tp,, giving wy7.=10" usual time evolution operatoU(t) Tex;{ i o0t V(t)],
Thus, no usual treatment and no Markov approximation argyith T being the time-ordering operator, for the correlator we

ossible. In particular, the perturbative formulas far, T
Fsee Eqs(1) ]pare not appllcapble here. Next, we neme)ld té ad- get<n|UT(t)SZ(t)U(t)SZ(0)|n> where the time dependence

dress the important issue of averaging over different nuclea? &/l operators is due to thél, Hamiltonian. Then we ob-
spin configurations in a single dot. Without internal nucleartain in leading order inv,

spin dynamics, i.e..T,,—®, no averaging is indicated.

However, each flip-flop processlue to hyperfine interac-

tion) creates a dif_ferent_nl_JcIear spin confi_guration, _and be- Cn(t)=z |Vil® [cog wnt)— 1]

cause of the spatial variation of the hyperfine coupling con-
stants inside the dot, this leads to a different random value of
the nuclear field seen by the electron spin and thus to its 1 AZ

decoherence. Below we will find that this decoherence is et (T EK g teog &+ ()t A2]t— 1},
non-exponential, but still we can indicate the characteristic z Zn

time given by° (A/ZN) . Since in the system we consider (4)
Tno>(A/N) 1, and thus still no averaging over the nuclear
configurations is indicate¢and dipolar interactions will be
neglected henceforthTo underline the importance of this
point, we will contrast below the unaveraged correlator with
its average.

wnk

where V= (nﬂk) is the matrix element between initial
state n=1, { K=—1/2,...} and intermediate statk
=0.{.. +1/2, ...}, andwp, = €,— €. We have used
that |vnk|2—A§<n|1/2—f§|n>/4, and wp=e,+(h,),
+AJ2, where b,),=(n|hyjn), and the fact that for the
typical nuclear configurationh)2=w?>AZ. SinceN>1,

We consider a single electron in an orbital ground state ofve replace the sums ovkr(which run over the entire space
a quantum dot. Its spi$ couples to an external magnetic by integrals, i.e.>f, =(/d%r/vo)f(r)+0(1/N). Then we
field B and to nuclear spinél'} via hyperfine contact inter- have

Il. UNPOLARIZED NUCLEI
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A? lo
Cn(t)=— [——I (7)cod e,+ (h,) ]t
" 87TN(62+(hz)n)2 2 ! ie el
Envelope electron
+|2<r>sir{ez+(hz)n]t}, (5) uaeinelien
where
e, ey 2 & & oL PP
lo= f_ dzxo(2), liA7)= f_ dzxog(2)F1d 7x5(2) ], @ 09 '(l) JJ Q) j,\
(6) A A A A
Ak an o 4 o A 4 s
O 0O000000
and \j\, Kj’ \L I \‘t J > \‘:/
sinp cosy—1 sinp cosy Kuclei
Filp)=——+—7—, Fanp)=—7F%F———.
Y n Y K FIG. 2. (Color onling The same situation as in Fig. 1 but with

() fully polarized nuclear spins.

HereN=a,a%/v,>1 is the number of nuclei inside the dot
and 7= At/27N. Equation(5) was obtained with the use of
the following expression for the electron envelope wav
function:

' C,(t) is not changed, the only difference being that the de-
gcaying part of the initial spin state is small now, .=y
=(wy/€,)?<1.

We note thatC,(t) in Eq. (4) is quasiperiodic irt, and,
thus, it will decay only up to the Poincarecurrence time
7p. This time can be found from the condition that the terms
eomitted when converting sums to integrals become compa-

[W(p,2)|?=(Uma’a)exp —p’la®)x5(2). (8

Herea anda, are the dot sizes in the lateral and transvers . . ; L )
(perpendicular to the two-dimensional plandirections, rable with the integral itself. This will happen at=N, giv-

respectively, and the transverse wave functigfiz) is nor- M9 7p=0.1-1s.
malized, i.e.,/ Zdzy3(z)=1. Note that thez coordinate In next orderV*, we face the problem of secular terms or

here and further is dimensionless in units af. For any “resonancgs,”_i.e., t_he corrections wiII_contain zero denomi-
analytic function x2(z) with expansion x2(z)=x2(0) nators. Th|s_gives rise to linearly growing termayt, even
“EO near s maimum, we havey (r>1) O C(AN) T in e order e degree of e hvergence
2 (i — . 1
== [xo(0)/ Il (xo)" (S mx(0)] Fcog 7x(0)).  Thus, principle, change after proper resummation, because no
fpr this case we abtain Ehle universpbwer law decayfor small expansion parameter exists, which, strictly speaking,
times7>1, i.e, t>(A/N) "~ would justify a perturbative approach. Still, the result found
_ in lowest order remains qualitatively correct in that it shows
Y o~ that a non-uniform hyperfine coupling leads to a nonexpo-
Co(r>1)=—y+ Tlesm(hnt— ®), nential decay of the spin. This conclusion is confirmed by an
exactly solvable case to which we turn next.

