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Dephasing due to background charge fluctuations
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In quantum computation, quantum coherence must be maintained during gate operation. However, in physi-
cal implementations, various couplings with the environment are unavoidable and can lead to a dephasing of
a quantum bit{qubit). The background charge fluctuations are an important dephasing process, especially in a
charge qubit system. We examined the dephasing rate of a qubit due to random telegraph noise. Solving
stochastic differential equations, we obtained the dephasing rate of a qubit constructed of a coupled-dot system;
we applied our results to the charge Josephson qubit system. We examined the dephasing rates due to two types
of couplings between the coupled-dot system and the background charge, namely, fluctuation in the tunnel
coupling constant and fluctuation in the asymmetric bias. For a strong-coupling condition, the dephasing rate
was inversely proportional to the time constant of the telegraph noise. When there is fluctuation in the tunnel
coupling constant, Gaussian decay occurs in the initial regime. We also examined the rate of dephasing due to
many impurity sites. For a weak-coupling condition with fluctuation in the asymmetric bias, the obtained
dephasing rate coincided with that obtained by the perturbation method using the spectral weight of a boson
thermal bath, which is proportional to the inverse of the frequency.
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. INTRODUCTION telegraph noise” in the time domatf:*2 The random distri-
bution of the positions of such impurities and their time con-
Efforts to implement quantum computation have recentlystants lead to BCF's or f/noise!® In solid-state charge qu-
intensified. The application of the quantum l6ifubit) to  bits, these BCF's lead to a dynamical electrostatic
solid-state materials, such as superconducting Josephsdisturbance and hence the dephasing. The effectfohdise
junctions and quantum dot&;* is particularly promising, on a charge Josephson qubit has been examined
because these implementations have the advantage of sctieoretically—the interaction between the qubit and environ-
ability. In a coupled-dot system, for example, the localizedment has been treated by the perturbation methdt, by
states in the left and right dots are treated as a basic two-lev&aussian approximatioli,and by the path integral method
system, in which the tunnel coupling between the two dotsvithin a spin-boson modet***When fluctuating impurities
constructs a quantum superposition of the dots. This supegxist in the substrate, not in the junctibinthe coupling be-
position manifests itself in coherent quantum oscillationtween the qubit and BCF’s is weak, and the perturbation
(Rabi oscillation, and a transition can be induced betweenmethod is sufficient. However, when the interaction between
the superposed statd#\ nanometer-scale superconducting the qubit and environment is strong, methods that go beyond
electrode connected to a reservoir via a Josephson junctigrerturbation are needed.
constitutes an artificial two-level system in which the charge In this study, we investigated how the electrostatic distur-
states, coupled by tunneling, differ bye2wheree is the  bance of time constant, coming from a single impurity
electronic charge. This system has shown clear Rabi oscillaffects the quantum coherence of a qubit irrespective of the
tion. * strength of the qubit-impurity coupling. We also examine the
Quantum coherence must be maintained during quanturaffect of many impurity sites. This approach is in clear con-
gate operation. Dephasing, characterized by the dephasiritast with previous ones®*°in which the phenomenological
time, originates from various couplings between the qubitspectral weight of the boson thermal bath was used to char-
and environment. When the qubit is implemented in a solid-acterize the effect of BCF's.
state system, the effects of phonons and electromagnetic and We consider two types of couplings between the qubit and
background charge fluctuatiofBCF’s) are important in the environment: pure dephasing and dephasing accompanied
dephsing process. The effect of phonons has been examingdth relaxation of the populatiort” In symmetrical coupled-
in semiconductor quantum dots as the source of the dephadet systems, the former corresponds to a fluctuation in the
ing accompanying dissipatiofthe effect of electromagnetic tunnel coupling constant and the latter to that in the asym-
fluctuation in Josephson junction qubits has been extensivelpetric biast®'® The mapping from a coupled-dot system to
studied.” However, BCF’s have not yet been examined systhe Josephson charge qubit is discussed in Sec. VI. By using
tematically, in spite of their importance in the dephasing prothe method of stochastic differential equations, we obtain
cess. analytically the dephasing rate, which is shown to be always
BCF's have been observed in many systémsin nanos-  smaller thanrgl. It should be noted that this dephasing pro-
cale systems, they are the electrostatic potential fluctuationsess does not mean the qubit becomes entangled with the
due to the dynamics of electrons or holes trapped at impuritgnvironment, but rather it means the stochastical evolution of
sites. In particular, the charge of a single impurity fluctuatesan external classical field, suppressing the off-diagonal den-
with the Lorentzian spectrum form, which is called “random sity matrix elements of the qubit after being averaged over
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qubit metrical bias, andl” andd are the creation and annihilation
operators of the charge at the impurity site, respectively.
We assume that the time evolution of statistical variable

