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Electron spin evolution induced by interaction with nuclei in a quantum dot
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2 Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
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We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine
interaction with nuclei for times smaller than the nuclear spin relaxation time. The decay is caused by the
spatial variation of the electron envelope wave function within the dot, leading to a non-uniform hyperfine
coupling. We show that the usual treatment of the problem based on the Markovian approximation is impos-
sible because the correlation time for the nuclear magnetic field seen by the electron spin is itself determined
by the flip-flop processes. The decay of the electron spin correlation function is not exponential but rather
power~inverse logarithm! law-like. For polarized nuclei we find an exact solution and show that the precession
amplitude and the decay behavior can be tuned by the magnetic field. The decay time is given by\N/A, where
N is the number of nuclei inside the dot andA is a hyperfine constant. The amplitude of precession, reached as
a result of the decay, is finite. We show that there is a striking difference between the decoherence time for a
single dot and the dephasing time for an ensemble of dots.

DOI: 10.1103/PhysRevB.67.195329 PACS number~s!: 73.21.La; 85.35.Be; 76.20.1q; 76.60.Es
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I. INTRODUCTION

The spin dynamics of electrons in semiconducting na
structures has become of central interest in recent yea1,2

The controlled manipulation of a spin, and in particular of
phase, is the primary prerequisite needed for application
conventional computer hardware as well as in quantum
formation processing. It is thus desirable to understand
mechanisms which limit the spin phase coherence of e
trons, in particular in GaAs semiconductors, which ha
been shown3 to exhibit unusually long spin decoheren
timesT2 exceeding 100 ns. Since in GaAs each nucleus
ries spin, the hyperfine interaction between electron
nuclear spins is unavoidable, and it is therefore importan
underdffect on the electron spin dynamics.4 This is particu-
larly so for electrons which are confined to a closed sys
such as a quantum dot with a spin 1/2 ground state, si
besides fundamental interest, these systems are prom
candidates for scalable spin qubits.5 For recent work on spin
relaxation ~characterized byT1 times! in GaAs nanostruc-
tures we refer to Refs. 6–8.

Motivated by this, in the following we investigate the sp
dynamics of a single electron confined to a quantum do
the presence of nuclear spins~see Fig. 1!.9 We treat the case
of unpolarized nuclei perturbatively, while for the fully po
larized case we present an exact solution for the spin dyn
ics and show that the decay is nonexponential and can
strongly influenced by external magnetic fields. We use
term ‘‘decoherence’’ to describe the case with a single d
and the term ‘‘dephasing’’ for an ensemble of dots.10 The
typical fluctuating nuclear magnetic field seen by the el
tron spin via the hyperfine interaction is of the order o11

;A/(ANgmB), with an associated electron precession f
quencyvN.A/AN, whereA is a hyperfine constant,g the
electrong factor,mB the Bohr magneton, andN the number
of nuclei inside the dot. For a typical dot size the electr
wave function covers approximatelyN5105 nuclei, then this
field is of the order of 100 G in a GaAs quantum dot. T
0163-1829/2003/67~19!/195329~11!/$20.00 67 1953
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nuclei in turn interact with each other via dipolar interactio
which does not conserve the total nuclear spin and thus le
to a change of a given nuclear spin configuration within
time Tn2'1024 s, which is just the period of precession of
nuclear spin in the local magnetic field generated by
neighbors. Below we will see that the time scale associa
with a decoherence mechanism due to a nonuniform hy
fine coupling is much shorter thanTn2; therefore the above
mentioned fluctuating nuclear magnetic field is a frozen o

We note that there are two different regimes of intere
depending on the parametervNtc , wheretc is the correla-
tion time of the nuclear magnetic fieldHN(t) seen by the
electron spin via the hyperfine interaction. The simplest c
is the perturbative regimevNtc!1, characterized by dy-
namical narrowing: different random nuclear configuratio
change quickly in time, and, as a result, the spin dynamic
diffusive with a dephasing time.1/(vN

2 tc). This case is
realized, for example, for a system of quantum dots~or shal-
low donors! when the hopping rate 1/tc of the electron be-
tween neighboring dots is high. The problem of electron s
relaxation for the case of electron hopping between shal
donors in GaAs was studied in Ref. 12. Using a perturba
approach, we easily obtain the following formulas for t
longitudinal (T1) and transverse (T2) spin relaxation
times12,13:

1

T1
5

~gmB!2

\2

1

2E2`

1`

dt exp~2 ivzt!Re@^HNx~0!HNx~t!&

1^HNy~0!HNy~t!&#,

1

T2
5

1

2T1
1

~gmB!2

\2

1

2E2`

1`

dt^HNz~0!HNz~t!&, ~1!

wherevz5gmBB/\ is the Larmor spin precession frequen
in the external magnetic fieldB directed along thez axis, and
^•••& means the ensemble average of the fluctuating nuc
magnetic field correlators.~In the limit vztc!1 we obtain
©2003 The American Physical Society29-1
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from the above formulas the well known resultT15T2,
where we took into account the fact that the fluctuat
nuclear field is isotropic.!

A more difficult situation arises whenvNtc@1, which
requires a nonperturbative approach. It is this regime that
will consider in this paper, i.e., the electron is localized in
quantum dot, and the correlation time is due to the inter
nuclear spin dynamics, i.e.,tc5Tn2, giving vNtc5104.
Thus, no usual treatment and no Markov approximation
possible. In particular, the perturbative formulas forT1 ,T2
@see Eqs.~1!# are not applicable here. Next, we need to a
dress the important issue of averaging over different nuc
spin configurations in a single dot. Without internal nucle
spin dynamics, i.e.,Tn2→`, no averaging is indicated
However, each flip-flop process~due to hyperfine interac
tion! creates a different nuclear spin configuration, and
cause of the spatial variation of the hyperfine coupling c
stants inside the dot, this leads to a different random valu
the nuclear field seen by the electron spin and thus to
decoherence. Below we will find that this decoherence
non-exponential, but still we can indicate the characteri
time given by10 (A/\N)21. Since in the system we conside
Tn2@(A/\N)21, and thus still no averaging over the nucle
configurations is indicated~and dipolar interactions will be
neglected henceforth!. To underline the importance of thi
point, we will contrast below the unaveraged correlator w
its average.