hp=¢€,+(h,),+Ag/2. €) lll. POLARIZED NUCLEI. EXACTLY SOLVABLE CASE

HereA, is the coupling constant with the nucleus located at In this section we consider the exactly solvable case
the center of the dot; and is a phase shift witkh~1. The  where the initial nuclear spin configuration is fully polarized

following estimates hold for the values of y: (see Fig. 2 We also allow for a magnetic field but neglect its
effect on the nuclear spins. With the initial wave function

2

S S 10 Vo= L1101, (1)

N(€z+(hz)n)2 ]
we can construct thexactwave function of the system for

Note that for the typical nuclear configuration the quantityt>0,
A2%/N(h,)? is of order unity; thus, for a weak Zeeman field
e,<wy, the part of the electron spin state which decays is of
the order of the initial value. Hence, the same holds for the \P(t)za(t)‘PO“LEk: BOITT LT ), (12
spin part which survives at>1 (i.e., y=y=1/2, for e,
<wy). We see from Eqg9) and(10) that in the presence of with normalization|a(t)|?+ =] B«(t)|?>=1, and we assume
a large Zeeman fielde,> wy, the asymptotic behavior of thata(t=0")=1,a(t<0)=0. The second term in E¢12)
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is a coherent superposition of the states with exactly one
nuclear spin flipped, and thus similar to a magnon excitation.
The correlatoiCy is expressed through(t) by the formula

K pole ® — plane
Co(t)=—(¥o|3S,()S| W) =[1—|a(t)[?]/2. (13

Then, inserting¥ (t) into the Schrdinger equation, we ob-

The 0=iA/2
da(t) fza(t) —
=g = Aa(t)+ E Bk( ’ branch cut | °
idﬁl(t) €8(1)

-]
Er ai+ Saw+ D g

where A=3,A,. Laplace transforming Eq(14), a(o)
= [ dtexp(—wt)a(t), we obtain

~ ia(t=0"
a(w)= a ) , (15) FIG. 3. The integration contodr in Eqg. (16), enclosing poles

iw+A[2— 2 A§/4(i w+A/2) and the branch cut.
K

—X3(2)/xx3(0). Therefore, for a giverk this expression
whereio=iw—A'/4, A'=A+2¢,, and we have used the changes the sign aj(«) which can be found from the equa-
fact thatB,(t=0)=0. Now we use the identitf AZ/4(iw  tion given above.
+A/2)=AR-iw3A/2(iw+A/2) and replace the sum Thus, the physical picture can be described as follows. At
S A/ (iw+A/2)] over thexy plane by an integral. Calcu- j[he initial timet=0 the system has some energy correspond-
lating it using|¥ (r,)|? given in Eq.(8) we obtain: ing to the pole and starts to oscillate back and forth, each
time visiting different frequencies within the branch cut
which corresponds to the flip-flop processes with the nuclei
located at different sites. Therefore, the contribution from the
iAxg(Z)> ' branch cut describes the electron spin decoherence. gkt

()= 1f doi exg (w—iA'l4)t]

2i

27N the order of unitywhere the decay mainly occurthe deco-
(16)  herence is due to the interaction with the nuclei located at
distances of the order of the dot radius where the derivative
As usual, the integration contoiirin Eq. (16) is the vertical ~ of the coupling constant is maximal. For longer times,
line in the complexw plane so that all singularities of the >1, the asymptotics is determined either by the interaction
integrand lie to its lefi{see Fig. 3 These singularities are: With the nuclei located far from the dot or near the dot center
two branch points ¢=0,0,=iAx3(0)/2rN=iA,/2), and depending on the Zeeman field value. o
first order poles which lie on the imaginary axie€iv). First we consider the casg=0, i.e., no magnetic field.
For €,>0 there is one pole, while foe,<0 there are two The asymptotic behavior of EqL7) for > 1 is determined
poles, and fore,=0 there is one first order pole aé, DY x<1. For example, fon§(2)/x5(0)=exp(~Z) we find
~iAl2+iA[dzxj(2)/4wN. For the contribution from the

iw+e,+ WNiwf dzln( 1-

o 1In¥27, (18)

x3(2)
x2(0)