A X(t) (=2(d'd—1/2)) is a Poisson process. Assuming a
strong coupling between the charge at the impurity site and
the nearby electron reservoir, the dynamics of the charge

i I induces not Gaussian white noise, but random telegraph
JrJgi noiser*'81%We therefore consider the effect of random tele-

5 graph noise with characteristic time constapf where the

i statistical variableX(t) takes the value 1 or 1 [Fig. 1(b)].
W The time constant is determined by the barrier height of
T the electron or hole trap and the temperature, like

(a) =AeVksT whereW, kg, T, andA are the activation energy
X t of the impurity potential, Boltzmann’s constant, the tempera-
( ) ture, and the temperature-independent prefactor, respectively.
20 \When the temperature decreasesbecomes longer. The
1 ] telegraph noise has been experimentally observed to take a
0 value of 1 or— 1 with asymmetric probabilities, which arises
from the difference between the Fermi energy of the electron
- reservoir and the energy level of the impurity sité$.To
include this asymmetric weight, we introduce asymmetric
(b) probabilitiesp, andpy, which relate the asymmetric transi-

: —1- “1
FIG. 1. (a) Schematic diagram of coupled dots and environmention rates for the process from1 to 1[7, "= (pu7o) "] t0

- —1_ -1
constituting an impurity site and the electron resenirExample those of the opposite process; “=(pq7o) 1.

~V

time sequence of random telegraph noise. We neglect the back action from the qubit to the charge at
the impurity site, so this environment reduces to a classical
statistically distributed samples. stochastic external field. We also assume that the temperature

Section I defines the Hamiltonian of the system. Sectior!S high enough for the effect of the quantum fluctuation of
[l explains the method of stochastic differential equations.'[he charge between the impurity site and electron reservoir to
The fluctuations in tunnel coupling and asymmetric bias ard nheglected. _ L
examined in Secs. IV and V, respectively. Section VI is de- For compactness, we rewrite the Hamiltonian in terms of

voted to a discussion, including the effect of many impuri-the Pauli matrices while rotating the basif2 from the basis
ties. Section VIl summarizes the paper. of localized states in the left and right dots to the bonding-

antibonding basis:

Il. HAMILTONIAN
A he  hd;

hd
The qubit and effect of a single impurity are examined in H=702+ 70)(-!- 5 o X(t)+ TBO'XX(t). (4)
terms of the following Hamiltonian:
H=Hqp+Hqp_imp> (1)  Inthe following, we consider only the case of a symmetrical

coupled-dot systene=0, in which the effect of the bias
A he fluctuation due to the dephasing starts only from the second
Hqp= 7(c[cR+ cEc,_)%—?(cIcL—cE{cR), (2)  orderJ?, as shown in the following, and is less effective in
the perturbation regime. As the reduced Hamiltonian, Eq.
wherec/  andc_ g are the creation and annihilation opera- (4), suggests, the present results can also be applied to other
tors of the left and right dots, assuming a single level forguantum two-level systems in which telegraph-type fluctua-
each dot, as shown in Fig(d). TheA is the tunnel coupling tion exists(see Sec. VI
between the dots, and is the asymmetric bias between
.them..The. in;eractior_l between a qubit_and the_charge at the . METHOD
impurity site is described by the following Hamiltonian:

