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Electronic coupling in linear arrays of quantum cavities characterized
using conductance fluctuations

Y. Takagaki and K. H. Ploog
Paul-Drude-Institut fu¨r Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
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Quantum fluctuations in the conductance produced by the variation of the Fermi energy or a magnetic field
are analyzed to investigate the electronic coupling in linear arrays of quantum cavities. The magnetic-field-
induced fluctuations exhibit a behavior which implies an incomplete coupling among the quantum cavities.
This forms striking contrast to the nearly complete coupling indicated by the energy-induced fluctuations. We
examine the dependencies of these coupling coefficients estimated from the conductance fluctuations on vari-
ous structural parameters. The contradiction between the two coupling coefficients is attributed to the existence
of a large number of silent orbits which do not interact with the magnetic field. We also explore the conse-
quences of the series addition of the cavities that are manifested in the underlying classical dynamics.
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I. INTRODUCTION

In quantum cavities~QC’s! in the ballistic transport re-
gime, the boundary reflection of a two-dimensional elect
gas ~2DEG! determines the behavior of the electronic co
ductance. Investigations of the transport properties typic
deal with either the mean conductance1–3 or quantum
fluctuations2–8 around the mean value. The semiclassi
path-integral theory1,4,5 and random-matrix theory2,3 pre-
dicted a weak localization effect in the mean conductan1

based on the assumption that the classical trajectories in
cavities obey the statistical characteristics that are expe
for chaotic dynamics. Experiments9,10 and numerical
simulations7,11 confirmed the presence of the effect.

The remarkable success of the theory explaining the
tual experiments tempted us to extend the semiclassica
proach to make predictions for the cases in which the
namics is regular~integrable! or mixed.1,5,12,13 The weak
localization effect was derived to exhibit a distinct magne
conductance around zero magnetic field, which can dis
guish whether the underlying classical dynamics is regula
chaotic.1 However, numerical simulations raised a suspic
about this conclusion.7,11,14The reliability of the extension o
the theory was checked by putting the predictions concern
the quantum fluctuations to the test. The semiclassical the
random matrix theory, and numerical simulations agre
with each other for chaotic dynamics. However, the enhan
ment of the amplitude of the conductance fluctuations~CF’s!
reported in Ref. 7 is a clear demonstration that the stand
theoretical techniques are not applicable if the dynamic
not completely chaotic.11 Nevertheless, although refinemen
of the semiclassical theory15 were necessary to satisfy ‘‘in
ternal consistency,’’16 the theoretical results were succes
fully confronted with experiments so long as chaotic QC
are concerned.

Recently, some investigations have addressed the issu
how the transport properties in a single QC are transform
when a number of QC’s are connected in series. For insta
ElHassanet al.17 experimentally examined the CF’s in a
array of three QC’s, which was defined in a GaAs-~Al,Ga!As
0163-1829/2003/67~19!/195323~7!/$20.00 67 1953
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heterostructure using split-gate techniques. Their analysis
to the conclusion that the coupling among the QC’s w
manipulated by changing the width of the point conta
which connected the QC’s.

In this paper, we numerically investigate the influences
the series connection of QC’s on the statistical properties
the CF’s. We compare the correlations of the CF’s in sin
QC’s and linear arrays. Strikingly different estimates are o
tained for the coupling from the CF’s induced by varying t
Fermi energy or an external magnetic field. We provide
model that explains this behavior in terms of the probabi
distributions of the area that classical trajectories enclos
chaotic cavities and arrays. In the Appendix, we present
influences that the underlying classical dynamics develop
a consequence of the series addition of the cavities.

II. NUMERICAL MODEL

We examine the quantum fluctuations of the conducta
in single cavities and linear arrays. The fluctuations are p
duced by varying either the Fermi energyE of the 2DEG in
QC structures or an external magnetic fieldB, which is ap-
plied normal to the 2DEG. Specifically, we compare the e
ergy and magnetic-field correlations in three QC structure
linear array of three nominally identical QC’s, an individu
single QC of the array, and a single QC having a thrice lar
length. The total cavity area is hence almost identical for
linear array and the long single QC. We numerically test
conjecture that, depending on the strength of the coup
among the QC’s, the CF’s in the array should behave sim
to those in the short single QC~if the coupling is weak! or in
the long single QC~if the coupling is strong!.

