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Formalization for the study of conductivity in multisubband quantum wells
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The linearized Boltzmann equation is established in the case of multisubband quantum wells where elastic
and inelastic scattering mechanisms act simultaneously and may induce intersubband transitions. A numerical
procedure is proposed to solve this equation even in the case where intersubband transitions are considered.
The multisubband screening is also considered, and approximate expressions for the static dielectric functions

are given.
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I. INTRODUCTION £2Kk2
En,k:En+W:En+8k- (2.1

The experimental possibilities for obtaining large carrier
densities within AlIGaN/GaN quantum wells due to the spon-n Eq. (2.1) we implicitly make the assumption that each
taneous polarization and piezoelectric effects render highlgubband is characterized by the same effective mass. The
probable that their conductivity results from a multisubbandkinetic Boltzmann equation is obtained by considering that
process. In such a case, the theoretical prediction of low-fiel¢h the presence of applied fields the electronic occupation
transport properties becomes difficult since the linearizedunction f,(r,k,t) becomes an explicit function of momen-
Boltzmann equation also includes the contribution of inter-tum, space, and time whose total derivative versus time van-

band transitions which drastically complicates its numericalshes because the total number of particles is conserved
solution. Moreover, the screening effects are determined b&long the trajectories of the phase space:

all occupied subbands and their description becomes much

more elaborate. The first approaches concerning intersub- dfp e dfn dk dr
band transitions and screening effects can be found in Refs. 1 dtv = T +kan,ka +Vrfn,ka
and 2 in the case of silicon inversion layers. The role of

intersubband coupling and screening on ionized impurity af ok

scattering potentials has been developed in Refs. 3 and 4 and
was also studied using Monte Carlo simulations as in Ref.
5-7. An analytical approach, using trial wave functions forin the following, for the sake of simplicity, we neither con-
the determination of the quantum well states, was proposesider the application of any magnetic field nor the occurrence
in the case of AIGaN/GaR However, in this last paper, the of any temperature and carrier concentration gradifthis

first subband only was considered as electronically filled inast point eliminates the space gradient in E2j2)]. Sepa-
order to simplify the calculation. The aim of this series of (ating the forces acting on electrons into the applied force

two papers is to determine theoretically the mobility that cang — o and internal forces due to collision events, we obtain
be expected in such quantum wells, including therefore ex-

trinsic scattering mechanisnfsnpurities, lattice defects, in- ok 1 1

terface roughness, etas well as intrinsic mechanisms as- (9—t’= - %kan,,( Fa— %kan,k- Fint

sociated with phonons and carrier-carrier scattering. For

doing so, we first establish the linearized Boltzmann equa- -

tion in the case of a multisubband electronic system submit- =— %kan'k- FA+( (?t’ ) . (2.3
ted to a combination of elastic and inelastic scattering poten- coll

tials. Then we describe the numerical method we havgype the stationary state is reached, the explicit variation of
developed to solve it and give numerical results showing thaf |« time vanishes. For weak applied fields, we write
interband transitions lead to non-negligible effects on the ' '

carrier mobility. In the third part, we formally develop the fa(r,K,t)=Fo(Ep )+ 8 k- (2.9
multisubband dielectric response and we show how we have me oL, m

approximately taken into account this formalism for the With such a notation, neglecting second-order terms in fields,
evaluation of the scattering matrix potentials used in theEg. (2.3) becomes

present mobility calculation.

