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Electronic coupling in linear arrays of quantum cavities characterized
using conductance fluctuations
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Quantum fluctuations in the conductance produced by the variation of the Fermi energy or a magnetic field
are analyzed to investigate the electronic coupling in linear arrays of quantum cavities. The magnetic-field-
induced fluctuations exhibit a behavior which implies an incomplete coupling among the quantum cavities.
This forms striking contrast to the nearly complete coupling indicated by the energy-induced fluctuations. We
examine the dependencies of these coupling coefficients estimated from the conductance fluctuations on vari-
ous structural parameters. The contradiction between the two coupling coefficients is attributed to the existence
of a large number of silent orbits which do not interact with the magnetic field. We also explore the conse-
guences of the series addition of the cavities that are manifested in the underlying classical dynamics.
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[. INTRODUCTION heterostructure using split-gate techniques. Their analysis led

to the conclusion that the coupling among the QC’s was

In quantum cavitieQC’s) in the ballistic transport re- manipulated by changing the width of the point contacts

gime, the boundary reflection of a two-dimensional electroriwhich connected the QC's.

gas (2DEG) determines the behavior of the electronic con-  In this paper, we numerically investigate the influences of
ductance. Investigations of the transport properties typicallfhe series connection of QC'’s on the statistical properties of
deal with either the mean conductafice or quantum the CF's. We compare the correlations of the CF's in single
fluctuationd~® around the mean value. The semiclassicalQC’S and linear arrays. Strikingly different estimates are ob-

path-integral theory*® and random-matrix theofy pre- tained for the coupling from the CF’s induced by varying the

dicted a weak localization effect in the mean conducthnce €'™M! energy or an e'xternal magnetic field. We prowd.e' a
based on the assumption that the classical trajectories in t odel that explains this behavior in terms of the probability

cavities obey the statistical characteristics that are expecte str|b_ut|ons_ .Of the area that classical trajectories enclose in
. ) : X chaotic cavities and arrays. In the Appendix, we present the
for chaotic dynamics. Experimeft® and numerical

. ) . influences that the underlying classical dynamics develops as
simulationé'*! confirmed the presence of the effect. ying y P

e a consequence of the series addition of the cavities.
The remarkable success of the theory explaining the ac-

tual experiments tempted us to extend the semiclassical ap-
proach to make predictions for the cases in which the dy-
namics is regularintegrable or mixed">'*** The weak We examine the quantum fluctuations of the conductance
localization effect was derived to exhibit a distinct magneto-in single cavities and linear arrays. The fluctuations are pro-
conductance around zero magnetic field, which can distinduced by varying either the Fermi enerfyof the 2DEG in
guish whether the underlying classical dynamics is regular oQC structures or an external magnetic fi@dwhich is ap-
chaotic! However, numerical simulations raised a suspicionplied normal to the 2DEG. Specifically, we compare the en-
about this conclusiofi!***The reliability of the extension of ergy and magnetic-field correlations in three QC structures: a
the theory was checked by putting the predictions concerninginear array of three nominally identical QC's, an individual
the quantum fluctuations to the test. The semiclassical theorgingle QC of the array, and a single QC having a thrice larger
random matrix theory, and numerical simulations agreedength. The total cavity area is hence almost identical for the
with each other for chaotic dynamics. However, the enhancdinear array and the long single QC. We numerically test the
ment of the amplitude of the conductance fluctuati@@®B’'s)  conjecture that, depending on the strength of the coupling
reported in Ref. 7 is a clear demonstration that the standar@mong the QC's, the CF’s in the array should behave similar
theoretical techniques are not applicable if the dynamics i¢0 those in the short single Q@ the coupling is weakor in
not completely chaotit! Nevertheless, although refinements the long single QGif the coupling is strong
of the semiclassical thedlywere necessary to satisfy “in- The QC structures are simulated using a square lattice
ternal consistency?® the theoretical results were success-With a lattice constan&. The magnetic field is incorporated
fully confronted with experiments so long as chaotic QC’sin the form of the Peierls phase factor &Xg'%)fA-dl],
are concerned. where A is the vector potential. For the linear array, three
Recently, some investigations have addressed the issue fctangular cavities of identical sizes are connected in series,
how the transport properties in a single QC are transformeads illustrated in Fig. 1. An individual QC consists by
when a number of QC’s are connected in series. For instanctgttice sites in the transverse direction axd lattice sites in
ElHassanet all’ experimentally examined the CF’s in an the direction of the series connection. Uniform leads and
array of three QC'’s, which was defined in a Gafd;Ga)As  constrictions having a width correspondingNplattice sites