We are interested in the time evolution of the qubit’s two-
by-two density matrixp(t), with an arbitrary initial condi-
tion att=0, p(0). If BCF isabsent, starting with the initial
condition that the left dot be occupied, for example, the den-

hdr 4 T t
qu_imp=7(chR+ CrCL)2(d'd—1/2)

hd i ' =0 is gi
+TB(C[CL_CJ|;CR)2(de_1/2)r 3 sity matrix att=0 is given by
where J; is the magnitude of the fluctuation in the tunnel p(t:0)=W<z)(1 0) WT(Z) (5)
coupling,Jg is the magnitude of the fluctuation in the asym- 2/\0 0 2)
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where W(/2) is the matrix of rotation from the localized wheredW(X) is the distribution ofX with the probability of
basis to the bonding-antibonding basis. At tiine p, for X=1 and that ofpy for X=—1, with the constraint
p,t pPg=1. The density matrix before the ensemble average,
p(t)=e“A"z’2W( z) ( 1 O)WT(E) Qitho2 6) p(t.{t}), is given by

2/\0 0 2
1+ cosAt
— i sinAt
:W(g) N Wf(g), Pt = S(Xi ) - - - S(Xy3t2,1) S(Xpity,0)p(0)
.. — CO0S
—i sinAt — XS H(Xg:t1,00S (X q5to,ty) - - STH Xt ),

(7) 9
where the bases of the inner matrix are the left and right

occupancy states. Therefore, the density matrix shows Rabi

oscillation with frequencyA. ) . i )
In the following, we keep the matrix indices in the Where SCXt,t")=S(X,t—t’) is the unitary time evolution

bonding-antibonding basis. To examine the instantaneous p&Perator, which is determined by

tential change, we use the method of stochastic differential

equationg! The density matrix averaged over all possible

sequences of telegraph noise can be represented as a series:

- dsS(X,t)
1 t Ty ty h :H X x’t ' 10
— dtkf dtk,ln-f dtlf dW(X,) 1 (X)S(X,1) (10
0 79J0 0 0 X

p(t)e!7o=
k

x dew(xk’l)' N fxdW(XO)p(t’{tk})’ ®  1he explicit form of S(X,t) is given by

1 A+ 31X 1 JpX 1

. . . YB .
: COSzat—I sin Eat —1 TSII’] Eat
X t)= 11
(X0 JegX 1 ¢ 1 H__A+JTX 1 ‘ ' (D
—1 ?smza cosia |Tsm§a
|
wherea= \/(A+JTX)2+JZB. Equation(8) can be rewritten i m 1 (-
in terms of the integral equation pim(7)=€ " TIR™(7,0)p(0)]+ T_OJOdt
1(r X ex —:tTr[Rim(Tt) ] (15)
p(t)e”m:jS(X;T,O)p(O)S_l(X;T,O)dW(X)+T—j et/ To VPR
X 0Jo
X X; 7,t)p(1)S™1(X; 7,t)dW(X)dt. 12
J;(S( o) (Ximt) (X) (12 IV. FLUCTUATION IN TUNNEL COUPLING
Using S(X; 7,t), we define matrix®™(7,t) as follows: First, we consider the case of fluctuation in tunnel cou-

pling (J+#0,Jgz=0). Since the interaction Hamiltonian
commutes withHg;,, the environment leads to pure dephas-

im _ . —1 v ing without energy dissipation. We derig¢X,t) and :E“(t)
Ri (7.t fxsik(X'T’t)S'm (X HAWX), (13 from Egs.(11) and(13) as follows:

RIZ(7,0=(R{H*(7,0). (14 i
Su(X, 7—t)=ex E[A(T_t)_JTX(T_t)](_l)k i s
We can then reduce E(l2) to the following compact form: (16
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Rrkm(f—t):fx exdiA(7—t) +i31X(7—1)]SkSmd W(X).
17

As a result, the off-diagonal element of the density matrix
obeys the following integral equation:

o(t)dt,
(18

. 1 (- T—t
o(r)=e "OR(7)+ —| R(7—t)exp — —
T0J0 70

|JlTo

where o(7)=e "“7p,A(7)/|p1(0)| is a normalized off-
diagonal element of the qubit density matrix measured in a FIG. 2. Dependence of dephasing ratg'/|J¢| on tunnel cou-

Rabi oscillation frame and pling constantJ;|r, for various values of, and pq with J;#0
andJg=0.
R(r—t)=p,exdidt(r—t)]+pgexd —idt(7—1)]. .