1
T-F%kan,k":"‘vrfn,k'vk:o' (2'2)

ok _ . )
1. NUMERICAL SOLUTION OF THE LINEARIZED Jt = gvk O(En,k) ' FA: —ﬁEn . FA'Vn,k-
BOLTZMANN EQUATION coll , (2 5)

A. Linearized Boltzmann equation The collision term is statistically described, using the transi-

We consider a two-dimensional electron gas whose sultion probability W, - (k,k") per unit time due to collision
bands are noted by an indexand whose energy states are events between the variols, (k) energy states. For a mul-
given by tisubband system it gives
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Ik
( e ) = 2 [Wor oK K f o (1= o) (k) =1on(K)| 1+ 2 Gpp(k,K')
coll n’k’ n’ k'
~Won (KK fe(1=Fh k)] (2.6 fo(Enr k) [1—Fo(Enr k) I(K"-Fp) (K
Tnt y
In Eq. (2.6), the first term of the right side represents the fo(En[1—fo(Eni](k-Fa) "
effect of transition from &’ state belonging to subbanmd (2.12

toward ak state belonging to subbamdwhich leads to an

increase obf,, /dt, while the second term corresponds to awhere we have made use of the identityfy/de
transition, from an, k) state towards any othen(,k’) state = —fo(e)[1—fo(e) J/KT.

which leads to a decrease @ff,  /t. Both contributions are ~ The functionsG, ,/(k,k") depend on the simultaneous
obviously weighted by the occupation rateof the initial ~ occurrence of different elastic and inelastic scattering mecha-
state and non occupation rate<{f) of the final state. In- nhisms. For elastic mechanisms it is obvious that
troducing Eq.(2.4) into Eq. (2.6), we obtain at first order Wy n/(K,K") =W, 1(k',K) [as shown by the Fermi golden

(i.e., neglectingsf? termg rule expression2.18]. If we restrict the derivation to the
case of inelastic scattering processes characterized by only
i one frequencyw (optical phonons, for instangen the pres-
( s ) = E {Whr n(K" K)[1—fo(Eq )] ence of various elastior quasielasticprocesseémpurities,
coll n".K’ acoustic phononscharacterized by the subscript expres-
+ Wi e (K, K ) Fo(En i)} 8Fricr sions(2.8) and(2.9) may be also written in the form
1 . )
= 0fn 2 {Warn(K K fo(Enr i) — o= 2 Wl (KL K)o B ) +WiSk k)
kyt ron(K) i

FWop (kK[ To(Epr o) T} (27 (LB )]s S WAk

n,n’

Let us define the “quantum lifetime” B.n" k'
1
1 = e+ > WAk K) (2.13
0 > Worn(K' K Fo( Eqr i) + Wi i (kK" on(k) G
O,n n/ kr
' and
X[1—fo(Epr )] (2.9

G (KK )=W" (k' K)[1—fo(E
and introduce the notation (KK =Wy y(KLIOTL = Fo(En )]

G (KK )= Wi o(K' K)[ 1= fo(Eq )] +W;?,i'/<k,k'>fo<En,k>+§ WH STk, K').
+ Wi o (KK Fo(Ep k) (2.9 (2.14
With these definitions and using E.5), we finally obtain  Inserting Eq(2.14) into Eq.(2.12 and restricting the present
the so-called linearized Boltzmann equation derivation to the case of isotropic scattering mechanisms for

which (k)= 7(K) = 7(&,), we obtain
dfo(Enk)

5fn,k:_ (Vn,k‘FA)TO,n(k)

FI= () =758 )| 1+ E (G‘r:i',(k,k'>
x[ 1= G, ,.(kk) O e .
T TR T gt o(En ) e Fa) ' xfo(En,’k,)[l—fo(En,’kr)]
JEn, KA fo(Eni)[1—fo(En]
(2.10
+ 2 WEERTK KL= 8y ] | COS 0) 7y (210 |,

. . . . . n,n
Expression(2.10 implies thatsf,, , may also be written in B ’
the form (2.19

dfo(Enk) where 6 is the angle betweek andk’ and where we have
ofh k=~ OB, (Vn k- Fa) Tn(i).- (21D efined

Introducing this form in the right term of expressi¢2 10 1 1 > 1 S wEe K
unambiguously demonstrates that a relaxation timek) @) e F Pey G A ).
may be defined in any circumstandesisotropic and inelas- ' ' B.K/
tic scattering mechanisms (2.1

