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Dirty quantum Hall ferromagnets and quantum Hall spin glasses
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We study quantum Hall ferromagnets in the presence of a random electrostatic impurity potential, within the
framework of a classical nonlinear sigma model. We discuss the behavior of the system using a heuristic
picture for the competition between exchange and screening, and test our conclusions with extensive numerical
simulations. We obtain a phase diagram for the system as a function of disorder strength,D, and deviation,dn,
of the average Landau-level filling factor from unity. Screening of an impurity potential requires distortions of
the spin configuration. In the absence of Zeeman coupling there is a disorder-driven, zero-temperature phase
transition from a ferromagnet at smallD and udnu to a spin glass at largerD or udnu. We characterize the
spin-glass phase in terms of its magnetic and charge response.
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I. INTRODUCTION

Disorder and interactions have competing consequen
in quantum Hall ferromagnets~QHFM’s!. In this paper, we
study how a disordered impurity potential can give rise t
spin-disordered ground state. We also discuss the influe
of disorder on the magnetic and charge response of su
system. We use a classical spin model throughout to desc
the quantum Hall ferromagnet.

Coulomb interactions lead to spin correlations in a qu
tum Hall system. For electrons fully occupying the lowe
Landau level~filling fraction n51), exchange is responsibl
for a spin-polarized ground state, even in the absence
Zeeman energy. This is the consequence of Hund’s rule
applied to a macroscopically large number of degene
Landau-level orbitals. The resulting quantum Hall ferroma
net is especially interesting as a system in which the s
configuration and the charge density are closely linked.1 At
n51 and if Zeeman energy is large, charge enters the s
polarized system as minority-spin electrons. However,
Zeeman energy is small or vanishing, the charged excita
of lowest energy is not a bare spin-half electron, but a bo
state of an electron with many spin waves. In classical ter
this occurs because the minority spin polarizes its local
romagnetic background, and the composite object may
viewed as a topological excitation, or texture in an orde
ferromagnet — a skyrmion.2 Similarly, an antiskyrmion,
with topological charge of the opposite sign, is produc
when charge is removed from a filled Landau level. In t
description, the deviation of local charge density from tha
a filled and ferromagnetically polarized Landau level is p
portional to the topological density3 of the spin configura-
tion.

In a clean system with sufficiently small Zeeman ener
skyrmions or antiskyrmions can be created at zero temp
ture on varying the average filling factor fromn51 to larger
or smaller values. For a disordered quantum Hall ferrom
net, the coupling of an electrostatic impurity potential to t
charge density offers an additional mechanism by which s
0163-1829/2003/67~19!/195322~12!/$20.00 67 1953
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textures are nucleated at zero temperature. The physical
sequences of this coupling are the subject of this pa
which provides a detailed account of work presented in o
line in Ref. 4.

The interplay between disorder and exchange in quan
Hall ferromagnets has been examined previously from s
eral different viewpoints. Fogler and Shklovskii5 developed a
theory particularly applicable in higher Landau levels. Buil
ing on earlier discussions,6 they presented a mean-field trea
ment in the spirit of Stoner theory. For odd integer filling
the absence of Zeeman coupling, they found a transition
tween ferromagnetic and paramagnetic ground states
increasing disorder strength. They suggested that this tra
tion should be apparent in transport measurements, in w
the ferromagnetic phase is characterized by spin-reso
Shubnikov–de Haas oscillations, and the paramagnet
spin-unresolved oscillations. Experimentally, a transition
this kind is observed with decreasing magnetic-fie
strength,7,8 and its sharpness suggests that its origin is ind
cooperative.

Within the Fogler-Shklovskii approach, local momen
are all collinear in the ferromagnet and vanish at the tran
tion to the paramagnet. An alternative scenario may aris
the lowest Landau level nearn51, in which the QHFM
responds to disorder mainly through the direction rather t
the magnitude of its local magnetization. Some indicatio
that this can happen derive from calculations for the fu
polarized ferromagnet at weak disorder. Here, a reductio
spin stiffness with increasing disorder strength has been
terpreted by Green9 as a precursor of a noncollinear phas
Moreover, even weak disorder may nucleate a dilute glas
skyrmions and antiskyrmions at the maxima and minima
the disordered potential, as discussed by Nederveen
Nazarov10 and examined further in the present paper. In a
dition, Sinova, MacDonald, and Girvin11 have shown that, a
intermediate disorder strength, both reduced and non
linear local moments emerge from a numerical solution
Hartree-Fock theory for a model with Coulomb interactio
and spatially uncorrelated disorder, while transport proper
©2003 The American Physical Society22-1
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within Hartree-Fock theory have been discussed
Murthy.12

In general, we believe that the relative importance
local-moment reduction versus the formation of spin textu
for dirty QHFM’s will depend on the nature of the disorde
In this work, we concentrate on textures, which are favo
by a smoothly varying impurity potential atn51. We find
that the ferromagnet gives way to a spin glass at strong
order.

The plan of this paper is as follows. In the next sectio
we describe a spin model with quenched disorder which
intended to capture the physics of the disordered QHF
This is followed in Sec. III by a discussion of the pha
diagram for the model as a function of filling factor an
disorder strength, using heuristic arguments and sca
ideas. The conclusions are supported by the results
Monte Carlo simulation of a lattice version of the sp
model. The technique is outlined in Sec. IV and the res
are presented in Sec. V. In Secs. VI and VII, we discuss
compressibility and conductivity of the system in order
characterize the charge response of spin-disordered gr
states.

II. SPIN MODEL

Consider a two-dimensional electron gas in a strong p
pendicular magnetic fieldB, with Landau-level fillingn close
to unity. The electrons are subject to an impurity poten
V(r ) and an electron-electron interaction energyU(r ). As a
first step, let us omit the exchange interactions and the Z
man energy. Then the electron densityr(r ) is determined by
the balance between disorder and interactions, or in o
words, screening. We treat this using Thomas-Fermi the
Such an approximation has been applied by Efros13,14 to the
comparable problem in spin-polarized Landau levels when
lies near half-integer values. The ground-state charge den
r(r ) at weak disorder is determined by the condition that
Hartree potential should match the chemical potentialm ev-
erywhere:

m5V~r !1E U~r2r 8!r~r 8!d2r 8. ~1!