II. UNPOLARIZED NUCLEI

We consider a single electron in an orbital ground state
a quantum dot. Its spinS couples to an external magnet
field B and to nuclear spins$I i% via hyperfine contact inter

FIG. 1. ~Color online! A single electron spin localized in a quan
tum dot described by a parabolic confinement potential (x,y plane!.
The electron is assumed to be in the orbital ground state desc
by the envelope wave functionC, and interacts with the nuclea

spins~located atrW i) via a hyperfine interactionAi;uC(rW i)u2 which

varies as a function of positionrW i .
19532
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action, described by the Hamiltonian

Ĥ5gmBS•B1S•hN , hN5(
i

Ai I
i5gmBHN , ~2!

whereHN is the nuclear field. Note that the sum in Eq.~2!
runs over the entire space. The coupling constant with thei th
nucleus,Ai5Av0uC(r i)u2, contains the electron envelop
wave functionC(r i) at the nuclear siter i , and v0 is the
volume of the crystal cell. For simplicity we consider nucle
spin 1/2. Neglecting dipolar interactions between the nuc
we consider some particular nuclear configuration, descri
in the Î z

i eigenbasis asu$I z
i %&, with I z

i 561/2.14,15 Moreover,
we assume an unpolarized configuration with a typical
nuclear magnetic fieldA/(ANgmB), being much less than
A/(gmB) ~fully polarized case!, for the precise definition of
N see below. We study the decay of the electron spin from
initial ( t50) Ŝz eigenstateu⇑&. For this we evaluate the cor
relator

Cn~ t !5^nudŜz~ t !Ŝzun&, ~3!

where ^u•••u& means the diagonal matrix element. He
dŜz(t)5Ŝz(t)2Ŝz , and Ŝz(t)5exp(itĤ)Ŝzexp(2itĤ). This
correlator is proportional tônuŜz(t)2Ŝz(0)un&. Since att
50 the total~electron and nuclear! stateun&5u⇑,$I z

i %& is an

eigenstate ofĤ05ezŜz1ŜzĥNz ~with eigenenergyen , here
ez5gmBBz), we can expand in the perturbationV̂5(1/2)
3(Ŝ1ĥN21Ŝ2ĥN1) ~with Ĥ5Ĥ01V̂). Introducing the
usual time evolution operatorÛ(t)5T̂ exp@2i*0

t dt1V̂(t1)#,

with T̂ being the time-ordering operator, for the correlator w
get ^nuÛ†(t)Ŝz(t)Û(t)Ŝz(0)un&, where the time dependenc
of all operators is due to theĤ0 Hamiltonian. Then we ob-
tain in leading order inV̂,

Cn~ t !5(
k

uVnku2

vnk
2 @cos~vnkt !21#

'
1

@ez1~hz!n#2 (
k

Ak
2

8
$cos@ez1~hz!n1Ak/2#t21%,

~4!

where Vnk5^nuVûk& is the matrix element between initia
state n5⇑,$ . . . ,I z

k521/2, . . .% and intermediate statek
5⇓,$ . . . .,I z

k511/2, . . .%, andvnk5en2ek . We have used

that uVnku25Ak
2,nu1/22 Î z

kun./4, and vnk5ez1(hz)n

1Ak/2, where (hz)n5^nuĥNzun&, and the fact that for the
typical nuclear configuration (hz)n

2.vN
2 @Ak

2 . SinceN@1,
we replace the sums overk ~which run over the entire space!
by integrals, i.e.,(kf k5(*d3r /v0) f (r )1o(1/N). Then we
have

ed
9-2
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ELECTRON SPIN EVOLUTION INDUCED BY . . . PHYSICAL REVIEW B67, 195329 ~2003!
Cn~ t !.2
A2

8pN~ez1~hz!n!2 F I 0

2
2I 1~t!cos@ez1~hz!n#t

1I 2~t!sin@ez1~hz!n#t G , ~5!

where

I 05E
2`

1`

dzx0
4~z!, I 1,2~t!5E

2`

1`

dzx0
4~z!F1,2@tx0

2~z!#,

~6!

and

F1~h!5
sinh

h
1

cosh21

h2
, F2~h!5

sinh

h2
2

cosh

h
.

~7!

HereN5aza
2/v0@1 is the number of nuclei inside the do

andt5At/2pN. Equation~5! was obtained with the use o
the following expression for the electron envelope wa
function:

uC~r,z!u25~1/pa2az!exp~2r2/a2!x0
2~z!. ~8!

Herea andaz are the dot sizes in the lateral and transve
~perpendicular to the two-dimensional plane! directions,
respectively, and the transverse wave functionx0(z) is nor-
malized, i.e.,*2`

1`dzx0
2(z)51. Note that thez coordinate

here and further is dimensionless in units ofaz . For any
analytic function x0

2(z) with expansion x0
2(z)5x0

2(0)
2z2(x0

2)9/2 near its maximum, we haveI 1,2(t@1)
56@x0

2(0)/t3/2#Ap/(x0
2)9„sin@tx0

2(0)#7cos@tx0
2(0)#…. Thus,

for this case we obtain the universalpower law decayfor
timest@1, i.e., t@(A/N)21:

Cn~t@1!.2g1
g̃

t3/2
sin~ h̃nt2f!,

h̃n5ez1~hz!n1A0/2. ~9!

HereA0 is the coupling constant with the nucleus located
the center of the dot; andf is a phase shift withf;1. The
following estimates hold for the values ofg, g̃:

g.g̃.
A2

N~ez1~hz!n!2
. ~10!

