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Dirty quantum Hall ferromagnets and quantum Hall spin glasses
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We study quantum Hall ferromagnets in the presence of a random electrostatic impurity potential, within the
framework of a classical nonlinear sigma model. We discuss the behavior of the system using a heuristic
picture for the competition between exchange and screening, and test our conclusions with extensive numerical
simulations. We obtain a phase diagram for the system as a function of disorder stigraytld, deviationgv,
of the average Landau-level filling factor from unity. Screening of an impurity potential requires distortions of
the spin configuration. In the absence of Zeeman coupling there is a disorder-driven, zero-temperature phase
transition from a ferromagnet at small and|Sv| to a spin glass at largex or |sv|. We characterize the
spin-glass phase in terms of its magnetic and charge response.
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[. INTRODUCTION textures are nucleated at zero temperature. The physical con-
sequences of this coupling are the subject of this paper,
Disorder and interactions have competing consequencesghich provides a detailed account of work presented in out-
in quantum Hall ferromagnet®@HFM'’s). In this paper, we line in Ref. 4.
study how a disordered impurity potential can give rise to a The interplay between disorder and exchange in quantum
spin-disordered ground state. We also discuss the influenddall ferromagnets has been examined previously from sev-
of disorder on the magnetic and charge response of suchexal different viewpoints. Fogler and Shklovskiieveloped a
system. We use a classical spin model throughout to descriktbeory particularly applicable in higher Landau levels. Build-
the quantum Hall ferromagnet. ing on earlier discussiorfsthey presented a mean-field treat-
Coulomb interactions lead to spin correlations in a quaniment in the spirit of Stoner theory. For odd integer filling in
tum Hall system. For electrons fully occupying the lowestthe absence of Zeeman coupling, they found a transition be-
Landau level(filling fraction v=1), exchange is responsible tween ferromagnetic and paramagnetic ground states with
for a spin-polarized ground state, even in the absence aficreasing disorder strength. They suggested that this transi-
Zeeman energy. This is the consequence of Hund'’s rule a®n should be apparent in transport measurements, in which
applied to a macroscopically large number of degeneratéhe ferromagnetic phase is characterized by spin-resolved
Landau-level orbitals. The resulting quantum Hall ferromag-Shubnikov—de Haas oscillations, and the paramagnet by
net is especially interesting as a system in which the spispin-unresolved oscillations. Experimentally, a transition of
configuration and the charge density are closely linkk&d. this kind is observed with decreasing magnetic-field
v=1 and if Zeeman energy is large, charge enters the spirstrength’® and its sharpness suggests that its origin is indeed
polarized system as minority-spin electrons. However, ifcooperative.
Zeeman energy is small or vanishing, the charged excitation Within the Fogler-Shklovskii approach, local moments
of lowest energy is not a bare spin-half electron, but a boundre all collinear in the ferromagnet and vanish at the transi-
state of an electron with many spin waves. In classical termgjon to the paramagnet. An alternative scenario may arise in
this occurs because the minority spin polarizes its local ferthe lowest Landau level near=1, in which the QHFM
romagnetic background, and the composite object may beesponds to disorder mainly through the direction rather than
viewed as a topological excitation, or texture in an orderedhe magnitude of its local magnetization. Some indications
ferromagne — a skyrmion? Similarly, an antiskyrmion, that this can happen derive from calculations for the fully
with topological charge of the opposite sign, is producedpolarized ferromagnet at weak disorder. Here, a reduction in
when charge is removed from a filled Landau level. In thisspin stiffness with increasing disorder strength has been in-
description, the deviation of local charge density from that ofterpreted by Greénas a precursor of a noncollinear phase.
a filled and ferromagnetically polarized Landau level is pro-Moreover, even weak disorder may nucleate a dilute glass of
portional to the topological densityof the spin configura- skyrmions and antiskyrmions at the maxima and minima of
tion. the disordered potential, as discussed by Nederveen and
In a clean system with sufficiently small Zeeman energyNazarov® and examined further in the present paper. In ad-
skyrmions or antiskyrmions can be created at zero temperatition, Sinova, MacDonald, and Girnihhave shown that, at
ture on varying the average filling factor from=1 to larger intermediate disorder strength, both reduced and noncol-
or smaller values. For a disordered quantum Hall ferromaghnear local moments emerge from a numerical solution of
net, the coupling of an electrostatic impurity potential to theHartree-Fock theory for a model with Coulomb interactions
charge density offers an additional mechanism by which spimnd spatially uncorrelated disorder, while transport properties
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within Hartree-Fock theory have been discussed by 1 . R
Murthy.*? op(r)= g €S (915X 9;S). 3

In general, we believe that the relative importance of
local-moment reduction versus the formation of spin texturesThis direct connection is specific to the quantum Hall ferro-
for dirty QHFM's will depend on the nature of the disorder. magnet — a varying electron density implies a variation in
In this work, we concentrate on textures, which are favoredhe direction of the local magnetization and vice versa. Such
by a smoothly varying impurity potential at=1. We find  spin textures cost exchange energy. So, a proper description
that the ferromagnet gives way to a spin glass at strong disf the system must include exchange, impurity, and Hartree
order. contributions to the total energy of a dirty quantum Hall

The plan of this paper is as follows. In the next section,ferromagnet. This brings us to study the Hamiltonian
we describe a spin model with quenched disorder which is
intended to capture the physics of the disordered QHFM. J . Uo
This is followed in Sec. Ill by a discussion of the phase H= [§|VS(F)|2+[V(F)—M]5P(V)+7[5P(r)]2 dr,
diagram for the model as a function of filling factor and (4)
disorder strength, using heuristic arguments and scaling
ideas. The conclusions are supported by the results of where
Monte Carlo simulation of a lattice version of the spin
model. The technique is outlined in Sec. IV and the results 1 e?
are presented in Sec. V. In Secs. VI and VI, we discuss the J= 12 Ameel ©)
compressibility and conductivity of the system in order to 16(2m) Teoer'B
g?ae:(raascterize the charge response of spin-disordered gmu'i?the exchange coupling.(e,

is the relative permittivity in
the semiconductorAt this point we have chosen for sim-
plicity a short-range Hartree interactiod,(r—r')=Uy5(r
Il. SPIN MODEL —r'). We have also absorbed the constdgt27l3 into the
hemical potentiak.
As mentioned above, we work with a disordered potential
to unity. The electrons are subject to an impurity potentialv(r) t_hat _|s_smooth on the_ scale Of_ the magnetic lerigth
For simplicity, our discussion of this continuum model as-