This approach is valid in the case where the resulting lo
filling factor varies smoothly on the scale of the magne
length, l B5(\/eB)1/2, and only has small fractional devia
tions fromn51, so that

dr~r ![r~r !2~2p l B
2 !21!r~r !. ~2!

However, the Thomas-Fermi picture of good local scre
ing does not take into account exchange interactions. P
vided that electron-density fluctuations are small a
smoothly varying, ferromagnetic exchange leads locally t
maximal ferromagnetic polarization of the electron spi
This local magnetization may vary in space. Denoting
direction by the three-component unit vectorSW (r ), spatial
fluctuations in spin orientation are linked to electron dens
by2,3
19532
y

f
s

d

s-

,
is
.

g
a

s
e

nd

r-

l

e-

er
y.

ity
e

al

-
o-
d
a
.
s

y

dr~r !5
1

8p
e i j SW •~] iSW 3] jSW !. ~3!

This direct connection is specific to the quantum Hall fer
magnet — a varying electron density implies a variation
the direction of the local magnetization and vice versa. S
spin textures cost exchange energy. So, a proper descrip
of the system must include exchange, impurity, and Hart
contributions to the total energy of a dirty quantum H
ferromagnet. This brings us to study the Hamiltonian

H5E H J

2
u¹SW ~r !u21@V~r !2m#dr~r !1

U0

2
@dr~r !#2J d2r ,

~4!

where

J5
1

16~2p!1/2

e2

4pe0e r l B
~5!

is the exchange coupling.15 (e r is the relative permittivity in
the semiconductor.! At this point we have chosen for sim
plicity a short-range Hartree interaction,U(r2r 8)5U0d(r
2r 8). We have also absorbed the constantU0/2p l B

2 into the
chemical potentialm.

As mentioned above, we work with a disordered poten
V(r ) that is smooth on the scale of the magnetic lengthl B .
For simplicity, our discussion of this continuum model a
sumes a Gaussian distribution with standard deviationD and
correlation lengthl much larger than the magnetic leng
l B . ~Our numerical study uses a lattice model with
bounded distribution with uncorrelated disorder.!

In restricting our study to this model, we neglect quantu
fluctuations ofSW (r ). This semiclassical approximation is jus
tified for smooth variations, withu¹SW (r )u! l B

21 . Our aim in
the following is to understand the zero-temperature ph
diagram of the model defined by Eq.~4!, as a function of
disorder strengthD and average charge density^dr&, the
spatial average ofdr(r ). We will characterize its ground
states via their response functions and excitations.

We conclude this section by comparing this model w
some other examples of disordered systems. As an elec
system, it is unusual in that there is an exchange gap
single-particle excitations, even if the ground-state spin c
figuration SW (r ) does not have long-range ferromagnetic o
der. This means that the only low-energy excitations invo
collective spin modes. As a ferromagnet with quenched d
order, the system is also unusual in several ways. First,
link between spin and charge means that the spin sys
responds to applied electric fields. We calculate in the f
lowing the wave-vector-dependent dielectric constant,e(q),
and compare it with behavior found in more convention
disordered electron systems. Second, due to the same
pling, spin waves generate an electric dipole moment. T
means that spin waves contribute to the optical conducti
s(v). More generally, the coupling to disorder in this mod
leaves spin-rotational symmetry intact but breaks tim
reversal symmetry. This is in contrast to the effect of rand
2-2
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Zeeman fields, which break both symmetries, and to rand
exchange interactions, which preserve both symmetries.

III. PHASE DIAGRAM

We begin with a qualitative discussion of the zer
temperature phase diagram as a function of disorder stre
and average charge density. We employ scaling argumen
obtain the phase boundary for breakdown of long-range
romagnetic order.

The Hamiltonian of Eq.~4! for the continuum model is
minimized by the spin configuration which satisfies~Appen-
dix A!

J¹2SW 3SW 5e i j ] iVH~r !] jSW , ~6!

VH~r !5V~r !2m1U0dr~r !, ~7!

where VH the local Hartree potential anddr is defined in
terms of the local spin configuration by Eq.~3!. This equa-
tion for the ground-state configuration shows the interp
between exchange and disorder in the model. Since it is
ficult to tackle the nonlinear equation directly, we proce
using heuristic arguments instead.

The model is characterized by two energy scales: the
change energyJ and the disorder strengthD. There are also
two length scales: the correlation lengthl of the disordered
potential and

LH[~U0 /J!1/2, ~8!

which we call the Hartree length. The significance of t
Hartree length can be made clear by considering a skyrm
of fixed shape and radiusR in a clean system. The contribu
tion to its total energy from exchange is;J, independent of
size, while that from Hartree interactions is size depend
being ;U0 /R2. Comparing these contributions, one se
that exchange dominates on length scales large comp
with LH , while Hartree interactions dominate at smaller d
tances.

Our central hypothesis is that the competition betwe
interaction and disorder in this system is characterized by
Hartree length only. In the following, we also use the lim
LH@l as a source of simplifications.

A. Filled Landau level

Let us consider first the effect of disorder on a system
n51, imposed by settinĝ dr&50. Without impurities
@V(r )50#, the system is a perfect ferromagnet. Moreov
there is a threshold9–11

uV~r !u54pJ, ~9!

below which an impurity potential is unscreened. It aris
because, for anySW (r ), one hasu¹SW (r )u2>8pudr(r )u and
hence

H>E @4pJudr~r !u1V~r !dr~r !#d2r . ~10!
19532
m

th
to

r-

y
if-
d

x-

n

t,
s
ed
-

n
e

t

r,

s

Thus, if uV(r )u is below the threshold 4pJ everywhere, the
ground state is the perfectly aligned ferromagnet w
dr(r )50.

At weak disorder (D&J), uV(r )u in most parts of the
system lies below the threshold. With an unbounded pot
tial distribution, the ground-state spin configuration therefo
consists of a dilute glass of skyrmions and antiskyrmio
nucleated at rare positions whereuV(r )u is large, as discusse
by Nederveen and Nazarov.10 Away from these positions we
expect that the ferromagnetic order is essentially unaffec
by the impurity potential. A careful treatment of this regim
is, however, quite subtle, since the spin deviation due to
isolated skyrmion falls off with distance only asr 21. We
argue in Appendix C that long-range ferromagnetic orde
indeed preserved, and that the internal degrees of freedo
dilute skyrmions and antiskyrmions develop the correlatio
necessary to ensure this.