Il. NUMERICAL MODEL
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FIG. 1. Schematic of the tight-binding model to simulate a lin-
ear array consisting of three quantum cavities. Each cavity, which is

referred to as the short single quantum cavity in the text, is of length :

(N_+1)a and widthwW=(Ny+ 1)a with a being the lattice con- 1

stant. The leads are of widtiN(+ 1)a. A potential disorder is in- 0 10 20
troduced at the boundary lattice sites indicated by the filled circles. B

are attached, unless stated otherwise, at the center of FIG. 2. Conductance of the quantum cavity structures wiagn
the QC'’s. the Fermi energy {=E/t) and (b) a magnetic field g

The validity of the semiclassical theory in dealing with =BW?/¢,) are varied. In@) and(b), =0 ands=—2.1, respec-
open systems having regular or mixed dynamics has not bedively. The three curves in each panel correspond to, from top to
established® This implies that it is necessary to realize fully bottom, a short single quantum cavity, an array of three short quan-
chaotic dynamics in QC’s for a meaningful comparison of atum cavities, and a long single quantum cavity, respectively. Curves
numerical study with analytical theories and many of experi-are offset for clarity. The parameters for the short single quantum
ments. We point out that a large number of previously re‘avity areNy=100, N, =60, N;=8, andd=t. The number of
ported numerical simulations used model QC’s in which the®ccupied modesl in the leads is 4.
dynamics was not completely chaotic. Due to the rectangular.

. . : . =BW/ ¢y, W=(Ny+1)a is the width of the QC, an
cavity geometry, the underlying classical dynamics would be_ h/e i;ﬁ(t)he ma(gn\gtic fl)ux quantum. The three?:urvesciaoeach

rehgul_ar |?hthtetr?bsenclei OI abmagnetlctflf?dgl Iorder to em- anel correspond to the short single QC, the linear array, and
|fo ziS|ze_ ? € resuits 1o be p][esenfe” er(])wtz_are fi ge_nel Ife long single QC from top to bottom, respectively. In terms
eature n linear arrays, we e.’?e%me ully chaolic ClassiCalyt i correlation scales of the CF’s, the linear array and the
dynam!cs upon individual cavit We realize the chaotic long single QC are similar to each other when the energy is
dY”am'Csz n eaqh QC using - a short-range boundar3(/aried, whereas the conductance of the linear array fluctuates
disorder?? A potential disorder is introduced at the boundaryra,[her in the way that of an individual QC does when the

I_[a_lrt]tice sitg;s, WhiCh. are indica;e_:f(_j l(ajyghe filled (_:ircles iquig. 1'magnetic field is varied. The different degree of the coupling
e on-site energies are modified b assuming a uniform among the QC'’s in the array estimated from the CF’s in-

distril_)ution f°T5E in a range of—di2< SE<d/2. The_ UN- duced by the energy and the magnetic field is the central
derlying classical dynamics is not altered by the series add'ﬁnding of the present paper, and we examine below this puz-
tion of the nearly identical cavities, see the Appendix. ling behavior in detail '

The QC structures are terminated by two leads 1 and ZZ ’

. " The conductance fluctuationssG=G—(G), where
We calculate the fully quantum-mechanical conductaBee (---) denotes ensemble average, in the diffusive transport
using the Landauer formula ’

regime are typically characterized using the correlation func-
22 tion Wy (AX)=(8G(X)5G(X+AX)), whereX=E or B.*
G(E,B)= e E |tji(E,B)|2. (1)  The energy and magnetic-field scaks of the fluctuations
telje2 are defined asVy(X,)=31¥(0). Onecan, in principle,
The conductance is related to the transmission coeffictgnts carry out the same characterization for the CF's in Fig. 2.
between the modesin lead 1 and the modgsn lead 2. The  However, various transport effects modulate the mean con-
transmission coefficients are calculated using the latticgluctance in the ballistic transport regime, making the out-
Green's-function techniqu&. Throughout this paper, we as- come of this analysis extremely sensitive to the way the
sumeNy,= 100, N, = 60 (=180 for the long single QCand  background conductance is estimated. To overcome this
d=t, wheret=#2/2ma’ is the nearest-neighbor hopping trouble, Jalaberet al* further Fourier-transformed the cor-