V(r) and an electron-electron interaction eneldfr). As a . N . .
first step, let us omit the exchange interactions and the ze&UMes a Gaussian distribution with standard deviatiand

man energy. Then the electron density) is determined by correlation Iengtm much larger than thg magnetic Ie.ngth
the balance between disorder and interactions, or in otheg- (Our r_‘“”_"e”?a' sFudy uses a Iatt_lce model with a
words, screening. We treat this using Thomas-Fermi theonpunded distribution with uncorrelated disorger.
Such an approximation has been applied by Efréo the In restrlctlng our study to this model, we neglect quantum
comparable problem in spin-polarized Landau levels when fluctuations ofS(r). This semiclassical approximation is jus-
lies near half-integer values. The ground-state charge densitified for smooth variations, Witthé(r)|<I 51. Our aim in
p(r) at weak disorder is determined by the condition that thethe following is to understand the zero-temperature phase
Hartree potential should match the chemical potentiav-  diagram of the model defined by E¢), as a function of
erywhere: disorder strength\ and average charge densityp), the
spatial average obp(r). We will characterize its ground
states via their response functions and excitations.
“:V(rHJ U(r=r")p(r"d?r’. @) We conclude thg section by comparing this model with
some other examples of disordered systems. As an electron
This approach is valid in the case where the resulting |Oca§;y3’[em’ it is unusual in that there is an exchange gap for
filling factor varies smoothly on the scale of the magneticsingle-particle excitations, even if the ground-state spin con-

_ 12 : i >
length, Ig=(%/eB)™, and only has small fractional devia- figyration S(r) does not have long-range ferromagnetic or-

Consider a two-dimensional electron gas in a strong per9
pendicular magnetic fielB, with Landau-level fillingv close

tions fromv=1, so that der. This means that the only low-energy excitations involve
21 collective spin modes. As a ferromagnet with quenched dis-
op(r)=p(r)—(2mlg) “<p(r). (20 order, the system is also unusual in several ways. First, the

link between spin and charge means that the spin system

However, the Thomas-Fermi picture of good local screenresponds to applied electric fields. We calculate in the fol-
ing does not take into account exchange interactions. Praowing the wave-vector-dependent dielectric constafxy),
vided that electron-density fluctuations are small andand compare it with behavior found in more conventional
smoothly varying, ferromagnetic exchange leads locally to ajisordered electron systems. Second, due to the same cou-
maximal ferromagnetic polarization of the electron spins.pling, spin waves generate an electric dipole moment. This
This local magnetization may vary in space. Denoting itSmeans that spin waves contribute to the optical conductivity
direction by the three-component unit vecs(r), spatial  o(w). More generally, the coupling to disorder in this model
fluctuations in spin orientation are linked to electron densityleaves spin-rotational symmetry intact but breaks time-
by?3 reversal symmetry. This is in contrast to the effect of random
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Zeeman fields, which break both symmetries, and to randorfhus, if |V(r)| is below the threshold #J everywhere, the
exchange interactions, which preserve both symmetries. ground state is the perfectly aligned ferromagnet with
6p(r)=0.
IIl. PHASE DIAGRAM At weak disorder £=J), |V(r)| in most parts of the
system lies below the threshold. With an unbounded poten-
We begin with a qualitative discussion of the zero-tja| distribution, the ground-state spin configuration therefore
temperature phase diagram as a function of disorder strengibnsists of a dilute glass of skyrmions and antiskyrmions,
and average charge density. We employ scaling arguments fcleated at rare positions whék&(r)| is large, as discussed
obtain the phase boundary for breakdown of long-range ferhy Nederveen and Nazar&¥Away from these positions we
romagnetic order. expect that the ferromagnetic order is essentially unaffected
The Hamiltonian of Eq(4) for the continuum model is py the impurity potential. A careful treatment of this regime
minimized by the spin configuration which satisfi@ppen- s, however, quite subtle, since the spin deviation due to an

dix A) isolated skyrmion falls off with distance only as?®. We
L N argue in Appendix C that long-range ferromagnetic order is
JVZSX S= €0, V(1) d;S, (6)  indeed preserved, and that the internal degrees of freedom of
dilute skyrmions and antiskyrmions develop the correlations
Vu(r)=V(r)—u+Uydp(r), (7) necessary to ensure this.

In contrast, at strong disordeA&J), the charge density

where Vy, the local Hartree potential andp is defined in  ,rqyides almost perfect local screening of the disordered po-
terms of the local spin configuration by EER). This equa-  iential so that

tion for the ground-state configuration shows the interplay

between exchange and disorder in the model. Since it is dif- Sp(r)=—V(r)/U, (A/J>1). (12)
ficult to tackle the nonlinear equation directly, we proceed
using heuristic arguments instead. Corrections to perfect Thomas-Fermi screening arise at