In contrast, at strong disorder (D@J), the charge density
provides almost perfect local screening of the disordered
tential, so that

dr~r !.2V~r !/U0 ~D/J@1!. ~11!

Corrections to perfect Thomas-Fermi screening arise
length scales larger thanLH , where exchange becomes im
portant. The effect of exchange is to force screening cha
to be quantized, since an unquantized charge costs diver
exchange energy in the thermodynamic limit. We can su
marize the effect of exchange by dividing the system in
regions of areaLH

2 , finding for each such area the integra

Q[2E
LH

2

V~r !

U0
d2r ~12!

and adjusting the total screening charge within every reg
to the integer value closest toQ. We argue that these intege
are predominantly zero in a ferromagnetic phase, and
dominantly nonzero in a phase without ferromagnetic ord
To illustrate this, we consider a well-ordered ferromagne
phase, in whichS(r ) has small spatial variations around
global direction of magnetization. In this case, the net to
logical charge in any region has a magnitude much less t
one. Conversely, in a phase without such order, unit to
logical charge will typically accumulate over a region of lin
ear size given by the ferromagnetic correlation length.

This picture leads us to identify the phase boundary of
ferromagnet as the point at which^Q2&1/2;1. To estimate
^Q2&, we note from Eq.~12! that each correlation area o
sizel2 contributes toQ a charge of magnitudel2D/U0 and
a random sign. Over the Hartree area, there areLH

2 /l2 such
contributions, so that

^Q2&1/2;~l2D/U0!~LH /l!5lLHD/U0 . ~13!

The phase boundary is therefore given by

Dc;U0 /~lLH!5J~LH /l!. ~14!

For D.Dc , the ground state is strongly disordered and h
no ferromagnetic order. Within our classical description,
2-3
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spins are frozen at zero temperature. We can therefore i
tify this phase as a quantum Hall spin glass.

B. Away from integer filling

We consider next the ground state away fromn51. We
examine behavior at fixedD,Dc , as a function of the aver
age charge densitŷdr&}n21. For ^dr&50 and D,Dc ,
the system has a net magnetization, but the introduction
charge in the form of skyrmions~or antiskyrmions! disrupts
ferromagnetic spin alignment. The sizeR of an isolated skyr-
mion in a clean system is divergent if Hartree repulsion
not balanced by Zeeman energy. However, the presence
impurity potential establishes an optimal size, because
energetically favorable for a skyrmion to locate its char
distribution in randomly occurring potential wells. The typ
cal depth of such a well of radiusR@l, averaged over its
area, is2D(l/R). ~The casel.R is treated in Ref. 10.!
The Hartree energy is;U0 /R2. The total energy is henc
minimized if

R;U0 /~Dl!5LH~Dc /D!. ~15!

Note that this value ofR exceedsLH for D,Dc . Because of
this, we expect that exchange energy dominates over the
tential energy and that the skyrmion will not be strong
distorted by the random potential. In other words, screen
as discussed in the previous subsection does not alte
present argument.

We expect that ferromagnetic order will persist with i
creasing charge density until such skyrmions overlap. T
phase boundary hence lies at

^dr&c5LH
22~D/Dc!

2. ~16!

In summary, we have used simple arguments to obtain
phase boundaries between the ferromagnetic and the
glass as a function of disorder and charge density. The
sults, Eqs.~14! and ~16!, are summarized in the schemat
phase diagram shown in the inset of Fig. 3 below. We n
present results from Monte Carlo simulations which supp
these predictions.

The discussion we have presented is for a model wit
short-range Hartree interaction and for the limitl B!l
!LH . The central consequence of using a Coulomb fo
U(r )5e2/4pe0r , in place of a short-range Hartree intera
tion is to change the length scale derived by comparing H
tree with exchange energies, fromLH[(U0 /J)1/2 to LH
[e2/4pe0J516(2p)1/2l B . Since in this caseLH is not para-
metrically larger thanl B , scaling arguments of the type pre
sented in this section are not justified. In this case, in plac
three distinct regimes of disorder strength (D!J, J!D
!Dc andDc!D) we expect only two, withDc;J. We note
that the differences in behavior resulting in a short-ran
Hartree interaction or from a Coulomb form are likely to
largest whendn andD are small~in the lower left corner of
Fig. 3 below!, where screening is weakest.

We expect that thermal fluctuations at nonzero tempe
ture will disorder both the ferromagnet and the spin gla
19532
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albeit with a long correlation length at low temperatur
Thermal disorder for the clean ferromagnet has been
cussed, in Refs. 16 and 17.

IV. MONTE CARLO SIMULATIONS

In order to test the theoretical results derived in the p
vious section, we use Monte Carlo methods, in combinat
with simulated annealing, to study a classical Heisenb
model with quenched disorder. In this section, we outline
methodology. Similar techniques have been applied rece
to systems without quenched disorder, in Ref. 18. We pres
our results for the physical response functions of the mo
in Secs. V and VI.

We treat a lattice version of Eq.~4! with N3N classical
spins SW i of unit length on a square lattice, taking period
boundary conditions. Spins have nearest-neighbor ferrom
netic interactions of strengthJ. In addition, the electrical
chargeqk on each plaquettek is calculated from the area o
the spin sphere covered by the spins on the corners of
plaquette. This charge density has a local repulsive Har
interaction of strengthU0, and is also subject to a uniforml
distributed random background potentialekP@2D,D#.
Since we choose this potential independently for ea
plaquette, the correlation lengthl is set by the lattice spac
ing.

The Hamiltonian of the lattice model is

H52J(̂
i j &

SW i•SW j1(
k

S ekqk1
U0

2
qk

2D1gS Q02(
k

qkD 2

,

~17!

where we have introduced a Lagrange multiplierg to bias
the system towards a predefined numberQ0 of charge
quanta.

