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Formalization for the study of conductivity in multisubband quantum wells
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The linearized Boltzmann equation is established in the case of multisubband quantum wells where elastic
and inelastic scattering mechanisms act simultaneously and may induce intersubband transitions. A numerical
procedure is proposed to solve this equation even in the case where intersubband transitions are considered.
The multisubband screening is also considered, and approximate expressions for the static dielectric functions
are given.
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I. INTRODUCTION

The experimental possibilities for obtaining large carr
densities within AlGaN/GaN quantum wells due to the spo
taneous polarization and piezoelectric effects render hig
probable that their conductivity results from a multisubba
process. In such a case, the theoretical prediction of low-fi
transport properties becomes difficult since the lineari
Boltzmann equation also includes the contribution of int
band transitions which drastically complicates its numeri
solution. Moreover, the screening effects are determined
all occupied subbands and their description becomes m
more elaborate. The first approaches concerning inter
band transitions and screening effects can be found in Re
and 2 in the case of silicon inversion layers. The role
intersubband coupling and screening on ionized impu
scattering potentials has been developed in Refs. 3 and 4
was also studied using Monte Carlo simulations as in R
5–7. An analytical approach, using trial wave functions
the determination of the quantum well states, was propo
in the case of AlGaN/GaN.8 However, in this last paper, th
first subband only was considered as electronically filled
order to simplify the calculation. The aim of this series
two papers is to determine theoretically the mobility that c
be expected in such quantum wells, including therefore
trinsic scattering mechanisms~impurities, lattice defects, in
terface roughness, etc.! as well as intrinsic mechanisms a
sociated with phonons and carrier-carrier scattering.
doing so, we first establish the linearized Boltzmann eq
tion in the case of a multisubband electronic system sub
ted to a combination of elastic and inelastic scattering po
tials. Then we describe the numerical method we h
developed to solve it and give numerical results showing
interband transitions lead to non-negligible effects on
carrier mobility. In the third part, we formally develop th
multisubband dielectric response and we show how we h
approximately taken into account this formalism for t
evaluation of the scattering matrix potentials used in
present mobility calculation.

II. NUMERICAL SOLUTION OF THE LINEARIZED
BOLTZMANN EQUATION

A. Linearized Boltzmann equation

We consider a two-dimensional electron gas whose s
bands are noted by an indexn and whose energy states a
given by
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En,k5En1
\2k2

2m*
5En1«k . ~2.1!

In Eq. ~2.1! we implicitly make the assumption that eac
subband is characterized by the same effective mass.
kinetic Boltzmann equation is obtained by considering t
in the presence of applied fields the electronic occupa
function f n(r ,k,t) becomes an explicit function of momen
tum, space, and time whose total derivative versus time v
ishes because the total number of particles is conse
along the trajectories of the phase space:

d fn,k

dt
5

] f n,k

]t
1“kf n,k

dk

dt
1“ r f n,k

dr

dt

[
] f n,k

]t
1

1

\
“kf n,k•F1“ r f n,k•vk50. ~2.2!

In the following, for the sake of simplicity, we neither con
sider the application of any magnetic field nor the occurre
of any temperature and carrier concentration gradients@this
last point eliminates the space gradient in Eq.~2.2!#. Sepa-
rating the forces acting on electrons into the applied fo
FA5eE and internal forces due to collision events, we obta

] f n,k

]t
52

1

\
“kf n,k•FA2

1

\
“kf n,k•Fint

[2
1

\
“kf n,k•FA1S ] f n,k

]t D
coll

. ~2.3!

When the stationary state is reached, the explicit variation
f with time vanishes. For weak applied fields, we write

f n~r ,k,t !5 f 0~En,k!1d f n,k . ~2.4!

With such a notation, neglecting second-order terms in fie
Eq. ~2.3! becomes

S ] f n,k

]t D
coll

>
1

\
“kf 0~En,k!•FA[

] f 0~En,k!