branch cut betweem=0 andw= wy we obtain
~ CiATua e This behavior is not universal and is determined by the form
a(t)= f dx2zpke Kf dzin of the electron wave function at distances that are large com-
pared to the dot size, since at larg¢he decoherence is due
2 -1 to the interaction with the nuclei located far from the dot.
+(27-rzo)2;<2] ., (17) (We recall that atr of the order of unity the decoherence is
due to the interaction with the nuclei located at distances of
the order of the dot radius where the derivative of the cou-
where 1 —TXo(O) and zy=2y(«) is defined through pling constant is maximal.The disturbance of the nuclear
Xo(Zo) XO(O)K We have introduced the dimensionlessspins propagates from the center of the dot outwards, or, we
variable k= w/wg<1. In terms of this new variable the ar- can say that a nuclear spin diffusion induced by the hyperfine
gument of the log function in Eq(16) has the form 1 interaction occurs in that region.

1—

+ ikl TN—2€,/Ax3(0)
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<S,(t)>

T

also the pole contribution which is a periodic function of
time. As a result, a square modulus of the pole contribution
determines the quantit€y(~) and the asymptotic behavior
of the correlator is given by the term which is the cross
product of the pole contribution and the ofteg. (19)) from

the branch cut, i.e.Co(t) —Co()xa. We find then that
Co(t) — Co() < 1/t%? which agrees with the perturbative re-
sult (5) for the fully polarized statd.For the fully polarized
nuclear state Eqg5) and(9) should be multiplied by 2, and
(h,),, should be replaced by/2.] This agreement is to be
expected, since for a large Zeeman field, the perturbative
unpolarized treatment with a small parameté?|e,|<1 is meaningful
(the same is true for any model with a small expansion pa-
rameter, for example, for a system with anisotropy, where the
hyperfine constants in perpendicular and transverse direc-
) . ) tions are different; see Sec. Il)BHowever, at zero Zeeman
FIG. 4. (Color onling Schematic dependence(@,(t)) ontime  fig|d, when the system cannot be treated perturbatively, we
t for the unp_olarlzed tensor product and for fully po_Iarlzed nuclearﬁnd Co(t)—Co(w)Mlllnwt, and the agreement with E¢p)
states. The time scale for the onset of the decay/A is the same o ars down. Nevertheless, the characteristic time scale for
for both cases. In the fully polarized case the magnitude of thethe onset of the non-exponential decay is the same for all
effect is 1N. The period of the oscillations is of the order @f/A cases and given byA(N)_l We have also checked that

for the unpolarized case andl/A for the polarized case. ~ ~ . N .
(Si(t) —S,(0)) has the same behavior &S,(t)—S,(0))
with the same characteristic timeN£A. Finally we mention
) that the observed decay of the electron spin can be experi-
Thus, the decay ofa(t)| starts atr>1, i.e., att>N/A,  mentally studied by local NMR measuremetts.
as in the unpolarized cagsee Fig. 4. Note that the magni-
tude of « is of order of 1IN (also see Ref. 26 thus, the A. Fully polarized nuclei. 2D case
decaying part of the initial spin state has this smallness as . , )
well, in contrast to the unpolarized case above where this Here we consider the two-dimension@D) case when
part is of order one. The reason for this smallness is that fol'€"€ is no variation of the coupling constants in one direc-
a fully polarized state the gap seen by the electron spiffon, i-€., we use the model representatigf(z) = 6(1/2
through the hyperfine interaction &/2; therefore, only a —|2). This case allows us to follow the dependence of the
small portion~1/N of the opposite ¢ 1/2) state can be electron spin dgcay Ia\{v on the 'spat_lal variation of the elec-
admixed. Indeed, in this case the change of the energy of tHEon wave function in different directions. From Eq.6) we
the energyorder ofA/N) of a magnon excited in the nuclear =0.@o=iA/27N) and the first order poles which lie on the
subsystem. imaginary axis p=iv). The position of these poles can be
For a large Zeeman field,|>A) and forr>1, the main ~ found from the equation

contribution in Eq.(17) is given fork—1, i.e. by the inter-
action with the nuclei located near the dot center. Expanding 1 2€,¢
x5(2) for small z (see above we obtain z3=2y35(0)(1 &R o)A A
—k)/(x3)". Then from Eq.(17) we have, forle,|>A,

_ polarized

):1—§;§=A/27TNU. (20)

For positivee, there is only one solution of this equation; for
negativee, there are two. Thus, a,=0 there is one first

~ —el 7 TIAUA 3200y A2 (141) order pole at
(1( T>1): 2 2 3/2 (19)
4TN (X)) €& 7 iA 1

P1720N [1—exp(— L/aN) ]

The correlation function is related t®(t) through Eq.(13).