The model is characterized by two energy scales: the edength scales larger than,, where exchange becomes im-
change energy and the disorder strength. There are also portant. The effect of exchange is to force screening charges
two length scales: the correlation lengthof the disordered to be quantized, since an unquantized charge costs divergent
potential and exchange energy in the thermodynamic limit. We can sum-

marize the effect of exchange by dividing the system into
Ly=(Ug/J)*2 (8)  regions of area.?, finding for each such area the integral

which we call the Hartree length. The significance of the V(r)
Hartree length can be made clear by considering a skyrmion = —f ——d%r (12
of fixed shape and radilR in a clean system. The contribu-

tion to its total energy from exchangeisJ, independent of 54 adjusting the total screening charge within every region
size, while that from Hartree interactions is size dependenty i integer value closest @ We argue that these integers
being ~Uo/R?. Comparing these contributions, one seesyre predominantly zero in a ferromagnetic phase, and pre-
that exchange dominates on length scales large compargfminantly nonzero in a phase without ferromagnetic order.
with Ly, while Hartree interactions dominate at smaller dis-1q jjjystrate this, we consider a well-ordered ferromagnetic
tances. o . phase, in whichS(r) has small spatial variations around a
_ Our central hypothesis is that the competition betweeryoha| direction of magnetization. In this case, the net topo-
interaction and disorder in this system is characterized by thﬁ)gical charge in any region has a magnitude much less than
Hartree length only. In the following, we also use the limit yne ~conversely, in a phase without such order, unit topo-
Ly>\ as a source of simplifications. logical charge will typically accumulate over a region of lin-
ear size given by the ferromagnetic correlation length.
A. Filled Landau level This picture leads us to identify the phase boundary of the
Let us consider first the effect of disorder on a system aEergomagnet as the point at whigQ?)"*~1. To estimate

v=1, imposed by settingdp)=0. Without impurities Q“), we note from Eqg.(12) that each correlation area of

[V(r)=0], the system is a perfect ferromagnet. Moreover SIZEA? contributes tdQ a charge of magnitude”A/U, and
there is a threshofdt a random sign. Over the Hartree area, therelgpe\? such

contributions, so that

V(D]=4m, © (Q)Y2~ (\2A/Ug)(Lu/N)=ALyAIUg.  (13)

below which an impurity potential is unscreened. It arises_l_he hase boundarv is therefore given b
because, for any(r), one has|VS(r)|?=87|8p(r)| and P y 9 y

hence Ac~Ug/(NLyy)=J(Ly/N). (14)

For A>A_, the ground state is strongly disordered and has

2
HBJ [473]8p(D)] +V(r) dp(r) ]d°r. (10 no ferromagnetic order. Within our classical description, the
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spins are frozen at zero temperature. We can therefore idealbeit with a long correlation length at low temperature.
tify this phase as a quantum Hall spin glass. Thermal disorder for the clean ferromagnet has been dis-
cussed, in Refs. 16 and 17.

B. Away from integer filling

We consider next the ground state away from1. We IV. MONTE CARLO SIMULATIONS

examine behavior at fixed <A, as a function of the aver-  |n order to test the theoretical results derived in the pre-
age charge densitydp)<v—1. For(dp)=0 andA<A., vious section, we use Monte Carlo methods, in combination
the system has a net magnetization, but the introduction afith simulated annealing, to study a classical Heisenberg
charge in the form of skyrmionr antiskyrmions disrupts  model with quenched disorder. In this section, we outline our
ferromagnetic spin alignment. The siReof an isolated skyr-  methodology. Similar techniques have been applied recently
mion in a clean system is divergent if Hartree repulsion isto systems without quenched disorder, in Ref. 18. We present
not balanced by Zeeman energy. However, the presence of &ur results for the physical response functions of the model
impurity potential establishes an optimal size, because it ifn Secs. V and VI.
energetically favorable for a skyrmion to locate its charge \We treat a lattice version of Eg¢4) with NXN classical
distribution in randomly occurripg potential wells. The typi- spinsé of unit length on a square lattice, taking periodic
cal depth of such a well of radiu8>\, averaged over its o ngary conditions. Spins have nearest-neighbor ferromag-
area, is—A(MR). (The case2\>R is treated in Ref. 10.  nefic interactions of strength. In addition, the electrical
The Hartree energy is-U,o/R”. The total energy is hence chargeq, on each plaguettk is calculated from the area on
minimized if the spin sphere covered by the spins on the corners of that
plaguette. This charge density has a local repulsive Hartree
R~Uo/(AN)=L(Ac/A). (15  interaction of strengtl,, and is also subject to a uniformly
distributed random background potentig, e[ —A,A].

: ! Since we choose this potential independently for each
th's’. we expect that exchange energy dommates over the IOBlaquette, the correlation lengthis set by the lattice spac-
tential energy and that the skyrmion will not be stronglyin _

distorted by the random potential. In other words, screening The Hamiltonian of the lattice model is

as discussed in the previous subsection does not alter the

present argument. U 2
We expect that ferromagnetic order will persist with in- H=—3>} §i.§j+z (6qu+ _Oqﬁ Qo— > Qk) ’

creasing charge density until such skyrmions overlap. The (D k 2 k

phase boundary hence lies at 7

Note that this value oR exceedd  for A<A.. Because of

+y

where we have introduced a Lagrange multipketo bias
the system towards a predefined numligs of charge
quanta.

In summary, we have used simple arguments to obtain the To obtain the ground-state spin configuration for a given
phase boundaries between the ferromagnetic and the spifisorder realization, we start from a random initial state and
glass as a function of disorder and charge density. The reanneal using Monte Carlo dynamics and the Metropolis al-
sults, Egs.(14) and (16), are summarized in the schematic gorithm. After some experimentation, we found the follow-
phase diagram shown in the inset of Fig. 3 below. We nexing three-stage protocol to be effective. In the first stage, the
present results from Monte Carlo simulations which supportemperature is reduced linearly in time from a high tempera-
these predictions. ture T, (several times)) to To/10, using 3.% 10° Monte