Note that for the typical nuclear configuration the quant
A2/N(hz)n

2 is of order unity; thus, for a weak Zeeman fie
ez,vN , the part of the electron spin state which decays is
the order of the initial value. Hence, the same holds for
spin part which survives att@1 ~i.e., g.g̃.1/2, for ez
,vN). We see from Eqs.~9! and~10! that in the presence o
a large Zeeman field,ez@vN , the asymptotic behavior o
19532
e

e

t

f
e

Cn(t) is not changed, the only difference being that the d
caying part of the initial spin state is small now, i.e.,g.g̃
.(vN /ez)

2!1.
We note thatCn(t) in Eq. ~4! is quasiperiodic int, and,

thus, it will decay only up to the Poincare´ recurrence time
tP . This time can be found from the condition that the term
omitted when converting sums to integrals become com
rable with the integral itself. This will happen att.N, giv-
ing tP50.1–1 s.

In next order,V̂4, we face the problem of secular terms
‘‘resonances,’’ i.e., the corrections will contain zero denom
nators. This gives rise to linearly growing terms}vNt, even
for t!(A/N)21. In higher order the degree of the divergen
will increase. This means that the decay law we found can
principle, change after proper resummation, because
small expansion parameter exists, which, strictly speak
would justify a perturbative approach. Still, the result fou
in lowest order remains qualitatively correct in that it sho
that a non-uniform hyperfine coupling leads to a nonex
nential decay of the spin. This conclusion is confirmed by
exactly solvable case to which we turn next.

III. POLARIZED NUCLEI. EXACTLY SOLVABLE CASE

In this section we consider the exactly solvable ca
where the initial nuclear spin configuration is fully polarize
~see Fig. 2!. We also allow for a magnetic field but neglect i
effect on the nuclear spins. With the initial wave function

C05u⇓;↑,↑,↑, . . . & ~11!

we can construct theexactwave function of the system fo
t.0,

C~ t !5a~ t !C01(
k

bk~ t !u⇑;↑,↑,↓k ,↑, . . . &, ~12!

with normalizationua(t)u21(kubk(t)u251, and we assume
that a(t501)51,a(t,0)50. The second term in Eq.~12!

FIG. 2. ~Color online! The same situation as in Fig. 1 but wit
fully polarized nuclear spins.
9-3
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ALEXANDER KHAETSKII, DANIEL LOSS, AND LEONID GLAZMAN PHYSICAL REVIEW B 67, 195329 ~2003!
is a coherent superposition of the states with exactly
nuclear spin flipped, and thus similar to a magnon excitat
The correlatorC0 is expressed througha(t) by the formula

C0~ t !52^C0udŜz~ t !ŜzuC0&5@12ua~ t !u2#/2. ~13!

Then, insertingC(t) into the Schro¨dinger equation, we ob
tain

i
da~ t !

dt
52

1

4
Aa~ t !1(

k

Ak

2
bk~ t !2

eza~ t !

2
,

i
db l~ t !

dt
5S A

4
2

Al

2 Db l~ t !1
Al

2
a~ t !1

ezb l~ t !

2
, ~14!

where A5(kAk . Laplace transforming Eq.~14!, a(ṽ)
5*0

`dt exp(2ṽt)a(t), we obtain

a~ṽ!5
ia~ t501!

iv1A8/22(
k

Ak
2/4~ iv1Ak/2!

, ~15!

where iv5 i ṽ2A8/4, A85A12ez , and we have used th
fact thatbk(t50)50. Now we use the identity(kAk

2/4(iv
1Ak/2)5A/22 iv(kAk/2(iv1Ak/2) and replace the sum
(k@Ak /( iv1Ak/2)# over thexy plane by an integral. Calcu
lating it usinguC(r k)u2 given in Eq.~8! we obtain:

a~ t !5
1

2p i EG

dv i exp@~v2 iA8/4!t#

iv1ez1pNivE dz lnS 12
iAx0

2~z!

2pNv D .

~16!

As usual, the integration contourG in Eq. ~16! is the vertical
line in the complexv plane so that all singularities of th
integrand lie to its left~see Fig. 3!. These singularities are
two branch points (v50,v05 iAx0

2(0)/2pN[ iA0/2), and
first order poles which lie on the imaginary axis (v5 iv).
For ez.0 there is one pole, while forez,0 there are two
poles, and forez50 there is one first order pole atv1

' iA/21 iA*dzx0
4(z)/4pN. For the contribution from the

branch cut betweenv50 andv5v0 we obtain

ã~ t !5
e2 iA8t/4

pN E
0

1

dk2z0kei t8kH FkE dz lnU12
x0

2~z!

x0
2~0!k

U
1k/pN22ez /Ax0

2~0!G 2

1~2pz0!2k2J 21

, ~17!

where t85tx0
2(0), and z05z0(k) is defined through

x0
2(z0)5x0

2(0)k. We have introduced the dimensionle
variablek5v/v0<1. In terms of this new variable the a
gument of the log function in Eq.~16! has the form 1
19532
e
.

2x0
2(z)/kx0

2(0). Therefore, for a givenk this expression
changes the sign atz0(k) which can be found from the equa
tion given above.

Thus, the physical picture can be described as follows
the initial timet50 the system has some energy correspo
ing to the pole and starts to oscillate back and forth, e
time visiting different frequencies within the branch c
which corresponds to the flip-flop processes with the nu
located at different sites. Therefore, the contribution from
branch cut describes the electron spin decoherence. Att of
the order of unity~where the decay mainly occurs! the deco-
herence is due to the interaction with the nuclei located
distances of the order of the dot radius where the deriva
of the coupling constant is maximal. For longer times,t
@1, the asymptotics is determined either by the interact
with the nuclei located far from the dot or near the dot cen
depending on the Zeeman field value.

First we consider the caseez50, i.e., no magnetic field.
The asymptotic behavior of Eq.~17! for t@1 is determined
by k!1. For example, forx0

2(z)/x0
2(0)5exp(2z2) we find

ã}1/ln3/2t. ~18!