To obtain the ground-state spin configuration for a giv
disorder realization, we start from a random initial state a
anneal using Monte Carlo dynamics and the Metropolis
gorithm. After some experimentation, we found the follow
ing three-stage protocol to be effective. In the first stage,
temperature is reduced linearly in time from a high tempe
ture T0 ~several timesJ) to T0/10, using 3.53105 Monte
Carlo steps per spin~MCS!. In the second stage, the temper
ture is reduced fromT0/10 to 0, using 53105 MCS. For
both these stages, the attempted spin update is an isot
cally distributed reorientation. In the third stage, the syst
is quenched for a further 53104 MCS, using as the at-
tempted spin update only small-angle reorientations in or
to improve the acceptance rate.

We have checked that this algorithm finds the ground s
reliably for a weakly disordered system with overall char
neutrality, by doing repeated runs for a given realization
background potential and using local charge and energy d
sities to identify states that differ only by a global spin rot
tion. In strongly disordered systems and those with nonz
average charge density, repeated applications of the a
rithm do not reproduce the same state to high precision.
stead, a number of low-lying states are obtained, havin
small spread~less than 10%! in their energies and other ob
2-4
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servables such as their magnetization. We performed at
five independent simulations for every disorder realizat
and picked from the states obtained the one with the low
energy. For a chosen disorder strengthD, we generated three
or more realizations of the disorder potential and avera
our results over these realizations. We found that proper
such as the ground-state energy, the magnetization and
ous response functions show only small fluctuations betw
different disorder realizations for systems of size 323 32
spins or larger. Simulations of much larger systems are ru
out by constraints on computing time, and we chooseN
540 as the system size for most of our simulations.

The Lagrange multiplierg was chosen sufficiently larg
so that a majority of the simulation runs yielded a grou
state with the desired total chargeQ0. We do not detect any
dependence of our results on the particular value ofg.

V. MAGNETIC RESPONSE

Having outlined our simulation techniques, we ne
present our results. We start with the magnetic propertie
the system. We show that they indicate a transition from
ferromagnet to the spin glass with increasing disor
strength, as expected from our discussions in Sec. III.

A. Magnetization

We calculate the site-averaged magnetization

M5u^SW ~r !&u5N22U(
i

SW iU. ~18!

Results are shown for a system of 40340 spins withU0
58pJ in Fig. 1~a!. Spins are fully aligned forD/4pJ,1,
because our bounded disorder distribution then lies enti
below the threshold, Eq.~9!. IncreasingD beyond 4pJ, we
obtain a partially polarized ferromagnet. In fact, the mag
tization remains close to its saturated value untilD/4pJ
.1.8, when it starts to drop appreciably. Increasing the d

FIG. 1. Ground-state properties for a system withU058pJ as a
function of disorder strength~Ref. 4!: ~a! magnetizationM as a
fraction of the saturated moment,~b! susceptibilityx, and~c! spin
stiffnessrs in units of J.
19532
ast
n
st

d
es
ri-
n

d

t
of
e
r

ly

-

-

order strength further, we reach a regime of strong disor
at D/4pJ.3, in which there is only a small magnetizatio
of the magnitude expected for a spin-glass state of a fin
size system.

These results are consistent with the existence of a ph
transition from the collinear, ordered phase at weakD to a
spin-glass phase at strong disorder. From the magnetiza
curve we pickDc/4pJ.2.5 as our estimate of the critica
disorder strength.

B. Susceptibility

We also calculate the uniform susceptibilityx from the
response of the ground state to a weak Zeeman field.
procedure is as follows. First we obtain a ground state w
out a Zeeman field, using the protocol described in Sec.
Then we apply a weak Zeeman fieldhW in the direction of the
residual magnetization, by adding to the Hamiltonian t
perturbationdH52hW •MW . We find the ground state in th
presence of this perturbation by repeating the third stage
the quenching protocol. Taking care to check that our m
surements remain within the linear response regime, we
tract the susceptibility from the change in the magnetizat
dMW , using

x5udMW u/uhW u. ~19!

Results forU058pJ are shown in Fig. 1~b!. The suscepti-
bility as a function of disorder strength has a large peak
D/4pJ52.5. We interpret this as a second indication of
phase transition from the ferromagnetic phase to a disord
phase.

C. Spin stiffness

We now turn to the spin stiffnessrs which measures the
rigidity of the spin configuration. It is obtained by calcula
ing the energy cost of small amplitude, long-wavelength s
twists in the ground state. More specifically, we label t
columns of sites in theN3N lattice by integers 1,2, . . . ,N.
Then, starting with a ground state obtained as in Sec. IV,
construct a twisted state by rotating all spins on columnN/2
of the system through a small angleu about an axiseW . Using
the third stage of the quenching protocol, we then relax
spins in this twisted state except those on columns 1
N/2, which are held fixed. From the difference in energyDE
between the initial and final states, we obtain the spin s
ness for rotations about the axiseW , using

rs5DE/2u2. ~20!

Repeating this for different axes of rotation, we calculate
full 3 33 symmetric tensor for the spin stiffness,rs

ab . As
expected, in the ferromagnetically ordered phase one of
principal axes of this tensor lies to a good approximat
along the magnetization direction, and it is convenient
these calculations to choose rotation axeseW in directions par-
allel and perpendicular toMW .
2-5
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The eigenvalues of the spin stiffness tensor are show
a function of disorder strength in Fig. 1~c!. For the fully
polarized ferromagnet, rotations about the magnetization
rection do not alter the spin configuration, and so one eig
value is zero while the other two are degenerate, taking
value rs5J. For the partially polarized ferromagnet, a
three eigenvalues are nonzero, with two remaining dege
ate. The spin-glass state, however, has no special spin d
tion and this magnetic isotropy means that that all three
genvalues are approximately degenerate. The stiffnes
reduced in value fromJ in the fully polarized ferromagnet to
approximatelyJ/2 in the spin glass.~A variational estimate
for the stiffness in the spin-glass phase is 2J/3. See Appen-
dix A.! The magnetically isotropic phase is observed
D/4pJ.2.5, yielding the same estimate ofDc as our mag-
netization and susceptibility data.