The discussion we have presented is for a model with &arlo steps per spifMCS). In the second stage, the tempera-
short-range Hartree interaction and for the limg<<\ ture is reduced fronTy/10 to 0, using 5 10° MCS. For
<Ly. The central consequence of using a Coulomb formpoth these stages, the attempted spin update is an isotropi-
U(r)=e%4meor, in place of a short-range Hartree interac- cally distributed reorientation. In the third stage, the system
tion is to change the length scale derived by comparing Haris quenched for a further %610* MCS, using as the at-
tree with exchange energies, frob=(Uy/J)Y? to Ly  tempted spin update only small-angle reorientations in order
=e%/4mend=16(2m) 4 5. Since in this casky is not para-  to improve the acceptance rate.
metrically larger thag, scaling arguments of the type pre-  We have checked that this algorithm finds the ground state
sented in this section are not justified. In this case, in place afeliably for a weakly disordered system with overall charge
three distinct regimes of disorder strength<J, J<A neutrality, by doing repeated runs for a given realization of
<A, andA.<A) we expect only two, withA;~J. We note  background potential and using local charge and energy den-
that the differences in behavior resulting in a short-rangssities to identify states that differ only by a global spin rota-
Hartree interaction or from a Coulomb form are likely to betion. In strongly disordered systems and those with nonzero
largest whernsv andA are small(iin the lower left corner of average charge density, repeated applications of the algo-
Fig. 3 below, where screening is weakest. rithm do not reproduce the same state to high precision. In-

We expect that thermal fluctuations at nonzero temperastead, a number of low-lying states are obtained, having a
ture will disorder both the ferromagnet and the spin glasssmall spreadless than 10%in their energies and other ob-

(8p)c=Lp (A A% (16)
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1.0 ——1— order strength further, we reach a regime of strong disorder
M 3 at A/dwJ=3, in which there is only a small magnetization,
0'6§ of the magnitude expected for a spin-glass state of a finite-
0.2F size system.
Pttt These results are consistent with the existence of a phase
60§ transition from the collinear, ordered phase at wéako a
X 40¢ spin-glass phase at strong disorder. From the magnetization
20 curve we pickA /47J=2.5 as our estimate of the critical
; 0: N TN - disorder strength.
ps 055 E B. Susceptibility
= j We also calculate the uniform susceptibility from the
0 5 response of the ground state to a weak Zeeman field. Our

J procedure is as follows. First we obtain a ground state with-
Al 4rm out a Zeeman field, using the protocol described in Sec. IV.

FIG. 1. Ground-state properties for a system witg=8wJ asa  Then we apply a weak Zeeman fididn the direction of the
function of disorder strengtiiRef. 4: (a) magnetizationM as a  residual magnetization, by adding to the Hamiltonian the
fraction of the saturated momerth) susceptibilityy, and(c) spin  perturbationsH = — h-M. We find the ground state in the
stifinessps in units of J. presence of this perturbation by repeating the third stage of

the quenching protocol. Taking care to check that our mea-
servables such as their magnetization. We performed at leagf;rements remain within the linear response regime, we ex-

five independent simulations for every disorder realizationyact the susceptibility from the change in the magnetization
and picked from the states obtained the one with the Iowes(gwI using

energy. For a chosen disorder strendthwe generated three
or more realizations of the disorder potential and averaged R
our results over these realizations. We found that properties x=|éml/|hl. (19)
such as the ground-state energy, the magnetization and vatri- B - .
ous response functions show only small fluctuations betwee%.e.SUItS forUO_.87T‘] are shown in Fig. (b). The suscepti-
different disorder realizations for systems of size :3232 llity as a f“”"“oﬂ of d|sord(_er strength has a Ia_lrge_ peak at
spins or larger. Simulations of much larger systems are rule@/47J=2.5. We interpret this as a second indication of a
out by constraints on computing time, and we chodse phase transition from the ferromagnetic phase to a disordered
=40 as the system size for most of our simulations. phase.

The Lagrange multipliery was chosen sufficiently large o
so that a majority of the simulation runs yielded a ground C. Spin stiffness

state with the desired total char@g. We do not detect any We now turn to the spin stiffnegs, which measures the
dependence of our results on the particular valug.of rigidity of the spin configuration. It is obtained by calculat-
ing the energy cost of small amplitude, long-wavelength spin

V. MAGNETIC RESPONSE twists in the ground state. More specifically, we label the

. . . . . columns of sites in th& X N lattice by integers 1,2 .. N.

Having outlined our simulation techniques, we next h . . . .

. . . en, starting with a ground state obtained as in Sec. IV, we

present our results. We start with the magnetic properties Oionstruct a twisted state by rotating all Spins on coldin

the system. We show that they indicate a transition from the y 9 P R _

ferromagnet to the spin glass with increasing disordef the system through a small angleabout an axi®. Using

strength, as expected from our discussions in Sec. IlI. the third stage of the quenching protocol, we then relax all
spins in this twisted state except those on columns 1 and

N/2, which are held fixed. From the difference in eneidy
between the initial and final states, we obtain the spin stiff-

ness for rotations about the axs using

A. Magnetization

We calculate the site-averaged magnetization

M=(S(r))|=N"?

> 3‘ . (18) ps=AE/26%. (20)

Repeating this for different axes of rotation, we calculate the

i in sti B
—8xJ in Fig. 1(a). Spins are fully aligned for /4mJ<1, full 33 s_ymmetnc tensor f(_)r the spin stiffnegs” . As
because our bounded disorder distribution then lies entirelfXPected, in the ferromagnetically ordered phase one of the

below the threshold, Eq9). IncreasingA beyond 4rJ, we rincipal axes of this tensor lies to a good approximation

obtain a partially polarized ferromagnet. In fact, the magne&/0nd the magnetization direction, and it is convenient in

tization remains close to its saturated value udtidml  these calculations to choose rotation agés directions par-
=1.8, when it starts to drop appreciably. Increasing the disallel and perpendicular tl .