195324-2
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with

1

e i ZWBe'aikk)[l cog6)]. (2.17
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where we have separated the scattering mechanisms corre-
sponding either to emissidi-) or absorption(—) processes.
Inserting Eq.(2.19 into Eq. (2.15 and replacing the sum-
mation over k’ by an integral, we obtair{ffor a two-
dimensional(2D) systenj

Note that expressiof2.17) corresponds to the classical re-
laxation time defined for elastic and isotropic scattering

mechanisms within a single band. (&)= Ttotal(sk)+2 M (e) Th(ex—[ho+E,—E,])
The various transition probabilities per unit time are given
by the Fermi golden rule
. +>, P (g) T (8 +[Fiw+ En—Ep])
Wi (kik) === [(n K V(= w)|n’ k)2 "
n,n’ .
X S(En o —Enythio). (218 + 2 B (e 7 (e B+ En), (2.20

n’#n

The = symbols indicate the possibility of emission or ab-

sorption  processes. Introducing  the notation,k|v ~ With MM () =0 if ex<fiw+Ey —E,; otherwise,
(fw)|n’ k')y= Vn (@) with g=k’'—k, the various
Gre °/(k,k") functions may also be written in the form MY (&) = 798 ) m* f2"| YAICHIE
W in AR 2 mh3 1—fo(Eng
G (kiK' )——|vnn (@[ S(En—En o +hiw)[1 V(G
f(E—)J X fo(En—fro)
fo(Enid 1+ 8(Ens i — Engct ) fo(En i} ok
- X[1=fo(Enk—Tfiow)]
+7|V;nf(q)|2{5(En,k n ok —ho)[l

- fO( En,k)] + 5(En’,k’ -

Enk— hw)fO(En,k)}i

ho+ En/ - En
X 1—8—0080d0, (2.21a
k

(2.19 with
|
ﬁw-i-En/—En hw-i—En/—En
aq=\/ 2k?| 1— -\/1- cog ) |. (2.21b
28k Ek
P""(g,)=0 if e,<E, —E,~fiw; otherwise,
m* (2= |VJr CHIE ANk
n,n’ _ total n,n n,n B
P (e =T (e1) 53 JO [ B TIofoEg] <X T Bt o)1= To(Enyct )]
ha)+En_Enr
X \/1+ ——————cog §)de, (2.223
k
with
ha)+En_Enr hw-i—E Enr
a,=\/ 2k?| 1+ —\/1+ cog 6) (2.22b
28k €k
|
and whereB™" (g,) =0 if e, <E, —E,; otherwise, with
Br‘l,n'(s ):Ttotal(s ) m* 2772 |V'B ( )|2 En_En/ En_Enr
Win WK omas o q a="\/ 2k?| 1+ —\/1+ coqd) |.
28k Ek
E. —En (2.239
X \/1— cosf do, (2.233 ] . )
&k The set of equation&.20 are a extension of the linear-
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ized Boltzmann equation obtained, for instance, in Refs. Qvhich is based on the following remark: Any value of the
and 10, but generalized in the ca¢ of a multisubband kinetic energy may always be written in the foup=jAw
system andii) where elastic and inelastic scattering centers+ de (j=0, 1, 2, 3... being an integeMriting
act simultaneously. Because of the presence of intersubband
contributions, Eqs(2.20 do not have any more simple so- (0) (0 _ (0
lutions, even in a pure numerical form, although the contri- T (e =7 (jho+ de)=1,j(de) (2.2
bution of such intersubband transitions does not bring any 4 introducing similar notation for the functiots and P
particular difficulty in the calculation ofgy (s ). Eq. (2.24 gives rise for each subbammto an infinite set of
linear equations
B. Numerical solutions