D. Spin-correlation length

The behavior of spin correlations provides a further w
of characterizing ground states. In particular, we consider
correlation function

C~r !5
1

Nr
(
(r )

SW i•SW j , ~21!

where the sum runs over allNr spin pairs of separationr. We
extract the spin correlation lengthj by fitting to the form

C8~r !5M21~12M2!exp~2r /j!. ~22!

The behavior of the correlation length as a function of
disorder strength in the spin-glass phase is shown in Fig
From the Harris criterion,19 we expect it to diverge asj
;(D2Dc)

2n with n.2/d51 as the ferromagnetic phas
boundary is approached. Our results are consistent wi
divergence atD/4pJ52.5, although it appears that they a
affected by finite-size effects forj for D/4pJ,2.7. Perhaps
because of these finite-size effects, this fit gives a low va
for the exponent:n50.7. Attempts at a similar fit in the

FIG. 2. Correlation length~in units of the lattice constant! as a
function of the disorder strength. Open symbols: our calculati
solid line: fit to a power law.
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ferromagnetic phase are unsuccessful, and indeed the a
ments of Appendix C suggest that correlations in this c
may decay with a power law.

E. Phase diagram

Our Monte Carlo results outlined above allow us to d
tinguish between a ferromagnetic phase and a quantum
spin glass. For a system withU058pJ, we conclude that a
phase transition from a collinear ferromagnet to a sp
disordered phase occurs atD/4pJ52.5. Repeating these ca
culations for different disorder strengths and charge de
ties, we can map out a phase diagram for the ground sta
the system. Results forU054pJ are shown in Fig. 3.

Comparing this with the phase diagram predicted fro
our heuristic arguments~inset!, we see that the two are qual
tatively very similar, even though the simulations are carr
out for (LH /l)5A4p while our scaling picture applies in
the limit (LH /l)@1. An idea of the dependence onLH /l is
given by contrasting results at the two values ofU0 studied.
The critical disorderDc at which the neutral system lose
ferromagnetic order isDc/4pJ.2.5 for U058pJ, and re-
duces toDc/4pJ.2.2 for U054pJ, in qualitative agree-
ment with the scaling behavior we expect from Eq.~14!.

It is interesting to note that there is a density range o
which disorder maystabilizethe ferromagnet, by limiting the
size of the nucleated spin textures. This range is, howe
very narrow:u^dr&u&1022 in units of charge per plaquette
We mention in passing that we have not searched extensi
for a skyrmion crystal, expected at a finite charge density
the weak disorder limit but presumably unstable forD5” 0.

VI. DIELECTRIC RESPONSE

We have so far discussed the phase diagram of the sy
in terms of its magnetic correlations and response. We n
study its charge response.

; FIG. 3. The phase diagram forU054pJ (L H /l5A4p), as a
function of disorder strength and charge density. QHFM: quant
Hall ferromagnet; QHSG: quantum Hall spin glass. Inset: res
from scaling arguments forLH /l@1.
2-6
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We examine first the dielectric response of the partia
polarized ferromagnet and spin glass, characterized at
frequency by the wave-vector-dependent dielectric cons
e(q) or by the compressibilityk(q), related via

k~q!5q2e~q!e0 /e2, ~23!

wheree is the electron charge ande0 is the permittivity of
the medium. More precisely, we apply a periodic modu
tion, V(r )→V(r )1V1cos(q•r ), to the potential in Eq.~4!.
As a result, the ground-state electron density changes acc
ing to dr(r )→dr(r )1dr1(r ). Since the system is disor
dered,dr1(r ) contains many Fourier components, but af
averaging, the linear response is

^dr1~r !&52V1k~q!cos~q•r !, ~24!

which constitutes our definition ofk(q).
Our numerical results fork(q) are displayed in Fig. 4

where we study systems deep in the spin-glass phase, se
D/4pJ53 and ^dr(r )&50. We compare behaviors a
U0/4pJ51 and atU0/4pJ52, in each case combining da
from lattices of size 402 and 562 in order to maximize wave-
vector resolution.

We find that, at smallq, k(q) is independent ofU0 and
quadratic inq. At large q, it is independent ofq, varying
roughly asU0

21. We can understand these results fork(q)
using the approach we employed to discuss the phase
gram. The Hartree lengthLH again plays an important role

For q@LH
21 , exchange may be neglected and we see fr

Eq. ~12! that

k~q!.U0
21 ~qLH@1!, ~25!

in agreement with theq-independent value obtained fork(q)
at large wave vectors from our simulations, and with theU0
dependence of these values.

Exchange becomes important at longer wave lengthq
!LH

21 . To estimatê dr1(r )& for smallq, we suppose that i
arises primarily from spin rotations which have amplitudedu
and wave vector;q. To be specific, consider for the per
odic perturbationV1cos(qx) a region of size 2L3L with L
5p/q. The perturbation causes a net movement of cha

FIG. 4. Compressibility~Ref. 4! k(q) as a function of wave
vector q for systems withJ51 and U054p and 8p. (D/4pJ
53, ^dr&50.!
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dQ1 in the x direction, from one side of this region to th
other. We choose to focus on those spins lying on the line
lengthL which is parallel to they axis and which divides the
region into two equal halves of sizeL3L. ~See Fig. 5.! We
suppose, in a variational spirit, that the charge movem
induced by the perturbation involves simply a rigid rotati
of these spins, through an angledu. With this assumption, let
us estimate the charge transfer generated by such a rota
and the exchange energy that it costs. To do so, it is usefu
regard the spin configuration as a map of the line we h
defined onto a trajectory on the spin sphere. For a disorde
spin configuration, this trajectory resembles a random w
The end points of the walk are randomly placed on the s
sphere ifL is large compared to the spin-correlation lengthj,
and the distanceD between them on the surface of the sp
sphere is therefore typicallyO(1). Under a rigid rotation of
spins on the line, the trajectory is displaced rigidly arou
the spin sphere. The charge transferred across the real-s
line is proportional to the area swept out on the spin sph
by the trajectory during this displacement. We therefore
rive at the estimate

dQ1;Ddu;du. ~26!