]En,k
FA•vn,k .

~2.5!

The collision term is statistically described, using the tran
tion probability Wn,n8(k,k8) per unit time due to collision
events between the variousEn(k) energy states. For a mul
tisubband system it gives
©2003 The American Physical Society24-1
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S ] f n,k

]t D
coll

5 (
n8,k8

@Wn8,n~k8,k! f n8,k8~12 f n,k!

2Wn,n8~k,k8! f n,k~12 f n8,k8!#. ~2.6!

In Eq. ~2.6!, the first term of the right side represents t
effect of transition from ak8 state belonging to subbandn8
toward ak state belonging to subbandn which leads to an
increase of] f n,k /]t, while the second term corresponds to
transition, from a~n, k! state towards any other (n8,k8) state
which leads to a decrease of] f n,k /]t. Both contributions are
obviously weighted by the occupation ratef of the initial
state and non occupation rate (12 f ) of the final state. In-
troducing Eq.~2.4! into Eq. ~2.6!, we obtain at first order
~i.e., neglectingd f 2 terms!

S ] f n,k

]t D
coll

5 (
n8,k8

$Wn8,n~k8,k!@12 f 0~En,k!#

1Wn,n8~k,k8! f 0~En,k!%d f n8k8

2d f n,k (
n8,k8

$Wn8,n~k8,k! f 0~En8,k8!

1Wn,n8~k,k8!@12 f 0~En8,k8!#%. ~2.7!

Let us define the ‘‘quantum lifetime’’

1

t0,n~k!
5 (

n8,k8
Wn8,n~k8,k! f 0~En8,k8!1Wn,n8~k,k8!

3@12 f 0~En8,k8!# ~2.8!

and introduce the notation

Gn,n8~k,k8!5Wn8,n~k8,k!@12 f 0~En,k!#

1Wn,n8~k,k8! f 0~En,k!. ~2.9!

With these definitions and using Eq.~2.5!, we finally obtain
the so-called linearized Boltzmann equation

d f n,k52
] f 0~En,k!

]En,k
~vn,k•FA!t0,n~k!

3S 12 (
n8,k8

Gn,n8~k,k8!
d f n8,k8

] f 0~En,k!

]En,k
~vn,k•FA!D .

~2.10!

Expression~2.10! implies thatd f n,k may also be written in
the form

d f n,k52
] f 0~En,k!

]En,k
~vn,k•FA!tn~k!. ~2.11!

Introducing this form in the right term of expression~2.10!
unambiguously demonstrates that a relaxation timetn(k)
may be defined in any circumstances~anisotropic and inelas
tic scattering mechanisms!:
19532
tn~k!5t0,n~k!S 11 (
n8,k8

Gn,n8~k,k8!

3
f 0~En8,k8!@12 f 0~En8,k8!#~k8•FA!

f 0~En,k!@12 f 0~En,k!#~k•FA!
tn8~k8!D ,

~2.12!

where we have made use of the identity] f 0 /]«
52 f 0(«)@12 f 0(«)#/KT.

The functionsGn,n8(k,k8) depend on the simultaneou
occurrence of different elastic and inelastic scattering mec
nisms. For elastic mechanisms it is obvious th
Wn,n8(k,k8)5Wn8,n(k8,k) @as shown by the Fermi golde
rule expression~2.18!#. If we restrict the derivation to the
case of inelastic scattering processes characterized by
one frequencyv ~optical phonons, for instance!, in the pres-
ence of various elastic~or quasielastic! processes~impurities,
acoustic phonons! characterized by the subscriptb, expres-
sions~2.8! and ~2.9! may be also written in the form

1

t0,n~k!
5 (

n8,k8
Wn8,n

inel
~k8,k! f 0~En8,k8!1Wn,n

inel~k,k8!

3@12 f 0~En8,k8!#1 (
b,n8,k8

Wn,n8
b,elas

~k,k8!