Numerical solutions may, however, be obtained using the ~ _ M?‘nfﬂoj)_l(58)+ 7%0;(58)_ P 58)T$10J)+1( S¢)
following remark: the various matrix elements . corre- ’ ‘ ‘
sponding to intersubband transitions are weak when com- =r}§f}ﬂ(5a), (2.26

pared to matrix elements corresponding to intrasubband tran-
sitions. Thus, in a first step, approximate solutieff8(e,) ~ With Mg"=0. Following Refs. 9, 10, and 16, we assume that
of Egs. (2.20 are calculated, introducing the intersubbandat large energiese =Nfiwo+de, we may approximate
contributions in the calculation of§®(e,), but neglecting O(e)= (e +hw)=7" (e —hw). This leads to

them in Eq.(2.20, which, thus, transforms into a set of

independent equations for each subband total (5¢)

T
Tg?@(as)z%. (2.27
(1) = 5% )+ MM (e 70 (£~ Fiw) NP
n,n 0 This also allows the infinite set of linear equatiq2s26) to

TP (e Ty (it ho). (2249 pe truncated foj=N and to be transforrr?ed into a finite
Solutions of Eq(2.24) can been found using different meth- linear set of equations of ord&. It can be put in a matrix
ods (variational method$!~# iteration methods® etc). In  form (as, the example, given above f=10) that can be
the following, we use a method similar to that recently usedvery easily numerically solved for ange value even for

by Andersonet al®? (the so-called ladder techniquand large values oN:

1 -pp O 0 0 0 0 0 0
-m, 1 -p, O 0 0 0 0 0 0 T1 70,1
0 -mg 1 -p; O 0 0 0 0 0 2 702
73 70,3
0 o -mg 1 -ps O 0 0 0 0 T4 Tou
0 0 0 -ms 1 —-ps O 0 0 0 75 Tos
% _ :
0 0 0 0 —-mg 1 -ps O 0 0 Te 70,6
0 0 0 0 0O -m 1 -p; O 0 7 To7
T8 Tos
0 0 0 0 0 0 —-mg 1 —pg 0 - .
9 0.9
0 0 0 0 0 0 0 —-mg 1 —Po 10 70,10
O 0 0 0 0 0 O O 0 1_ mlo_ PlO
(2.28
|
This procedure requires a very low computation demand and Ta(e) = 10(2) + 87n(&)). (2.29

allows the determination of the relaxation timf(e,) in
the whole energy range of interest.

Once the zero-order value§”(¢,) have been determined Introducing this form into Eqg2.20), it is straightforward to
in the whole energy range of interest, we come back to Eqssee that thest,(¢y) are solutions of the following set of

(2.20 and write equations:
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TABLE I. Energy levels calculated at 300 K for an AlGaN/GaN

S1a(8)=0n(g)+ 2 M™ (g4,) 87 (e~ [fiw+Ey triangular quantum well of depth 0.7 meV.
n"#n
Energy level
—En)+ 2 P (en1) 07 (et [w+E, (meV) 91.66 meV 2005 meV 386 622
n’#n

Carrier density ~ 3.86x 102  1.4x10"  1.1x10¢ ~0

, —2
—Ep D+ D B (60 6my (et [En—En]), o)

n'#n

(2.30  mobility equal to 4133 ciiV s. It exhibits discontinuities at
where we have introduced the fully numerically known func-€nergy values equal to multiples of the optical phonon en-
tions ergy fiw. Figure 2 is obtained including intersubband transi-

tions, which leads to a mobility equal to 3830 #s. This
o 0) last figure also exhibits supplementary discontinuities occur-
On(ek) = 2 M (en 1) 7 (8~ [ho+En —Ey]) ring at energy values corresponding Bq — E,+#%w. The
nEn difference between the mobility values demonstrates that in-
o 0) tersubband transitions lead to noticeable effects on the free
+ E P (en ) Ty (ext[ho+En—En]) carrier mobility and cannot be neglected in the study of the
nn free carrier mobility in a multiply occupied subband system.

