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We present an efficient and highly accurate calculation method to provide first-principles electronic struc-
tures, current flow under steady states, and electric conductance for a nanoscale junction attached to truly
semi-infinite crystalline electrodes on both sides. This method is formulated by the real-space finite-difference
approach within the framework of the density functional theory. In our formalism, a scattering wave function
infinitely extending over the entire system can be determined by carrying out the wave-function matching
based on a boundary-value problem near the boundaries of the transition region which intervenes between the
two electrodes with bulklike potentials, and consequently, for each incident propagating wave, the scattering
wave function is constructed from the Green’s function matrix defined in the transition region and the ratio
matrices whose matrix elements are the ratios of the bulk solutions on neighboring grid points in the respective
electrodes. This scheme completely eliminates numerical instability caused by the appearance of exponentially
growing and decaying evanescent waves. In order to demonstrate the general applicability of the method, the
calculation of the conductance of a gold nanowire suspended between semi-infifli@0Aalectrodes is
presented as an example. We find that the transition from a metallic conductance of the quanture?{mjt (2
to an insulating one takes place as the nanowire is stretched.
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[. INTRODUCTION between the fictitious potential of the structureless jellium
electrode and the real potential of the crystal surface.

In the last decade, as the miniaturization of electronic Up to now, there have been several attempts to treat genu-
devices proceeds, the field of nanotechnology has receivdde semi-infinite crystalline electrodes without the approxi-
great attention more and more, and in particular, electromation of jellium. Most of these relied on a recursive calcu-
transport properties for nanoscale structures have been investion method from one side to the other, such as trangber-
tigated actively because they are of significant importancg@ropagation- matrix methods32! It is known, however,
from both fundamental and practical points of view. Re-that when such recursive calculation techniques are em-
cently, the uniqgue phenomena of ballistic electron transporployed as means of numerically solving the Kohn-Sham
through nanoscale junctions such as quantizegquation, numerical errors frequently accumulate exponen-
conductanck® and negative differential conductac® tially in the matrix elements of the recursively multiplicated
have been observed experimentally and theoretically. In thigransfer matrix. This unfavorable situation is attributed to the
situation, future researches on transport properties can lsppearance of exponentially growing and decaying waves,
expected to lead to new discoveries of nano science anick., so-called evanescent wavé$2-2’In order to avoid this
novel fabrications of electronic devices. error accumulation, Wachutka proposed a way to improve

In order to obtain an exact theoretical knowledge on electhe transfer-matrix methods by introducing a mathematical

tron transport properties, we have to deal with a system ofrick:>? The main difference from the original transfer-matrix
the nanoscale junction in contact with two tridgmi-infinite  methods is that the wave-function matching scheme is based
crystalline electrodes(or leads; thereby an electron wave on a boundary-value problem instead of an initial-value
function extending over the entire system can be correctlproblem in the transfer-matrix approaciés?’ However,
described as a scattering state disturbed by the existence ¥Wachutka’'s prescription does not always work well. Indeed,
the junction when an electron comes from infinitely deepthe inherent instability in numerical calculations arises again
inside of the crystalline electrode. The first problem to bewhen one attempts to include more intensively growing and
encountered in this scheme is that the system inherently loselecaying evanescent waves so as to describe the wave func-
its periodic structure in the direction parallel to the junction.tion more accurately.
For such a system, a repeated slab model used in the con- In this paper, we present an efficient and highly accurate
ventional plane-wave expansion approach breaks down dusmputational procedure for the first-principles theory of the
to the difficulty of incorporating nonperiodicity in it. The nanoscale junction sandwiched by semi-infinite crystalline
next problem is that global wave functions fiofinitely ex-  electrodes to overcome the above-mentioned numerical dif-
tended states continuing from one side to the other need to Hieulties completely. Our procedure is formulated by the real-
accurately calculated. space finite-difference appro&€h®? within the framework