Results are shown for a system of X480 spins withU,
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7
FIG. 2. Correlation lengtliin units of the lattice constanas a Al4md

function of the disorder strength. Open symbols: our calculation; FIG. 3. The phase diagram fat,=47J (L y/A=4w), as a

solid line: fit to a power law. function of disorder strength and charge density. QHFM: quantum

Hall ferromagnet; QHSG: quantum Hall spin glass. Inset: results

The eigenvalues of the spin stiffness tensor are shown &gm scaling arguments fdr, /A>1.

a function of disorder strength in Fig.(d. For the fully

polarized ferromagnet, rotations about the magnetization diferromagnetic phase are unsuccessful, and indeed the argu-

rection do not alter the spin configuration, and so one eigenments of Appendix C suggest that correlations in this case
value is zero while the other two are degenerate, taking thenay decay with a power law.

value ps=J. For the partially polarized ferromagnet, all
three eigenvalues are nonzero, with two remaining degener-
ate. The spin-glass state, however, has no special spin direc-
tion and this magnetic isotropy means that that all three ei- Our Monte Carlo results outlined above allow us to dis-
genvalues are approximately degenerate. The stiffness t#guish between a ferromagnetic phase and a quantum Hall
reduced in value frond in the fully polarized ferromagnet to spin glass. For a system withhy=87J, we conclude that a
approximatelyJ/2 in the spin glass(A variational estimate phase transition from a collinear ferromagnet to a spin-
for the stiffness in the spin-glass phase B8R See Appen- disordered phase occurs&t47J=2.5. Repeating these cal-
dix A.) The magnetically isotropic phase is observed forculations for different disorder strengths and charge densi-
A/4mJ>2.5, yielding the same estimate Af as our mag- ties, we can map out a phase diagram for the ground state of

-

E. Phase diagram

netization and susceptibility data. the system. Results fddy=4xJ are shown in Fig. 3.
Comparing this with the phase diagram predicted from
D. Spin-correlation length our heuristic argumenignse), we see that the two are quali-

tatively very similar, even though the simulations are carried

The behavior of spin correlations provides a further wayq it for (Ly/\) =47 while our scaling picture applies in
of characterizing ground states. In particular, we consider th?ne limit (L, /\)>1. An idea of the dependence by /X is

correlation function given by contrasting results at the two valuedgf studied.
1 o The critical disorderA. at which the neutral system loses
C(r)= N > S-S, (21)  ferromagnetic order ia\ /47J=2.5 for Uy=8=J, and re-
r () duces toA /4mJ=2.2 for Uy=4mJ, in qualitative agree-
where the sum runs over &, spin pairs of separation We ~ Ment with the scaling behavior we expect from ELd).

extract the spin correlation lenaghby fitting to the form It is interesting to note that there is a density range over
P gthby g which disorder matabilizethe ferromagnet, by limiting the
C'(r)=M2+(1-M?)exp —r/&). (22) size of the nucleated spin textures. This range is, however,

very narrow:|(8p)|=<102 in units of charge per plaquette.

The behavior of the correlation length as a function of theWe mention in passing that we have not searched extensively
disorder strength in the spin-glass phase is shown in Fig. Zor a skyrmion crystal, expected at a finite charge density in
From the Harris criterion? we expect it to diverge a§  the weak disorder limit but presumably unstable 40£0.
~(A—A,) " with »>2/d=1 as the ferromagnetic phase
boundary is approached. Our results are consistent with a
divergence at\/47wJ=2.5, although it appears that they are
affected by finite-size effects faf for A/47J<<2.7. Perhaps We have so far discussed the phase diagram of the system
because of these finite-size effects, this fit gives a low valuén terms of its magnetic correlations and response. We next
for the exponenty=0.7. Attempts at a similar fit in the study its charge response.

VI. DIELECTRIC RESPONSE
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q FIG. 5. Mapping a line of spins on the lattice to a trajectory in
spin space.

FIG. 4. Compressibility(Ref. 4 «(q) as a function of wave
vector q for systems withJ=1 andUy,=4= and 87. (A/4wJ

6Q in the x direction, from one side of this region to the
=3, (6p)=0.)

other. We choose to focus on those spins lying on the line of
We examine first the dielectric response of the partiallyIengthL which is parallel to thy axis and which divides the

polarized ferromagnet and spin glass, characterized at ze ggion into two equal halves of sizexL. (See Fig. 5. We

frequency by the wave-vector-dependent dielectric ConStaﬁudpupcoesde,b;/ntr?e \;Jaer:flljir%gicailoﬁpiir:i\:blweast stihrﬁpf;lzr?i(;igq?(;{;?oenm
€(a) or by the compressibility(q), related via of these spins, through an angié. With this assumption, let

k(q)=0%e(q)eq/€?, (23) us estimate the charge transfer generated by such a rotation,

. . o and the exchange energy that it costs. To do so, it is useful to
wheree is the electron charge ang is the permittivity of  egard the spin configuration as a map of the line we have
the medium. More precisely, we apply a periodic modula-gefined onto a trajectory on the spin sphere. For a disordered
tion, V(r)—V(r)+V,cosQ-r), to the potential in Eq(4).  gpin configuration, this trajectory resembles a random walk.
As a result, the ground-state elegtron density chan.ges.accorqlhe end points of the walk are randomly placed on the spin
ing to dp(r)— &p(r)+ ép(r). Since the system is disor- gpnhere ifl is large compared to the spin-correlation length
dered,5p,(r) contains many Fourier components, but afterang the distanc® between them on the surface of the spin

averaging, the linear response is sphere is therefore typical?(1). Under a rigid rotation of
_ _ spins on the line, the trajectory is displaced rigidly around
{9pa(r)) Vir(q)cosq-r), (24) the spin sphere. The charge transferred across the real-space
which constitutes our definition of(q). line is proportional to the area swept out on the spin sphere

Our numerical results fok(q) are displayed in Fig. 4, by the trajectory during this displacement. We therefore ar-
where we study systems deep in the spin-glass phase, settinge at the estimate
Aldmd=3 and (Sp(r))=0. We compare behaviors at

Ugldmd=1 and atUy/47J=2, in each case combining data 6Q,~D 6~ 56. (26)
from lattices of size 4band 56 in order to maximize wave- _ _ . _ .
vector resolution. Choosing the phase and axis of rotation appropriately in each

We find that, at small, «x(q) is independent otJ, and such region, t.he phange in potential-energy Qensity arising
quadratic ing. At large g, it is independent ofy, varying ~ from the rotation '$—V15Q1/|—2=—V1q259 while the as-
roughly asU; *. We can understand these results kq) ~ Sociated change in exchange energy densityd 4856°.
using the approach we employed to discuss the phase dig:_hoosélngéa to minimize the total energy, we fingp,(r)|
gram. The Hartree length,, again plays an important role. ~ V1d°/J and hence