amplitude in the tight-binding lattice. relation function to eliminate arbitrariness.
We employ here, instead, an alternative simple method.
IIl. RESULTS AND DISCUSSION We have recently reported that the nearest-neighbor spacings

between the peaks and dips of the CF's obey the Wigner-
In Fig. 2, we compare the conductance in the three Q@yson statistic§. The Wigner-Dyson distribution is antici-
structures. HerekE and B are normalized as=E/t and 8 pated, at least, in the limit of weak coupling between the QC
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FIG. 3. Probability of the spacing between the adjacent peaks
and dips_ Of. condu_ctance fluctuations () & (energy a_nd (b) B FIG. 4. (a) Dependencies of the correlation enetgy (circles
(magne_t_lc fl(_eld_belpg larger thandz and A, respectively. The and the correlation magnetic fie. , (triangles for the long single
probability distributions are constructed from the conductance quc-quantum cavities on the Fermi ehergy(b) Coupling parameters
tuations plotteql in Fig. 2. The circles, squares, and t_riangles corre- (circles and y; (triangles for the quantum cavity structures.
spo_n_d to the Iln_ear array and the short and long single quantunﬁe bottom fourﬁcurves show the ratios /s, . (circles and
cavities, respectively. Be.!Be s (triangles. In both (a) and (b), the filled and open sym-
L bols correspond tt;=4 and 8, respectively.
and the leads as peaks and dips in the conductance due to

transmission resonance take place when the Fermi energghavior has been observed for the magnetic-field-induced
coincides with the zero-dimension@D) levels in the QC. It cF's25 However, the value of 0:50.8 for yg in Fig. 4b) is
is noteworthy that the spacings exhibit a Poisson-like distrign apparent violation of this naive expectation when the

bution when the dynamics is regufallhe parameters that transport is ballistic. The coupling appears to be weaker for
describe the Wigner-Dyson distributions can be used tQuider leads, which we investigate further below. The size
guantitatively analyze the fluctuations in chaotic QC's. Thescaling for the energy-induced CF’s and the nonscaling for
advantage of this method is its practical independence on the magnetic-field-induced CF’s also occur between the short
subtraction of the background conductance. In Fig. 3, weynd long single QC's. The curves in the bottom part of Fig.
plot the probabilityPy(AX) of the adjacent peaks and dips 4(b) show e, /e s and B¢ /Bcs. The energy correlation
being larger tham\X. We further simplify our analysis by yields the expected value df, whereas the ratio is only
defining the correlation energy, and the correlation mag- apout 0.23 for the magnetic-field correlation. Therefore, the
netic field B, as P,(ec)=Pg(B;)=3. This definition en-  correlation magnetic field does not correspond to an addition
ables us to determine the correlation scales unambiguouspyt g magnetic flux quantum into the cavity arfédn other
ige(SAp;)Cthe of the role of the time-reversal symmetry onwords, the effective cavity area does not scale with the geo-
X .

metrical cavity area. The energy scale of CF’s is proportional

In Fig. 4a), we showe and g, for the long single QC’s  to AN/27, whereA is the mean resonance spacing &his
as a function of the Fermi energy for two lead widtNg  the number of modes in the leati®As A is in proportion to
=4 (filled symbolg and 8(open symbols The conductance the aresSof the QC,e., /e s= 3 is expected, as observed in
fluctuations become wider in bothand 8 when the Fermi  the present numerical simulation. The magnetic-field corre-
energy is raised. The dependenciesegf and 5., on the  |ation scale was estimated to vary wiBas s S”4.27 Accord-
Fermi energy and\, are notably similar. ElHassaet al'’  ing to this relation 3. |/ 8 s=0.25 is expected, thus explain-
estimated the coupling among the QC’s in an array by coming the numerical result.

paring the correlation scale in the array with that in a single  The dependencies of the characteristics of the CF’s on the
QC. We, therefore, plot in Fig.(d) the coupling parameter |ead width are displayed in Figs(& and §b). With increas-

ing N,, . and 8. increase roughly linearly. Fine structures
~ Xes™Xea 5 in the CF’s are smeared for larghy as the level broadening
Yx= Xes—Xet 2) resulting from an opening to the external leads is greater for

the wider leads. Here agaity, remains nearly unchanged at

whereX. ,, X. s, andX. are the correlation scales for the ~1. Although one may anticipate widening the leads to en-

linear array and the short and long single QC's, respectivelyhance the coupling between the cavitigg, on the contrary,