The easiest way to treat this infinite system is to replacef the density functional theor*3* thereby the wave-
the semi-infinite crystalline electrode by a uniformly distrib- function matching scheme is simply described and its imple-
uted charge background, i.e., “jelliun®”~*2However, this mentation is easily performed. Our method accords with
may give rise to a serious problem in evaluating electronVachutka’s idea of treating the wave-function matching as a
transport properties, because there is an artificial interfackoundary-value problem; however, numerical errors can be
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FIG. 1. Schematic representation of the system with the transition region intervening between the left and right semi-infinite crystalline
bulks.r=(x,y) andz are coordinates perpendicular and parallel to the nanoscale junction, respectively. In the left bulk, the incident wave
and the reflected waves including evanescent ones are representet{rasz) and qS””(rH ,2), respectively, and in the right bulk, the
propagating and decaying evanescent waves toward the right side are denoted by transmitteﬁf’ﬁ\(aye:s).

completely eliminated, since evanescent waves are treated beundary planes in the transition region can be sufficiently
the ratios of their values at two neighboring grid points in smoothly connected with the periodic potentials of the re-
the discretized space. These ratios, which are mathematicalpective bulks.
equivalent to logarithmic derivatives, guarantee the numeri- The global solutions of the Kohn-Sham equation extend-
cal stability. The potential power of our procedure will be ing over the entire system are constructed from a linear com-
exhibited when it is applied to highly accurate calculations. Pination of partial solutions within the left and right bulks.
To exemplify the advantages of our technique, we apply itl\/lqre concretely, _the squypn we wish to calcyla;e is a scat-
to investigating electron transport properties of a single-row€"ing wave function specn‘le?n by a particular incident Bloch
gold nanowire suspended between(220 electrodes. We Wave, €.9., an incident waug™(r),z) incoming from deep

find that the electric conductance of the nanowire with thred"Side the left bulk, as illustrated in Fig. 1. Herg=(x,y)
atoms is close to the quantum ut (Go=2eh, e: the andz are coordinates perpendicular and parallel to the nanos-

electron chargeh: Planck’s constantwhen its average inter- cale junction, respectively, and two-dimensional periodicity

s . .18 assumed for the, coordinates and nonperiodicity for tkze
atomic distance Is Ie;s than 6.32 a.u., and decreases rapl e. The asymptotic form of the scattering wave function
to zero as the nanowire is further stretched.

i : . consists of the incident wa in(rH ,Z) plus reflected waves
Our formalism can include the norm-conserving pseudo-

f . .
potential technique®8however, throughout this paper we ¢'"° (1) .2) in the left bulk and transmitted waves'(r) .2)

. . -~ in the right bulk. Then, we will construct the global scatter-
restrict ourselves to the case of floeal pseudopotentials, in . ) e ) . )
: .. ing wave function satisfying this asymptotic behavior by
order to describe the essence of our procedure for avoidin

numerical instability. The inclusion of nonlocal parts of the fheans of matching together the near-boundary values of the

norm-conserving pseudonotentials is straiahtforward. whichaVe function, i.e., its values near the right boundary of the
. . 9P P . 9 ' eft bulk and those near the left boundary of the right bulk,
will be discussed in a forthcoming paper.

The plan of this paper is as follows. In Sec. II, we give in overbridging the transition region. Thus our wave-function

) . > : matching procedure is referred to as tlowerbridging
detail the first-principles computation scheme for the elec; . . . ?
. . - boundary-matchingnethod. For this purpose, we will define
tronic structures and transport properties of the system witf) ; . S " .
) . L ) a Green'’s function matrix in the transition region.
the junction between truly semi-infinite crystalline elec-

trodes. In Sec. lll, in order to demonstrate the general appli; Our theoretical formalism relies upon the real-space

o . o

- . inite-difference approach. This approach, which is summa-
cability of the m_ethod, the calcula_tlon_of the conductance Of:ized in Appendix A, enables us to derive readily the over-
the gold nanowire under elongation is presented as an e

ample. In Sec. IV, we summarize our procedures. Finall )E)rldglng boundary-matching formula without introducing

mathematical details are described in some appendixes y'any complexity. The derivation of the matching formula will
pp " be demonstrated in Sec. Il A. For the construction of the

generalized Bloch functions, i.e., the solutions of the Kohn-
Sham equation inside the bulk regiong”(r,z)(A