19 1 1 1 -
(19 T2‘1=§Re[—— \/(—) —4J$—4i(p“ pd)JTJ.

Equation(18) can be rewritten as a differential equation To To To (21)

" 1 , 2. Pu—Pg _
o’(m)+ P (r)+|J7+i 7 Jro(7)=0. (20 Figure 2 shows théJ;| 7, dependence of dephasing rate

T, for p,=0.5, 0.6, 0.7, 0.8, and 0.9. In the two limits of

. weak and strong coupling, we have
The initial conditions arer(0)=e'%= p;(0)/|p1(0)| and g couping

a'(0)=0. As a result of coupling with the environment, the

off-diagonal element of the density matrix decays as a func- (1= (py—pg)?) 27, Urg>|34].
tion of time. When the real part of the two roots of the T, = (22
characteristic equatiof20) almost completely degenerates, (1=Ipu=Ppa)/270, Uro<|Jq].

the short-time behavior for<min(y2/J;,37,) (initial re-

gime) is not a simple exponential decay. In this initial re- Namely, for a fixedJ;|, whenr, increases from 0T, * first
gime, the off-diagonal element of the density matrix show§ncreases and then decreases. It has a single maximum of
Gaussian | , decay,  o(t)~o(0)(1-Ift/2+---) (1 \[p,— pal)|Ir| when 7o=1/(2|34]); therefore, for any

=g (0)e 7172, irrespective of the asymmetric probabilities, parametersT,>2r,. Changing weighp, to make it more

py and pg. The decay of the off-diagonal element of the asymmetric reduce3,*. In the limit of p,—0 or 1, the
density matrix becomes exponential for the asymptotic reenvironment is nearly frozen, so the dephasing time becomes
gime, t>(1/(\|1/73—432|), when p,=pq. For J;ro<1, infinity.
this criterion is obtained when one of the two exponential
decay terms becomes negligibly small. Rbfry>1, the

time constants of the envelope of the two dumped oscillating

terms are the same, 1/fg). Exponential decay appears after V- FLUCTUATION IN ASYMMETRIC BIAS

the inverse of the oscillation frequency: \/J—.AJTZ—1/7-02|. Next we examine the effect of bias fluctuatiod (
When p,=pq and J;7o=3%, one obtains,o(t)=e "47o(1 =0,Jg#0). We consider only the case of symmetrically
+1/27;), where the dephasing can never be a simple expoweighted telegraph noisep{=py=1/2) for simplicity. In
nential decay. this model,H,, and the interaction Hamiltonian do not com-

The time constant of this exponential decay correspondmute and the dephasing process is accompanied by a relax-
to the dephasing tim&,. For p,#pg,*® ation of the population. The unitary operator is thus

1 A1 JgX 1
cosiﬂtﬂﬁsmzﬂt —|Tsm§Qt
S(X,t)= X1 1 A1 , (23
—|?sm§m cosEQtJrlﬁsmEQt
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whereQ = AZ+JZ is the nutation frequency. After averag- A. Analytic solutions
ing, the few nonvanishing elements of matR(t) have The differential equatiori27) with initial condition Egs.
the form (28)—(30) has explicit solutions

Ri(7=t)=R3(7—t)=1-Py(7-1), 3 1
TiU) =2, |+ —\Cig(eM—e ™)
Rox 7=t =Rif(r— ) =Ri3(7—1) -

_ R%}( )= Py 7—1), X (Ciccosp+iCissing)+ie Ysing, (31)

" - whereu= 7/7,. Fori=1-3, the coefficients are given by

Cic= i[(1+32)>\?
={P12(r—t)+cosﬂ(7-—t) A !