Choosing the phase and axis of rotation appropriately in e
such region, the change in potential-energy density aris
from the rotation is2V1dQ1 /L252V1q2du while the as-
sociated change in exchange energy density isJq2du2.
Choosingdu to minimize the total energy, we findudr1(r )u
;V1q2/J and hence

k~q!;q2/J5U0
21~qLH!2 ~qLH!1!. ~27!

This conclusion is again consistent with our numerical
sults.

Alternatively, we can arrive at this form for the compres
ibility from scaling considerations. In general, we may e
pect that the compressibility is described by the scaling fo

k~q!5U0
21f ~qLH!, ~28!

where f (x) approaches a constant at largex. Our central
hypothesis is that exchange dominates at small wave vec
and sok(q) should be independent ofU0 as q→0. This

FIG. 5. Mapping a line of spins on the lattice to a trajectory
spin space.
2-7
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implies thatf (x);x2 for x!1, leading to the form given in
Eq. ~27! for the compressibility at smallq.

To summarize, the system has a metallic response
perturbing potential at large wave vectors, withk(q) inde-
pendent ofq. However, at small wave vectors, it behaves li
an insulator, withe(q) independent of q.

We note that, for an infinite system at exactlyq50 and
zero frequency,k(0) should be proportional to the thermo
dynamic density of states. So, except in the fully polariz
ferromagnet, we expect thatk(0) remains finite as we tak
the temperature to zero. To reconcile this general expecta
with our results, one must remember that for finite-size s
tems considered here at zero temperature, the discretene
charge implies that almost all disorder realizations have
response to an infinitesimal change in the chemical poten
while there is a divergent response from those realisat
for which ground states from two different charge sectors
degenerate.

VII. OPTICAL CONDUCTIVITY

Finally, we consider the optical conductivitys(v) at fre-
quencyv. Within our treatment, spin waves are the on
excitations that contribute. Since they are not topological
citations and so do not carry net electrical charge, the di
pative conductivity vanishes in the low-frequency limit. Sp
waves do, however, give rise to local charge fluctuations
a fluctuating electric dipole moment which couples to
oscillating external electric field, generating dissipation
finite frequency.

For a fully polarized quantum Hall ferromagnet, Green20

has shown that the spin-wave contribution to optical cond
tivity is very small. In the noncollinear quantum Hall sp
glass, the contribution may be larger due to the presence
finite charge density in the disordered ground state. Furt
more, the low-energy dynamics of the collinear quant
Hall ferromagnet is qualitatively different from that of
quantum Hall spin glass, since while spin waves in a col
ear background have a quadratic energy dispersion, thos
a noncollinear background have a linear dispersion,21 v
5cq at smallq, with velocity

c5~rs /x!1/2. ~29!

Of the three polarization modes, one is expected to rem
gapless even in the presence of a Zeeman coupling.

We now calculate the spin-wave contribution to the op
cal conductivity for a ground state with noncollinear spin
and then estimate its magnitude in realistic systems. The
tation of spins from their ground-state orientation in the pr
ence of a spin wave may be parametrized by a vectorpW (r ),
with, at first order,

SW→SW 2pW ~r !3SW . ~30!

Using Eq.~3!, we show in Appendix A that this induces
change in the electron density

dr~r !→dr~r !2
e i j

4p
] i pW •] jSW . ~31!
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This linear dependence on¹pW should be contrasted with spi
waves in a collinear ferromagnet, for which the dens
change isO(u¹pW u2).

To estimate the contribution to the conductivity, we no
that a spin wave will couple to an external electric fie
through the net dipole momentP that it induces. The cou-
pling appears in the Hamiltonian in the form

dH52PxEx ~32!

for an electric fieldEx in the x direction. From Fermi’s
golden rule, the powerP(v) absorbed from an oscillating
electric field of frequencyv is

P~v!5
2p

\2
E x

2u^ f uPxu0&u2\vg~v!, ~33!

whereu0& is the ground state andu f & is a state with a single
spin wave excited, of excitation energy\v, andg(v) is the
spin-wave density of states in frequency. From Eq.~29!, we
have

g~v!5
3v

2pc2
LxLy , ~34!

including three polarizations for a system with linear dime
sionsLx andLy .

We estimate for the matrix element appearing in Eq.~33!
by considering the dipole moment induced by a spin wa
We start our discussion using the form taken by a spin-w
mode in the absence of ground-state disorder,pW (r )
5apW 0cos(q•r ), wherepW 0 is a unit vector defining the axis o
spin rotations anda specifies the amplitude. The charge de
sity induced by an excitation of this type in a disorder
ground state with spin-correlation lengthj has, from Eq.
~31!, a magnitudeaq/j. We expect this to fluctuate with a
random sign over the length scalej. The spin wave therefore
induces electric dipoles of magnitudeej(qja) in each cor-
relation areaj2. Averaging over aLx3Ly system, we find

^Px
2&;~ej2qa!2

LxLy

j2
;e2a2S vj

c D 2

LxLy , ~35!

where we have substitutedq5v/c.
It remains to determine the amplitudea for a single quan-

tum excitation. We show in Appendix B that

^a2&5\/xvLxLy . ~36!

Combining factors and dropping numerical coefficients,
absorbed power is

P~v!;E x
2 e2j2x

rs
2

v3LxLy . ~37!

This is an ohmic response,P/LxLy5sE x
2/2, with conductiv-

ity
2-8
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s~v!;
e2

h S vj

c D 2\v

rs
. ~38!

Let us estimate the magnitude of this spin-wave cond
tivity. In the spin-glass phase, we use our numerical result
estimaters.J/2. Also, the numerical results for the lattic
showsx latt of the order of unity in units ofl B

2/J. The con-
tinuum magnetization is related to the lattice spins
mW ↔SW \/ l B

2 . This means that the continuum susceptibility
x.\2/JlB

2 . Combining these factors, we have

s~v!;
e2

h S j

l B
D 2S \v

rs
D 3

. ~39!

Taking j510l B and J54 –8 K ~correcting our earlier
value4!, we find for a frequency of 1 GHz,s(v)
'(1023–1024)e2/h. Unfortunately, variable-range
hopping22 seems likely to mask this contribution tos(v).