We consider the procedure for obtaining the solutions of=in.ref, andtra), we propose two methods: one is the
the Kohn-Sham equation in a system with the transition remethod of working out a generalized eigenvalue problem
gion intervening between two semi-infinite crystalline bulks, under the generalized Bloch theorem, and the other is to treat
as depicted in Fig. 1. The transition region is representativéhe ratios of the values of the bulk solutions at adjacgnt
of a nanoscale junction, a tunnel junction in tip-samp]e sysgrid pOintS in a continued-fraction form. We will show that
tem (e.g., scanning tunneling microscopyn interface be- for the implementation of the overbridging boundary-
tween different bulks, an interstitial lattice defect or disorder,matching formula, both methods are required to be employed
and so on. In general, an effective potential is close to peritogether. The formulation of these two methods will be ex-
odic bulk potentials as goes deeply inside the left and righfibited in Sec. IIB.
bulks. This fact allows us to make an approximation that the
entire system can be divided into three parts: the left bulk,
the transition region, and the right bulkig. 1). The transi- In this subsection, we give a wave-function matching pro-
tion region should be large enough that the potential on theedure to construct the global wave function extending over

II. THEORETICAL FORMALISM

A. Overbridging boundary-matching method
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the entire system, based on the real-space finite-difference W (zo) Gy, Gimso B;f\p(z_l)
approach. As shown in Appendix A, a columnar vector v “la ' G ' , 4
W(z,) consisting ofN,, (=N,xXN,) values of the wave (Zme1) m+21 Gm+2me2]|B2¥ (Zmi2)

function on thex-y plane at thez=z point satisfies the \here G, ; is the N,,-dimensional {,j) block-matrix ele-
dlscrgnzed Kohr]-Sham equaucMS) that takes a S|m_ple ment of the Green's function matri&. Equation(4) is a
fo”'? n _the relation of three adjac_er_1t terms along thei- realization of our overbridging boundary-matching formula
rection in the case of the central finite difference, whllte 1 o onnect the values near the boundary of the left bulk,
andN, are the numbers of grid points in tixeandy direc- W(zo) and¥(z_,), and those of the right bulk¥ (z,,. 1)

':lr?ns, respe]:cctt;]vely. Ir; ﬂ:'?. p?pe(zjr_f\f/ve limit ?ur fprmll,_llz_attlor_}_rt]o and¥(z,. ), where the near-boundary values of the wave
€ case of the central Tinité diltérénce for SIMplCIty. 1N€ g, ction in the left and right bulks are directly connected

e_x.tensilon of thg metr_]odology to the case of higher-ordewith each other by the Green’s function matrix carrying all
finite difference is straightforward. Because the Kohn—Shan?)f the information on the transition region

_equation .iS a second-_order differential equation, t_he solution Due to the screening effect in the semi-infinite crystalline
'S det_ern"élgned by speC|fy|_ng the valudyz,) at two different bulks, the effective potential tends to take a periodic property
Z poINts:“As t_hese specme_d_ values_, we cho(_ﬂs(sz,l) and deep inside the left and right bulks. For this reason, the ap-
W(zm, ) outside the transition regiotsee Fig. 1 Then, . qrate way to construct the global scattering wave func-
Egs. (AS) for the z, grid points fromk=0 to m+1 are  jon for the entire system is to describe it in terms of a linear
treated as a simultaneous linear equation with regard tQ,mpination of generalized Bloch functions inside the left
{V(20),¥(2), - .. W(zm+1)} for given values of¥(z-1)  anq right bulks(see later for the calculation of generalized

and ¥ (zp-+2), Bloch functions in the bulks The scattering wave function
_ - - ot - is classified into two types. One is incident from the left bulk
W¥(20) B, ¥(z-1) with the reflection to the left bulk and transmission to the
V(z,) 0 right bulk. The other solution is vice versa, i.e., incident from
(E- ) : _ . ) the right bulk with the reflection to the right bulk and trans-
) ' mission to the left bulk. Here, we consider only the solution
V(zy) 0 in the former case. The solution in the latter case is con-
| V(zmi0) ] L B¥(Zimio) structed straightforwardly. As illustrated in Fig. &,"(r||,2)