[
1

t0,n
inel~k!

1 (
n8,b,k8

Wn,n8
b,elas

~k,k8! ~2.13!

and

Gn,n8~k,k8!5Wn8,n
inel

~k8,k!@12 f 0~En,k!#

1Wn,n8
inel

~k,k8! f 0~En,k!1(
b

Wn,n
b,elas~k,k8!.

~2.14!

Inserting Eq.~2.14! into Eq.~2.12! and restricting the presen
derivation to the case of isotropic scattering mechanisms
which t(k)5t(k)5t(«k), we obtain

tn~«k!5t0,n
total~«k!F11 (

n8,k8
S Gn,n8

inel
~k,k8!

3
f 0~En8,k8!@12 f 0~En8,k8!#

f 0~En,k!@12 f 0~En,k!#

1(
b

Wn,n8
b,elas

~k,k8!@12dnn8# D cos~u!tn8~«k8!G ,

~2.15!

whereu is the angle betweenk and k8 and where we have
defined

1

t0,n
total~«k!

5
1

t0,n
inel~«k!

1(
b

1

tn
b,elas~«k!

1 (
n8Þn
b,k8

Wn,n8
b,elas

~k,k8!,

~2.16!
4-2



e-
ing

en

b-

orre-

-

FORMALIZATION FOR THE STUDY OF CONDUCTIVITY . . . PHYSICAL REVIEW B67, 195324 ~2003!
with

1

tn
b,elas~«k!

5(
k8

Wn,n
b,elas~k,k8!@12cos~u!#. ~2.17!

Note that expression~2.17! corresponds to the classical r
laxation time defined for elastic and isotropic scatter
mechanisms within a single band.

The various transition probabilities per unit time are giv
by the Fermi golden rule

Wn,n8
6

~k,k8!5
2p

\
u^n,kuV̂~6v!un8,k8&u2

3d~En8,k82En,k6\v!. ~2.18!

The 6 symbols indicate the possibility of emission or a
sorption processes. Introducing the notation̂n,kuV̂
(6v)un8,k8&5Vn,n8

6 (q) with q5k82k, the various
Gn,n8

inel (k,k8) functions may also be written in the form

Gn,n8
inel

~k,k8!5
2p

\
uVn,n8

1
~q!u2$d~En,k2En8,k81\v!@1

2 f 0~En,k!#1d~En8,k82En,k1\v! f 0~En,k!%

1
2p

\
uVn,n8

2
~q!u2$d~En,k2En8,k82\v!@1

2 f 0~En,k!#1d~En8,k82En,k2\v! f 0~En,k!%,

~2.19!
19532
where we have separated the scattering mechanisms c
sponding either to emission~1! or absorption~2! processes.
Inserting Eq.~2.19! into Eq. ~2.15! and replacing the sum
mation over k8 by an integral, we obtain@for a two-
dimensional~2D! system#

tn~«k!5t0,n
total~«k!1(

n8
Mn,n8~«k!tn8~«k2@\v1En82En# !

1(
n8

Pn,n8~«k!tn8~«k1@\v1En2En8# !

1 (
n8Þn

Bn,n8~«k!tn8~«k2En81En!, ~2.20!

with Mn,n8(«k)50 if «k,\v1En82En ; otherwise,

Mn,n8~«k!5tn
total~«k!

m*

2p\3 E
0

2pH uVn,n8
1

~q1!u2

12 f 0~En,k!

1
uVn,n8

2
~q1!u2

f 0~En,k!
J 3¯3 f 0~En,k2\v!

3@12 f 0~En,k2\v!#

3A12
\v1En82En

«k
cosu du, ~2.21a!

with
q15A2k2S 12
\v1En82En

2«k

2A12
\v1En82En

«k

cos~u!D . ~2.21b!