We recall that besides the branch cut contributigt) which ~ For the contribution from the branch cut betweer0 and
is a decaying function of the time the quantitycontains ©w=wg we obtain

~ t)_expi—iA“[/4) 1 dxr expli k)

. 21
a( 7N 0 [k IN(— 1+ Lk) + (r/7N) — (26, A) 2+ w22 2D
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Let us consider first the case of zero Zeeman field. Then w&he change of the asymptotics occurs evehegtA. If 1
have a(t>0)=exp(-iAt/4)expt)/(mN[exp(1/mN)—1])  <7/In ~<Al|¢), then the asymptotics is as before, i.e. HIn
+a(t). The asymptotic behavior of ER1) ate,=0 and for ~ For 7/In 2>Al|e[>1 it is 1/(7In*7).

=1 is 1/In7. In the case of a strong Zeeman field,|

> A, it follows from Eq.(21) that the asymptotics at>1 is

1/7. Note, that this asymptotics is true in the intervak1

<9Xp(3€z|/A)- Then we obtain B. Anisotropy in the exactly solvable model
N 1 5 1 A? We consider here the model where the hyperfine constants
(SA)= 2 —la|?=— 2 1- 2 N2 in the z-direction and in the transverse direction are different
z

(there is no Zeeman field A7=Apq|W(r)|% Af

B A? Re[ exp(—iAt/2)expli T)] =A,vo|P(r;)|? Then from a system of the equations simi-
2mNe? iT | lar to Eq.(14) we obtain the following solutiofagain for the

(22) 2D case, wheny§(z) = 6(1/2—|z))):

expl — A t/4)exp wt)

(23

i
=523 er“’ A,

27Nw

Note that this equation has the same form as #6), i.e., an anisotropy plays the role of a Zeeman field. Then for the
contribution from the branch cuthe decaying part of the initial spin statee have

o+ (AJ2)— (A212A,) + 7N(A%IA2)iw In( 1-

) exp —iAt/4) (1 dkk exp(i 7x)
a = 1
mNo o[kIn(—1+1k)+(kl7Ne)+1— 1o’ + 72k?

(24)

whereo=AZ/A7, and 7 is defined now as=A,t/27N. In  close to 1(again with small IN corrections, i.e., (S,(t))

the case of strong anisotropy<1, we have, at>1, =1/2—|a|? is close to—1/2 at any time. The width of the
1 1 20 resonance is-A/\N, i..e., smal! compared to the .initial gap
(5(t))==—|al?=— _< 1— _) A/2. We note that this behavior represents perigéeabi
2 2 7N oscillations with a single well-defined frequency and is not
2o [exp—iAp2)exp(in) related to decoherendglhe latter is described by the branch
-— Re{ d ] :
7N i
2
(25) <Jo(t)| > 12

The same result follows for the polarized state from &.
in the perturbative approach.

C. Some features of the fully polarized state

There are several interesting features which we can ob:
serve for the fully polarized state. In an external Zeeman
field, the effective gap seen by the electron spinAig2 1/2
=A/2+¢€,. Thus, whene, is made negative this gap de-
creases and even vanishes|@f =A/2. From Eq.(16) we
find that the two poles are symmetric in this case, and the
system resonates between the two frequencies
=+iA(Sx5(2)d2)Y% J87N. Note that the residual gap is of

order A/\/N (and notA/N, as one might naively expéct A/2 e
Near this Zeeman field we haver(t)|?>=cos(w,t) (up to z
small corrections of order W), and, as a resultx|? aver- FIG. 5. The dependence p#|? averaged over time({a(t)|2))

aged over time is 1/2, i.e., the up and down states of then the external Zeeman fielg for a fully polarized nuclear state.
electron spin are strongly coupled via the nuctsie Fig. 5. The resonance occurs |at| = A/2, and the width of the resonance
In contrast, outside this resonance regime the valledfis  is ~A/\/N, which is much smaller than the initial gayp/2.
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cut contributiona which remains smallorder 1N) even A. Homogeneous coupling

near the resonandeThis abrupt change in the amplitude of  |n this subsection we consider the case of homogeneous

oscillations of(S,(t)) (when changing, in a narrow inter-  coupling, when all the coupling constants are equal, Ag.,

val aroundA/2) can be used for an experimental detection of=A/N. It is instructive to start with it, since in contrast to

the fully polarized state. Note that the weight of the uppemaive expectations even in this simple case there is some

pole alone(i.e., that which exists at,=0) also drops time dependence dfS,(t)) which cannot be described by a

abruptly from a value close to 1 to a value much smaller tharsingle frequency. On the other hand, in this case the expec-