VIII. SUMMARY AND DISCUSSION

We have investigated the competition between excha
interactions and disorder in quantum Hall ferromagnets a
near integer filling and at zero temperature. Our approac
tailored to the limit of a smoothly varying impurity potentia

We find that the ferromagnetic state is destroyed by str
disorder through the creation of skyrmion/antiskyrmi
pairs, or by a finite density of either skyrmions or antisk
mions at filling factors sufficiently far fromn51. This be-
havior, anticipated from simple scaling arguments, is c
firmed in numerical studies of ground-state sp
configurations, obtained from slow Monte Carlo cooling
an initially random high-temperature phase. The disorde
phase is identified as a quantum Hall spin glass by the
sence of long-range order, the presence of nonvanishing l
magnetic moments, and a finite spin stiffness.

The quantum Hall spin glass has a zero-frequency die
tric response which interpolates between that of an insul
at small wave vectors, and that of a metal at large w
vectors. It supports gapless spin-wave modes that coup
electric fields through a finite dipole moment and contrib
to the optical conductivity of the system.

Possible experimental signatures of the phenomena
have discussed follow both from the behavior of the mag
tization and from the nature of excitations. Measurement
the Knight shift in nuclear magnetic resonance23,24 ~NMR!
provide information on the distribution, sampled in space
the spin-polarization component parallel to the applied m
netic field, while polarization-resolved absorptio
spectroscopy25,26 can be used to determine the average s
polarization. Impurity effects are most characteristic atn
51, where they result in a reduced spin polarization, rea
ing zero in the spin glass at zero Zeeman coupling, an
finite width in the polarization distribution. We note that sp
polarization which remains unsaturated even atn51 is
found in absorption spectroscopy,25,26 and that a broad
Knight-shift distribution is measured in low-temperatu
NMR.24 In addition, the existence of excitations at energ
lower than the Zeeman gap is characteristic of the parti
19532
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polarized ferromagnet, and has been advanced as an e
nation for a coupling observed in NMR experiments betwe
radio-frequency magnetic fields and the electron system27

On the other hand, at filling factors away fromn51, neither
local probes nor the nature of excitations distinguish shar
between a skyrme crystal in a clean system and the part
polarized ferromagnet or spin glass induced by disorder.

ACKNOWLEDGMENTS

We are grateful for discussions with N. R. Cooper and
L. Sondhi. The work was supported in part by the EPS
under Grant No. GR/J78327~J.T.C.! and by the Royal Soci-
ety ~D.K.K.L!.

APPENDIX A: SPIN WAVES AND CHARGE
FLUCTUATIONS

Consider a small rotationR(pW ) of the spins aroundpW , so
that spin directions transform according toSW→RSW , with

R5eP, @P#ab5eabcpc. ~A1!

To second order,dSW .2pW 3SW 1pW 3(pW 3SW )/2. The charge-
density deviation fromn51 is given by dr05e i j SW •(] iSW

3] jSW )/8p. In the presence of an additional spin rotation,
becomes

dr01dr15
e i j

8p
RSW •@] i~RSW !3] j~RSW !# ~A2!

so that

dr152
e i j

4p
] i pW •] jSW 1

e i j

8p
] i pW •] j~pW 3SW !1O~p3!,

~A3!

obtained using (R21] iR)SW .(] iP2@P,] iP#/2)SW 5SW 3] i pW

1(] i pW 3pW )3SW /2. We can drop higher-order terms ifupW u!1
and u¹pW u!u¹SW u, so thatdr1 /dr0!1.

To first order inp, the component ofpW parallel toSW does
not affect the charge density. At this order, the charge fl
tuationdr1 can be written as

dr152e i j ] i pW •] jSW . ~A4!

From continuity,dṙ11] iJi50, the current density is

Ji5e i j pẆ •] jSW 1 divergence-free part. ~A5!

Note that we have only identified the transport current, a
not any circulating current in the bulk.

Let us now consider the energy cost of spin rotations
the Hamiltonian in Eq.~4!. The change in the exchange e
ergy densityHJ is

dHJ5J] i pW •~] iSW 3SW !1dHJ
(2) ,
2-9
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dHJ
(2)5

J

2
@ u¹pW u222~¹pW •SW !21~] i pW •SW !] i~pW •SW !

2~pW •SW !~] i pW •] iSW !#. ~A6!

The change in potential-energy density is

dHr5VH~r !dr1~r !1
1

2E dr1~r !U~r2r 8!dr1~r 8!d2r 8,

~A7!

where

VH~r !5V~r !2m1E U~r2r 8!dr0~r 8!d2r 8 ~A8!

is the local Hartree potential andm is the chemical potential
An equation satisfied by the spin configuration in t

ground state is obtained from requiring that the total ene
is unaffected by the rotationpW to first order. This means tha
we have to balance the first-order terms in the express
for dHJ anddHr , giving

] i@J] iSW 3SW 2e i j VH~r !] jSW #50 ~A9!

for the spins in the ground state. This nonlinear equat
demonstrates the competition between ferromagnetic
change and Thomas-Fermi screening in a disordered QH

From the second-order contributionsdHJ
(2) in the ex-

change energydHJ , we can make a variational estimate
the spin stiffness in the spin-disordered phase. Suppose
pW andSW are uncorrelated. Then the second-order terms a
age to

^~¹pW •SW !2&5^~] i pW •SW !] i~pW •SW !&5
1

3
u¹pW u2,

^~pW •SW !~] i pW •] iSW !&50. ~A10!

We can define a disorder-averaged spin stiffness fr

^dHJ
(2)&5 r̃su¹pW u2/2 so that

r̃s52J/3. ~A11!

APPENDIX B: LONG-WAVELENGTH SPIN WAVES

In this Appendix, we review the results of Halperin an
Saslow21 for hydrodynamic excitations, and of Ginzburg28

for elementary excitations, and adapt these for our purpo
Both theories deal with long-wavelength, low-energy exci
tions of a disordered spin system. The microscopic magn
zation density and energy density can be coarse grained
areasA to mean values; in the case of the magnetization
has

mW ~r !5
1

A (
i PA

SW i . ~B1!

Within a hydrodynamic theory, the low-energy dynamics
the system is determined entirely from these coarse-gra
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quantities, which obey conservation laws and are assume
fluctuate slowly on the time scale set by local relaxati
rates.