Pn,n8(«k)50 if «k,En82En2\v; otherwise,

Pn,n8~«k!5tn
total~«k!

m*

2p\3 E
0

2pH uVn,n8
1

~q2!u2

f 0~En,k!
1

uVn,n8
2

~q2!u2

12 f 0~En,k!
J 3¯3 f 0~En,k1\v!@12 f 0~En,k1\v!#

3A11
\v1En2En8

«k
cos~u!du, ~2.22a!

with

q25A2k2S 11
\v1En2En8

2«k

2A11
\v1En2En8

«k

cos~u!D ~2.22b!
-

and whereBn,n8(«k)50 if «k,En82En ; otherwise,

Bn,n8~«k!5tn
total~«k!

m*

2p\3 E
0

2p

(
b

uVn,n8
b

~q!u2

3A12
En82En

«k
cosu du, ~2.23a!
with

q5A2k2S 11
En2En8

2«k

2A11
En2En8

«k

cos~u!D .

~2.23b!

The set of equations~2.20! are a extension of the linear
4-3
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ized Boltzmann equation obtained, for instance, in Refs
and 10, but generalized in the case~i! of a multisubband
system and~ii ! where elastic and inelastic scattering cent
act simultaneously. Because of the presence of intersubb
contributions, Eqs.~2.20! do not have any more simple so
lutions, even in a pure numerical form, although the con
bution of such intersubband transitions does not bring
particular difficulty in the calculation oft0,n

total(«k).

B. Numerical solutions

Numerical solutions may, however, be obtained using
following remark: the various matrix elementsVn,n8 corre-
sponding to intersubband transitions are weak when c
pared to matrix elements corresponding to intrasubband t
sitions. Thus, in a first step, approximate solutionstn

(0)(«k)
of Eqs. ~2.20! are calculated, introducing the intersubba
contributions in the calculation oft0,n

total(«k), but neglecting
them in Eq. ~2.20!, which, thus, transforms into a set o
independent equations for each subbandn:

tn
~0!~«k!5t0,n

total~«k!1Mn,n~«n,k!tn
~0!~«k2\v!

1Pn,n~«n,k!tn
~0!~«k1\v!. ~2.24!

Solutions of Eq.~2.24! can been found using different meth
ods ~variational methods,11–14 iteration methods,15 etc.!. In
the following, we use a method similar to that recently us
by Andersonet al.9,10 ~the so-called ladder technique! and
an

d
q

19532
9

s
nd

-
y

e

-
n-

d

which is based on the following remark: Any value of th
kinetic energy may always be written in the form«k5 j \v
1d« ( j 50, 1, 2, 3... being an integer!. Writing

tn
~0!~«k!5tn

~0!~ j \v1d«!5tn, j
~0!~d«! ~2.25!

and introducing similar notation for the functionsM andP,
Eq. ~2.24! gives rise for each subbandn to an infinite set of
linear equations

2M j
n,ntn, j 21

~0! ~d«!1tn, j
~0!~d«!2Pj

n,n~d«!tn, j 11
~0! ~d«!

5t0,n, j
total ~d«!, ~2.26!

with M0
n,n50. Following Refs. 9, 10, and 16, we assume th

at large energies«5N\v01d«, we may approximate
tn

(0)(«)>tn
(0)(«1\v)>tn

(0)(«2\v). This leads to

tn,N
~0! ~d«!>

t0,n,N
total ~d«!

12MN
n,n2pN

n,n . ~2.27!

