
PHYSICAL REVIEW B 67, 195315 ~2003!
First-principles treatments of electron transport properties for nanoscale junctions
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We present an efficient and highly accurate calculation method to provide first-principles electronic struc-
tures, current flow under steady states, and electric conductance for a nanoscale junction attached to truly
semi-infinite crystalline electrodes on both sides. This method is formulated by the real-space finite-difference
approach within the framework of the density functional theory. In our formalism, a scattering wave function
infinitely extending over the entire system can be determined by carrying out the wave-function matching
based on a boundary-value problem near the boundaries of the transition region which intervenes between the
two electrodes with bulklike potentials, and consequently, for each incident propagating wave, the scattering
wave function is constructed from the Green’s function matrix defined in the transition region and the ratio
matrices whose matrix elements are the ratios of the bulk solutions on neighboring grid points in the respective
electrodes. This scheme completely eliminates numerical instability caused by the appearance of exponentially
growing and decaying evanescent waves. In order to demonstrate the general applicability of the method, the
calculation of the conductance of a gold nanowire suspended between semi-infinite Au~100! electrodes is
presented as an example. We find that the transition from a metallic conductance of the quantum unit (2e2/h)
to an insulating one takes place as the nanowire is stretched.

DOI: 10.1103/PhysRevB.67.195315 PACS number~s!: 73.40.2c, 72.10.2d, 71.15.2m, 71.15.Ap
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I. INTRODUCTION

In the last decade, as the miniaturization of electro
devices proceeds, the field of nanotechnology has rece
great attention more and more, and in particular, elect
transport properties for nanoscale structures have been in
tigated actively because they are of significant importa
from both fundamental and practical points of view. R
cently, the unique phenomena of ballistic electron transp
through nanoscale junctions such as quanti
conductance1–3 and negative differential conductance4–8

have been observed experimentally and theoretically. In
situation, future researches on transport properties can
expected to lead to new discoveries of nano science
novel fabrications of electronic devices.

In order to obtain an exact theoretical knowledge on el
tron transport properties, we have to deal with a system
the nanoscale junction in contact with two trulysemi-infinite
crystalline electrodes~or leads!; thereby an electron wav
function extending over the entire system can be corre
described as a scattering state disturbed by the existenc
the junction when an electron comes from infinitely de
inside of the crystalline electrode. The first problem to
encountered in this scheme is that the system inherently l
its periodic structure in the direction parallel to the junctio
For such a system, a repeated slab model used in the
ventional plane-wave expansion approach breaks down
to the difficulty of incorporating nonperiodicity in it. The
next problem is that global wave functions forinfinitely ex-
tended states continuing from one side to the other need t
accurately calculated.

The easiest way to treat this infinite system is to repl
the semi-infinite crystalline electrode by a uniformly distri
uted charge background, i.e., ‘‘jellium.’’5,7–12 However, this
may give rise to a serious problem in evaluating elect
transport properties, because there is an artificial interf
0163-1829/2003/67~19!/195315~12!/$20.00 67 1953
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between the fictitious potential of the structureless jelliu
electrode and the real potential of the crystal surface.

Up to now, there have been several attempts to treat ge
ine semi-infinite crystalline electrodes without the appro
mation of jellium. Most of these relied on a recursive calc
lation method from one side to the other, such as transfer-~or
propagation-! matrix methods.13–21 It is known, however,
that when such recursive calculation techniques are
ployed as means of numerically solving the Kohn-Sh
equation, numerical errors frequently accumulate expon
tially in the matrix elements of the recursively multiplicate
transfer matrix. This unfavorable situation is attributed to t
appearance of exponentially growing and decaying wav
i.e., so-called evanescent waves.12,22–27In order to avoid this
error accumulation, Wachutka proposed a way to impro
the transfer-matrix methods by introducing a mathemat
trick:22 The main difference from the original transfer-matr
methods is that the wave-function matching scheme is ba
on a boundary-value problem instead of an initial-val
problem in the transfer-matrix approaches.22–27 However,
Wachutka’s prescription does not always work well. Inde
the inherent instability in numerical calculations arises ag
when one attempts to include more intensively growing a
decaying evanescent waves so as to describe the wave
tion more accurately.

In this paper, we present an efficient and highly accur
computational procedure for the first-principles theory of t
nanoscale junction sandwiched by semi-infinite crystall
electrodes to overcome the above-mentioned numerical
ficulties completely. Our procedure is formulated by the re
space finite-difference approach28–32 within the framework
of the density functional theory;33,34 thereby the wave-
function matching scheme is simply described and its imp
mentation is easily performed. Our method accords w
Wachutka’s idea of treating the wave-function matching a
boundary-value problem; however, numerical errors can
©2003 The American Physical Society15-1
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FIG. 1. Schematic representation of the system with the transition region intervening between the left and right semi-infinite cr
bulks. ruu5(x,y) andz are coordinates perpendicular and parallel to the nanoscale junction, respectively. In the left bulk, the incide
and the reflected waves including evanescent ones are represented asf in(ruu ,z) and f re f(ruu ,z), respectively, and in the right bulk, th
propagating and decaying evanescent waves toward the right side are denoted by transmitted wavesf tra(ruu ,z).
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completely eliminated, since evanescent waves are treate
the ratios of their values at two neighboring grid points
the discretized space. These ratios, which are mathemati
equivalent to logarithmic derivatives, guarantee the num
cal stability. The potential power of our procedure will b
exhibited when it is applied to highly accurate calculation

To exemplify the advantages of our technique, we appl
to investigating electron transport properties of a single-r
gold nanowire suspended between Au~100! electrodes. We
find that the electric conductance of the nanowire with th
atoms is close to the quantum unitG0 (G052e2/h, e: the
electron charge,h: Planck’s constant! when its average inter
atomic distance is less than 6.32 a.u., and decreases ra
to zero as the nanowire is further stretched.

Our formalism can include the norm-conserving pseu
potential techniques;35–38however, throughout this paper w
restrict ourselves to the case of thelocal pseudopotentials, in
order to describe the essence of our procedure for avoi
numerical instability. The inclusion of nonlocal parts of th
norm-conserving pseudopotentials is straightforward, wh
will be discussed in a forthcoming paper.