+(1+ B%2=2a?)\i+(1+ B%) y?—3a?], (32

A
+ﬁst(r—t)}, (24 . 2 2
where Cis:A_ia(zM +3\+1+B9), (33
J2 Q(r—1) Aj=(N24 2N+ 1492 (BN2+ 2N+ ¥?), (34)

Pr—t)= Q—Bz sir? (25)

2 and the\,’s are the three solutions of

The time evolution of the diagonal element of this matrix is _
determined by the following differential equatiott:?? NHNZH YN+ a?=0, (39
wherea=10A, B=7Jg, andy?=a?+ B2
We will show one special case and three asymptotes.
B=0 isolated systemSince Eq.(35 has solutions\;=
(26) —1 and\,s=*ia, the coefficients are determined @g.
o - =C1s=0, C,.=Cgz.=3, and C,s=Cy,=1/2i. Therefore,
Here, n(7) =p11—p2,, and the initial conditions ara”(0)  \ve geto,,(u) =€ ®U*¢, which is simply a natural rotation
=—1J5n(0) andn’(0)=0, andn(0) depends on the initial of the off-diagonal element of the density matrix.

population having an arbitrary value between 1 antl. The @, 8<1 fast modulationIn this asymptotic case, the roots
time constant of the exponential decayrdfr) is the relax-  of Eq. (35) are \;~—1+ 82 and A, s~ — 2 B%*ia. After

ation time of the populationiT;. When|Jg|<A,1/7y (weak  determining coefficient€; , we obtain
coupling, T;'~J37. When |Jg|>A,1/7, (strong cou-

2 1, 3
n"(r)+—n"(7)+| 5 +A°+Jg |n'(7)+ —n(7)=0.
70 70 70

pling), T; *~1/27,. o ip(U) — e i B2 (36)
The obtained differential equation for the off-diagonal el-
ement is Therefore, the off-diagonal element of the qubit density

matrix decays exponentially at a rate Bf 1~ 1J3 7.

a,3>1 slow modulation The roots arex;~ — a?/y?

2 1 A
oA T+ o)+ —2+A2+Jé+iT— o1 7) and Az~ —BY2y2*yi, so  Rer(u)~(1/y9)
° 7o ° X(B2 e~ 4 42 (~B¥2Y) coga) cosg + (aly)
NI 2 PRSI B xe PP Nsinpusing and - Imo(u)~et AP
TS 70 271) % 27, 2T (= aly)sinyucosg+cosyusing). In particular, for <a

< (strong-coupling limif,

where o1(7)=p17)/|p1(0)| is the normalized off- ,

diagonal element of the qubit density matrix. The initial con- o1 7)~el" BN cosp+ie 2 cospusing. (37)
ditions are

These apparent different time dependences between the real

, ) Jé Jé and imaginary parts stem from the choice of coupling in the
010)=| =A% 501 0)+ - 021(0), (28 form JgoX/2. If we choose the forndzo, X/2 instead, the
time dependences of the real and imaginary parts are inter-

/ _ changed. In this strong-coupling limit, the time evolution of
7140)=~140120), @9 o1(7) explicitly depends on its initial phase, not the
o (0)=€?, (30) simply like €'?. Therefore, as will be discussed later, if there

are several such impurities, the total time evolutiomref( 7)
where ¢ is the initial phase of the off-diagonal density ma- is not the simple product of each impurity’s contribution. For
trix element. 1< B<a (weak coupling, we have

195320-5



TOSHIFUMI ITAKURA AND YASUHIRO TOKURA PHYSICAL REVIEW B 67, 195320(2003

O_(U)Ne(—,BZ/ZaZ)U-Hqﬁ. (38) 1 T
- 2
In this case, we have exponential decay witf,* OPe %)
~(J2/2A%) (1/7,). = 08 lo100)
For «,1> B weak coupling or preservative regimee :;3 - .
have ,:; 0.6- -
€ | 1=t 0—1 0s eXp(—ng‘l:o‘l:)_
Mo~ —1— B i A=10"%""
1 a’+1 0.4F  Jg=10%"" n(t) J
and 0 I 20000
T/,
& ( 5 )
Nog~——7 | 1+ —F|I, FIG. 3. Ther/ry dependence of the density matrixmfr) and
' 2(a®+1) 2(a*+1) lod(7) (solid curveé when J;=0 with Jz=10F s ! and A
o =10s!. Dotted lines are analytically obtained asymptotic

curves, which are almost identical to the solid curves.