This also allows the infinite set of linear equations~2.26! to
be truncated forj 5N and to be transformed into a finit
linear set of equations of orderN. It can be put in a matrix
form ~as, the example, given above forN510) that can be
very easily numerically solved for anyd« value even for
large values ofN:
1
1 2p1 0 0 0 0 0 0 0 0

2m2 1 2p2 0 0 0 0 0 0 0

0 2m3 1 2p3 0 0 0 0 0 0

0 0 2m4 1 2p4 0 0 0 0 0

0 0 0 2m5 1 2p5 0 0 0 0

0 0 0 0 2m6 1 2p6 0 0 0

0 0 0 0 0 2m7 1 2p7 0 0

0 0 0 0 0 0 2m8 1 2p8 0

0 0 0 0 0 0 0 2m9 1 2p9

0 0 0 0 0 0 0 0 0 12m102P10

2 31
t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

2 51
t0,1

t0,2

t0,3

t0,4

t0,5

t0,6

t0,7

t0,8

t0,9

t0,10

2 .

~2.28!
f

This procedure requires a very low computation demand
allows the determination of the relaxation timetn

(0)(«k) in
the whole energy range of interest.

Once the zero-order valuestn
(0)(«k) have been determine

in the whole energy range of interest, we come back to E
~2.20! and write
d

s.

tn~«k!5tn
~0!~«k!1dtn~«k!. ~2.29!

Introducing this form into Eqs.~2.20!, it is straightforward to
see that thedtn(«k) are solutions of the following set o
equations:
4-4
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dtn~«k!5gn~«k!1 (
n8Þn

Mn,n8~«n,k!dtn8~«k2@\v1En8

2En# !1 (
n8Þn

Pn,n8~«n,k!dtn8~«k1@\v1En

2En8# !1 (
n8Þn

Bn,n8~«n,k!dtn8~«k1@En2En8# !,

~2.30!

where we have introduced the fully numerically known fun
tions

gn~«k!5 (
n8Þn

Mn,n8~«n,k!tn8
~0!

~«k2@\v1En82En# !

1 (
n8Þn

Pn,n8~«n,k!tn8
~0!

~«k1@\v1En2En8# !

1 (
n8Þn

Bn,n8~«n,k!tn8
~0!

~«k1En2En8!. ~2.31!

Since the functionsMn,n8dtn , Pn,n8dtn , andBn,n8dtn get
very weak values compared to that ofgn , Eq.~2.30! can then
solved by iteration starting from

dtn
~1!~«k!5gn~«k! ~2.32a!

and iteratively calculating

dtn
~J!~«k!5gn~«k!1 (

n8Þn

Mn,n8~«n,k!dtn8
~J21!

~«k2@\v

1En82En# !1 (
n8Þn

Pn,n8~«n,k!dtn8
~J21!

~«k

1@\v1En2En8# !1 (
n8Þn

Bn,n8~«n,k!dtn8
~J21!

3~«k1@En2En8# !. ~2.32b!

Numerical results show that this procedure converges v
quickly. We found that five to ten iterations were sufficient
get the final exact numerical result.

As an example, we have calculated the carrier mobility
the case of an AlGaN/GaN quantum well containing a to
carrier density of 431012 cm22 at 300 K and four subband
whose two first are noticeably occupied by electrons~Table
I!. The various energy states and their associated wave f
tions ~needed for the determination of the transition mat
elements! have been determined using the numerical pro
dure described in the following paper of this series. Figure
and 2, respectively, show the relaxation times associated
the four subbands. Numerical results have been obta
considering a combination of scattering mechanisms ass
ated with phonons~acoustic deformation potential and piez
electric potential, polar optical phonons! combined with ion-
ized impurity scattering (1018 cm23) and dislocations (5
3109 cm22). Figure 1 corresponds to the case where
intersubband transitions are neglected and which leads
19532
-

ry

n
l

c-

-
1
ith
ed
ci-

e
a

mobility equal to 4133 cm2/V s. It exhibits discontinuities at
energy values equal to multiples of the optical phonon
ergy \v. Figure 2 is obtained including intersubband tran
tions, which leads to a mobility equal to 3830 cm2/V s. This
last figure also exhibits supplementary discontinuities occ
ring at energy values corresponding toEn82En6\v. The
difference between the mobility values demonstrates that
tersubband transitions lead to noticeable effects on the
carrier mobility and cannot be neglected in the study of
free carrier mobility in a multiply occupied subband syste