1 in the same narrow interval, which can be experimentallytation value(S,(t)) is a periodic function and, for that rea-

checked by a Fourier analysis. son, the electron spin dynamics is coherent though the cor-
Another special value of the Zeeman field corresponds teesponding period can be very large for laigésee below.

the case when the upper pole is closedg (k=1)—the  The Hamiltonian is very simpled=(A/N)I-S, wherel is

upper edge of the E)ranch cut. This ochseez Eq(l6]at e total nuclear spin. Then, we can diagonafizand obtain
the critical value e;=bA/2<0, where b=x{(0)fdzIn[1 e results

—X&(2/x3(0)|<—1 is a nonuniversal number which depends
on the dot shape. Since at a finite Zeeman field the asymp- I
totics int is determined by's close to 1, we see from Eq. Ei=5g for J;=1+1/2,

(17) that for e~ €, the asymptotics changes abruptly. Indeed, 2N
for [(e,—€})/A1><1, we find ax1/\7, for 1<7<[(e, A(l+1)
—€e))/A]72, and ax1/7°? for r>[(e,—€})/A]~2. Thus, TN for J,=1-1/2. (27)

when approaching the critical Zeeman fielfdthere is aslow
downof the asymptotics from 32 to 1/72. Itis interesting  In the simplest case of a fully polarized nuclear state and
that this slow down is related to a strong modulation of theopposite initial electron spin polarizatigwith ¥, given in
density of stategDOS) of the excitations within the con- Eq. (11)] we obtain the following result:

tinuum band(branch cut near its edge whee,— € . In the

subspace of none or one nuclear spin flippeee Eq(12)], 1
the DOSv becomes (S/(t))=— 57

(N+1)2(l—COSQN/2t), (28)

1 d where Qy,»,=A(1+ 1/N)/2. This result can be easily under-
v(u)=—1Im| Go(u)+ d—ln D(u)|, (26) stood, since for the homogeneous couplligs conserved
m u and the initial nuclear state corresponds to the maximal value
I=N/2. Then from Eq(27) we obtain for the difference of
whereu=iw, Gg(u)==,1/(u+A,/2) is the “unperturbed E; andE; corresponding td=N/2 the value which is equal
Green’s function,” andD(u) is the denominator ofr(w), to Q- Note that the magnitude of the oscillating term is
see EQ.(15).2° The derivation of Eq(26) is given in the 1/N for N>1, as already observed in Sec. Ill.
Appendix. One can then show that fef— € (i.e., the upper In the case when initially one nuclear spin is flipped, the
pole approaches the continuum efjghe DOS develops a exact ket has the form
square root singularityy(u)«1/\Jwg—u. Simultaneously,

Tizvleéght of the upper pole vanishes linearlydnas e, ‘I’l(t)IEK ad O T T LT )

Finally, the nuclear state is characterized@yt), which
allows for similar evaluation as far. Here we just note that +2 da O LTl ) (29)
its branch cut par{B,(t), is nonmonotonic in time, particu- k>1

larly pronounced at,— €} : First,Bk(t? grows Iikg\/;, untl 504 the normalization  condition s Syay(t)|?
7 reaches~1/(1—a,)>1, and then it decays like [l{(1 +3,21|dg(t)[2=1, with initial conditiond,,(0)=0. From

—&y)], with a=A,/A;—1. Thus, By is maximal forA,  the solution of the Scfiinger equation we obtain, for
close toA,, i.e., the nuclei near the dot center are affected<sz(t)>,

most by the hyperfine interaction with the electron spin.

1 2(N-2)
t)y=—-+———(1—cosQyp_1t
IV. DEPENDENCE OF THE ELECTRON SPIN (S="3 (N—1)2( -1
DECOHERENCE ON THE INITIAL NUCLEAR STATE
i 2|a(0)|?| (N-2)
So far we have assumed that the initial nuclear state had - N 2(1—cosQN,2_1t)
the form of a single tensor product state. Now we study the (N-1)
dependence of the electron spin decoherence on the initial 2(N—1
nuclear state and start with the simple case of homogeneous _ ¥ —
¢ (1—cosQppt) |, (30
coupling. (N+1)?
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whereQ ;- 1=A(1—1/N)/2 is the frequency corresponding the time scale for the onset of the decay is alwayN/A

to the solutionE;—E, of Eq. (27) with I=N/2—1, and independent of the phases of the coefficiamts
a(0)=Z,a(0). Now, incontrast to the fully polarized case = The exactket of the system fot>0 has the form

there are oscillating terms with two frequencies involved.