Forq>L,§1, exchange may be neglected and we see from

Eq. (12) that K(@)~a?I=UgH(aLp)?® (glu<l). (27
k(q)=Ugyt (qLy>1), (25) -SI—SII'[SS conclusion is again consistent with our numerical re-
in agreement with the-independent value obtained fe(q) Alternatively, we can arrive at this form for the compress-
at large wave vectors from our simulations, and withthe  ibility from scaling considerations. In general, we may ex-
dependence of these values. pect that the compressibility is described by the scaling form
Exchange becomes important at longer wave lengths
<L,*. To estimatg 8p,(r)) for smallg, we suppose that it k(q)=Ug H(qlLy), (28)

arises primarily from spin rotations which have amplitutte

and wave vector-(. To be specific, consider for the peri- where f(x) approaches a constant at largeOur central
odic perturbationvV,cos@x) a region of size R XL with L hypothesis is that exchange dominates at small wave vectors,
=/q. The perturbation causes a net movement of chargand sox(q) should be independent &, as q—0. This
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implies thatf(x) ~x* for x<1, leading to the form given in  This linear dependence afp should be contrasted with spin

Eq. (27) for the compressibility at smatl. waves in a collinear ferromagnet, for which the density
To summarize, the system has a metallic response to éhange isO(IVf)IZ).

perturbing potential at large wave vectors, wifq) inde-
pendent ofy. However, at small wave vectors, it behaves Iiketh
an insulator, withe(q) independent of g.

We note that, for an infinite system at exacjy=0 and
zero frequencyx(0) should be proportional to the thermo-
dynamic density of states. So, except in the fully polarized SH=—P.E (32)
ferromagnet, we expect thai0) remains finite as we take o
the temperature to zero. To reconcile this general expectatiofior an electric field&, in the x direction. From Fermi's
with our results, one must remember that for finite-size sysgolden rule, the powell(w) absorbed from an oscillating
tems considered here at zero temperature, the discretenessetéctric field of frequencyw is
charge implies that almost all disorder realizations have no

To estimate the contribution to the conductivity, we note
at a spin wave will couple to an external electric field
through the net dipole momefit that it induces. The cou-
pling appears in the Hamiltonian in the form

response to an infinitesimal change in the chemical potential, o

while there is a divergent response from those realisations IM(w)= —2€§|<f|PX|O)|2ﬁwg(w), (33

for which ground states from two different charge sectors are h

degenerate. : : : :
where|0) is the ground state arjd) is a state with a single
spin wave excited, of excitation energy, andg(w) is the

VII. OPTICAL CONDUCTIVITY spin-wave density of states in frequency. From &9), we

have

Finally, we consider the optical conductivity(w) at fre-
guency w. Within our treatment, spin waves are the only
excitations that contribute. Since they are not topological ex- 3w
citations and so do not carry net electrical charge, the dissi- 9(w)= 2rc2 Luly, (34)
pative conductivity vanishes in the low-frequency limit. Spin
waves do, however, give rise to local charge fluctuations anghcluding three polarizations for a system with linear dimen-
a fluctuating electric dipole moment which couples to ansionslL, and Ly.
oscillating external electric field, generating dissipation at \We estimate for the matrix element appearing in B3
finite frequency. by considering the dipole moment induced by a spin wave.

For a fully polarized quantum Hall ferromagnet, Gréen  We start our discussion using the form taken by a spin-wave
has shown that the spin-wave contribution to optical conduciyode in the absence of ground-state  disordp(r)
tivity is very small. In the noncollinear quantum Hall spin

glass, the contribution may be larger due to the presence ofa @PC0S@- 1), wherep is a unit vector defining the axis of

finite charge density in the disordered ground state. FurtheP'" rotations ana specifies the amplitude. The charge den-

more, the low-energy dynamics of the collinear qLIantLImsity induced by an excitation of this type in a disordered

Hall ferromagnet is qualitatively different from that of a getiund state.tw(;th s/pm-\?\(/JrreIatlorE tlr(]a'ngtﬂ1 ?Ias’t frf[)m Etﬂ
guantum Hall spin glass, since while spin waves in a coIIin-( ), & magnitudexq/¢. We expect this to fluctuate with a

ear background have a quadratic energy dispersion, those mndom sign over the length scaleThe spin wave therefore

a noncollinear background have a linear disperdiom induces electric dipoles of magnitueg(q¢e) in each cor-
— cq at smallg, with velocity relation areat?. Averaging over d_,x L, system, we find

c=(ps/x)"2 (29)

Of the three polarization modes, one is expected to remain

gapless even in the presence of a Zeeman coupling.
We now calculate the spin-wave contribution to the opti- . . . .

cal conductivity for a ground state with noncollinear spins, It remains to determmg the amp"?“defm asingle quan-

and then estimate its magnitude in realistic systems. The rguMm €xcitation. We show in Appendix B that

tation of spins from their ground-state orientation in the pres-

ence of a spin wave may be parametrized by a vq&(o},

with, at first order, Combining factors and dropping numerical coefficients, the
absorbed power is

wé\?
?) Ly, (35

LL
<P§>~(E§2qa)2%~e2a2

where we have substituteg= w/c.

(a®y=tflyol,L,. (36)

S—S—p(r)xS. (30)
242
Using Eq.(3), we show in Appendix A that this induces a 2% &X 4
change in the electron density (w)~& p? @ Lyly. (37)

This is an ohmic responsH/L,L,= 055/2, with conductiv-

€ji > >
3p(r)—3p(r)= 7 —dp-d;S, Gy
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g2
o(w)~

h (38 nation for a coupling observed in NMR experiments between

radio-frequency magnetic fields and the electron sy$tem.