n,n’ (0) _
+ 2 B"(en 7y (et Ea—En). (230 IIl. MULTISUBBAND 2D DIELECTRIC FUNCTION

n'#n
Since the function™" 57,, P™" 87,,, andB™" 57, get A. General expression
very weak values compared to thatgf, Eq.(2.30 can then The matrix elements needed for the calculation of the col-
solved by iteration starting from lision time correspond to the screened potential:  sum of the
unscreened potential matrix elemeft®ted by the symbol
87 (&) = gn(ek) (2.328  “ext” ) and of the matrix elements of the potential induced

by the dielectric response of the electronic systewted by

and iteratively calculating the symbol “ind”). Thus

580 =Gn(e) + X MM (en10870 V(e [hao Vet () BV 1) R Vi (- R € K )
n'#n ' ' '
These matrix elements are calculated between the quantum
+Ep—Enl)+ X P (en0070 V(e well wave functions given by
n’#n
nn’ (-1 (r|n,k)=@n(r)=@n( z):ieik'ﬂz (2, (3.2
+hw+ En—En,])+n§n B (£4) 670 K=en(=enlp2)= "2 n(2), :
X(8k+[En_En’])- (232@

Numerical results show that this procedure converges very
quickly. We found that five to ten iterations were sufficient to
get the final exact numerical result.

As an example, we have calculated the carrier mobility in
the case of an AlGaN/GaN quantum well containing a total
carrier density of &4 102 cm~? at 300 K and four subbands
whose two first are noticeably occupied by electréfable
I). The various energy states and their associated wave func-
tions (needed for the determination of the transition matrix
elements have been determined using the numerical proce- Y S I AR O WP
dure described in the following paper of this series. Figures 1 0 100 200 300 400 500 600
and 2, respectively, show the relaxation times associated with kinetic energy (meV)
the four subbands. Numerical results have been obtained rig 1. Relaxation time calculated at 300 K for each subband of

considering a combination of scattering mechanisms assocjy, algaN/GaN triangular quantum well, neglecting intersubband

ated with phonongacoustic deformation potential and piezo- ransitions. The corresponding free carrier mobility taking into ac-

electric potential, polar optical phongnzombined with ion-  count acoustic and optical phonon scattering, ionized impurities,
ized impurity scattering (8 cm 3) and dislocations (5 and dislocations is found equal to 4133%¥hs. CurvesE, G, I, and

X 10° cm™~?). Figure 1 corresponds to the case where the, respectively, represent the relaxation time associated with sub-
intersubband transitions are neglected and which leads to l@ands 1, 2, 3, and 4.

relaxation time (second)
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810™ erator experiences a variatiofp whose matrix elements
710 E o — ] between two electronic states are givert’dy
2 10 E = S
6 6107 -t Pnk,n’ k'
f (8 /k/)_f (8 k
=e & (KO, w)|n’ k'),

Snr’kr Snk ﬁw-l—lh

(3.9

wheree is an infinitely small positive number accounting for

the adiabatic switch on of the perturbation. In the Sehro

dinger representation, the electron density may be repre-

sented by the operatdi(r)=eds(r —r¢), wherer, stands for

the electron coordinate. The induced charge is given by
FIG. 2. Relaxation time calculated at 300 K for each subband of

an AlGaN/GaN triangular quantum well, including intersubband ind _ Ao —

transitions. The corregspond?ng free carrier mobilitygtaking into ac- () =Tr{5p-A(r)}=e 2 OPnicn o (@)

count acoustic and optical phonon scattering, ionized impurities,

and dislocations is found equal to 3830%¥hs. CurvesE, G, |, and X{n" kK'[8(r—=r¢)[n,k). (3.9

K, respectively, represent the relaxation time associated with suh- : . : .
bands 1, 2, 3, and 4. liﬂter;)e(ig;:éng Eq.(3.8) into Eq. (3.9), the induced charge is