The QC structures are simulated using a square lat
with a lattice constanta. The magnetic field is incorporate
in the form of the Peierls phase factor exp@i(e/\)*A•dl#,
whereA is the vector potential. For the linear array, thr
rectangular cavities of identical sizes are connected in se
as illustrated in Fig. 1. An individual QC consists ofNW
lattice sites in the transverse direction andNL lattice sites in
the direction of the series connection. Uniform leads a
constrictions having a width corresponding toNl lattice sites
©2003 The American Physical Society23-1
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are attached, unless stated otherwise, at the cente
the QC’s.

The validity of the semiclassical theory in dealing wi
open systems having regular or mixed dynamics has not b
established.18 This implies that it is necessary to realize ful
chaotic dynamics in QC’s for a meaningful comparison o
numerical study with analytical theories and many of expe
ments. We point out that a large number of previously
ported numerical simulations used model QC’s in which
dynamics was not completely chaotic. Due to the rectang
cavity geometry, the underlying classical dynamics would
regular in the absence of a magnetic field.20 In order to em-
phasize that the results to be presented below are a ge
feature in linear arrays, we enforce fully chaotic classi
dynamics upon individual cavities.21 We realize the chaotic
dynamics in each QC using a short-range bound
disorder.22 A potential disorder is introduced at the bounda
lattice sites, which are indicated by the filled circles in Fig.
The on-site energies are modified bydE assuming a uniform
distribution for dE in a range of2d/2,dE,d/2. The un-
derlying classical dynamics is not altered by the series a
tion of the nearly identical cavities, see the Appendix.

The QC structures are terminated by two leads 1 and
We calculate the fully quantum-mechanical conductanceG
using the Landauer formula

G~E,B!5
2e2

h (
i P1,j P2

ut j i ~E,B!u2. ~1!

The conductance is related to the transmission coefficientt j i
between the modesi in lead 1 and the modesj in lead 2. The
transmission coefficients are calculated using the lat
Green’s-function technique.23 Throughout this paper, we as
sumeNW5100, NL560 (5180 for the long single QC!, and
d5t, where t5\2/2ma2 is the nearest-neighbor hoppin
amplitude in the tight-binding lattice.

III. RESULTS AND DISCUSSION

In Fig. 2, we compare the conductance in the three
structures. Here,E and B are normalized as«5E/t and b

FIG. 1. Schematic of the tight-binding model to simulate a l
ear array consisting of three quantum cavities. Each cavity, whic
referred to as the short single quantum cavity in the text, is of len
(NL11)a and widthW5(NW11)a with a being the lattice con-
stant. The leads are of width (Nl11)a. A potential disorder is in-
troduced at the boundary lattice sites indicated by the filled circ
19532
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5BW2/f0, W5(NW11)a is the width of the QC, andf0
5h/e is the magnetic flux quantum. The three curves in ea
panel correspond to the short single QC, the linear array,
the long single QC from top to bottom, respectively. In term
of the correlation scales of the CF’s, the linear array and
long single QC are similar to each other when the energ
varied, whereas the conductance of the linear array fluctu
rather in the way that of an individual QC does when t
magnetic field is varied. The different degree of the coupl
among the QC’s in the array estimated from the CF’s
duced by the energy and the magnetic field is the cen
finding of the present paper, and we examine below this p
zling behavior in detail.

The conductance fluctuationsdG5G2^G&, where
^•••& denotes ensemble average, in the diffusive transp
regime are typically characterized using the correlation fu
tion CX(DX)5^dG(X)dG(X1DX)&, whereX5E or B.24

The energy and magnetic-field scalesXc of the fluctuations
are defined asCX(Xc)5 1

2 CX(0). One can, in principle,
carry out the same characterization for the CF’s in Fig.
However, various transport effects modulate the mean c
ductance in the ballistic transport regime, making the o
come of this analysis extremely sensitive to the way
background conductance is estimated. To overcome
trouble, Jalabertet al.4 further Fourier-transformed the cor
relation function to eliminate arbitrariness.

We employ here, instead, an alternative simple meth
We have recently reported that the nearest-neighbor spac
between the peaks and dips of the CF’s obey the Wign
Dyson statistics.8 The Wigner-Dyson distribution is antici
pated, at least, in the limit of weak coupling between the Q

is
th

s.