The coupling parameters are nearly independent of the Ferniénds to decrease with increasiNg.

energy in spite of the energy dependencesgfand 3., The fluctuations in the conductance of the ballistic QC'’s

plausibly because the cavity geometry is unchanged. are, in principle, associated with the quasi-OD confined
We find y,~1, i.e., the energy correlation in an array is states. In regular QC's, the CF’s bear an appearance of con-

almost identical to that in a single QC having an identicalsisting of narrow peaks and dips due to transmission
total cavity area. In the diffusive transport regime, the sameesonance®.These sharp features are broadened when the
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FIG. 5. Variation of the correlation properties of conductance N
fluctuations when the lead widtl, is varied for the(a) energy- and
(b) magnetic-field-induced fluctuations. The filled circles show the F|G. 6. Dependencies of the correlation sca@se. , and (b)
coupling parametery. The correlation energy. and the correla-  g_ _ in the arrays on the width of the constrictioNs that connect
tion magnetic fields. are shown by the open symbols. The circles, the quantum cavities. The two configurations of the constrictions
squares, and triangles correspond to the linear array and the sheyte illustrated in the insets ab). In (3) and (b), B=0 ande
and long single quantum cavities, respectively.(#@ and (b), 8 =-3.1, respectively. The width of the leads M=10. Three
=0 ande=—3.1, respectively. modes are occupied in the leads). Probability densitieg;(S) for

the areaS (—»<S<x) enclosed by classical trajectories given by
underlying classical dynamics is made chaotic. The instabilEgs. (3)-(5). The solid, dashed, and dotted lines correspond to a
ity of the classical trajectories in the chaotic cavities allowssingle cavityi =1, a linear array of two cavitie$;=2, and a linear
electrons to leave the cavities rather quicképoner than a array of three cavities,=3, respectively.
guasibound state is firmly built Qpresulting in an effective
enhancement of the coupling of the quasi-OD state to the
leads, i.e., the softening of the CF features.

If the broadening of the energy levels due to the coupling i .
to the leads is less than the typical energy separations, tHéhere —~<S<e. In the linear array of two cavities, the
energy level splitting as a consequence of the series connefQtal enclosed area is given by either adding or subtracting
tion of the QC’s is entirely reflected in the CFPOnN the one the area enclosgd in each c_awty. The probability density in
hand, the nearest-neighbor energy level separafignin  the linear array is hence derived to be
chaotic QC'’s obey the Wigner-Dyson statistics, i.e., the prob-
ability for SE—0 is infinitesimally smalf® On the other _ |- _ :|S|+SO ~|sliso
- : ; P2(S) p1(S—t)py(t)dt ;€ )

and, the energy level separation among the split states pro- —w 4S5
duced by the series connection in the array is proportional to, . ) "
the intercavity coupling strength. The variationsgfwith the ~ >'milarly, we find for an array of three cavities
total cavity area in Figs. 4 and 5 indicates that the intercavity > 5
coupling in our model is always strong, so that Wigner- ps(S) = S°+35|9+3%
Dyson statistics fordE is established also in the linear ar- 1653
rays. In this situation, the series connection results in a com- N
plgte multiplication of the energy levels and the mean energyVe PIOtP1(S), P2(S), andps(S) in Fig. 6(c). The expecta-
level spacing changes in accordance with the QC sizes. U0 v3a|ue of tlrge enclosed area (_§>i=f_m|S|’pi(S)dS

The fact thaty,, is significantly less than unity suggests = So: 250, and 'Sy when the number of the QC's is 1, 2,
that there exist a large number of classical orbits which en@nd 3, respectively. The effective cavity area thus increases
close nil nominal area. These orbits do not contribute to théublinearly withi. The corresponding value of; is ~0.6
CF's when the magnetic field is varied. For chaotic dynam<0.7) for B.,/B.s=0.23 (%), in good agreement with the
ics, the probabilityp,(S)dS for the classical trajectories to numerical results.

p1(S)= %e"s“so, 3

e 1S/So. (5)

enclose an area in the ran§eand S+dS decays exponen- The above argument assumes uniform coupling between
tially with S. Therefore, the presence of the “silent” orbits is the trajectories in each cavity. In reality, this is not likely the
inherently expected. case. The importance of the injection properties of electrons