0:..||I|||<||..|||...|I|..|:
0 100 200 300 400 500 600
kinetic energy (meV)

n,k,n’ k'

whereZ,(z) is the envelop function associated with subband
n. They are given by

f(emr kzq)— f(K
(n,kleV°(r,w)|n" k") A (emr kxq) — F(K)

mm’ K Em kg~ Emk+hwotifia

=Sk kit q f eV(a,2,0)Z}(2)Zy(2)dz XM (0,2 00) 25 (2)Zn(2).  (3.10

n"(q,z,* wo)

33 Introducing Eq.(3.10 into Eq. (3.7), we straightforwardly

- 5k’ k+q (q w) obtain

and similar expressions follvln (0, T wp) and M'r:“f1 (g,

*wg). The induced potential is connected to the induced '”d (0, F wg) = 2 Xn s (q wO)Mmm (0, * wg),
charge through Poisson’s equation

ind 2y/ind with
AV, )= - L) GVHGZ0)
co Xon (6, @o)
|nd
A (9,2,0)
— 2\/ind _ f teg) —f

q?V"d(q,z,0) . (3.9 o (em kzq) — F(emi) f )
£o - zk Em ksq EmkFhotifia G(a.22)

Making use of the Green function technique, the solution of
Eq. (3.4 may be written in the form ><Zﬁ,‘(Z)an(z)Z;,(z’)Zm(z’)(z’)dz dz.

(3.1)
Adding to both sides of Eq(3.11) the external matrix ele-

ext

vi"d(q,z,w)zf G(a,z,2')n"Y(q,z',w)dZ’, (3.5

where the Green functio®(q,z,z") is the solution of mentM,, (0= o), we obtain
2 ’ — ! tt
: G(quYZZ'Z ):qu(q,Z,Z')_ 5(2802 ) (36) : (q,_wo)— n,n’ (q’iw0)+ E Xn n’ (q’+w0)
The induced matrix elements are then given by X M;mn (0, = wo), (3.12

g which may as well be written
M':n (0, = wp) = S k+qJ G(g,z,z")n"Yq,z’,

mm’ o M ot ext
*w)Zi(DZy(2)dzdZ.  (3.7) 2, e (0 )My (9,5 @) =M, (9, £ ),

m,m
The induced charge contribution is calculated using the den- (.13

sity operatorpo= =, ¢|n,k)fo(en ) {n,k|. When any pertur- where we have introduced a tensor of dielectric functions
batione V°(r,w) is applied to the electronic system, this op- whose components are given by

195324-6
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enmt (0, 00) = 8pmOn m — Xp o (0, F o), (3.19
with

Xem (0% 00) =l man (0 Emne (6, = w0g), (3.9
where
In,n’,m,m’(q)
=f G(q,2,2')Z}(2)Z(2)Z3(2' ) Zy (2" )d 2z dZ

(3.163

and

f(em’,kiq)_f(sm,k)
sm/’k;q—sm'kiﬁw-l-iﬁa'

§m,m,<q,rw)=e22k

PHYSICAL REVIEW B67, 195324 (2003

wave functions are localized and vanish for lamyealues.
These two combined arguments allow us to approximate

In,n’,m,m’(q)

= —qlz=2'|7*
zqufe Z:(2)

XZn(2)Z5(2')Z i (2')dz dZ

- 2qe,

Sn.n’ Om,m
= W (3.1&
Then the above result suppresses the necessity to calculate
the {, (0, w) for mdifferent fromm’. Restricting the fol-
lowing derivation to the case of the static dielectric response,
we just have to calculaté;, ,(q,0), which in the “smallg”

Z} (D) Zy (2)Z4(2) Z(2')dZ d2

(316D approximation gives

Expression(3.13 shows that the screened matrix elements
acting on the conductivity of a given subband are solutions
of a linear set of equations and will therefore depend on the
matrix elements of the extern@inscreenedpotential calcu-
lated between all other subband wave functions.