Next, we examine ther, dependence of the relaxation
rate, particularly foJg|<A. Figure 6 shows the, depen-
dences of T;* and T,* when A=10"s"! and Jg

2 2
0~ €X —ia(1+ A u-— A utig]|.
2(a?+1) 2(a?+1)
Therefore, we again have exponential decay W'IUQ1 4 e ) .
~ Rro/2(1+ A272). This coincides with the Redfield resutt héoznsm e imits of he long and (;g;)"tgg: el with.
which was obtained by perturbation theory and is justified i |n Y ymp 9 y 7o G€P

the weak-coupling caséJg|<1/7. 2?4 Taking the limita dence of the relaxation time is fitted as
<1 further, we restore the result far,3<1, fast modula-

. -1 -1 ‘]BTO
tion. _ _ o T =2T, =, (40)
To summarize, the dephasing rate is given by 1+A°rg
J279l2 for A,|dg|<1ig, Whenry<A~!, the relaxation rates increase with. When
7o>A"1, the rates decrease with an increasing The
Z/JBTO for the real part and <A <|Jg|, shape of the dephasing rate as a functiorr@fs explained

as follows. Whenry<A ™, many dephasing events occur
during one Rabi oscillation cycle, each event leads to collec-
tive disturbance. Because the long-time constant of telegraph
noise leads to large fluctuations in the variance of the rotat-
ing angle in the Bloch sphere during Rabi oscillation, the
dephasing time decreases with an increastpgWhen 7
>A~1 Rabi oscillation occurs over more than one cycle in
(399  time 7 and, in this regime, each dephasing event is indepen-
dent. Hence, the dephasing time increases wih The

T,1={ 1/27, for the imaginary part and #§<A<|Jg|,

J2I2A%7, for 1lrg<|Jg|<A,

JZ /2 2.2 i
570/2(1+A%75) for |JB|<T AL
0

In all regimes,T,> 27, maximum aroundr,~A ! is a kind of resonance.
B. Numerical results 1
Here we show the results of solving Ed26) and (27)
numerically. _ lo(ml
Figure 3 shows the/ 7, dependence ai(7) and|o(7)| O exp(~t/27y)
when |Jg|<A,l/ry (weak coupling along with the 1)
. . . -~ ‘ HRARRANAN RS s enal
asymptotic curves obtained analytically. B 0 “ .‘ ”‘M WMM Tiligtsisoes T)
Figure 4 shows the/ 7, dependence ai(7) and|o(7)| < U
in the case of strong coupling. It also shows the asymptotic =107
envelope fom(7). A=10"%"
Figure 5 shows the/r, dependence of Re;,(7) in the JB_10‘23‘1

case of strong coupling. It also shows the asymptotic curve. N 10
As shown in Figs. 3, 4, and 5, in the two contrasting limits,
the numerical and analytical results coincide very well. It
should be noted that we do not find Gaussian decay of the F|G. 4. Ther/r, dependency of the density matrix nfr) and
off-diagonal element of the density matrix for the initial re- |¢,,/(7) (solid curvé when J;=0 with Jz=10"s! and A
gime, in contrast to the fluctuation in the tunneling coupling=10'°s™*. Dotted line is the analytically obtained asymptotic en-
constant. velope curve.

T/T
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0-8 T T T T T T T T T
Reoy(t)
g .
t;: 0.7 exp(-ATJ5 1)
it
[ass
1,=10"""
A=10"%""
Jg=10"%""
0'60 500 1000

/7,

FIG. 5. The /7y dependence of the real part of the density

matrix o1,(7) (solid line) when J;=0 with Jg=10?s"! and A
=100s71,
curve.