FIG. 2. Conductance of the quantum cavity structures when~a!
the Fermi energy («5E/t) and ~b! a magnetic field (b
5BW2/f0) are varied. In~a! and~b!, b50 and«522.1, respec-
tively. The three curves in each panel correspond to, from top
bottom, a short single quantum cavity, an array of three short qu
tum cavities, and a long single quantum cavity, respectively. Cur
are offset for clarity. The parameters for the short single quan
cavity areNW5100, NL560, Nl58, and d5t. The number of
occupied modesN in the leads is 4.
3-2
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and the leads as peaks and dips in the conductance d
transmission resonance take place when the Fermi en
coincides with the zero-dimensional~0D! levels in the QC. It
is noteworthy that the spacings exhibit a Poisson-like dis
bution when the dynamics is regular.8 The parameters tha
describe the Wigner-Dyson distributions can be used
quantitatively analyze the fluctuations in chaotic QC’s. T
advantage of this method is its practical independence on
subtraction of the background conductance. In Fig. 3,
plot the probabilityPX(DX) of the adjacent peaks and dip
being larger thanDX. We further simplify our analysis by
defining the correlation energy«c and the correlation mag
netic field bc as P«(«c)5Pb(bc)5 1

2 . This definition en-
ables us to determine the correlation scales unambiguo
irrespective of the role of the time-reversal symmetry
PX(DX).8

In Fig. 4~a!, we show«c andbc for the long single QC’s
as a function of the Fermi energy for two lead widthsNl
54 ~filled symbols! and 8~open symbols!. The conductance
fluctuations become wider in both« andb when the Fermi
energy is raised. The dependencies of«c,l and bc,l on the
Fermi energy andNl are notably similar. ElHassanet al.17

estimated the coupling among the QC’s in an array by co
paring the correlation scale in the array with that in a sin
QC. We, therefore, plot in Fig. 4~b! the coupling parameter

gX5
Xc,s2Xc,a

Xc,s2Xc,l
, ~2!

whereXc,a , Xc,s , andXc,l are the correlation scales for th
linear array and the short and long single QC’s, respectiv
The coupling parameters are nearly independent of the F
energy in spite of the energy dependence of«c and bc ,
plausibly because the cavity geometry is unchanged.

We find g«'1, i.e., the energy correlation in an array
almost identical to that in a single QC having an identi
total cavity area. In the diffusive transport regime, the sa

FIG. 3. Probability of the spacing between the adjacent pe
and dips of conductance fluctuations in~a! « ~energy! and ~b! b
~magnetic field! being larger thanD« and Db, respectively. The
probability distributions are constructed from the conductance fl
tuations plotted in Fig. 2. The circles, squares, and triangles co
spond to the linear array and the short and long single quan
cavities, respectively.
19532
to
gy

i-

o
e
he
e

ly

-
e

y.
mi

l
e

behavior has been observed for the magnetic-field-indu
CF’s.25 However, the value of 0.5;0.8 for gb in Fig. 4~b! is
an apparent violation of this naive expectation when
transport is ballistic. The coupling appears to be weaker
wider leads, which we investigate further below. The s
scaling for the energy-induced CF’s and the nonscaling
the magnetic-field-induced CF’s also occur between the s
and long single QC’s. The curves in the bottom part of F
4~b! show «c,l /«c,s and bc,l /bc,s . The energy correlation
yields the expected value of13 , whereas the ratio is only
about 0.23 for the magnetic-field correlation. Therefore,
correlation magnetic field does not correspond to an addi
of a magnetic flux quantum into the cavity area.24 In other
words, the effective cavity area does not scale with the g
metrical cavity area. The energy scale of CF’s is proportio
to DN/2p, whereD is the mean resonance spacing andN is
the number of modes in the leads.3,26As D is in proportion to
the areaSof the QC,«c,l /«c,s5

1
3 is expected, as observed i

the present numerical simulation. The magnetic-field cor
lation scale was estimated to vary withSas}S5/4.27 Accord-
ing to this relation,bc,l /bc,s50.25 is expected, thus explain
ing the numerical result.

The dependencies of the characteristics of the CF’s on
lead width are displayed in Figs. 5~a! and 5~b!. With increas-
ing Nl , «c andbc increase roughly linearly. Fine structure
in the CF’s are smeared for largerNl as the level broadening
resulting from an opening to the external leads is greater
the wider leads. Here again,g« remains nearly unchanged a
;1. Although one may anticipate widening the leads to e
hance the coupling between the cavities,gb , on the contrary,
tends to decrease with increasingNl .