is an incident Bloch wave coming from deep inside the left
whereE is a Kohn-Sham energy arilis the Hamiltonian of ~ bulk, while $"(r),2) is a set of reflected waves that propa-
a truncated part of the system sandwiched between th@ate and decay into the left bulk. In the left-bulk region, the
planes az=z, and z,,..;, which is expressed by a block- Scattering wave functioW(z,) is expressed as a linear com-

tridiagonal matrix bination of these waves,
N
. Xy
" V(zg) B, 0 7 V(29 ="z + 2 @[z, (5)
B V(z) B,
. . . where ri(I1=1,... N, are reflection coefficients, and
H= ) 2 @ﬁ(zk)(Azin andref) are N,,-dimensional columnar vec-
B V(zw) B, tors constructed by{¢™(X;,y;.,z):i=1~N,, j=1~N}
0 Bf v on the plane at the, point in the left-bulk region. On the
L z (Zm+1) .

other hand, the scattering wave functidt{z,) in the right-
Here the block matriceB, and V(z,) are defined by Egs. bulk region is given by a linear combination of transmitted
(A6) and(A7), respectively. Thus, once the Green’s functionwaves ¢'"%(r|,z) that propagate and decay into the right

matrix G=(E—H) ! at a given energf and lateral wave Pulk with transmission coefficients,

vectork is known, Eq.(1) is solved as Ny
'\I} 7)) = t q)tra Z , 6
- W(zo) T - Blw(z_) ] (Zy) 21 1Py (Z) (6)

W(zy) 0 where the columnar vectob|"®(z,) at thez, point in the

: =G : ) (3) right-bulk  region has the N,, components of
W(z,) 0 {¢"(xi,yj,2):i=1~N,, j=1~N,}. Thus, substituting

m Egs.(5) and (6) into Eq. (4), we could determine all of the

L Y(Zyns1) L B,V (Zm+2) | coefficientsr, andt, in principle, if the generalized Bloch

statesb were known. Howeverd in this matching formula
From Eq.(3), one can see that all the values of the waveg|ways include exponentially growing and decaying evanes-
function in the transition regior¥'(z,), ¥(zz), ..., and  cent waves, and the inclusion of these evanescent waves in-
W (zy), are directly connected to the two values®(z_;)  evitably gives rise to such a numerical problem that the
andV¥(z,.,) by means of the matri%xs, and further¥(z,) smaller the grid spacind;(i=x,y), the more serious the
andW¥(z,.q) are related toV(z_;) and¥(z,.,) as numerical errors. In the next Sec. llIB 1, we will derive a
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formula to calculate the generalized Bloch stateand dis-
cuss the applicability limitations of the formula. Eventually,
the direct use of Eq94)—(6) leads us to a numerical prob-
lem when calculations with a high degree of accuracy are
demanded.

In order to circumvent this numerical difficulty, we intro-
duce the following ratios of the generalized Bloch functions:

R™®(z9)=Q""(z_1)Q"(zp) * (7
and ra ra ira 1 FIG. 2. Schematic representation of the periodic bul;f(.rep-
RY(Zm+2) = Q" (Zm+2) Q" (Zmy 1) 7, (8)  resents the coordinate at théth discretized grid point in th#lth
whereQ”(z) (A=ref andtra) areN,,-dimesional matrices ™ cell.
which gather generalized Bloch stal@q‘;\(zk), i.e., QNzy B. Computational scheme for generalized Bloch states
=[D}(z), . . . ,@ﬁxy(zk)]. The ratio matrice®R"®f(z,) and in the crystalline bulk