This is because the initial nuclear state corresponds, to

=N/2—1. This value ofl, can be realized with=N/2 and \I’(t)ZEK a1 LT )+ BOILTTT ),
[=N/2—1. Note that folN>1 the amplitude of the oscillat- (31)

ing term corresponding tb=N/2 is smaller by factor M

than the amplitude of the oscillating term corresponding tovhere the first term at=0 represents the initial state of the

I =N/2—1. This is a general rule which can be checked forsystem. The normalization condition % e(t)|*+|B(t)|?

an arbitrary initial state with,=n. This state is constructed =1, andB(t=0)=0. The dependence on the initial nuclear
mostly from the state withi=n and the contributions of all state comes from a different realization of the coefficients
other | values are small foN>1. The expectation value ax(0). If, for example, we have,(0)= J,, then the initial
(S,(1)), Eq. (30), is periodic with periodT=47N/A. The nuclear state consists of a single product state. On the other
initial condition enters Eq(30) through the quantityx(0) hand, the entanglement of the initial nuclear state can be of a
=3, (0). We caneasily check that in the case of the ho- different kind, depending on whether the coefficieaig0)
mogeneous Coup“ng there is 0n|y a weak dependence on tﬁ@ve random phases or correlated phases. From the system of
type of the initial nuclear state. For example, the case€quations similar to Eq:14) we obtain

a(0)= 6y, @(0)=1 (which is a single tensor product state

and a randomly correlate@ntangledl state when the coeffi-  _itAa @

cientsa,(0) have random phases, so that0)|< /N, cor- pH=e Jrﬁexp(wt)ﬂ(w), (32
respond to the same solutid,(t)) for N>1, as is easily
seen from Eq(30).

The solution for the initial nuclear state with a larger Ig(w):'_ ! Ar(0)

number of flipped spins can be obtained similarly. For ex- : 2000 K lot+Af2
ample, whenpghe inpitial state corresponds to tv)v/o flipped Iw+A/2_Z Al o+ Ail2)

nuclear spins, the solution fdiS,(t)) contains oscillating (33
terms with three frequencie€)y,, Qnpo1, and Qyps. ) ) ) )
These frequencies are the solutions of H87) for |  Here againA=X,A, and the integration contour is the

=N/2,N/2—1, andN/2— 2. Moreover, the initial conditions same as in Eq(16); see Fig. 3. The quantit{S,(t)) we are
(the information about the initial nuclear stateow enter interested in is given by the equation

<Sz(t)>2 in a more complicated way besides the quantity

a(0)|* which we observed for the case with one flipped A 1

|spin, |since it contains also the quanty|a,(0)|2. Again, (SA1)= E—|ﬂ(t)|2. (34)
depending on the type of the correlations between the coef-

ficientsay (0) we can have different dynamics of the electronAs it was already mentioned above, H3) contains the
spin. However, the dependence on the type of the initialnformation about the initial nuclear state through the coef-
nuclear state is again rather weak. ficients o (0). Note that the denominator of the first factor
in the solution forB(w) [see Eq(33)] is exactly the same as
that in a(w) [EqQ. (15)] if we put in the lattere,=0. Thus,
Eqg. (33) contains partially the same singularities @éw).

Up to now we have only considered the decoherence ofhere are, however, some additional singularities whose
the electron spin caused by inhomogeneous coupling for gharacter depends on the properties of the coefficients
given initial nuclear state which had the form of a single ¢,(0).
tensor product state. Here we consider a more general initial (1) Let us consider the casg(0)= 8,,. This means that
nuclear state which can be entangled, i.e., containthe the initial nuclear state is just a simple tensor product state.
herent superposition of the single tensor product statesThen besides the branch cut and the first order pmléside
Sraq|T), where the sum goes over the tensor product statege branch citwhich we had before for(w), there is an
|T). This problem was addressed numerically in Ref. 19. Weadditional first order polas=iA,/2 which lies within the
give here the exact analytical solution of a typical problem ofbranch cut. Considering again the continuous lifni., re-
this kind which consists of a very simple initial nuclear stateplacing the sum by an integral and using E8).] we obtain
but still contains the relevant physics. In particular, we can
examine the dependence of the electron spin decoherence e ItAA 4o ot A,