The plan of this paper is as follows. In Sec. II, we give
detail the first-principles computation scheme for the el
tronic structures and transport properties of the system w
the junction between truly semi-infinite crystalline ele
trodes. In Sec. III, in order to demonstrate the general ap
cability of the method, the calculation of the conductance
the gold nanowire under elongation is presented as an
ample. In Sec. IV, we summarize our procedures. Fina
mathematical details are described in some appendixes.

II. THEORETICAL FORMALISM

We consider the procedure for obtaining the solutions
the Kohn-Sham equation in a system with the transition
gion intervening between two semi-infinite crystalline bulk
as depicted in Fig. 1. The transition region is representa
of a nanoscale junction, a tunnel junction in tip-sample s
tem ~e.g., scanning tunneling microscopy!, an interface be-
tween different bulks, an interstitial lattice defect or disord
and so on. In general, an effective potential is close to p
odic bulk potentials as goes deeply inside the left and ri
bulks. This fact allows us to make an approximation that
entire system can be divided into three parts: the left bu
the transition region, and the right bulk~Fig. 1!. The transi-
tion region should be large enough that the potential on
19531
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boundary planes in the transition region can be sufficien
smoothly connected with the periodic potentials of the
spective bulks.

The global solutions of the Kohn-Sham equation exte
ing over the entire system are constructed from a linear c
bination of partial solutions within the left and right bulk
More concretely, the solution we wish to calculate is a sc
tering wave function specified by a particular incident Blo
wave, e.g., an incident wavef in(ruu ,z) incoming from deep
inside the left bulk, as illustrated in Fig. 1. Here,ruu5(x,y)
andz are coordinates perpendicular and parallel to the nan
cale junction, respectively, and two-dimensional periodic
is assumed for theruu coordinates and nonperiodicity for thez
one. The asymptotic form of the scattering wave functi
consists of the incident wavef in(ruu ,z) plus reflected waves
f re f(ruu ,z) in the left bulk and transmitted wavesf tra(ruu ,z)
in the right bulk. Then, we will construct the global scatte
ing wave function satisfying this asymptotic behavior
means of matching together the near-boundary values of
wave function, i.e., its values near the right boundary of
left bulk and those near the left boundary of the right bu
overbridging the transition region. Thus our wave-functi
matching procedure is referred to as theoverbridging
boundary-matchingmethod. For this purpose, we will defin
a Green’s function matrix in the transition region.

Our theoretical formalism relies upon the real-spa
finite-difference approach. This approach, which is summ
rized in Appendix A, enables us to derive readily the ov
bridging boundary-matching formula without introducin
any complexity. The derivation of the matching formula w
be demonstrated in Sec. II A. For the construction of
generalized Bloch functions, i.e., the solutions of the Koh
Sham equation inside the bulk regionsfA(ruu ,z)(A
5 in,re f , and tra!, we propose two methods: one is th
method of working out a generalized eigenvalue probl
under the generalized Bloch theorem, and the other is to t
the ratios of the values of the bulk solutions at adjacentzk
grid points in a continued-fraction form. We will show tha
for the implementation of the overbridging boundar
matching formula, both methods are required to be emplo
together. The formulation of these two methods will be e
hibited in Sec. II B.

A. Overbridging boundary-matching method

In this subsection, we give a wave-function matching p
cedure to construct the global wave function extending o
5-2
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the entire system, based on the real-space finite-differe
approach. As shown in Appendix A, a columnar vec
C(zk) consisting ofNxy (5Nx3Ny) values of the wave
function on thex-y plane at thez5zk point satisfies the
discretized Kohn-Sham equation~A5! that takes a simple
form in the relation of three adjacent terms along thez di-
rection in the case of the central finite difference, whereNx
andNy are the numbers of grid points in thex andy direc-
tions, respectively. In this paper we limit our formulation
the case of the central finite difference for simplicity. T
extension of the methodology to the case of higher-or
finite difference is straightforward. Because the Kohn-Sh
equation is a second-order differential equation, the solu
is determined by specifying the valuesC(zk) at two different
zk points.39As these specified values, we chooseC(z21) and
C(zm12) outside the transition region~see Fig. 1!. Then,
Eqs. ~A5! for the zk grid points from k50 to m11 are
treated as a simultaneous linear equation with regard
$C(z0),C(z1), . . . ,C(zm11)% for given values ofC(z21)
andC(zm12),

~E2Ĥ !F C~z0!

C~z1!

A

C~zm!

C~zm11!

G 5F Bz
†C~z21!

0

A

0

BzC~zm12!

G , ~1!

whereE is a Kohn-Sham energy andĤ is the Hamiltonian of
a truncated part of the system sandwiched between
planes atz5z0 and zm11, which is expressed by a block
tridiagonal matrix

Ĥ5F V~z0! Bz 0

Bz
† V~z1! Bz

� � �

Bz
† V~zm! Bz

0 Bz
† V~zm11!

G . ~2!

Here the block matricesBz and V(zk) are defined by Eqs
~A6! and~A7!, respectively. Thus, once the Green’s functi
matrix Ĝ5(E2Ĥ)21 at a given energyE and lateral wave
vectorkuu is known, Eq.~1! is solved as

F C~z0!

C~z1!

A

C~zm!

C~zm11!

G 5ĜF Bz
†C~z21!

0

A

0

BzC~zm12!

G . ~3!

From Eq.~3!, one can see that all the values of the wa
function in the transition region,C(z1), C(z2), . . . , and
C(zm), are directly connected to the two values ofC(z21)
andC(zm12) by means of the matrixĜ, and furtherC(z0)
andC(zm11) are related toC(z21) andC(zm12) as
19531
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F C~z0!

C~zm11!
G5F G1,1 G1,m12

Gm12,1 Gm12,m12
GF Bz

†C~z21!

BzC~zm12!
G , ~4!

where Gi , j is the Nxy-dimensional (i , j ) block-matrix ele-
ment of the Green’s function matrixĜ. Equation~4! is a
realization of our overbridging boundary-matching formu
to connect the values near the boundary of the left bu
C(z0) and C(z21), and those of the right bulk,C(zm11)
andC(zm12), where the near-boundary values of the wa
function in the left and right bulks are directly connect
with each other by the Green’s function matrix carrying
of the information on the transition region.