The fluctuations in the conductance of the ballistic QC
are, in principle, associated with the quasi-0D confin
states. In regular QC’s, the CF’s bear an appearance of
sisting of narrow peaks and dips due to transmiss
resonances.8 These sharp features are broadened when

s

-
e-
m

FIG. 4. ~a! Dependencies of the correlation energy«c,l ~circles!
and the correlation magnetic fieldbc,l ~triangles! for the long single
quantum cavities on the Fermi energy«. ~b! Coupling parameters
g« ~circles! and gb ~triangles! for the quantum cavity structures
The bottom four curves show the ratios«c,l /«c,s ~circles! and
bc,l /bc,s ~triangles!. In both ~a! and ~b!, the filled and open sym-
bols correspond toNl54 and 8, respectively.
3-3



b
w

th

in
, t
ne

ob

p
l

vit
er
r-
om
rg

ts
en
th
m
o
-
is

io
a

ilit

e
ting

in

ses

een
e

ons

he
al-

r of

ce

the

s
sh

ns

y
o a

Y. TAKAGAKI AND K. H. PLOOG PHYSICAL REVIEW B 67, 195323 ~2003!
underlying classical dynamics is made chaotic. The insta
ity of the classical trajectories in the chaotic cavities allo
electrons to leave the cavities rather quickly~sooner than a
quasibound state is firmly built up!, resulting in an effective
enhancement of the coupling of the quasi-0D state to
leads, i.e., the softening of the CF features.

If the broadening of the energy levels due to the coupl
to the leads is less than the typical energy separations
energy level splitting as a consequence of the series con
tion of the QC’s is entirely reflected in the CF’s.8 On the one
hand, the nearest-neighbor energy level separationdE in
chaotic QC’s obey the Wigner-Dyson statistics, i.e., the pr
ability for dE→0 is infinitesimally small.28 On the other
hand, the energy level separation among the split states
duced by the series connection in the array is proportiona
the intercavity coupling strength. The variation of«c with the
total cavity area in Figs. 4 and 5 indicates that the interca
coupling in our model is always strong, so that Wign
Dyson statistics fordE is established also in the linear a
rays. In this situation, the series connection results in a c
plete multiplication of the energy levels and the mean ene
level spacing changes in accordance with the QC sizes.

The fact thatgb is significantly less than unity sugges
that there exist a large number of classical orbits which
close nil nominal area. These orbits do not contribute to
CF’s when the magnetic field is varied. For chaotic dyna
ics, the probabilityp1(S)dS for the classical trajectories t
enclose an area in the rangeS and S1dS decays exponen
tially with S. Therefore, the presence of the ‘‘silent’’ orbits
inherently expected.

We propose the following model to explain the behav
gb,1. Let us first consider, for simplicity, the case of
series addition of two cavities. Suppose that the probab
density for a single cavity is given by

FIG. 5. Variation of the correlation properties of conductan
fluctuations when the lead widthNl is varied for the~a! energy- and
~b! magnetic-field-induced fluctuations. The filled circles show
coupling parametersg. The correlation energy«c and the correla-
tion magnetic fieldbc are shown by the open symbols. The circle
squares, and triangles correspond to the linear array and the
and long single quantum cavities, respectively. In~a! and ~b!, b
50 and«523.1, respectively.
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p1~S!5
1

2S0
e2uSu/S0, ~3!

where 2`,S,`. In the linear array of two cavities, th
total enclosed area is given by either adding or subtrac
the area enclosed in each cavity. The probability density
the linear array is hence derived to be

p2~S!5E
2`

`

p1~S2t !p1~ t !dt5
uSu1S0

4S0
2

e2uSu/S0. ~4!

Similarly, we find for an array of three cavities

p3~S!5
S213S0uSu13S0

2

16S0
3

e2uSu/S0. ~5!

We plot p1(S), p2(S), andp3(S) in Fig. 6~c!. The expecta-
tion value of the enclosed area iŝS& i5*2`

` uSupi(S)dS
5S0 , 3

2 S0, and 15
8 S0 when the numberi of the QC’s is 1, 2,

and 3, respectively. The effective cavity area thus increa
sublinearly with i. The corresponding value ofgb is '0.6

~0.7! for bc,l /bc,s50.23 (1
3 ), in good agreement with the

numerical results.
The above argument assumes uniform coupling betw

the trajectories in each cavity. In reality, this is not likely th
case. The importance of the injection properties of electr
from the lead into the QC is manifested in Figs. 6~a! and
6~b!.29 In all the preceding simulations, the leads and t
constrictions were positioned at the center of the QC’s,
lowing a direct path between the leads through the interio