Let us estimate the magnitude of this spin-wave conduc©n the other hand, at filling factors away frar=1, neither
tivity. In the spin-glass phase, we use our numerical results ¢l probes nor the nature of excitations distinguish sharply
estimateps=J/2. Also, the numerical results for the lattice Petween a skyrme crystal in a clean system and the partially
shows y,. Of the order of unity in units ofé/J. The con- Polarized ferromagnet or spin glass induced by disorder.

tinuum magnetization is related to the lattice spins by

c

w§)2ﬁw polarized ferromagnet, and has been advanced as an expla-

ps

m«— S#i/I3. This means that the continuum susceptibility is ACKNOWLEDGMENTS
2 .« _u
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Taking £€=10 and J=4-8 K (correcting our earlier

valu¢), we find for a frequency of 1 GHzo(w) APPENDIX A: SPIN WAVES AND CHARGE

~(103-10 %e?/h. Unfortunately, variable-range FLUCTUATIONS

hopping® seems likely to mask this contribution te(«). Consider a small rotatioR(ﬁ) of the spins aroun@, SO

VIl SUMMARY AND DISCUSSION that spin directions transform according3e+RS, with

We have investigated the competition between exchange R=e", [P]3P=¢€"%C, (A1)
interactions and disorder in quantum Hall ferromagnets at or R,
near integer filling and at zero temperature. Our approach i$o second order§S=—pXS+pX(pxS)/2. The charge-
tailored_ to the limit of a smoothly varyin_g impurity potential. density deviation fromy=1 is given by dp,= 5ij§' (gié

_ We find that the ferromagnetic state is destroyed by strong, d;S)/8. In the presence of an additional spin rotation, it

disorder through the creation of skyrmion/antiskyrmion becomes
pairs, or by a finite density of either skyrmions or antiskyr-
mions at filling factors sufficiently far froow=1. This be- .
havior, anticipated from simple scaling arguments, is con- 8po+ 8p1=~2RS-[3,(RS) X 9;(RS)] (A2)
firmed in numerical studies of ground-state spin 87
configurations, obtained from slow Monte Carlo cooling of
an initially random high-temperature phase. The disordere
phase is identified as a quantum Hall spin glass by the ab- . .
sence of long-range order, the presence of nonvanishing local  §5p,=— iaiﬁ. 9, §+Lai5. L;J.(f,x S)+ o(p3),
magnetic moments, and a finite spin stiffness. 4m 8m

The quantum Hall spin glass has a zero-frequency dielec- (A3)
tric response which interpolates between that of an insulator, . . 1 2 2 a2, =
at small wave vectors, and that of a metal at large Wavé)bta"leda using R R)S_(a‘P_[P’aiP]/Z)S_ S_i< %P
vectors. It supports gapless spin-wave modes that couple t6 (¢iP p)x S/2. We can drop higher-order terms|f|<1
electric fields through a finite dipole moment and contributeand |V p|<|VS|, so thatdp;/pp<1.

to the optical conductivity of the system. To first order inp, the component of parallel toS does

Possible experimental signatures of the phenomena Wot affect the charge density. At this order, the charge fluc-
have discussed follow both from the behavior of the magnetuation 5p, can be written as
tization and from the nature of excitations. Measurements of
the Knight shift in nuclear magnetic resonaficd (NMR) Sp1=— € 0P 03 (Ad)
provide information on the distribution, sampled in space, of 1 ne
the spin-polarization component parallel to the applied magg, o, continuity
netic field, while polarization-resolved absorption ’
spectroscopy?® can be used to determine the average spin D . _
polarization. Impurity effects are most characteristic vat Ji=€;p-9;S + divergence-free part.  (A5)
i?];’z\gge:ﬁ ttﬂzysﬁiu'gtgsg ;?dzueﬁidzsg ;%zglfézu?:%g,rgﬁghgote that we have only identified the transport current, and

finite width in the polarization distribution. We note that spin not any circulating current in the bulk. . .
R . . : Let us now consider the energy cost of spin rotations for
polarization which remains unsaturated evenvatl is

found in absorption spectroscoBy?® and that a broad the Hamiltonian in Eq(4). The change in the exchange en-

Knight-shift distribution is measured in low-temperature ergy densityH, is
NMR.?* In addition, the existence of excitations at energies - . o @)
lower than the Zeeman gap is characteristic of the partially oH;=J0ip- (6;SXS)+ 6H ™,

80 that

Sp,+3d;J;=0, the current density is

195322-9



DEREK K. K. LEE, SEBASTIAN RAPSCH, AND J. T. CHALKER PHYSICAL REVIEW B7, 195322 (2003

n J -5 - o L. .o quantities, which obey conservation laws and are assumed to
SHS ):§[|Vp| —2(Vp-S)*+(dip-S)di(p-S) fluctuate slowly on the time scale set by local relaxation
rates.
—(p-S)(d;p-4,9)]. (AB) Hydrodynamic spin fluctuations have equations of motion
. . o which may be written in terms of the rotation angﬁe as
The change in potential-energy density is used in Eq(30), and the local magnetization, with the form
1 ’ INA2p ! &p
OH,=Vu(r)dpa(r)+ 5 [ Spa(NU(r—r")dps(r)d=r’, =i, (B2)
(AT)
where am,
& =PV Pa (B3)

VH(f)=V(f)—/L+J U(r—r")dpo(r')d?’ (A8)  whereps is the spin stiffness ang is the uniform magnetic
susceptibility. Using the same variables, the free energy of
is the local Hartree potential andis the chemical potential. the system is
An equation satisfied by the spin configuration in the
ground state is obtained from requiring that the total energy )
is unaffected by the rotatiofx to first order. This means that )
we have to balance the first-order terms in the expressions s
for 6H; and 6H,, giving 1 o, 2 5
=5 2 | drxpitedVed®). (B4