Due to the screening effect in the semi-infinite crystalli
bulks, the effective potential tends to take a periodic prope
deep inside the left and right bulks. For this reason, the
propriate way to construct the global scattering wave fu
tion for the entire system is to describe it in terms of a line
combination of generalized Bloch functions inside the l
and right bulks~see later for the calculation of generalize
Bloch functions in the bulks!. The scattering wave function
is classified into two types. One is incident from the left bu
with the reflection to the left bulk and transmission to t
right bulk. The other solution is vice versa, i.e., incident fro
the right bulk with the reflection to the right bulk and tran
mission to the left bulk. Here, we consider only the soluti
in the former case. The solution in the latter case is c
structed straightforwardly. As illustrated in Fig. 1,f in(ruu ,z)
is an incident Bloch wave coming from deep inside the l
bulk, while f re f(ruu ,z) is a set of reflected waves that prop
gate and decay into the left bulk. In the left-bulk region, t
scattering wave functionC(zk) is expressed as a linear com
bination of these waves,

C~zk!5F in~zk!1(
l 51

Nxy

r lF l
re f~zk!, ~5!

where r l( l 51, . . . ,Nxy) are reflection coefficients, an
F l

A(zk)(A5 in and ref! are Nxy-dimensional columnar vec
tors constructed by$fA(xi ,yj ,zk): i 51;Nx , j 51;Ny%
on the plane at thezk point in the left-bulk region. On the
other hand, the scattering wave functionC(zk) in the right-
bulk region is given by a linear combination of transmitt
waves f tra(ruu ,z) that propagate and decay into the rig
bulk with transmission coefficientst l ,

C~zk!5(
l 51

Nxy

t lF l
tra~zk!, ~6!

where the columnar vectorF l
tra(zk) at the zk point in the

right-bulk region has the Nxy components of
$f tra(xi ,yj ,zk): i 51;Nx , j 51;Ny%. Thus, substituting
Eqs. ~5! and ~6! into Eq. ~4!, we could determine all of the
coefficientsr l and t l in principle, if the generalized Bloch
statesF were known. However,F in this matching formula
always include exponentially growing and decaying evan
cent waves, and the inclusion of these evanescent wave
evitably gives rise to such a numerical problem that
smaller the grid spacinghi( i 5x,y), the more serious the
numerical errors. In the next Sec. III B 1, we will derive
5-3
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Y. FUJIMOTO AND K. HIROSE PHYSICAL REVIEW B67, 195315 ~2003!
formula to calculate the generalized Bloch statesF and dis-
cuss the applicability limitations of the formula. Eventual
the direct use of Eqs.~4!–~6! leads us to a numerical prob
lem when calculations with a high degree of accuracy
demanded.

In order to circumvent this numerical difficulty, we intro
duce the following ratios of the generalized Bloch function

Rre f~z0!5Qre f~z21!Qre f~z0!21 ~7!

and

Rtra~zm12!5Qtra~zm12!Qtra~zm11!21, ~8!

whereQA(zk)(A5re f and tra! areNxy-dimesional matrices
which gather generalized Bloch statesF l

A(zk), i.e., QA(zk)
5@F1

A(zk), . . . ,FNxy

A (zk)#. The ratio matricesRre f(z0) and

Rtra(zm12) do not involve the values of evanescent wa
functions themselves, but include theratios of the values of
evanescent wave functions on the planes at two adjacez
points, which correspond to logarithmic derivatives in t
continuous limit of real space,25 and thus the numerical er
rors due to the appearance of evanescent waves never
mulate during computing the ratio matricesRre f(z0) and
Rtra(zm12). The method of directly calculating the ratio m
trices, notvia the values of evanescent wave functions the
selves, will be shown in Sec. III B 2.

From Eqs.~5! and ~7!, we have

C~z0!5F in~z0!1Rre f~z0!21@C~z21!2F in~z21!#,
~9!

and similarly from Eqs.~6! and ~8!, we obtain

C~zm11!5Rtra~zm12!21C~zm12!. ~10!

Then, inserting Eqs.~9! and ~10! into Eq. ~4!, the wave-
function matching formula~4! is rewritten in terms of the
ratio matrices as

FG1,1Bz
†2Rre f~z0!21 G1,m12Bz

Gm12,1Bz
† Gm12,m12Bz2Rtra~zm12!21G

3F C~z21!

C~zm12!G5F2Rre f~z0!21F in~z21!1F in~z0!

0 G .
~11!

This is the final form of our overbridging boundary-matchi
formula. Note that an incident waveF in in the right-hand
side of Eq.~11! includes only the propagating one, and th
no evanescent waves themselves come out in Eq.~11!. Even-
tually, the numerical instability caused by exponentia
growing or decaying evanescent waves can be comple
excluded in Eq.~11!. It is noticed thatC(z21) andC(zm12)
are solved as the solutions of Eq.~11! for each incident
propagating waveF in, and once they are obtained, all th
values of the global wave function around the transition
gion, C(zk)(k50, . . . ,m11), are determined from Eq.~3!,
in which only a part of the block-matrix elements of th
Green’s function matrix,Gi , j ( i 51;m12,j 51 and m
12), are needed.
19531
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B. Computational scheme for generalized Bloch states
in the crystalline bulk

We propose in this subsection two numerical methods
obtain the solutions of the Kohn-Sham equation in the b
region, focusing on resolving numerical problems. One
the methods is to determine the generalized Bloch functi
by means of solving a generalized eigenvalue equation.
ing this method, we run up against a wall in numerical c
culations when we attempt to acquire accurate evanes
wave functions, because there arises an inherent nume
problem that a great number of computational errors ac
mulate as the grid spacinghx or hy ~see Appendix A! be-
comes small.40 Nevertheless, the propagating Bloch wav
and gently growing or decaying evanescent waves can
calculated with a high degree of accuracy. In other wor
only the rapidly growing and decaying evanescent waves
smeared with serious numerical errors even when the ca
lation of the matrix elements of the generalized eigenva
equation is satisfactorily carried out.