,
ort

FIG. 6. Dependencies of the correlation scales~a! «c,a and ~b!
bc,a in the arrays on the width of the constrictionsNc that connect
the quantum cavities. The two configurations of the constrictio
are illustrated in the insets of~b!. In ~a! and ~b!, b50 and «
523.1, respectively. The width of the leads isNl510. Three
modes are occupied in the leads.~c! Probability densitiespi(S) for
the areaS (2`,S,`) enclosed by classical trajectories given b
Eqs. ~3!–~5!. The solid, dashed, and dotted lines correspond t
single cavity,i 51, a linear array of two cavities,i 52, and a linear
array of three cavities,i 53, respectively.
3-4
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ELECTRONIC COUPLING IN LINEAR ARRAYS OF . . . PHYSICAL REVIEW B 67, 195323 ~2003!
the QC’s. The direct coupling is disrupted for the fille
circles in Figs. 6~a! and 6~b! by arranging the constrictions a
the alternate sides of the QC’s, as illustrated in the left-ha
side inset of Fig. 6~b!.7 Here, the width of the constriction
(Nc11)a is varied while keeping the width of the extern
leads fixed (Nl510). For comparison, the open circles sho
«c,a andbc,a when the constrictions are placed at the cen
of the QC’s, as in Fig. 5. The width of the external leads
however, set to beNl510, see the right-hand-side inset
Fig. 6~b!. The coupling in terms of the energy-induced CF
remains almost perfect, and thus«c,a is independent of the
configuration and the width of the constrictions. In contra
bc,a exhibits an appreciable dependence on the constric
position, unless the constrictions become too wide, i.e.,
constriction width is larger thanW/2. It is noteworthy that, in
the regime where the position of the constrictions play
role, bc,a increases when the constrictions are widened,
the effective cavity area decreases on the contrary to
anticipation. The opposite dependence, which is interpre
to mean a stronger coupling for wider constrictions, tak
place when the position of the constrictions is irreleva
~Notice that the case ofNc5100 is equivalent to the long
single QC, and so the latter behavior is inevitable.!

Finally, let us briefly remark on the experiment by ElHa
sanet al.17 A transition of conductance fluctuations in line
arrays between multiple and single QC behaviors was
served when the bias applied to the split gates was var
Unlike the case of the strong coupling in our simulations,
competition between the energy level splitting and the le
broadening due to the opening to the environment explic
takes place if the coupling between the QC’s is weak.
speculate that this was the situation in the experiment.
simulations were carried out for zero temperature. The
ergy levels are additionally broadened by the finite lifetim
of electrons in the QC’s in real devices.26 The coupling in the
array cannot avoid the influence of the finite temperat
when the QC sizes are comparable to the thermal lengt
the phase coherence length.

IV. CONCLUSION

We have investigated the electronic coupling among c
otic quantum cavities when they are connected in series.
have quantified the degree of the coupling by means of
statistics of the spacings between the adjacent peaks and
of conductance fluctuations. When the fluctuations are
duced by varying the Fermi energy, the linear array
equivalent to a single quantum cavity having the same t
cavity area. For magnetic-field-induced fluctuations, the
fective cavity area in the linear array is in-between the eff
tive areas of an individual quantum cavity of the array an
single quantum cavity having the same total geometr
area. This seemingly inconsistent appearance of the coup
strength originates from the fact that the probability distrib
tions for the nearest-neighbor energy level separation and
area enclosed by classical trajectories follow different fu
tional forms.
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APPENDIX: CLASSICAL DYNAMICS IN CAVITY
ARRAYS

This appendix is devoted to investigate the evolution
the underlying classical dynamics when a number of cavi
are added in series. It is not practical to use the short-ra
boundary disorder to generate chaotic dynamics in a class
model. Here, we rather employ stadium geometry for
cavities to serve the purpose. The inset of Fig. 7~a! displays
an array of three stadium cavities, which are defined by ha
wall potentials. The three curves in Fig. 7~a! show the prob-
ability Pi(S) for the area enclosed by classical trajector
being larger thanS (>0). The numberi of the stadiums is
increased from 1 to 3 for the dashed, dotted, and solid lin
The exponential decay of the probabilityP1 for the single
cavity evidences chaotic dynamics. When a number of ca
ties are added in series, the corresponding probability dis
butions deviate from the exponential decay for lar