III. MULTISUBBAND 2D DIELECTRIC FUNCTION

A. General expression

The matrix elements needed for the calculation of the c
lision time correspond to the screened potential: sum of
unscreened potential matrix elements~noted by the symbol
‘‘ext’’ ! and of the matrix elements of the potential induc
by the dielectric response of the electronic system~noted by
the symbol ‘‘ind’’!. Thus,

V
n,n8

6v0 ,tot
~q!5V

n,n8

6v0 ,ext
~q!1V

n,n8

6v0 ,ind
~q!. ~3.1!

These matrix elements are calculated between the quan
well wave functions given by

^r un,k&5wn~r !5wn~r,z!5
1

AS
eik•rZn~z!, ~3.2!

FIG. 1. Relaxation time calculated at 300 K for each subband
an AlGaN/GaN triangular quantum well, neglecting intersubba
transitions. The corresponding free carrier mobility taking into a
count acoustic and optical phonon scattering, ionized impurit
and dislocations is found equal to 4133 cm2/V s. CurvesE, G, I, and
K, respectively, represent the relaxation time associated with
bands 1, 2, 3, and 4.

TABLE I. Energy levels calculated at 300 K for an AlGaN/Ga
triangular quantum well of depth 0.7 meV.

Energy level
~meV! 91.66 meV 200.5 meV 386 622

Carrier density
~cm22!

3.8631012 1.431011 1.13108 ;0
4-5
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whereZn(z) is the envelop function associated with subba
n. They are given by

^n,kueVtot~r ,v!un8,k8&

5dk8,k1qE eVtot~q,z,v!Zn* ~z!Zn8~z!dz

5dk8,k1qMn,n8
tot

~q,v! ~3.3!

and similar expressions forMn,n8
ext (q,6v0) and Mn,n8

ind (q,
6v0). The induced potential is connected to the induc
charge through Poisson’s equation

DVind~r ,v!52
nind~r ,v!

«0
→ d2Vind~q,z,v!

dz2

5q2Vind~q,z,v!2
nind~q,z,v!

«0
. ~3.4!

Making use of the Green function technique, the solution
Eq. ~3.4! may be written in the form

Vind~q,z,v!5E
2`

`

G~q,z,z8!nind~q,z8,v!dz8, ~3.5!

where the Green functionG(q,z,z8) is the solution of

d2G~q,z,z8!

dz2 5q2G~q,z,z8!2
d~z2z8!

«0
. ~3.6!

The induced matrix elements are then given by

Mn,n8
ind

~q,6v0!5dk8,k7qE G~q,z,z8!nind~q,z8,

6v0!Zn* ~z!Zn8~z!dz dz8. ~3.7!

The induced charge contribution is calculated using the d
sity operatorr̂05(n,kun,k& f 0(«n,k)^n,ku. When any pertur-
bationeVtot(r,v) is applied to the electronic system, this o

FIG. 2. Relaxation time calculated at 300 K for each subband
an AlGaN/GaN triangular quantum well, including intersubba
transitions. The corresponding free carrier mobility taking into
count acoustic and optical phonon scattering, ionized impurit
and dislocations is found equal to 3830 cm2/V s. CurvesE, G, I, and
K, respectively, represent the relaxation time associated with
bands 1, 2, 3, and 4.
19532
d

d

f

n-

erator experiences a variationdr̂ whose matrix elements
between two electronic states are given by17,18

drn,k,n8,k8

5e
f 0~«n8,k8!2 f 0~«n,k!

«n8,k82«n,k2\v1 i\a
^n,kuVtot~r ,v!un8,k8&,

~3.8!

wherea is an infinitely small positive number accounting fo
the adiabatic switch on of the perturbation. In the Sch¨-
dinger representation, the electron density may be re
sented by the operatorn̂(r )5ed(r 2r e), wherer e stands for
the electron coordinate. The induced charge is given by

nind~r ,v!5Tr$dr̂•n̂~r !%5e (
n,k,n8,k8

drn,k,n8,k8~v!