The other method is to treat the ratios of the generali
Bloch functions on the planes at two successivez points;
thereby the numerical instability with respect to evanesc
waves is completely prevented. In this method, the Ko
Sham equation is rewritten in a continued-fraction form, a
its solution is self-consistently determined so as to agree w
the periodicity in thez direction. Thepropagating Bloch
waves themselves, however, cannot be obtained by
continued-fraction method, and therefore we have to
these two methods in combination for the implementation
the overbridging boundary-matching formula~11!.

1. Method of the generalized eigenvalue problem

The potential in the bulk region is periodic along thez
direction~Fig. 2!. Similarly to Eq.~1!, the Kohn-Sham equa
tion in theM th unit cell is expressed as

~E2ĤM !F F~z1
M !

F~z2
M !

A

F~zm21
M !

F~zm
M !

G 5F Bz
†F~zm

M21!

0

A

0

BzF~z1
M11!

G . ~12!

Here,ĤM is the Hamiltonian in theM th unit cell regarded as
an isolated system,

FIG. 2. Schematic representation of the periodic bulk.zk
M rep-

resents thez coordinate at thekth discretized grid point in theM th
unit cell.
5-4
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ĤM5F V~z1
M ! Bz 0

Bz
† V~z2

M ! Bz

� � �

Bz
† V~zm21

M ! Bz

0 Bz
† V~zm

M !

G ,

~13!

whereV(zk
M) is similar to Eq.~A7!, representing the bulklike

potential on thex-y plane at thezk
M point. The wave function

in the M th unit cell is obtained by solving Eq.~12! as

F F~z1
M !

F~z2
M !

A

F~zm21
M !

F~zm
M !

G 5ĜMF Bz
†F~zm

M21!

0

A

0

BzF~z1
M11!

G , ~14!

whereĜM is the Green’s function matrix of the Hamiltonia
ĤM:

ĜM5~E2ĤM !21. ~15!

The boundary valuesF(zm
M21), F(z1

M), F(zm
M), and

F(z1
M11) are now related to each other,

FF~z1
M !

F~zm
M !

G5F G1,1
M G1,m

M

Gm,1
M Gm,m

M GFBz
†F~zm

M21!

BzF~z1
M11!G , ~16!

where Gi , j
M is the Nxy-dimensional (i , j ) block-matrix ele-

ment of the matrixĜM.
Because of the periodicity along thez direction, the wave

function satisfies the generalized Bloch condition

F~z1Lz!5lF~z!, ~17!

where l5eikzLz, and kz and Lz are a Bloch wave-vecto
component and unit-cell length in thez direction, respec-
tively. In general,kz is a complex number. According to con
dition ~17!, the relations between the values of the wa
function at thezm

M , z1
M11 points and those at thezm

M21 , z1
M

points are given by

F F~zm
M !

F~z1
M11!G5lFF~zm

M21!

F~z1
M ! G . ~18!

Thus, the insertion of Eq.~16! into Eq. ~18! leads to a
2Nxy-dimensional generalized eigenvalue equation41

P1FF~zm
M21!

F~z1
M11!G5lP2FF~zm

M21!

F~z1
M11!G , ~19!

where
19531
e

P15FGm,1
M Bz

† Gm,m
M Bz

0 I
G ,

P25F I 0

G1,1
M Bz

† G1,m
M Bz

G . ~20!

The eigenstates are classified into two classes depen
on the absolute values of the eigenvaluesl: the eigenstates
with ulu51 represent propagating Bloch waves, and thekz is
a real number. In the case ofulu5” 1, they are evanescen
waves, andkz is extended to the field of a complex numbe
The apparent advantage of this method is the possibility
all of these generalized Bloch states at an assigned enerE
and lateral Bloch phasekuu are simultaneously obtainabl
from Eq. ~19!. The generalized eigenvalue equation~19! can
be numerically worked out by means of theQZ algorithm,
one of standard solvers for a generalized eigenvalue p
lem. In order to demonstrate numerical accuracy of Eq.~19!,
we examined the eigenvalues calculated from Eq.~19!. Fig-
ure 3 shows the multiplication ofulmaxu by ulminu, which are
computed numerically in double precision, wherelmax and
lmin are the eigenvalues with the maximum and minimu
absolute values, respectively. It is known that ifl be an
eigenvalue of Eq.~19!, then l* 21 is necessarily an eigen
value of Eq.~19!.18,21 Hence, whenlmax andlmin areexact
eigenvalues of Eq.~19!, the relation thatulmaxu3ulminu51
should be satisfied by them. Nevertheless, in Fig. 3 one fi
that the calculated value ofulmaxu3ulminu is considerably
away from 1 at a cutoff energy higher than;18 Ry, corre-
sponding to a grid spacing smaller than;0.75 a.u.42 The
breaking of the relationulmaxu3ulminu5” 1 means that eigen
values, therefore eigenvectors as well, are smeared with
merical errors.

Consequently, we conclude for the numerical accuracy
the generalized eigenvalue equation~19! that ~i! when a cut-
off energy is chosen so high as to implement an accu
calculation, evanescent waves which rapidly grow or de
have serious numerical errors, and yet~ii ! accuratesolutions
of both the propagating Bloch waves and the gently grow
or decaying evanescent waves can always be obtained.
additional procedure for completely resolving the numeri

FIG. 3. Multiplication of the maximum and minimum absolu
values of the eigenvalues as a function of the cutoff energy or
grid spacinghgs (5hx5hy5hz) in the case of the Au bulk with 6s
electrons.
5-5
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problem concerning rapidly varing evanescent waves will
shown in the next Sec. III B 2.

2. Continued-fraction method

An efficient and simple procedure to determine the rat
of the generalized Bloch functions on the planes at t
neighboringz points is presented. We first treat the ratios
the generalized Bloch functions in the left bulk,Rre f of Eq.
~7!. As is evident from Eq.~A5!, theNxy-dimensional matrix
Qre f(zk

M)„5@F1
re f(zk

M), . . . ,FNxy

re f (zk
M)#… satisfies

2Bz
†Qre f~zk21

M !1A~zk
M !Qre f~zk

M !2BzQ
re f~zk11

M !50,
~21!

whereA(zk
M)5E2V(zk

M). From Eq.~21!, one can see tha
the ratio matrix on the neighboringz points,

Rre f~zk
M !5Qre f~zk21

M !Qre f~zk
M !21, ~22!

satisfies a two-term recursive matrix equation12

Rre f~zk11
M !5@A~zk

M !2Bz
†Rre f~zk

M !#21Bz . ~23!