FIG. 7. ~a! Probability Pi(S) of the area enclosed by classic
trajectories being larger thanS (>0). The numberi of stadium-
shaped cavities is 1, 2, and 3 for the dashed, dotted, and solid l
respectively. The thin solid lines indicate the slopes when the de
constant for the exponential behavior is twice or thrice larger th
that for i 51. The inset illustrates the array of stadium-shaped ca
ties with i 53. ~b! Probability of electrons remaining in the sof
wall cavities longer than the stay time. The dashed and dotted l
show the probabilities in the single cavitiesC1 and C2, respec-
tively. Two cavities are connected in series for the thin~two iden-
tical cavities C1) and thick (C1 and C2) solid lines. The inset
illustrates the array consisting of cavitiesC1 and C2. The thick
solid and dashed lines indicate the cavity boundary at the Fe
energy and the inner boundary of the soft-wall potential, resp
tively. The thin solid line shows an example of classical trajector
3-5
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Y. TAKAGAKI AND K. H. PLOOG PHYSICAL REVIEW B 67, 195323 ~2003!
enclosed areas. If we approximate the initial decay ofPi(S)
at smallS by an exponential behavior, the enhancement f
tor of the decay constant in the arrays in comparison to
in the single cavity is found to be less thani. ~The thin solid
lines indicate the slopes when the decay constant in
single cavity is multiplied by 2 or 3.! Therefore, although the
functional form of Pi(S) in Fig. 7~a! is different from the
analytical expressions, Eqs.~4! and ~5!, the sublinear in-
crease of the enclosed area withi is confirmed. The expec
tation value of the enclosed area in the array is by factor
1.6 and 2.1 larger than that in the single cavity fori 52 and
3, respectively.

In the remainder, we turn our attention to the classi
dynamics in soft-wall cavities. The model geometry of t
cavities is illustrated in the inset of Fig. 7~b!. We consider
two dissimilar cavities, which we refer to asC1 and C2.
~They are connected in series in the inset.! The cavity bound-
ary at the Fermi level, which is shown by the thick so
lines, is defined by two cosine curves. Parabolic potent
are assumed in the vicinity of the boundary between the s
and dashed lines.5,19 For the spatially varying potentia
U(x,y), the electrons are, upon approaching the bound
gradually deflected by a forceF(x,y)52¹U(x,y). We cal-
culate the classical trajectories by solving Newton’s equa
numerically using a predictor-corrector method

xi 115xi1viDT1
F~xi !

2m
~DT!2, ~A1!

vi 115vi1
F~xi !1F~xi 11!

2m
DT, ~A2!

wherexi5(xi ,yi) andvi are the position and the velocity o
an electron at thei th time step of periodDT.
et

et

s,

t,

-

ev

ys
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Generally speaking, the soft-wall confinement leads
mixed dynamics, and so the probability distributions a
given by power laws. In the case of Fig. 7~b!, however, the
probability of electrons remaining in the cavity longer th
the stay time does not exactly exhibit the power-law dec
as, for better presentation of the effects of the series addi
of the cavities, the parameters were chosen such that
soft-wall confinement is insufficient to realize comple
mixed dynamics. The probability distribution when two ide
tical cavities are added in series, denotedC11C1 in Fig.
7~b!, can be regarded as given by doubling the stay time,
the series addition does not alter the fundamental prope
of the underlying classical dynamics. When the two dissim
lar cavities are added in series, denotedC11C2, the prob-
ability distribution is given as a superposition of that in ea
cavity, resulting in, in this particular case, a power-law dec
over a wider range of the stay time. Therefore, the frac
properties of CF’s in soft-wall cavities are expected to
modified by adding dissimilar cavities.

In the above-presented simulations based on the bill
model, classical particles are injected from the lead into
cavity assuming smooth positional and angular distributio
These distributions, however, do not necessarily rem
regular when the particles leave the cavity. This gives rise
a possibility of having fundamentally different probabilit
distributions between a single cavity and an array if the
jection distributions from a cavity in the array into adjace
cavities are irregular, for instance, with hierarchical featu
typically observed for mixed dynamics. Nevertheless,
fact that summing up the probability distribution in each ca
ity can account for the probability distribution in the arra
suggests that the role of the particle injection is minor. T
assumption of the uniform coupling in deriving Eqs.~4! and
~5! is hence justified.
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