This behavior is not universal and is determined by the fo
of the electron wave function at distances that are large c
pared to the dot size, since at larget the decoherence is du
to the interaction with the nuclei located far from the do
~We recall that att of the order of unity the decoherence
due to the interaction with the nuclei located at distances
the order of the dot radius where the derivative of the c
pling constant is maximal.! The disturbance of the nuclea
spins propagates from the center of the dot outwards, or,
can say that a nuclear spin diffusion induced by the hyper
interaction occurs in that region.

FIG. 3. The integration contourG in Eq. ~16!, enclosing poles
and the branch cut.
9-4
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ELECTRON SPIN EVOLUTION INDUCED BY . . . PHYSICAL REVIEW B67, 195329 ~2003!
Thus, the decay ofua(t)u starts att.1, i.e., att.N/A,
as in the unpolarized case~see Fig. 4!. Note that the magni-
tude of ã is of order of 1/N ~also see Ref. 16!; thus, the
decaying part of the initial spin state has this smallness
well, in contrast to the unpolarized case above where
part is of order one. The reason for this smallness is that
a fully polarized state the gap seen by the electron s
through the hyperfine interaction isA/2; therefore, only a
small portion ;1/N of the opposite (11/2) state can be
admixed. Indeed, in this case the change of the energy o
electron subsystem is;A/N which can be compensated b
the energy~order ofA/N) of a magnon excited in the nuclea
subsystem.

For a large Zeeman field (uezu@A) and fort@1, the main
contribution in Eq.~17! is given fork→1, i.e. by the inter-
action with the nuclei located near the dot center. Expand
x0

2(z) for small z ~see above!, we obtain z0
252x0

2(0)(1
2k)/(x0

2)9. Then from Eq.~17! we have, foruezu@A,

ã~t@1!5
2ei t82 iA8t/4

4ApN

x0
2~0!

A~x0
2!9

A2

ez
2

~11 i !

t3/2
. ~19!

The correlation function is related toa(t) through Eq.~13!.
We recall that besides the branch cut contributionã(t) which
is a decaying function of the time the quantitya contains

FIG. 4. ~Color online! Schematic dependence of^Sz(t)& on time
t for the unpolarized tensor product and for fully polarized nucl
states. The time scale for the onset of the decay;N/A is the same
for both cases. In the fully polarized case the magnitude of
effect is 1/N. The period of the oscillations is of the order ofAN/A
for the unpolarized case and;1/A for the polarized case.
19532
s
is
or
in

he

g

also the pole contribution which is a periodic function
time. As a result, a square modulus of the pole contribut
determines the quantityC0(`) and the asymptotic behavio
of the correlator is given by the term which is the cro
product of the pole contribution and the one~Eq. ~19!! from
the branch cut, i.e.,C0(t)2C0(`)}ã. We find then that
C0(t)2C0(`)}1/t3/2 which agrees with the perturbative re
sult ~5! for the fully polarized state.@For the fully polarized
nuclear state Eqs.~5! and~9! should be multiplied by 2, and
(hz)n should be replaced byA/2.# This agreement is to be
expected, since for a large Zeeman field, the perturba
treatment with a small parameterA/uezu!1 is meaningful
~the same is true for any model with a small expansion
rameter, for example, for a system with anisotropy, where
hyperfine constants in perpendicular and transverse di
tions are different; see Sec. III B!. However, at zero Zeema
field, when the system cannot be treated perturbatively,
find C0(t)2C0(`)}1/ln3/2t, and the agreement with Eq.~5!
breaks down. Nevertheless, the characteristic time scale
the onset of the non-exponential decay is the same for
cases and given by (A/N)21. We have also checked tha

^Ŝx(t)2Ŝx(0)& has the same behavior as^Ŝz(t)2Ŝz(0)&
with the same characteristic time—N/A. Finally we mention
that the observed decay of the electron spin can be exp
mentally studied by local NMR measurements.17

A. Fully polarized nuclei. 2D case

Here we consider the two-dimensional~2D! case when
there is no variation of the coupling constants in one dir
tion, i.e., we use the model representationx0

2(z)5u(1/2
2uzu). This case allows us to follow the dependence of
electron spin decay law on the spatial variation of the el
tron wave function in different directions. From Eq.~16! we
obtain the following singularities: two branch points (v
50,v05 iA/2pN) and the first order poles which lie on th
imaginary axis (v5 iv). The position of these poles can b
found from the equation

expS 2
1

pNDexpS 2ezj

A D512j;j5A/2pNv. ~20!

For positiveez there is only one solution of this equation; fo
negativeez there are two. Thus, atez50 there is one first
order pole at

v15
iA

2pN

1

@12exp~21/pN!#
.

For the contribution from the branch cut betweenv50 and
v5v0 we obtain

r

e

ã~ t !5
exp~2 iA8t/4!

pN E
0

1 dkk exp~ i tk!

@k ln~2111/k!1~k/pN!2~2ez /A!#21p2k2
. ~21!
9-5
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Let us consider first the case of zero Zeeman field. Then
have a(t.0)5exp(2iAt/4)exp(v1t)/„pN@exp(1/pN)21#…

1ã(t). The asymptotic behavior of Eq.~21! at ez50 and for
t@1 is 1/lnt. In the case of a strong Zeeman field,uezu
@A, it follows from Eq.~21! that the asymptotics att@1 is
1/t. Note, that this asymptotics is true in the interval 1!t
!exp(2uezu/A). Then we obtain

^Ŝz~ t !&5
1

2
2uau252

1

2 F12
A2

2pNez
2G

2
A2

2pNez
2

ReH exp~2 iA8t/2!exp~ i t!

i t J .

~22!
o
a

-

th

f

th

19532
eThe change of the asymptotics occurs even atuezu!A. If 1
!t/ ln t!A/uezu, then the asymptotics is as before, i.e. 1/lnt.
For t/ ln t@A/uezu@1 it is 1/(t ln2t).