Then the successive use of Eq.~23! leads to a continued
fraction representation, which linksRre f(zk

M11) in the (M
11)th unit cell toRre f(zk

M) in the M th unit cell as

Rre f~z1
M11!5†A~zm

M !2Bz
†@A~zm21

M !2Bz
†@•••2Bz

†

3@A~z2
M !2Bz

†@A~z1
M !2Bz

†Rre f~z1
M !#21Bz#

21

3Bz•••#21Bz#
21Bz‡

21Bz . ~24!

We see that the calculation of Eq.~24! is a computationally
hard task, since the successive operations of the inversio
demanded. In practice, instead of Eq.~24!, we employ a
more efficient formula in terms of the Green’s function m
trix elements, which is equivalent to Eq.~24! ~see Appendix
B1!,

Rre f~z1
M11!5Gm,m

M Bz1Gm,1
M

3Bz
†@Rre f~z1

M !212G1,1
M Bz

†#21G1,m
M Bz .

~25!

On the other hand, along the same line as mentioned ab
the ratio matrixRtra of Eq. ~8! in the right bulk can be shown
to satisfy analogous equations to Eqs.~23!–~25! ~see Appen-
dix B 2!.

Since the potential at thekth grid point in the (M11)th
unit cell is equal to that at thekth grid point in theM th unit
cell due to the periodicity, the generalized Bloch conditio
imposed on the ratio matrices now read as~see Appendix
B 3!

RA~zk
M11!5RA~zk

M !5RA~zk!~A5re f and tra !.
~26!

The solutionsRA(zk) of the continued-fraction equation
~25! and ~B9! under constraints~26! can always be deter
mined in a self-consistent manner. Indeed, we confirmed
selves that when the crude solutions of Eq.~19! are chosen as
19531
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initial guesses forRA(zk), the correct solutions are immed
ately acquired by only several iterations of self-consist
cycles, surprisingly.

III. APPLICATION TO THE GOLD NANOWIRE

As an example of the method, we investigate the elec
conductance of a single-row gold nanowire sandwiched
two semi-infinite crystalline gold electrodes when the nan
wire is stretched. The gold nanowire system consists o
linear nanowire of three atoms labeled 1–3 and a pair
four-atom bases connected to both ends of the nanowire,
all of these are suspended between two semi-infinite Au~100!
electrodes, as shown in Fig. 4. The transition region is c
sen to be the area inside the dashed lines in Fig. 4, wh
includes the linear nanowire, the bases, and the respe
three atomic layers of the left and right gold electrodes
that the potentials at both boundaries in the transition reg
can be smoothly connected to the bulklike potentials ins
crystalline electrodes. The distance between the electr
and the basis as well as the distance between the left~right!
basis and atom 1~2! is set to be 0.5a0, which is equivalent to
the length between two neighboring layers of the gold crys
in the @100# direction, wherea0 is the lattice constant of the
gold crystal, i.e., a057.71 a.u. The initial geometry in
stretching the nanowire is chosen such that the interato
distancesd1 and d2 ~see Fig. 4! are equal to the neares
neighbor atomic distance in the gold crystal, 5.48 a.u. In
real-space finite-difference approach, the grid spacinghgs
(5hx5hy5hz) is taken to be 0.70 a.u., which correspon
to a cutoff energy of 20 Ry, and the second-order finite d
ferentiation (Nf52) is adopted for the kinetic energy oper
tor @see Eq.~A2!#. We use a unit cell with length of 15.4 a.u
in thex andy directions under periodic boundary condition
accordingly the total number of grid points in these dire
tions, Nxy522322. Wave functions are calculated only
the G point in the two-dimensional Brillouin zone. Th
exchange-correlation effects are treated within the local d
sity approximation parametrized by Perdew and Zunger.43

In the calculation of the conductance, we employ a lo
pseudopotential of the gold 6s electron described in Refs. 3
and 36, neglecting the contribution of the 5d electrons to the
conductance, because the Au nanowires10,44,45as well as the
Au bulk25,46 exhibit the electronic structures mostly chara
terized by the 6s orbital at the Fermi level. The electroni
structures of the bulk Au and the transition region are cal
lated self-consistently using standard supercell geom

FIG. 4. Calculation model of the gold nanowire.
5-6
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with the three-dimensional periodic boundary. Thus, the
fective potential determined in this way is employed for t
calculation of the conductance.

The values of the global scattering wave function n
both boundaries of the transition region,C(z21) and
C(zm12), are determined by the overbridging bounda
matching formula~11!, and then the global wave function
extending over the entire system are calculated using Eq.~3!.
The bulk solutions and their ratios inside the left and rig
electrodes are acquired from Eqs.~19!, ~25!, and~B9!. Some
remarks for obtaining the conductance within our method
given in Appendix C.

Some authors have reported theoretical studies on tr
port properties of nanowires sandwiched by twojellium elec-
trodes instead of crystalline electrodes.5,7–11 Owing to the
existence of a possible artificial interface between the
proximated constant potential of the jellium electrode a
the real potential of the crystal surface, the problem m
arise that the results for transport properties in the case o
jellium electrode are different from those in the case of
actual crystalline electrode. In practice, no one can know
advance such an appropriate distanceD between the jellium
electrode and the basis~see Fig. 5! that the correct conduc
tance in the case of the crystalline electrode may be satis
torily produced upon employing the jellium electrode. B
fore moving on to the discussion of transport properties
the case of the crystalline electrode, we briefly report
conductance of the gold nanowire suspended between
semi-infinite jellium electrodes for the various values of d
tance D. The electron density of the jellium electrode
taken equal to the average 6s valence-electron density of th
gold crystal (r s53.0 a.u.).7 In Fig. 6, the conductances ca
culated at the Fermi level are plotted as a function ofD for
the gold nanowire made of three atoms equispaced at
a.u. It can be seen that the conductances sensitively ch
depending onD, even though the geometrical structure of t
nanowire is kept fixed. The distance 0.5a0 (53.85 a.u.) in-
dicated by the arrow in Fig. 6 corresponds to the len
between two neighboring layers of the bulk Au in the@100#
direction. The conductance atD50.5a0 is found to be
;0.5G0. This value of the conductance should be compa
with the true one atD50.5a0 andd15d255.48 a.u. in the
case of the crystalline electrode,;1.0G0, which will be
shown later. Accordingly, in order to acquire a more corr
value of the conductance upon employing the jellium el
trode, we have to choose the distanceD with prudence, e.g.