3^n8,k8ud~r 2r e!un,k&. ~3.9!

Introducing Eq.~3.8! into Eq. ~3.9!, the induced charge is
therefore

nind~q,z,6v0!

5e2 (
m,m8

(
k

f ~«m8,k7q!2 f ~k!

«m8,k7q2«m,k7\v01 i\a

3Mm,m8
tot

~q,6v0!Zm8
* ~z!Zm~z!. ~3.10!

Introducing Eq.~3.10! into Eq. ~3.7!, we straightforwardly
obtain

Mn,n8
ind

~q,6v0!5 (
m,m8

xn,n8
m,m8~q,v0!Mm,m8

tot
~q,6v0!,

with

xn,n8
m,m8~q,v0!

5e2(
k

f ~«m8,k7q!2 f ~«m,k!

«m8,k7q2«m,k7\v1 i\a E G~q,z,z8!

3Zn* ~z!Zn8~z!Zm8
* ~z8!Zm~z8!~z8!dz dz8.

~3.11!

Adding to both sides of Eq.~3.11! the external matrix ele-
mentMn,n8

ext (q,6v0), we obtain

Mn,n8
tot

~q,6v0!5Mn,n8
ext

~q,6v0!1 (
m,m8

xn,n8
m,m8~q,6v0!

3Mn,n8
tot

~q,6v0!, ~3.12!

which may as well be written

(
m,m8

«n,n8
m,m8~q,6v!Mm,m8

tot
~q,6v!5Mn,n8

ext
~q,6v!,

~3.13!

where we have introduced a tensor of dielectric functio
whose components are given by

f

-
s,

b-
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«n,n8
m,m8~q,6v0!5dn,mdn8,m82xn,n8

m,m8~q,6v0!, ~3.14!

with

xn,n8
m,m8~q,6v0!5I n,n8,m,m8~q!zm,m8~q,6v0!, ~3.15!

where

I n,n8,m,m8~q!

5E G~q,z,z8!Zn* ~z!Zn8~z!Zm* ~z8!Zm8~z8!dz dz8

~3.16a!

and

zm,m8~q,6v!5e2(
k

f ~«m8,k7q!2 f ~«m,k!

«m8,k7q2«m,k7\v1 i\a
.

~3.16b!

Expression~3.13! shows that the screened matrix eleme
acting on the conductivity of a given subband are solutio
of a linear set of equations and will therefore depend on
matrix elements of the external~unscreened! potential calcu-
lated between all other subband wave functions.

B. Approximate expressions of the dielectric function tensor

The determination of the various components of the
electric function tensor depends on our capability of estim
ing the I n,n8,m,m8(q) and zm,m8(q,v) functions. The
I n,n8,m,m8(q) function depends on the heterostructure geo
etry and on its bound states wave functions. Let us, for
stance, consider the particular case of AlGaN/GaN quan
wells whose heterostructures are made of a GaN subs
which constitutes quite a semi-infinite medium of relati
permittivity «2 and an AlGaN top layer with a finite thick
nessd and permittivity«1 . In general, the quantum well wil
bind energy states whose wave function will be confined
the GaN region. Thus a good approximation consists in c
sidering that the quantum well is indeed located between
semi-infinite media. Moreover, in this particular AlGaN/Ga
case, the permittivities of the two media are very near so
a ~strongly! simplifying assumption is to put«15«25«L . In
such a case, an appropriate expression for the Green fun
is

G~q,z,z8!5
1

2q«L
e2quz2z8u. ~3.17!