B. Anisotropy in the exactly solvable model

We consider here the model where the hyperfine const
in thez-direction and in the transverse direction are differe
~there is no Zeeman field!: Ai

z5Azv0uC(r i)u2, Ai
'

5A'v0uC(r i)u2. Then from a system of the equations sim
lar to Eq.~14! we obtain the following solution~again for the
2D case, whenx0

2(z)5u(1/22uzu)):
the
a~ t !5
i

2p i EG
dv

exp~2 iAzt/4!exp~vt !

iv1~Az/2!2~A'
2 /2Az!1pN~A'

2 /Az
2!iv lnS 12

iAz

2pNv D . ~23!

Note that this equation has the same form as Eq.~16!, i.e., an anisotropy plays the role of a Zeeman field. Then for
contribution from the branch cut~the decaying part of the initial spin state! we have

ã~ t !5
exp~2 iAzt/4!

pNs E
0

1 dkk exp~ i tk!

@k ln~2111/k!1~k/pNs!1121/s#21p2k2
, ~24!
p

ot
h

.
e

wheres5A'
2 /Az

2 , andt is defined now ast5Azt/2pN. In
the case of strong anisotropy,s!1, we have, att@1,

^Ŝz~ t !&5
1

2
2uau252

1

2 S 12
2s

pND
2

2s

pN
ReH exp~2 iAzt/2!exp~ i t!

i t J .

~25!

The same result follows for the polarized state from Eq.~4!
in the perturbative approach.

C. Some features of the fully polarized state

There are several interesting features which we can
serve for the fully polarized state. In an external Zeem
field, the effective gap seen by the electron spin isA8/2
5A/21ez . Thus, whenez is made negative this gap de
creases and even vanishes atuezu5A/2. From Eq.~16! we
find that the two poles are symmetric in this case, and
system resonates between the two frequenciesv6

56 iA(*x0
4(z)dz)1/2/A8pN. Note that the residual gap is o

order A/AN ~and notA/N, as one might naively expect!.
Near this Zeeman field we haveua(t)u25cos2(v1t) ~up to
small corrections of order 1/N), and, as a result,uau2 aver-
aged over time is 1/2, i.e., the up and down states of
electron spin are strongly coupled via the nuclei~see Fig. 5!.
In contrast, outside this resonance regime the value ofuau2 is
b-
n

e

e

close to 1~again with small 1/N corrections!, i.e., ^Ŝz(t)&
51/22uau2 is close to21/2 at any time. The width of the
resonance is;A/AN, i.e., small compared to the initial ga
A/2. We note that this behavior represents periodic~Rabi!
oscillations with a single well-defined frequency and is n
related to decoherence.@The latter is described by the branc

FIG. 5. The dependence ofuau2 averaged over time (^ua(t)u2&)
on the external Zeeman fieldez for a fully polarized nuclear state
The resonance occurs atuezu5A/2, and the width of the resonanc
is ;A/AN, which is much smaller than the initial gapA/2.
9-6
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cut contributionã which remains small~order 1/N) even
near the resonance.# This abrupt change in the amplitude
oscillations of^Ŝz(t)& ~when changingez in a narrow inter-
val aroundA/2) can be used for an experimental detection
the fully polarized state. Note that the weight of the upp
pole alone ~i.e., that which exists atez50) also drops
abruptly from a value close to 1 to a value much smaller th
1 in the same narrow interval, which can be experimenta
checked by a Fourier analysis.

Another special value of the Zeeman field correspond
the case when the upper pole is close tov0 (k51)—the
upper edge of the branch cut. This occurs@see Eq.~16!# at
the critical value ez

!5bA/2,0, where b5x0
2(0)*dz lnu1

2x0
2(z)/x0

2(0)u,21 is a nonuniversal number which depen
on the dot shape. Since at a finite Zeeman field the asy
totics in t is determined byk ’s close to 1, we see from Eq
~17! that fore'ez

! the asymptotics changes abruptly. Indee

for @(ez2ez
!)/A#2!1, we find ã}1/At, for 1!t!@(ez

2ez
!)/A#22, and ã}1/t3/2, for t@@(ez2ez

!)/A#22. Thus,
when approaching the critical Zeeman fieldez

! there is aslow
downof the asymptotics from 1/t3/2 to 1/t1/2. It is interesting
that this slow down is related to a strong modulation of
density of states~DOS! of the excitations within the con
tinuum band~branch cut! near its edge whenez→ez

! . In the
subspace of none or one nuclear spin flipped@see Eq.~12!#,
the DOSn becomes

n~u!5
1

p
ImFG0~u!1

d

du
ln D~u!G , ~26!

where u5 iv, G0(u)5(k1/(u1Ak/2) is the ‘‘unperturbed
Green’s function,’’ andD(u) is the denominator ofa(v),
see Eq.~15!.20 The derivation of Eq.~26! is given in the
Appendix. One can then show that forez→ez

! ~i.e., the upper
pole approaches the continuum edge!, the DOS develops a
square root singularity:n(u)}1/Av02u. Simultaneously,
the weight of the upper pole vanishes linearly inez as ez

!

2ez→0.
Finally, the nuclear state is characterized bybk(t), which

allows for similar evaluation as fora. Here we just note tha
its branch cut part,b̃k(t), is nonmonotonic in time, particu
larly pronounced atez→ez

! : First, b̃k(t) grows likeAt, until
t reaches;1/(12ak)@1, and then it decays like 1/@At(1
2ak)#, with ak5Ak /A0→1. Thus,bk is maximal for Ak
close toA0, i.e., the nuclei near the dot center are affec
most by the hyperfine interaction with the electron spin.