FIG. 5. Schematic representation of the nanowire attache
jellium electrodes. The lengthD represents the distance from th
surface of the jellium to the square basis of the nanowire. E
atom of the nanowire is equally located with the interatomic d
tance of 5.48 a.u.
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in the present caseD'2.5 a.u.
We now turn to the discussion on atomic geometries a

transport properties of the gold nanowire under elongation
the case of crystalline electrodes. First, we give in Fig. 7
atomic structure optimized by the first-principles approa
using the three-dimensional periodic supercell: the super
with a length of 15.4 a.u. in thex andy directions containing

to

h
- FIG. 6. Conductances of the gold nanowire sandwiched betw
the jellium electrodes as a function of the distanceD between the
basis and the surface of the semi-infinite jellium electrode. The g
nanowire is made of three atoms equispaced at 5.48 a.u. The a
indicatesD53.85 a.u., which corresponds to the length betwe
two neighboring layers of the bulk Au in the@100# direction.

FIG. 7. Optimized geometries of the gold nanowire under el
gation.^d&@5(d11d2)/2# is the average interatomic distance.
5-7
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Y. FUJIMOTO AND K. HIROSE PHYSICAL REVIEW B67, 195315 ~2003!
the linear nanowire, two bases, and one electrode with th
atomic layers of the Au~100! surface. According to Ref. 10
the optimization of the atomic geometries was carried
under the restriction that both of the end atoms of the na
wire as well as the atoms of the bases and electrodes be
frozen. Our first-principles molecular-dynamics~FPMD!
simulations are based on the real-space finite-differe
method employing the timesaving double-grid technique32

and the norm-conserving pseudopotentials of the goldd
and 6s electrons are adopted.37,38 We take a grid spacing o
0.33 a.u., corresponding to a cutoff energy of 90.9 Ry. As
initial configuration in FPMD simulations, the gold atom
in the nanowire are set at equal distances of 5.48 a.u.,
then relieving the force acting on the central atom 2,
repetitiously elongate the electrode spacing. From Fig. 7~a!
one finds that while the average interatomic distan
^d& @5(d11d2)/2# is between 5.48 and 6.32 a.u., the thr
atoms of the nanowire keep equal spacings. When^d& is
larger than 6.32 a.u., the interatomic distance dramatic
changes, and the distanced1 becomes large up to 8.10 a.u.
^d&56.67 a.u., as illustrated in Fig. 7~c!. This behavior is
analogous to the result of Ref. 47 based on the FPMD si
lation where near-central atoms of the nanowire also m
toward one side of the electrodes in the process of
stretching.

Next, electron transport properties of the nanowire in
limit of zero bias are presented. Figure 8 shows the cond
tances at the Fermi level as a function of^d& for both the
optimized and equally arranged structures of the gold na
wire with the three atoms. During the stretching from^d&
55.48 a.u. to 6.32 a.u., the conductances hardly change
keep a nearly quantized value of 1G0. Our result at^d&
55.48 a.u. is in agreement with the predictions of the tig
binding approach for the unstretched three-gold-at
wire.44,48When^d& becomes larger than about 6.32 a.u.,
conductances in both the optimized and equally arran
cases decrease rapidly. In particular, the conductance in
optimized case diminishes more drastically and is close
zero at^d&56.67 a.u. Thus one sees that a metal-insula
transition takes place in the three-gold-atom wire while
average interatomic distance^d& is from 6.32 a.u. to 6.67
a.u.

We show in Fig. 9 the local density of states~LDOS! of
the 6s electron around the linear nanowire part for the op

FIG. 8. Conductances of the three-gold-atom wire sandwic
between the Au~100! electrodes as a function of the average int
atomic distancêd&. The solid~dashed! curve denotes the conduc
tance for the optimized~equally arranged! structure.
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mized structures at̂d&55.48 and 6.67 a.u. as a function o
the energy measured from the Fermi level. The LDOS
obtained by integrating the charge density at a given ene
within a cylinder of radius 7.7 a.u. with ends 1.0 a.u. fro
the outermost atoms 1 and 3 in Fig. 4. The LDOS of^d&
55.48 a.u. has a distinct peak at the Fermi level, and
on-peak behavior of the LDOS implies the appearance o
fully opened channel at the Fermi level to yield the quantiz
conductance of;1G0.8,11,45On the other hand, the LDOS o
^d&56.67 a.u. exhibits off-peak behavior at the Fermi lev
which gives rise to zero conductance.

Figure 10 illustrates the density distribution of the 6s
electron incident from the left electrode at the Fermi level
the optimized structures at^d&55.48 and 6.67 a.u. One ca
clearly recognize that the distribution at^d&55.48 a.u. pos-
sesses a characteristic of the resonance state, i.e., an e
mode pattern with a loop at the center of the nanowire.
the contrary, the distribution at^d&56.67 a.u. shows a dis
appearance of the electron conductance, since electron
coming from the left electrode are thoroughly scattered b
around atom 1. Therefore, the bond of the nanowire is bre
ing at ^d&56.67 a.u.

d
-

FIG. 9. LDOS of the 6s electron around the linear nanowire pa
for the optimized structures at^d&5(a)5.48 and~b! 6.67 a.u. as a
function of the incident electron energyE measured from the Ferm
level. The zero of energy is chosen to be the Fermi level.