We propose the following model to explain the behaviorfrom the lead into the QC is manifested in Figga)6and
vg<1. Let us first consider, for simplicity, the case of a6(b).?° In all the preceding simulations, the leads and the
series addition of two cavities. Suppose that the probabiliticonstrictions were positioned at the center of the QC's, al-
density for a single cavity is given by lowing a direct path between the leads through the interior of
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the QC’s. The direct coupling is disrupted for the filled 3
circles in Figs. 6a) and @b) by arranging the constrictions at .,
the alternate sides of the QC'’s, as illustrated in the left-hand-
side inset of Fig. &).” Here, the width of the constrictions 3
(Nc.+1)a is varied while keeping the width of the external E
leads fixed N,=10). For comparison, the open circles show 3
£¢.2 and B¢ , When the constrictions are placed at the center 2 ’
of the QC'’s, as in Fig. 5. The width of the external leads is, el ) 20
however, set to b&\,=10, see the right-hand-side inset of g ., [Enclosedarea (arb. unit

Fig. 6(b). The coupling in terms of the energy-induced CF’s a 10 TSN
remains almost perfect, and thes , is independent of the r ‘\/(\ ........ ~ Cy+Cy )-g
configuration and the width of the constrictions. In contrast, 1072 c, \TL\\ - C,+C, 1
Bec.a exhibits an appreciable dependence on the constriction ._ l C, N\ _.
position, unless the constrictions become too wide, i.e., the aF N AN 3
constriction width is larger thaw/2. It is noteworthy that, in 10 $ - \‘\»\\\ 3
the regime where the position of the constrictions plays a E — \.\I‘.“-;:
role, 8. 5 increases when the constrictions are widened, i.e., 101 102 108 104

the effective cavity area decreases on the contrary to the

Stay time (arb. unit)

anticipation. The opposite dependence, which is interpreted

to mean a stronger coupling for wider constrictions, takes FIG. 7. (a) Probability P;(S) of the area enclosed by classical
place when the position of the constrictions is irrelevant.trajectories being larger tha (=0). The numbeii of stadium-
(Notice that the case dfl.=100 is equivalent to the long shaped cavities is 1, 2, and 3 for the dashed, dotted, and solid lines,
single QC, and so the latter behavior is inevitable. respectively. The thin solid lines indicate the slopes when the decay

Finally, let us briefly remark on the experiment by ElHas- constant for the exponential behavior is twice or thrice larger than

sanet al” A transition of conductance fluctuations in linear t.hat fo.” = 1. The inset '”u.s.trates the array of Sta.d'.um'.Shaped cavl-
ties withi=3. (b) Probability of electrons remaining in the soft-

arrays between m‘?'“p'e and single QC'behaV|ors was ,Ob' all cavities longer than the stay time. The dashed and dotted lines
ser\_/ed when the bias applied to t_he '_spht gates was vaneévhow the probabilities in the single caviti€, and C,, respec-
Unlike the case of the strong coupling in our simulations, thejyely. Two cavities are connected in series for the tfiimo iden-
competition between the energy level splitting and the levetical cavitiesC,) and thick C; and C,) solid lines. The inset
broadening due to the opening to the environment explicitlyilustrates the array consisting of caviti€; and C,. The thick
takes place if the coupling between the QC'’s is weak. Wesolid and dashed lines indicate the cavity boundary at the Fermi
speculate that this was the situation in the experiment. Ougnergy and the inner boundary of the soft-wall potential, respec-
simulations were carried out for zero temperature. The entively. The thin solid line shows an example of classical trajectories.
ergy levels are additionally broadened by the finite lifetime
of electrons in the QC’s in real devic&&The coupling in the
array cannot avoid the influence of the finite temperature
when the QC sizes are comparable to the thermal length A
the phase coherence length.
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APPENDIX: CLASSICAL DYNAMICS IN CAVITY
ARRAYS