VI. DISCUSSION

Dotted line is the analytically obtained asymptotic

PHYSICAL REVIEW B7, 195320(2003

leads to a change in the tunnel coupling as well as a change
in the asymmetric bias?® For a charge state that couples
with a coupled-dot system symmetrically, the pure dephasing
event is critical. For dephasing accompanied with relaxation
of the population, the unitary operators of each impurity,
which lead to dephasing of the qubit, are not commuting.
However, by neglecting the higher-ordéigry’s in the
dephasing rate, we can take the ensemble sum of the effect of
each charge state. In such a weak-coupling cdge,&1),

we can use Eq(40), and the simple summation of the
dephasing rate is expressed ¥y

Tyi= f dJsPs(Je) f AWPW)T; (Jg W)

_ kgT 77“%)2
T W, 4A

(41

whereW, is the distribution width of the thermal activation
energy of the charge state3;(Jg) is the distribution func-

We considered the effect of electrostatic disturbance du@on of Jg, which depends on the relative position between
to background charge fluctuations. To summarize our findthe qubit and impurity site, an@2)s [ = fdJgPs (Jg)J3] is

ings, for pure dephasingl{#0,Jg=0), 27,<T,, and T,

=00, For dephasing with relaxation of the populatiody (

= O,JB:/: O), 27’0<T2: 2T1

the sum over the random impurities. In the second equation,
we assume uniform distribution of the activation energies of
the background charge®(W)=1M,; for typical cases,

Next, we discuss the relationship between the experimenyy, /k,T is approximately 232° Use of the perturbation
tally observedT, and our results. In the present study, themethod showed that the dephasing rate of a Josephson

dephasing time with a single background charge was foun@narge qubit in terms afg 7, is proportional to the inverse of
to be longer than the time constant of the telegraph noise fot | iy the limit of Ec=0, > where E, and E. are the

both tunneling and bias fluctuations. The observed time conjpsephson coupling constant and charging energy, respec-

stant of a dominant random telegraph noise is aboyt 8@r
so a rather long dephasing time is expected
However, in another experiment, the dephasing time wa

longert®1?

tively. This is similar to the estimate 0T521 in Eq. (41),
whereE; /% corresponds ta\. With a largerA and lower
femperature, the dephasing rate is lower.

about 1 ng> Therefore,.a single telegraph noise source May \ne next estimate the magnitude of the fluctuatiohs,
not be enough to explain the experimental results; we shoulgh,o asymmetric bias fluctuation comes from asymmetric

thus consider the effect of many impurity sites or other ad

ditional effects.

We consider the effect of many impurities for the case in

Flucuation in the tunnel coupling arises from the modulatio
of the wave function in the coupled dots. The gradient of the
electrostatic potential around the tunneling barrier, whicht
comes from an electron or hole located at an impurity site

10710 1078 107
To(S)

FIG. 6. Ther, dependence of; * andT,* whenJ;=0 with
Jg=10® st andA=10"s"1.

‘coupling between the two dots and the background charge,

which is in the form of a dipole interactionJg

«e?d cosdlr? for d<r, whered is the distance between the

rftwo dots,r is the distance between the coupled-dot system

and the background charge, afiés the angle between them.

" Therefore, for a smaller qubit or a charge located far from
he qubit, the effect of bias fluctuation should be less impor-
tant. The dephasing rate is proportional(t§)s , which is
estimated as

> 2
—————,C0s¥,
i \4meephr;
e’d 2N fw 24 jw _ 6’00520616’2
Ameegh) rm(d)r ' 0 sin ré T
[ €fd \am N 4
ldeegh) 3 rp(d) 42

for the impurity sites where the dipole approximation is ap-
propriate, where ,(d) is the radius beyond which the dipole
approximation is valid, which depends dnN; is the density

of impurity sites, ande, is the relative dielectric constant.
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Therefore, the total dephasing time is well defined. The qual- ot )
ity factor of a quantum logic gate is defined by the ratia\of SAE(“’)ZJ dte’” % ho(JIciXi(1)JcjX;(0))
0 Tos