FIG. 10. Electron-density distribution at the Fermi level for t
optimized structures at̂d&5(a)5.48 and~b! 6.67 a.u. The case o
the incident 6s electron coming from the left electrode is consi
ered. The planes shown are perpendicular to the@100# direction and
contain the atoms in the nanowire.
5-8
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IV. SUMMARY

We have presented new first-principles procedures
handle a system of the nanoscale junction attached to s
infinite crystalline electrodes on both sides. Our method
ables us to implement highly accurate calculations on
electronic structure and transport properties of almost
infinitely extending system without periodicity, such as
genuine surface, an interface, and a tip-sample system
well as a nanoscale junction. The main points of the met
are as follows: A global wave function extending over t
entire system, being treated as a scattering wave func
satisfying proper asymptotic conditions of scattering, is
termined by matching together its near-boundary values
side the transition region intervening between two se
infinite bulks, i.e., its values near the right boundary of t
left bulk and those near the left boundary of the right bu
by making use of the Green’s function matrix carrying all
the information on the transition region. As a consequen
for each incident propagating wave, the global wave funct
is constructed from this Green’s function matrix and the ra
matrices made of the generalized Bloch functions on ne
boring grid points in the respective bulks. These ratio ma
ces are directly obtained by solving self-consistently
continued-fraction equations derived from the Kohn-Sh
equation inside the periodic bulks. A sequence of the pro
dures completely excludes the computational errors cau
by the appearance of exponentially growing and decrea
evanescent waves.

As an application, we have calculated electron transp
properties of the three-gold-atom wire stretched betw
semi-infinite Au~100! electrodes. The transition from a me
tallic conductance of;1G0 to an insulating one is observe
when the average interatomic distance changes from
a.u. to 6.67 a.u.

By virtue of the simplicity of its scheme, our method ca
readily include norm-conserving pseudopotential techniqu
We will discuss this developement in an extended paper la
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APPENDIX A: REPRESENTATION OF THE KOHN-SHAM
EQUATION IN THE REAL-SPACE FINITE-

DIFFERENCE APPROACH

The Kohn-Sham equation for the system depicted in F
1 is written as

F2
1

2
¹21ve f f~ruu ,z!Gc~ruu ,z!5Ec~ruu ,z! ~2`,z,`!.

~A1!
19531
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.

The effective potentialve f f(ruu ,z) is described as a sum o
local potentials v ion(ruu ,z), the Hartree potentia
vH@r(ruu ,z)#, and the exchange-correlation potent
vxc@r(ruu ,z)# with the electronic charge denstiyr(ruu ,z). We
use the atomic units\5e5m51 and assume two
dimensional periodicity for theruu @5(x,y)# coordinates and
nonperiodicity for thez one.

In the real-space finite-difference approach, wave fu
tions, electronic charge density, and potentials are dire
represented on uniform three-dimensional real-sp
grids.28–32Thex andy coordinates in the unit cell of period
icity are divided into grids$xi ; i 51, . . . ,Nx% and $yj ; j
51, . . . ,Ny% with equispacingshx and hy , respectively,
while due to the nonperiodicity, thez axis is divided into
grids $zk ;k52`, . . . ,21,0,1, . . . ,1`% with an interval of
hz . Then, the Kohn-Sham equation~A1! is expressed within
the real-space finite-difference approach as

2
1

2 (
n52Nf

Nf

@cx
nc~xi1nhx ,yj ,zk!1cy

nc~xi ,yj1nhy ,zk!

1cz
nc~xi ,yj ,zk1nhz!#1ve f f~xi ,yj ,zk!c~xi ,yj ,zk!

5Ec~xi ,yj ,zk!, ~A2!

wherecm
n (m5x,y,z) are constant parameters due to the

nite differentiation of kinetic energy operator2 1
2 ¹2. For

simplicity, we deal below with the simplest case of the ce
tral finite difference (Nf51) with the parameterscm

215cm
1

51/hm
2 and cm

0 522/hm
2 (m5x,y,z). When higher-order

finite-difference formulas are employed, see Ref. 29 for
values ofcm

n . Owing to the periodicity of thex andy direc-
tions, the following Bloch conditions are imposed on t
wave function: in thex direction

c~x0 ,yj ,zk!5e1 ikxLxc~xNx
,yj ,zk!, ~A3a!

c~xNx11 ,yj ,zk!5e2 ikxLxc~x1 ,yj ,zk!, ~A3b!

and in they direction

c~xi ,y0 ,zk!5e1 ikyLyc~xi ,yNy
,zk!, ~A4a!

c~xi ,yNy11 ,zk!5e2 ikyLyc~xi ,y1 ,zk!, ~A4b!

where e6 ikxLx (e6 ikyLy) represent the Bloch phase facto
due to the periodicity of thex(y) direction.kuu5(kx ,ky) and
(Lx ,Ly) denote the two-dimensional vectors of Bloch wa
numbers and lateral lengths of the unit cell, respectively.

It is convenient to treat a set of values of the wave fun
tion on the x-y plane at thez5zk point $c(xi ,yj ,zk): i
51, . . . ,Nx , j 51, . . . ,Ny% as a columnar vectorC(zk) of
Nxy (5Nx3Ny) dimensions. Taking into account the Bloc
conditions~A3! and ~A4!, we now rewrite Eq.~A2! in the
case of the central finite difference as
5-9
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2Bz
†C~zk21!1@E2V~zk!#C~zk!2BzC~zk11!50

~k52`, . . . ,21,0,1, . . . ,̀ !, ~A5!

where Bz is a constant matrix proportional t
Nxy-dimensional unit matrixI,
of
e

19531
Bz52
1

2hz
2

I , ~A6!

and V(zk) is the following Nxy-dimensional matrix defined
on thex-y plane at thez5zk point:
V~zk!53
Vzk

~y1! By 0 ••• 0 eikyLyBy
†

By
† Vzk

~y2! By 0 ••• 0

0 � � �

� � � A

A

� � � 0

0 ••• 0 By
† Vzk

~yNy21! By

e2 ikyLyBy 0 ••• 0 By
† Vzk

~yNy
!