IV. DEPENDENCE OF THE ELECTRON SPIN
DECOHERENCE ON THE INITIAL NUCLEAR STATE

So far we have assumed that the initial nuclear state
the form of a single tensor product state. Now we study
dependence of the electron spin decoherence on the in
nuclear state and start with the simple case of homogen
coupling.
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A. Homogeneous coupling

In this subsection we consider the case of homogene
coupling, when all the coupling constants are equal, i.e.,Ak
5A/N. It is instructive to start with it, since in contrast t
naive expectations even in this simple case there is s
time dependence of̂Sz(t)& which cannot be described by
single frequency. On the other hand, in this case the exp
tation value^Sz(t)& is a periodic function and, for that rea
son, the electron spin dynamics is coherent though the
responding period can be very large for largeN ~see below!.
The Hamiltonian is very simple,Ĥ5(A/N)I•S, whereI is
the total nuclear spin. Then, we can diagonalizeĤ and obtain
the results

E15
AI

2N
for J15I 11/2,

E252
A~ I 11!

2N
for J25I 21/2. ~27!

In the simplest case of a fully polarized nuclear state a
opposite initial electron spin polarization@with C0 given in
Eq. ~11!# we obtain the following result:

^Sz~ t !&52
1

2
1

2N

~N11!2
~12cosVN/2t !, ~28!

whereVN/25A(111/N)/2. This result can be easily unde
stood, since for the homogeneous couplingI 2 is conserved
and the initial nuclear state corresponds to the maximal va
I 5N/2. Then from Eq.~27! we obtain for the difference o
E1 andE2 corresponding toI 5N/2 the value which is equa
to VN/2 . Note that the magnitude of the oscillating term
1/N for N@1, as already observed in Sec. III.

In the case when initially one nuclear spin is flipped, t
exact ket has the form

C1~ t !5(
k

ak~ t !u⇓;↑,↑,↓k ,↑, . . . &

1(
k. l

dkl~ t !u⇑;↑,↑,↓k ,↑,↓ l , . . . &, ~29!

and the normalization condition is (kuak(t)u2
1(k. l udkl(t)u251, with initial condition dkl(0)50. From
the solution of the Schro¨dinger equation we obtain, fo
^Sz(t)&,

^Sz~ t !&52
1

2
1

2~N22!

~N21!2
~12cosVN/221t !

2
2ua~0!u2

N F ~N22!

~N21!2
~12cosVN/221t !

2
2~N21!

~N11!2
~12cosVN/2t !G , ~30!
9-7
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whereVN/2215A(121/N)/2 is the frequency correspondin
to the solutionE12E2 of Eq. ~27! with I 5N/221, and
a(0)5(kak(0). Now, incontrast to the fully polarized cas
there are oscillating terms with two frequencies involve
This is because the initial nuclear state corresponds tI z
5N/221. This value ofI z can be realized withI 5N/2 and
I 5N/221. Note that forN@1 the amplitude of the oscillat
ing term corresponding toI 5N/2 is smaller by factor 1/N
than the amplitude of the oscillating term corresponding
I 5N/221. This is a general rule which can be checked
an arbitrary initial state withI z5n. This state is constructe
mostly from the state withI 5n and the contributions of al
other I values are small forN@1. The expectation value
^Sz(t)&, Eq. ~30!, is periodic with periodT54pN/A. The
initial condition enters Eq.~30! through the quantitya(0)
5(kak(0). We caneasily check that in the case of the h
mogeneous coupling there is only a weak dependence on
type of the initial nuclear state. For example, the ca
ak(0)5dkn ,a(0)51 ~which is a single tensor product stat!
and a randomly correlated~entangled! state when the coeffi
cientsak(0) have random phases, so thatua(0)u!AN, cor-
respond to the same solution^Sz(t)& for N@1, as is easily
seen from Eq.~30!.

The solution for the initial nuclear state with a larg
number of flipped spins can be obtained similarly. For e
ample, when the initial state corresponds to two flipp
nuclear spins, the solution for̂Sz(t)& contains oscillating
terms with three frequencies,VN/2 ,VN/221, and VN/222.
These frequencies are the solutions of Eq.~27! for I
5N/2,N/221, andN/222. Moreover, the initial conditions
~the information about the initial nuclear state! now enter
^Sz(t)& in a more complicated way besides the quan
ua(0)u2 which we observed for the case with one flipp
spin, since it contains also the quantity(kuak(0)u2. Again,
depending on the type of the correlations between the c
ficientsak(0) we can have different dynamics of the electr
spin. However, the dependence on the type of the in
nuclear state is again rather weak.

B. Inhomogeneous coupling

Up to now we have only considered the decoherence
the electron spin caused by inhomogeneous coupling fo
given initial nuclear state which had the form of a sing
tensor product state. Here we consider a more general in
nuclear state which can be entangled, i.e., contains theco-
herent superposition of the single tensor product sta
(TaTuT&, where the sum goes over the tensor product st
uT&. This problem was addressed numerically in Ref. 19.
give here the exact analytical solution of a typical problem
this kind which consists of a very simple initial nuclear sta
but still contains the relevant physics. In particular, we c
examine the dependence of the electron spin decoher
~and the corresponding time scales! on the type of initial
state. As an example of the initial electron and nuclear s
which we can treat exactly we choose the following one:
but one nucleus are polarized in thez direction, and the elec
tron spin is in the up state. We will see that the results are
same for all cases, namely, for this particular nuclear s
19532
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the time scale for the onset of the decay is always;N/A
independent of the phases of the coefficientsaT .

The exactket of the system fort.0 has the form

C~ t !5(
k

ak~ t !u⇑;↑,↑,↓k ,↑, . . . &1b~ t !u⇓;↑,↑,↑, . . . &,

~31!

where the first term att50 represents the initial state of th
system. The normalization condition is(kuak(t)u21ub(t)u2
51, andb(t50)50. The dependence on the initial nucle
state comes from a different realization of the coefficie
ak(0). If, for example, we haveak(0)5dkn , then the initial
nuclear state consists of a single product state. On the o
hand, the entanglement of the initial nuclear state can be
different kind, depending on whether the coefficientsak(0)
have random phases or correlated phases. From the syste
equations similar to Eq.~14! we obtain

b~ t !5e2 i tA/4E
G

dv

2p i
exp~vt !b~v!, ~32!

b~v!5
i

2

1

iv1A/22(
i

Ai
2/4~ iv1Ai /2!