(and the corresponding time scalemn the type of initial Bn(t)—4—7ﬂjrje (0t AT2)

state. As an example of the initial electron and nuclear state

which we can treat exactly we choose the following one: All 1

but one nucleus are polarized in thdirection, and the elec- X
tron spin is in the up state. We will see that the results are the

same for all cases, namely, for this particular nuclear state

B. Inhomogeneous coupling

. (39

iAx5(2)
27Nw

1+ WNJ dzln( 1-
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We have evaluated E@35) in the 2D case with the model in due to the nonuniform hyperfine couplindg. This be-

function Xé(z) introduced in Sec. Il A and found havior changes dramatically when we average over nuclear
configurations2?! For that purpose we consider high tem-
X 1 dxe*” peratureskgT>% wy, and averag€,(t) in Eq. (4) over all
Bn(7)=e A= Pf nuclear configurations, i.€(t)==,C,(t)/=,. We then find
7N 0 X(Xg—X)[ 72+ In?(Lix—1)]
In(1/xo— 1)€'*o C(t)=, _—Aiftdt ftdt 1T a{ﬁ t,—t } (37)
_ ginNrHir2_ 0 1 (36) ()= ~ g )0t dtl] co 5 (L=t .

Xol 2+ In?(1ixg—1)]
For 7<1, we getII,.cos@t/2)=exg —NC(AY27N)?],
wherexo=A,/A;<1, andP means the principle value of whereC= 7 [dzyj(z)/4. Thus, the averaged spin correlator

the integral. Sincgg(7) is of order 1N, it follows from Eq. ¢ (t) [Eq. (37)] is of order— [“N'dxd(x), with ® being the

(34) that the decaying part of the electron spin state has NOW,ror function. ThusC(t) gro?/vs without bound ast for
a smallness~1/N?. This is simply due to the fact that ini-

. : . i wyt>1 (the conditionT<<1 can still be satisfied Conse-
tially the electron has the same spin orientation as all th

. . ; uently, the perturbative approach breaks down even in lead-
nuclei except one, and the flip-flop process is only allowe(? Y P PP

with this particular nucleus. However, the time scale for the!N9 order inV _(we repall thatthhoqt averaging the diver-
nces occur in all higher but not in lowest ondélfo treat

onset of the decoherence is the same as before, i.e., it startst | d turbati h F
7>1 and the asymptotic dependence of E2f) at >1 is IS case properly, We need a honperturbalive approach. -or

1/In 7, the same as before, see Sec. Il A. that purpose we calculate now the correld@dt) exactly by

(2) Let us now consider the case when(0)=1/yN. tr:?t¥1r?etnhalgtgctl)(te;:1fleld purely classically, i.e., as mum-
This corresponds to the entangled initial nuclear state wherB '

all the terms have the same phases. It is easy to see that the h2
singularity of the second factor in E¢33) (a branch cut C(t)=— ﬁ(l—coshNt), (39)
coincides with that of the first factor. Thus, we obtain that the " 4h%,

decay starts at the same time-1 as it was for the single _ ) e )
tensor product state with the same decay law, i.e.,/In  Wherehy=yhy,+hy, is the nuclear field, witthy, =hg,

(3) Finally, we consider the case when the phases of the-hyy . The value ohy corresponds to a given nuclear con-
coefficientsa,(0) are random. It is obvious that while the figurationn. To make contact with the perturbation procedure
decay law can be different depending on the particulaive used before in the quantum case we go to the regime
choice of the coefficients,(0) (phasey the characteristic hZ, <hZ,, wherehy can be replaced by, in Eq. (39).
time scale for the onset of the decay is always the same, i.eThen we average the resulting expressidnﬁu(/hﬁ,z)(l
N/A. This follows from the fact that the singularity of the —coshy,t) over a Gaussian distribution fdry, i.e., over
first factor in Eq.(33) (a branch cutis exactly the same as of P(hy)xexp(—3h2/2w3). The result becomes proportional to
the s_econd factor. Thist in turn is th_e consequence of the fa:qta'ocdzexp(—zz/Z)(l—Cos(»yz))/zzocfgdx(b(x), where vy
that in the model considered here it is only one nuclear spin-, /,/3. Thus, we see that we obtain exactly the same
which is flipped. Therefore, the characteristic energy changgnctional form as before from E¢37) with the same diver-
which determines the time scale for the onset of the decay igencies in t. This reassures us that the treatment of the
A=AIN. It is also clear that in a more general case, fornyclear field as a classical field is not essential. On the other
example, of an unpolarized nuclear state there is a differertfang, the same Gaussian averaging procedure can now be

energy scale involved which is related to different values ofgpplied to the nonperturbative forfEqg. (38)]. Defining
the magnetic fields corresponding to different configurationsccl(t):fd hyP(hy) Co(t), we obtain

which are present in the initial superposition of the states.