Vp,

1 3 1
AF(mp)=3 2 dzr(;m?ﬁps

3i[13,SX S— €;Vy(r)3;S]=0 (A9) o
o . ) ~ Along-wavelength treatment of elementary excitations leads
for the spins in the ground state. This nonlinear equationy the same equations of motion and an equivalent expres-
demonstrates the competition between ferromagnetic exsion for the energy of the system, in whigh and y are
change and Thomas-Fermi screening in a (g|sc_)rdered QHFMyround-state quantities. We have argued in Sec. V that both
From the second-order contributiondH(?) in the ex-  are finite at zero temperature in the spin-glass phase. These
change energyH,, we can make a variational estimate of equations are reminiscent of the dynamics of the spin waves
the spin stiffness in the spin-disordered phase. Suppose thigf a Heisenberg antiferromagnet. They lead to spin waves

p andS are uncorrelated. Then the second-order terms avewith the dispersion relation

age to
’ w=cq, c=(ps/x)"2 (B5)
.o . . 1 .
((VIO~5)2>=((r?i|0'S)r?i(p's)>=§|Vp|2, Considering a single spin-wave mode, with
p=apecodq-r—wt) (|pol=1), (B6)

{(p-S)(ap- 3i9)=0. (A10) btain th lituder f b h
tain t it t tting t
We can define a disorder-averaged spin stiffness fron\évr?e?gyi?hweaar‘m/ﬁ’n'g“a?“E(;E?,%;e quantum by setting the
(8H®) =4V p|?/2 so that

~ APPENDIX C: DILUTE SKYRMIONS
ps=2J13. (A11)
In this Appendix, we study in more detail the interactions

APPENDIX B: LONG-WAVELENGTH SPIN WAVES between a dilute set of skyrmions at weak disorder. We show
how the relative orientations of internal degrees of freedom
In this Appendix, we review the results of Halperin and of the skyrmions are determined by the energetics of the
Saslow! for hydrodynamic excitations, and of Ginzbétg system.
for elementary excitations, and adapt these for our purposes. For a clean system without Hartree interactions, the
Both theories deal with long-wavelength, low-energy excita-Hamiltonian reduces to th®(3) nonlinear sigma model.
tions of a disordered spin system. The microscopic magnetithe skyrmions are of the Belavin-Polykov type. They do not
zation density and energy density can be coarse grained oviteract. Hartree interactions alone will lead to a divergent
areasA to mean values; in the case of the magnetization onskyrmion size in the absence of a Zeeman field. This is pre-
has vented in the presence of a disordered potential, as pointed
out in Sec. Ill. However, the presence of an inhomogeneous
- 1 - potential also means that the skyrmions interact. We discuss
m(r)=Ki% S (B1) here whether a physical picture of isolated skyrmions at
weak disorder is justified. In particular, since the spin devia-
Within a hydrodynamic theory, the low-energy dynamics oftion due to a skyrmion falls off as lLAwith distancer, one
the system is determined entirely from these coarse-grainemust ask whether the ferromagnetic polarization is strongly
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affected by a collection of dilute skyrmions. configuration within theth well, while the values ofp; re-
For the purposes of this Appendix, we choose a simplénain to be determined. The density profile in this region is
disorder distribution in which pinned skyrmions and anti-
skyrmions are nucleated by isolated wells and barriers of Vo a;— Db
circular shape, positioned randomly on the plane. The depth op'(2)= m(1+|w|?)2 EI (Z_ai)(z_bi)| '
(or heighy of these potentials exceeds the threshold,(8y. ) o ) ) ) ]
so that they nucleate skyrmior®r antiskyrmions This where the prime indicates the restricted area in which this

model disorder distribution has the advantage that we cafP'™ applies. The interference terms in the squared sum
use the Belavin-Polyakov solutions of the nonlinear sigmg@ke a contribution to the total charge in the region far from
model as a starting point for our analysis he wells which amounts to a pairwise coupling between the

Consider first the case in which the chemical potential is'tgger?til(jd(jegr::ﬁ; igf freedom of different skyrmions. The in-

sufficiently high that there are no antiskyrmions. A set of
Belavin-Polyakov skyrmions is described by an analytic d?z w2
functionw(z) of the positionz=x+iy in the plane = —

w2 |2

(C4

T (1+|w]?)?

n
Z— @,
w(z)=11 z—b?’ (CD X Re (3 —b)"(3,~by) :
e 71 (2 -af)(z ~bf)(z-a))(z-b))
wheren is the number of skyrmions. The function(z) pa- (C5)

rametrizes the spin configuration via . o
In the dilute limit, we can takea;=b;=z . We can also

S, +iS,=2w/(1+|w|?), approximatgdw|?=1 away from the skyrmions. Then
S,= (1= W) /(L+[wf?) (c2) —ge [ ¥7y _ didet?
with the boundary conditiors,=1 at infinity. For a single a7 17 (2 -7 (z-7)?

skyrmion (h=1), the density profile is
y 0=1) yp :12 didjcog ¢ — o))
|‘92W|2 di2/477 (3 25 |Zi_zj|2 '

m(1+|w|2)?  (|z—z|2+ d?/4)?’ This contribution to the charge in the region between poten-
. . tial wells adds to the energy of the system, since the electro-
wherez; = (a;+b;)/2 can be interpreted as the position of thestatic potential here does not exceed threshd. (9)]. It

skyrmion andd;=|a; —bj| as its diameter. There remains an represents charge density that is removed from the cores of
internal phase degree of freeday, defined from & —bi)  skyrmions, as a result of overlap with the tails of other dis-
=diexp(¢). In multiple skyrmion configurations the rela- tant skyrmions. We see that in order to minimize the energy
tive phases are important. we must choose the skyrmion phasgsto minimizel. This

In a dilute glass, skyrmions are typically separated byis done by arrangingp; so that the variabled,e'’ sums
distances large compared to their size, and the position andcally to small values. With such correlations, we expect
diameter of each skyrmion is determined separately by théhat long-range ferromagnetic order survives in the presence
balance of Hartree and potential energies in the vicinity ofof dilute skyrmions. A similar treatment of a mixed system
the potential well on which it is centered. In the region farcontaining both skyrmions and antiskyrmions leads to inter-
from any well, the Belavin-Polyakov form is a good descrip-actions of the same kind among the skyrmions, and sepa-
tion for the spin configuration, because it minimizes ex-rately among the antiskyrmions, but without coupling be-
change energy. The parameterandd; are fixed by the spin  tween the two species at leading order in inverse density.

(C6)
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