(
k

Akak~0!

iv1Ak/2
.

~33!

Here againA5(kAk and the integration contourG is the
same as in Eq.~16!; see Fig. 3. The quantitŷŜz(t)& we are
interested in is given by the equation

^Ŝz~ t !&5
1

2
2ub~ t !u2. ~34!

As it was already mentioned above, Eq.~33! contains the
information about the initial nuclear state through the co
ficientsak(0). Note that the denominator of the first facto
in the solution forb(v) @see Eq.~33!# is exactly the same a
that in a(v) @Eq. ~15!# if we put in the latterez50. Thus,
Eq. ~33! contains partially the same singularities asa(v).
There are, however, some additional singularities wh
character depends on the properties of the coefficie
ak(0).

~1! Let us consider the caseak(0)5dkn . This means that
the initial nuclear state is just a simple tensor product st
Then besides the branch cut and the first order pole~outside
the branch cut! which we had before fora(v), there is an
additional first order polev5 iAn/2 which lies within the
branch cut. Considering again the continuous limit@i.e., re-
placing the sum by an integral and using Eq.~8!# we obtain

bn~ t !5
e2 i tA/4

4p i E
G

dv

v
evt

An

~ iv1An/2!

3
1

F11pNE dz lnS 12
iAx0

2~z!

2pNv D G . ~35!
9-8
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We have evaluated Eq.~35! in the 2D case with the mode
function x0

2(z) introduced in Sec. III A and found

bn~t!5e2 i tA/4
x0

pN F PE
0

1 dxeixt

x~x02x!@p21 ln2~1/x21!#

2eipNt1 i t/22
ln~1/x021!eix0t

x0@p21 ln2~1/x021!#
G , ~36!

where x05An /A0,1, andP means the principle value o
the integral. Sincebn(t) is of order 1/N, it follows from Eq.
~34! that the decaying part of the electron spin state has n
a smallness;1/N2. This is simply due to the fact that ini
tially the electron has the same spin orientation as all
nuclei except one, and the flip-flop process is only allow
with this particular nucleus. However, the time scale for
onset of the decoherence is the same as before, i.e., it sta
t.1 and the asymptotic dependence of Eq.~34! at t@1 is
1/lnt, the same as before, see Sec. III A.

~2! Let us now consider the case whenak(0)51/AN.
This corresponds to the entangled initial nuclear state wh
all the terms have the same phases. It is easy to see tha
singularity of the second factor in Eq.~33! ~a branch cut!
coincides with that of the first factor. Thus, we obtain that
decay starts at the same timet.1 as it was for the single
tensor product state with the same decay law, i.e., 1/lnt.

~3! Finally, we consider the case when the phases of
coefficientsak(0) are random. It is obvious that while th
decay law can be different depending on the particu
choice of the coefficientsak(0) ~phases!, the characteristic
time scale for the onset of the decay is always the same,
N/A. This follows from the fact that the singularity of th
first factor in Eq.~33! ~a branch cut! is exactly the same as o
the second factor. This in turn is the consequence of the
that in the model considered here it is only one nuclear s
which is flipped. Therefore, the characteristic energy cha
which determines the time scale for the onset of the deca
Ak.A/N. It is also clear that in a more general case,
example, of an unpolarized nuclear state there is a diffe
energy scale involved which is related to different values
the magnetic fields corresponding to different configuratio
which are present in the initial superposition of the stat
This scale presumably isA/AN. Then the result can be en
tirely different. It has actually been observed in Ref. 19 t
there is a strong dependence of the characteristic time s
for the onset of the electron spin decay on the type of
initial nuclear spin state.

V. AVERAGING OVER NUCLEAR CONFIGURATIONS.
DEPHASING TIME FOR AN ENSEMBLE OF DOTS

In Secs. II and III we have seen that the decay ofCn(t)
occurs in the time intervalN/A!t!N2/A, with N/A
.1026 s in GaAs dots. On the other hand, the electron s
precesses in the net nuclear field@see Eq.~5!# with the char-
acteristic period (hz)n

21.vN
21.1028–1029 s. Thus, vN

21

!N/A, and we see that the electron spin undergoes m
precessions in a given nuclear field before decoherence
19532
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in due to the nonuniform hyperfine couplingsAk . This be-
havior changes dramatically when we average over nuc
configurations.10,21 For that purpose we consider high tem
peratures,kBT@\vN , and averageCn(t) in Eq. ~4! over all
nuclear configurations, i.e.C(t)5(nCn(t)/(n . We then find

C~ t !5(
k

2Ak
2

8 E
0

t

dt1E
0

t

dt2)
iÞk

cosFAi

2
~ t12t2!G . ~37!

For t!1, we get ) iÞkcos(Ait/2)5exp@2NC(At/2pN)2#,
whereC5p*dzx0

4(z)/4. Thus, the averaged spin correlat
C(t) @Eq. ~37!# is of order2*0

vNtdxF(x), with F being the
error function. Thus,C(t) grows without bound asvNt for
vNt@1 ~the conditiont!1 can still be satisfied!. Conse-
quently, the perturbative approach breaks down even in le
ing order in V̂ ~we recall thatwithout averaging the diver-
gences occur in all higher but not in lowest order!. To treat
this case properly, we need a nonperturbative approach.
that purpose we calculate now the correlatorC(t) exactly by
treating the nuclear field purely classically, i.e., as ac num-
ber. Then we obtain

Cn~ t !52
hN'

2

4hN
2 ~12coshNt !, ~38!

wherehN5AhNz
2 1hN'

2 is the nuclear field, withhN'
2 5hNx

2

1hNy
2 . The value ofhN corresponds to a given nuclear co

figurationn. To make contact with the perturbation procedu
we used before in the quantum case we go to the reg
hN'

2 !hNz
2 , wherehN can be replaced byhNz in Eq. ~38!.