Hydrodynamic spin fluctuations have equations of mot
which may be written in terms of the rotation anglepW , as
used in Eq.~30!, and the local magnetization, with the form

]pa

]t
5x21ma , ~B2!

]ma

]t
5rs¹

2pa , ~B3!

wherers is the spin stiffness andx is the uniform magnetic
susceptibility. Using the same variables, the free energy
the system is

DF~mW ,pW !5
1

2 (
a51

3 E d2r S 1

x
ma

21rsU¹paU2D
5

1

2 (
a51

3 E d2r ~x ṗa
21rsu¹pau2!. ~B4!

A long-wavelength treatment of elementary excitations le
to the same equations of motion and an equivalent exp
sion for the energy of the system, in whichrs and x are
ground-state quantities. We have argued in Sec. V that b
are finite at zero temperature in the spin-glass phase. T
equations are reminiscent of the dynamics of the spin wa
in a Heisenberg antiferromagnet. They lead to spin wa
with the dispersion relation

v5cq; c5~rs /x!1/2. ~B5!

Considering a single spin-wave mode, with

pW 5apW 0cos~q•r2vt ! ~ upW 0u51!, ~B6!

we obtain the amplitudea for one quantum by setting th
energy to\v, arriving at Eq.~36!.

APPENDIX C: DILUTE SKYRMIONS

In this Appendix, we study in more detail the interactio
between a dilute set of skyrmions at weak disorder. We sh
how the relative orientations of internal degrees of freed
of the skyrmions are determined by the energetics of
system.

For a clean system without Hartree interactions,
Hamiltonian reduces to theO(3) nonlinear sigma model
The skyrmions are of the Belavin-Polykov type. They do n
interact. Hartree interactions alone will lead to a diverge
skyrmion size in the absence of a Zeeman field. This is p
vented in the presence of a disordered potential, as poi
out in Sec. III. However, the presence of an inhomogene
potential also means that the skyrmions interact. We disc
here whether a physical picture of isolated skyrmions
weak disorder is justified. In particular, since the spin dev
tion due to a skyrmion falls off as 1/r with distancer, one
must ask whether the ferromagnetic polarization is stron
2-10



p
ti-
o

p

ca
m

l i
o
tic

he
n

-

b
a
th
o

a
ip
x

is

this
um
m

the
in-

en-
tro-

s of
is-
rgy

ct
nce
m
er-
pa-
e-
.

DIRTY QUANTUM HALL FERROMAGNETS AND QUANTUM . . . PHYSICAL REVIEW B67, 195322 ~2003!
affected by a collection of dilute skyrmions.
For the purposes of this Appendix, we choose a sim

disorder distribution in which pinned skyrmions and an
skyrmions are nucleated by isolated wells and barriers
circular shape, positioned randomly on the plane. The de
~or height! of these potentials exceeds the threshold, Eq.~9!,
so that they nucleate skyrmions~or antiskyrmions!. This
model disorder distribution has the advantage that we
use the Belavin-Polyakov solutions of the nonlinear sig
model as a starting point for our analysis.

Consider first the case in which the chemical potentia
sufficiently high that there are no antiskyrmions. A set
Belavin-Polyakov skyrmions is described by an analy
function w(z) of the positionz5x1 iy in the plane

w~z!5)
i 51

n
z2ai

z2bi
, ~C1!

wheren is the number of skyrmions. The functionw(z) pa-
rametrizes the spin configuration via

Sx1 iSy52w/~11uwu2!,

Sz5~12uwu2!/~11uwu2! ~C2!

with the boundary conditionSx51 at infinity. For a single
skyrmion (n51), the density profile is

drn51~z![
u]zwu2

p~11uwu2!2
5

di
2/4p

~ uz2zi u21di
2/4!2

, ~C3!

wherezi5(ai1bi)/2 can be interpreted as the position of t
skyrmion anddi5uai2bi u as its diameter. There remains a
internal phase degree of freedomf i , defined from (ai2bi)
5diexp(ifi). In multiple skyrmion configurations the rela
tive phases are important.

In a dilute glass, skyrmions are typically separated
distances large compared to their size, and the position
diameter of each skyrmion is determined separately by
balance of Hartree and potential energies in the vicinity
the potential well on which it is centered. In the region f
from any well, the Belavin-Polyakov form is a good descr
tion for the spin configuration, because it minimizes e
change energy. The parameterszi anddi are fixed by the spin
ow

yi,
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configuration within thei th well, while the values off i re-
main to be determined. The density profile in this region

dr8~z!5
uwu2

p~11uwu2!2 U(i

ai2bi

~z2ai !~z2bi !
U2

, ~C4!

where the prime indicates the restricted area in which
form applies. The interference terms in the squared s
make a contribution to the total charge in the region far fro
the wells which amounts to a pairwise coupling between
internal degrees of freedom of different skyrmions. The
tegrated density is

I 5E 8d2z

p

uwu2

~11uwu2!2

3Re(
iÞ j

~ai2bi !* ~aj2bj !

~z* 2ai* !~z* 2bi* !~z2aj !~z2bj !
.

~C5!

In the dilute limit, we can takeai.bi5zi . We can also
approximateuwu2.1 away from the skyrmions. Then

I .ReE 8d2z

4p (
iÞ j

didje
i (f i2f j )

~z* 2zi* !2~z2zj !
2

5
1

2 (
i . j

didjcos~f i2f j !

uzi2zj u2
. ~C6!

This contribution to the charge in the region between pot
tial wells adds to the energy of the system, since the elec
static potential here does not exceed threshold@Eq. ~9!#. It
represents charge density that is removed from the core
skyrmions, as a result of overlap with the tails of other d
tant skyrmions. We see that in order to minimize the ene
we must choose the skyrmion phasesf i to minimize I. This
is done by arrangingf i so that the variabledie

if i sums
locally to small values. With such correlations, we expe
that long-range ferromagnetic order survives in the prese
of dilute skyrmions. A similar treatment of a mixed syste
containing both skyrmions and antiskyrmions leads to int
actions of the same kind among the skyrmions, and se
rately among the antiskyrmions, but without coupling b
tween the two species at leading order in inverse density
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