This scale presumably i&/\/N. Then the result can be en- wﬁtz 2%
tirely different. It has actually been observed in Ref. 19 that Ca)=—5|1H| 3 ~1je VDL (39

there is a strong dependence of the characteristic time scale
for the onset of the electron spin decay on the type of théThus we get rapidGaussiah decay of the correlator for

initial nuclear spin state. > wyt, giving the dephasing timey *= \N/A. This means
that (S,(1)S,) saturates at 1/3 of its initial value of 1/4. Fi-
V. AVERAGING OVER NUCLEAR CONFIGURATIONS. nally, it seems likely that for the case of nuclear quantum
DEPHASING TIME FOR AN ENSEMBLE OF DOTS spins a nonperturbative treatment of the averaged correlator

C(t) will lead to a similar rapid time decay as found for the
In Secs. Il and Il we have seen that the decayCq(t) classical case in Eq39).

occurs in the time intervalN/A<t<N?/A, with N/A
=10 % s in GaAs dots. On the other hand, the electron spin
precesses in the net nuclear figsde Eq(5)] with the char-
acteristic period If,), '=wy'=10"8-10"°s. Thus, wy! In conclusion, we have studied the spin decoherence of an
<N/A, and we see that the electron spin undergoes manglectron confined to a single quantum dot in the presence of
precessions in a given nuclear field before decoherence sdtgperfine interaction with nuclear spins. The decoherence is

VI. CONCLUSION
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due to a nonuniform coupling of the electron spin to nucleiwhere
located at different sites. The decoherence time is given by
AN/A and is of the order of severals for typical GaAs

dots. It is shown that in a weak external Zeeman field the 4 io—Aat A2
perturbative treatment of the electron spin decoherence is k
impossible, in particular, we cannot use the usual formulas . . E A2

[Eq. (1)]. Moreover, the decay of the electron spin correlator Slotéetios w0+ A2’

in time does not have an exponential character, instead it i3, 4;  —i= _a’/4.

given by a power or inverse logarithm law. In the case of a (1) Let us start with the case

stroggg2 Zeeman field the decay has a universal character
«1/t%<, whered is the real space dimensionality of the prob- .~
lem. We have also solved exactly several model problems exq—|Ht)|\If0>=a(t)|\If0>+; BBV, (A7)
which allowed us to investigate the dependence of the elec- . - . _

i L which corresponds to the initial conditiong(t=0)
tron spin decay on the initial state of the nuclear system. We:lﬁ (t=0)=0. Performing the Laplace transform of Eq
have shown that there is a strong difference between th Af) li/ve obtain. '
decoherence time for a single dét\N/A, and the dephasing '

time for an ensemble of dots,\/N/A. <\I'
0

-~ 1 A2
D(@)=iw+A/4—> X

(AB)

Finally, for a treatment of the problem at times longer :
o—

than dephasing time for nuclei, when dipole-dipole interac-
tion between nuclei must be taken into account, see Ref. 2avhere we have used E@AS5) with initial conditions a(t
=0)=1, andB(t=0)=0.
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APPENDIX

lw—

qfk> =—i2k B(w).  (A10)

It follows from Eqgs.(A4) and(A5) and the initial conditions
In this appendix we derive the density of stat®¥0S)  indicated above that
given in Eq.(26). The definition for the DOS is

Bl(a)= - A + |
~ 1 1 ~ K@ :E i ’ 2 i ’ '
(@)= =ImTr——, io=E—ie, e-0. (Al (lo—A'MA+AJ2)"  To—ATA+ A2
()= ImTr=—g (AD (AL1)
We write the trace as follows: Then from Eqs(A10) and(Al1l) we obtain
1 1 AZ
1 V| =—= V) == = K
R :<W° iw—T W°>+Ek <\P" oAl > * < lio- k> WD % (io—A'l4+AJ2)?
(A2) 1
where i —
kK iw—A"l4+A /2

(Vo) =11, .., (A12)
[To=I11.T,0k,T, ..., k=1,...N. (A3) Collecting all the term$Eqs.(A8) and(A12)], we obtain
The Laplace transform of Eq(14), a(w)=/;dtexp

e | (A2)? 1
B . _— . = 2 m| — ,
(—wt)a(t), gives, for general initial conditions, - D(®) ¥ (Ut A2)? = U+A2
~  Aa(@)2+iB(t=0) (A13)
Bi(w)= iZ)—A’/4+A|/2 (A4) whereu=iw. From Eq.(A6) we can easily check that
and 2
d 1 A2
. . ip=2(1ry B2 ) (g
~  ia(t=0) L A B (t=0) du D K (U+A/2)2
w)= ~ ~ ~ ’
D(w) 2D(w) 'k Tw—A'l4+AJ2 Thus, from Eq.(A13) we finally obtain Eq(26) of the main

(A5)  text.
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