Then we average the resulting expression (hN'
2 /hNz

2 )(1
2coshNzt) over a Gaussian distribution forhN , i.e., over
P(hN)}exp(23hN

2/2vN
2 ). The result becomes proportional t

*0
1`dzexp(2z2/2)(12cos(gz))/z2}*0

gdxF(x), where g
5vNt/A3. Thus, we see that we obtain exactly the sa
functional form as before from Eq.~37! with the same diver-
gencies in t. This reassures us that the treatment of
nuclear field as a classical field is not essential. On the o
hand, the same Gaussian averaging procedure can no
applied to the nonperturbative form@Eq. ~38!#. Defining
Ccl(t)5*dhNP(hN)Cn(t), we obtain

Ccl~ t !52
1

6 F11S vN
2 t2

3
21De2vN

2 t2/6G . ~39!

Thus we get rapid~Gaussian! decay of the correlator fort
@vN

21 , giving the dephasing timevN
215AN/A. This means

that ^Ŝz(t)Sz& saturates at 1/3 of its initial value of 1/4. F
nally, it seems likely that for the case of nuclear quantu
spins a nonperturbative treatment of the averaged corre
C(t) will lead to a similar rapid time decay as found for th
classical case in Eq.~39!.

VI. CONCLUSION

In conclusion, we have studied the spin decoherence o
electron confined to a single quantum dot in the presenc
hyperfine interaction with nuclear spins. The decoherenc
9-9
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due to a nonuniform coupling of the electron spin to nuc
located at different sites. The decoherence time is given
\N/A and is of the order of severalms for typical GaAs
dots. It is shown that in a weak external Zeeman field
perturbative treatment of the electron spin decoherenc
impossible, in particular, we cannot use the usual formu
@Eq. ~1!#. Moreover, the decay of the electron spin correla
in time does not have an exponential character, instead
given by a power or inverse logarithm law. In the case o
strong Zeeman field the decay has a universal chara
}1/td/2, whered is the real space dimensionality of the pro
lem. We have also solved exactly several model proble
which allowed us to investigate the dependence of the e
tron spin decay on the initial state of the nuclear system.
have shown that there is a strong difference between
decoherence time for a single dot,\N/A, and the dephasing
time for an ensemble of dots,\AN/A.

Finally, for a treatment of the problem at times long
than dephasing time for nuclei, when dipole-dipole inter
tion between nuclei must be taken into account, see Ref.
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APPENDIX

In this appendix we derive the density of states~DOS!
given in Eq.~26!. The definition for the DOS is

n~ṽ!5
1

p
Im Tr

1

i ṽ2Ĥ , i ṽ5E2 i e, e→0. ~A1!

We write the trace as follows:

Tr
1

i ṽ2Ĥ 5K C0U 1

i ṽ2ĤUC0L 1(
k

K CkU 1

i ṽ2ĤUCkL ,

~A2!

where

uC0&5u⇓;↑,↑,↑, . . . &,

uCk&5u⇑;↑,↑,↓k ,↑, . . . &, k51, . . . ,N. ~A3!

The Laplace transform of Eq.~14!, a(ṽ)5*0
`dt exp

(2ṽt)a(t), gives, for general initial conditions,

b l~ṽ !5
Ala~ṽ!/21 ib l~ t50!

i ṽ2A8/41Al /2
~A4!

and

a~ṽ!5
ia~ t50!

D~ṽ !
1

i

2D~ṽ !
(

k

Akbk~ t50!

i ṽ2A8/41Ak/2
,

~A5!
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where

D~ṽ !5 i ṽ1A8/42
1

4 (
k

Ak
2

i ṽ2A8/41Ak/2

5 iv1ez1 iv(
k

Ak/2

iv1Ak/2
, ~A6!

and iv5 i ṽ2A8/4.
~1! Let us start with the case

exp~2 i Ĥt !uC0&5a~ t !uC0&1(
k

bk~ t !uCk&, ~A7!

which corresponds to the initial conditionsa(t50)
51,bk(t50)50. Performing the Laplace transform of E
~A7!, we obtain

K C0U 1

i ṽ2ĤUC0L 52 ia~ṽ!51/D~ṽ !, ~A8!

where we have used Eq.~A5! with initial conditions a(t
50)51, andbk(t50)50.

~2! Next we consider the case

exp~2 i Ĥt !uCk&5ak~ t !uC0&1(
k8

bk8
k

~ t !uCk8&, ~A9!

which corresponds to the initial conditionsak(t50)50 and
bk8

k (t50)5dkk8 . Again, performing the Laplace transform
of Eq. ~A9!, we obtain

(
k

K CkU 1

i ṽ2ĤUCkL 52 i(
k

bk
k~ṽ !. ~A10!

It follows from Eqs.~A4! and~A5! and the initial conditions
indicated above that

bk
k~ṽ !5

i

4D

Ak
2

~ i ṽ2A8/41Ak/2!2
1

i

i ṽ2A8/41Ak/2
.

~A11!
Then from Eqs.~A10! and ~A11! we obtain

(
k

K CkU 1

i ṽ2ĤUCkL 5
1

4D (
k

Ak
2

~ i ṽ2A8/41Ak/2!2

1(
k

1

i ṽ2A8/41Ak/2
.

~A12!
Collecting all the terms@Eqs.~A8! and ~A12!#, we obtain

n5
1

p
ImF 1

D~ṽ !
S 11(

k

~Ak/2!2

~u1Ak/2!2D 1(
k

1

u1Ak/2
G ,

~A13!

whereu5 iv. From Eq.~A6! we can easily check that

d

du
ln D5

1

D S 11(
k

~Ak/2!2

~u1Ak/2!2D . ~A14!

Thus, from Eq.~A13! we finally obtain Eq.~26! of the main
text.
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