#2327,
=2 %# dJCPuc)f d7oP (7o)
A W, 4A? " Atet
Tt kel w33y

Q= (43

720y kgT wh?(JZ)
1+w27(2) Wo 2w

: (49)

which represents how many gate operations can be done be-
fore the quantum coherence vanishes. From @§), we

conclude that a larga?/(J3)s is needed for quantum com- where(J2)=[dJcP(Jc)JZ, and we take an ensemble aver-

putation. We estimated Q wusing d=0.3um, r, age over the activation energy, as was done in the coupled-

=1 um, A=200 eV (characteristic parameter values for dot system. The spectrum of the charging energy fluctuation

an experiment in which the quantum mechanical coupling ofvas experimentally found to b&,g(w)=(4Ec/€)?%alw,

the dots was observed in the frequency donfajnande,  where a=(1.3x10 %e)2.1® From this estimation,(JZ)

=12.5 (for GaAs. To enable quantum error correction, the =4.6x 10°® s~ 2 for 20 mK. For an initial regime, the enve-

lower bound of the necessary gate quality factor was roughljope of Rabi oscillation shows Gaussian decay; namely, the

estimated a®)>10°. ?® Thus, the density of charge states off-diagonal element of the density matrix is given by

should be less than’610° cm 3 for fabrication. If there is a  p1(t)=p1(0)exp(—(IX)t?/2)e "B’ The rate of Gauss-

correlation between impuritie@ screening effegt dephas-  ian decay is given by/(ch)/Z. For the above value ¢f32),

ing will be suppressed in genefdllt should be noted that the time constant of the Gaussian decay is given by 3.6

there might be strong dephasing from the nearby impurities< 10? ps, which is consistent with the experimental finding

for which the dipole approximation is not adequate, even ifof 150 ps.® Note that in the Gaussian regime, the time

these are only a few impuritieg few in this case The constant does not depend on the temperature. Numerical

noncommutativity between the qubit Hamiltonian and envi-calculatiort* also suggests this type of Gaussian decay for

ronment Hamiltonian and the qubit back action makes it dif-the pure dephasing case.

ficult to evaluate the dephasing rate for strongly coupled At  the  charge  degeneracy  point—namely,

background charge fluctuations in the asymmetric bia®®Ec=0—dephasing with relaxation of the population oc-

caset* curs. In this case, the dephasing rate is estimated using the
Finally, we discuss the Josephson charge qubit syStemsame value O(J%)Z

Under an appropriate conditidsingle-electron charging en-

ergy Ec much larger than Josephson coupling endggyand

temperaturkgT<<E;) only two charge states in the Cooper _, mkgT (Jé)

pair box (CPB) are important, and the Hamiltonian is given 2 774 WO E_J (46)

by

S0 T,=0.28 us for T=20 mK. In a recent experiment, a
ﬁE X longer coherence time of 0.50s was found when the saddle
T e point of the ground-state energy was used as a functi@p of

E, SEc
5 Tz (44 and the flux°

HZ?O'X-F >

o,+

where SE-=4E-(Q;/e—1) is the energy difference be-
tween the two charge states, aQdis the total gate-induced
charge in the box. The two-charge-state basis is expressed
using Pauli matrices, anflJ. is the coupling strength be- We examined the effect of the fluctuation of a single
tween the qubit and background charge, which induces fluceharge in an impurity site on a qubit. Using the method of
tuation in the charging energy. Tlig /A corresponds to the stochastic differential equations, we calculated the time evo-
asymmetric biass, andEc /A corresponds ta\. Here,Ec  lution of the ensemble-averaged density matrix of the qubit
=122 neV, andE;=34 neV; (Ref. 16 if we can neglect and obtained analytical results for various conditions. The
E;, the pure dephasing event is critical. In pure dephasingdephasing timd, was always longer than the time constant
the effect of a large number of impurities is obtained byof the random telegraph noise for both tunneling and bias
simply summing the dephasing rates, becatdggand inter-  fluctuations. For bias fluctuatiofi, was twice the relaxation
action Hamiltonian commute. When the background chargéime of the population in the weak-coupling case. To sup-
and CPB interact, the charging energy in the CPB fluctuategress the bias fluctuation, the coupled dots should be posi-
The spectrum of the fluctuation is given by tioned closer together or the tunnel coupling should be made

VIl. SUMMARY
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