The full determination ofI n,n8,m,m8(q) depends also on th
actual wave functions of the quantum well. These functio
have to be determined using an alternate and iterative s
tion of the Schro¨dinger and Poisson equations. Although th
can be formally done numerically~as shown in paper II in
this series!, such a procedure will lead to lengthy and ine
tricable calculations. Instead, we can make the crude bu
alistic approximation that most of the scattering potenti
are long range and therefore described by Fourier transfo
that are only preeminent for smallq values. Moreover, the
19532
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wave functions are localized and vanish for largez values.
These two combined arguments allow us to approximate

I n,n8,m,m8~q!

5
1

2q«L
E e2quz2z8uZn* ~z!

3Zn8~z!Zm* ~z8!Zm8~z8!dz dz8

>
1

2q«L
E Zn* ~z!Zn8~z!Zm* ~z8!Zm8~z8!dz dz8

5
dn,n8dm,m8

2«Lq
. ~3.18!

Then the above result suppresses the necessity to calc
the zm,m8(q,v) for m different fromm8. Restricting the fol-
lowing derivation to the case of the static dielectric respon
we just have to calculatezm,m(q,0), which in the ‘‘small-q’’
approximation gives

jm,m~q,0!5e2(
k

f ~«m,k7q!2 f ~«m,k!

«m,k7q2«m,k

5e2(
k

S ] f

]« D
m,k

52
m* e2

p\2 f ~«m!. ~3.19!

Thus

«n,n8
m,m8~q,0!5dn,mdn8,m81

ksc,m

q
dn,n8dm,m8 , ~3.20!

where we have introduced a set of screening wave vec
kso,m given by

ksc,m5
m* e2f ~«m!

2p\2«L
. ~3.21!

Introducing Eq.~3.20! into Eq. ~3.12!, we straightforwardly
obtain

Mn,n
tot 5

Mn,n
ext1(m~Mn,n

ext2Mm,m
ext !

ksc,m

q

11
k2D

q

, ~3.22!

where we have definedk2D5(mksc,m .
Note that, within our approximation, intersubband mat

elements remain unscreened. On the contrary, expres
~3.22! shows that the actual potential which acts on the c
rier mobility in one given subband depends on the partici
tion to the full screening of all the occupied subbands.
comparison may be made with the case of 3D homogene
systems where the dielectric tensor would become, in
Debye-Hückel approximation,

«n,n8
m,m8~q,0!5dn,mdn8,m81

kDH,m
2

q2 dn,n8dm,m8 , ~3.23!

with kDH,m
2 5nme2/(«0«LKT). In the case where the conduc

tivity would simultaneously result from electrons in the co
duction band and holes in the valence bands, then,
4-7
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screened scattering matrix elements would be given by
pressions equivalent Eq.~3.22!. However, the external~un-
screened! elements are, in this 3D case, calculated betw
pure plane waves in both the conduction and valence ba
and are therefore identical so that the screened matrix
ments are both identical for all bands and reduce to the u
expression

Mc,c
tot 5M v,v

tot 5
Mext

11
kDH,G

2

q2

, ~3.24!

with kDH,G
2 5(n1p)e2/(«0«LKT). This comparison points

out the fact that, in the case of different 2D subbands, scre
ing effects, as usual, issue from all the electrons presen
the various subbands of the structure, but the apparent c
plexity of the numerators entering Eq.~3.22! results from the
fact that all of them do not have the samez localization since
they belong to different envelope functions.
M

k,

d

19532
x-

n
ds
le-
al

n-
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m-

IV. CONCLUSION

The study of the low-field conductivity in AlGaN/GaN
quantum wells necessitates the possibility of describing
tical phonon scattering combined with other elastic scatter
mechanisms. To solve this problem, numerical techniq
have been developed to find solutions of the linearized B
zmann equation generalized to the case of a multisubb
system. Moreover, we could derive approximate express
of the screened potentials acting on the various occup
subbands of the quantum well. In paper II of this series,
show the application of the present formalism to the study
the mobility versus carrier density in AlGaN/GaN quantu
wells.
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