4 , ~A7!

whereBy is anNx-dimensional matrix similar toBz ,

By52
1

2hy
2

I , ~A8!

and the block matrixVzk
(yj ) is defined on thex line at the (yi ,zk) point as

Vzk
~yj !53

vyj ,zk
~x1! bx 0 ••• 0 eikxLxbx

bx vyj ,zk
~x2! bx 0 ••• 0

0 � � �

� � � A

A

� � � 0

0 ••• 0 bx vyj ,zk
~xNx21! bx

e2 ikxLxbx 0 ••• 0 bx vyj ,zk
~xNx

!

4 , ~A9!
d

bx52
1

2
cx

152
1

2
cx

2152
1

2hx
2

, ~A10!

vyj ,zk
~xi !5

1

hx
2

1
1

hy
2

1
1

hz
2

1ve f f~xi ,yj ,zk!. ~A11!

After all, it should be remarked that within the framework
the real-space finite-difference formalism, the discretiz
Kohn-Sham equation~A2! under the Bloch conditions~A3!
and ~A4! is rewritten as Eq.~A5! which is in a relation of
three adjacent terms along thez direction.49
d

APPENDIX B: MATHEMATICAL DETAILS CONCERNING
RATIO MATRICES

1. Proof for the validity of Eq. „25…

From Eq.~16!, it is found that the sets of the generalize
Bloch functionsQre f(z1

M) and Qre f(zm
M) link together with

the other setsQre f(zm
M21) andQre f(z1

M11) as

Qre f~z1
M !5W1,1

M Qre f~zm
M21!1W1,m

M Qre f~z1
M11!, ~B1!

Qre f~zm
M !5Wm,1

M Qre f~zm
M21!1Wm,m

M Qre f~z1
M11!, ~B2!
5-10
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whereWi ,1
M 5Gi ,1

M Bz
† andWi ,m

M 5Gi ,m
M Bz( i 51,m). Multiplica-

tion of Qre f(zm
M21)21 from the right side of Eq.~B1! leads to

Rre f~z1
M !215W1,1

M 1W1,m
M Qre f~z1

M11!Qre f~zm
M21!21,

~B3!

and similarly, Eq.~B2! multiplied byQre f(z1
M11)21 from the

right side takes a form

Rre f~z1
M11!5Wm,1

M Qre f~zm
M21!Qre f~z1

M11!211Wm,m
M .

~B4!

Rewriting Eq.~B3! as

Qre f~zm
M21!Qre f~z1

M11!215@Rre f~z1
M !212W1,1

M #21W1,m
M

~B5!

and inserting Eq.~B5! into Eq. ~B4!, we have Eq.~25!.

2. Equations for the ratio matrix Rtra to satisfy

The ratio matrixRtra of Eq. ~8! in the right bulk defined
by

Rtra~zk
M !5Qtra~zk

M !Qtra~zk21
M !21 ~B6!

is found to obey a matrix equation

Rtra~zk
M !5@A~zk

M !2BzR
tra~zk11

M !#21Bz
† ~B7!

and the corresponding continued-fraction equation

Rtra~z1
N!5@A~z1

M !2Bz@A~z2
M !2Bz@•••2Bz@A~zm21

M !

2Bz@A~zm
M !2Rtra~z1

M11!#21Bz
†#21Bz

†
•••#21

3Bz
†#21Bz

†#21Bz
† ~B8!

and, further, a practically more useful form

Rtra~z1
M !5G1,1

M Bz
†1G1,m

M Bz@Rtra~z1
M11!21

2Gm,m
M Bz#

21Gm,1
M Bz

† . ~B9!

3. Relation between the ratio matrices in successive unit cells

We show that the ratio matrix at thezk
M in the M th unit

cell is equal to that at the same positionzk
M11 in the (M

11)th unit cell. TheNxy-dimensional matrixQ(zk
M) is de-

fined byNxy generalized Bloch statesF l(zk
M)( l 51;Nxy) as

Q~zk
M !5@F1~zk

M !, . . . ,FNxy
~zk

M !#. ~B10!

According to the generalized Bloch condition,Q(zk
M11) in

the (M11)th unit cell is written as

Q~zk
M11!5@l1F1~zk

M !, . . . ,lNxy
FNxy

~zk
M !#, ~B11!

wherel l is thel th generalized Bloch phase factor for thel th
state. Therefore, we can derive the simple relation betw
R(zk

M11) andR(zk
M) defined by Eq.~22! or ~B6!,
19531
n

R~zk
M11!5Q~zk21

M11!Q~zk
M11!215Q~zk21

M !F l1 0

�

0 ln

G
3F l1 0

�

0 ln

G21

Q~zk
M !215R~zk

M !. ~B12!

APPENDIX C: CALCULATION OF CONDUCTANCE

We here describe how the conductance is calculted in
formalism. The expression of the conductanceG at the zero
bias limit is simply given by the Landauer-Bu¨ttiker formula50

G5
2e2

h (
i , j

ut i j u2
v i

v j
, ~C1!

where v j and v i are thez components of the expectatio
value of the velocity for thej th incident Bloch stateF j

in and
that for thei th transmitted Bloch stateF i

tra , respectively,51

and t i j denotes the corresponding transmission coefficie
The procedure to calculate the transmission coefficient
shown below. In our formalism, the scattering wave functi
C j (zm12)5( i t i j F i

tra(zm12) @see Eq.~6!# is directly deter-
mined by solving Eq.~11!. Because the transition region
chosen large enough that the potential is effectively scree
C j (zm12) in the bulk region is actually constructed from
only propagating Bloch waves with negligible contributio
of evanescent waves. Therefore, the transmission coeffici
t i j are obtainable from the following equation for given va
ues of C j (zm12) and transmitted propagating waves
F i

tra(zm12):

F F1
tra†

•F1
tra

••• F1
tra†

•FNtp

tra

A A

FNtp

tra†
•F1

tra
••• FNtp

tra†
•FNtp

tra
G F t1,j

A

tNtp , j
G

5F F1
tra†

•C j

A

FNtp

tra†
•C j

G . ~C2!

Here, Ntp denotes the number of transmitted propagat
waves and a dot (•) means the inner product. The summati
in the inner product is taken over grid points within a un
cell on thex-y plane atz5zm12.
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