1:(Sm,kiq)_ f(am,k)

E€mkxq~ €mk

§m,m(q,0) = eZZk

m* 2

m’k: - Wf((gm) (319)

af
2
:e JR—
3 (%)
B. Approximate expressions of the dielectric function tensor Thus
The determination of the various components of the di-
electric function tensor depends on our capability of estimat-
ing the I, mm(a) and ¢y m(9,0) functions. The
In,n’,mm(Q) function depends on the heterostructure geomyyhere we have introduced a set of screening wave vectors
etry and on its bound states wave functions. Let us, for iny_ given by
stance, consider the particular case of AlIGaN/GaN quantum™

, k
e (6,0)= 8y O o + % SanOmms»  (3.20

wells whose heterostructures are made of a GaN substrate m* e*f (&)

which constitutes quite a semi-infinite medium of relative sem™— 27h%e, (3.2
permittivity £, and an AlGaN top layer with a finite thick- ) ) )

nessd and permittivitye; . In general, the quantum well will Intrqducmg Eq.(3.20 into Eq. (3.12, we straightforwardly
bind energy states whose wave function will be confined td’Ptain

the GaN region. Thus a good approximation consists in con- K

sidering that the quantum well is indeed located between two ME+3 (ME—ME ) =2
semi-infinite media. Moreover, in this particular AIGaN/GaN Mot = q , (3.22
case, the permittivities of the two media are very near so that ’ 14 kﬂD

a (strongly simplifying assumption is to put;=e,=¢, . In q

such a case, an appropriate expression for the Green functig%ere we have definekhp="3, K
i D™ “m

scm -
IS

Note that, within our approximation, intersubband matrix
elements remain unscreened. On the contrary, expression
(3.22 shows that the actual potential which acts on the car-
rier mobility in one given subband depends on the participa-
tion to the full screening of all the occupied subbands. A

The full determination of , o/, (q) depends also on the . .
actual wave functions of the quantum well. These functions O parison may be made with the case of 3D homogeneous

have to be determined using an alternate and iterative Sol%ysgemii_wl?elre the (_Jllele_ctnc tensor would become, in the
tion of the Schrdinger and Poisson equations. Although this ebye-Hiekel approximation,
can be formally done numericallfas shown in paper Il in , k%H "

this serieg such a procedure will lead to lengthy and inex- snm”:) (0,00=6nm0n' . m' T —2— Snn' Omm’ »
tricable calculations. Instead, we can make the crude but re- q

alistic approximation that most of the scattering potentialswith kzDH'm=nme2/(aosLKT). In the case where the conduc-
are long range and therefore described by Fourier transforntsvity would simultaneously result from electrons in the con-

that are only preeminent for smajl values. Moreover, the duction band and holes in the valence bands, then, the

(3.19

1 )
G(q,z,2')= meiqhiz .

(3.23
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screened scattering matrix elements would be given by ex- IV. CONCLUSION

pressions equivalent E¢3.22. However, the externalun- The study of the low-field conductivity in AIGaN/GaN

screeneflelements are, in this 3D case, calculated betweegantum wells necessitates the possibility of describing op-
pure plane waves in both the conduction and valence bandga| phonon scattering combined with other elastic scattering
and are therefore identical so that the screened matrix elenechanisms' To solve this problem, numerical techniques
ments are both identical for all bands and reduce to the usu@lave been developed to find solutions of the linearized Bolt-
expression zmann equation generalized to the case of a multisubband
system. Moreover, we could derive approximate expressions

t . X ; X
MOt = ptot — M (3.24 of the screened potentials acting on the various occupied
SO Kang ' subbands of the quantum well. In paper Il of this series, we
1+ qz' show the application of the present formalism to the study of

the mobility versus carrier density in AlIGaN/GaN quantum
with kZDHYG:(n‘F p)e?/(eoe KT). This comparison points wells.

out the fact that, in the case of different 2D subbands, screen-

ing effects, as usual, issue from all the electrons present in ACKNOWLEDGMENTS
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