IV. CONCLUSION

We have investigated the electronic coupling among cha-

otic quantum cavities when they are connected in series. We This appendix is devoted to investigate the evolution of
have quantified the degree of the coupling by means of th#he underlying classical dynamics when a number of cavities
statistics of the spacings between the adjacent peaks and dipte added in series. It is not practical to use the short-range
of conductance fluctuations. When the fluctuations are inboundary disorder to generate chaotic dynamics in a classical
duced by varying the Fermi energy, the linear array ismodel. Here, we rather employ stadium geometry for the
equivalent to a single quantum cavity having the same totatavities to serve the purpose. The inset of Fi@) displays
cavity area. For magnetic-field-induced fluctuations, the efan array of three stadium cavities, which are defined by hard-
fective cavity area in the linear array is in-between the effecwall potentials. The three curves in Figay show the prob-
tive areas of an individual quantum cavity of the array and aability P;(S) for the area enclosed by classical trajectories
single quantum cavity having the same total geometricabeing larger thars (=0). The number of the stadiums is
area. This seemingly inconsistent appearance of the couplirigcreased from 1 to 3 for the dashed, dotted, and solid lines.
strength originates from the fact that the probability distribu-The exponential decay of the probabiliB, for the single
tions for the nearest-neighbor energy level separation and theavity evidences chaotic dynamics. When a number of cavi-
area enclosed by classical trajectories follow different functies are added in series, the corresponding probability distri-
tional forms. butions deviate from the exponential decay for large
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enclosed areas. If we approximate the initial decaPgf) Generally speaking, the soft-wall confinement leads to
at smallS by an exponential behavior, the enhancement facmixed dynamics, and so the probability distributions are
tor of the decay constant in the arrays in comparison to thagiven by power laws. In the case of Figb}, however, the
in the single cavity is found to be less thariThe thin solid ~ probability of electrons remaining in the cavity longer than
lines indicate the slopes when the decay constant in ththe stay time does not exactly exhibit the power-law decay
single cavity is multiplied by 2 or 3Therefore, although the as, for better presentation of the effects of the series addition
functional form of P;(S) in Fig. 7(a) is different from the Of the cavities, the parameters were chosen such that the
analytical expressions, Eq$4) and (5), the sublinear in- soft-wall confinement is insufficient to realize complete
crease of the enclosed area witfs confirmed. The expec- mixed dynamics. The probability distribution when two iden-
tation value of the enclosed area in the array is by factors ofical cavities are added in series, denotegtC, in Fig.
1.6 and 2.1 larger than that in the single cavityifer2 and  7(b), can be regarded as given by doubling the stay time, i.e.,
3, respectively. the series addition does not alter the fundamental properties
In the remainder, we turn our attention to the classicalf the underlying classical dynamics. When the two dissimi-
dynamics in soft-wall cavities. The model geometry of thelar cavities are added in series, deno@gtC,, the prob-
cavities is illustrated in the inset of Fig(lj. We consider ability distribution is given as a superposition of that in each
two dissimilar cavities, which we refer to &, and C,. cavity, resulting in, in this particular case, a power-law decay
(They are connected in series in the ins€he cavity bound- over a wider range of the stay time. Therefore, the fractal
ary at the Fermi level, which is shown by the thick solid Properties of CF’s in soft-wall cavities are expected to be
lines, is defined by two cosine curves. Parabolic potentialgnodified by adding dissimilar cavities. N
are assumed in the vicinity of the boundary between the solid In the above-presented simulations based on the billiard
and dashed lines*® For the spatially varying potential model, classical particles are injected from the lead into the
U(x,y), the electrons are, upon approaching the boundangavity assuming smooth positional and angular distributions.
gradually deflected by a fordg(x,y)=—VU(x,y). We cal- These distributions, however, do not necessarily remain
culate the classical trajectories by solving Newton’s equatioiégular when the particles leave the cavity. This gives rise to

numerica”y using a predictor-corrector method a pOSSIbIlIty of haVing fundamenta”y different probablllty
distributions between a single cavity and an array if the in-
F(x)

jection distributions from a cavity in the array into adjacent

Xi+1 =X+ ViAT+ W(AT)Z, (A1) cavities are irregular, for instance, with hierarchical features
typically observed for mixed dynamics. Nevertheless, the

F(x,)+F(Xi41) fact that summing up the probability distribution in each cav-

Viea=Vit ——— AT, (A2) ity can account for the probability distribution in the array

suggests that the role of the particle injection is minor. The
assumption of the uniform coupling in deriving E@4) and
(5) is hence justified.

wherex; = (x;,Y;) andyv; are the position and the velocity of
an electron at théth time step of period\T.
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