R"(zy.,) do not involve the values of evanescent wave \We propose in this subsection two numerical methods to
functions themselves, but include thatios of the values of  obtain the solutions of the Kohn-Sham equation in the bulk
evanescent wave functions on the planes at two adjacentregion, focusing on resolving numerical problems. One of
points, which correspond to logarithmic derivatives in thethe methods is to determine the generalized Bloch functions
continuous limit of real space,and thus the numerical er- by means of solving a generalized eigenvalue equation. Us-
rors due to the appearance of evanescent waves never acgng this method, we run up against a wall in numerical cal-
mulate during computing the ratio matric&°®’(z;) and  culations when we attempt to acquire accurate evanescent
R"(z,4,). The method of directly calculating the ratio ma- wave functions, because there arises an inherent numerical
trices, notvia the values of evanescent wave functions them-problem that a great number of computational errors accu-
selves, will be shown in Sec. IlI B 2. mulate as the grid spacing, or h, (see Appendix A be-
From Egs.(5) and(7), we have comes smalt’ Nevertheless, the propagating Bloch waves
_ in refs o v —1 in and gently growing or decaying evanescent waves can be
W(20)=D"(20) +R™(29) [W(z-1) =P (z-1)], calculated with a high degree of accuracy. In other words,

© only the rapidly growing and decaying evanescent waves are
and similarly from Eqs(6) and (8), we obtain smeared with serious numerical errors even when the calcu-
lation of the matrix elements of the generalized eigenvalue

W (Zmi 1) =R (Zm42) " W (Zms o). (100 equation is satisfactorily carried out.

The other method is to treat the ratios of the generalized
Bloch functions on the planes at two successivpoints;
thereby the numerical instability with respect to evanescent
waves is completely prevented. In this method, the Kohn-

Then, inserting Eqs(9) and (10) into Eq. (4), the wave-
function matching formulg4) is rewritten in terms of the
ratio matrices as

G..BI— Rref(z )1 G B Sham equation is rewritten in a continued-fraction form, and
L1z 0 1m+2=2 its solution is self-consistently determined so as to agree with
Gm+2’:|_BI Gt 2m+2B2— R"(Zms2) * the periodicity in thez direction. Thepropagating Bloch

waves themselves, however, cannot be obtained by the
continued-fraction method, and therefore we have to use

: these two methods in combination for the implementation of
the overbridging boundary-matching formulsl).

X Wzt 2) 0

‘I’(Z_l) ] _[_ RrEf(ZO)71®in(Z,1)+(I)in(20)

(11

This is the final form of our overbridging boundary-matching
formula. Note that an incident waw@'" in the right-hand
side of Eq.(11) includes only the propagating one, and thus
no evanescent waves themselves come out if(Hg}. Even-

1. Method of the generalized eigenvalue problem

The potential in the bulk region is periodic along the
direction(Fig. 2). Similarly to Eq.(1), the Kohn-Sham equa-
tion in the Mth unit cell is expressed as

tually, the numerical instability caused by exponentially - o1 T B;fq)(szl)-

growing or decaying evanescent waves can be completely !

excluded in Eq(11). It is noticed that¥ (z_,) and¥(z,,,. ,) d(zy) 0

are solved as the solutions of E(L1) for each incident (E—AM) : _ : . 12
propagating waveb'", and once they are obtained, all the M 0

values of the global wave function around the transition re- D (zm-1) M1

gion, ¥(z,)(k=0, ... m+1), are determined from E¢3), D(2M) B,®(zy ")

in which only a part of the block-matrix elements of the B - = -

Green's function matrix,G;; (i=1~m+2j=1 and m  Here,A" is the Hamiltonian in théth unit cell regarded as
+2), are needed. an isolated system,
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WhereV(z{l") is similar to Eq.(A7), representing the bulklike 0'212 14 16 18 20 22 24 26 28

potential on thec-y plane at thez}' point. The wave function Cutoff energy (Ry)

in the Mth unit cell is obtained by solving Eq12) as FIG. 3. Multiplication of the maximum and minimum absolute

values of the eigenvalues as a function of the cutoff energy or the

_ - - RTdy M1\ =
D(zy') B ®(zm ) grid spacinghys (=h,=hy=h,) in the case of the Au bulk with$
<I>(ZZM) 0 electrons.
= e M E
;\/I G 0 ' (14) Gm,lBI Gm,mBz
(M) - ;= 0 N
@(ZM) ] B, ®(z; ")
= M H 1, H 4 1 H I 0
whereG" is the Green’s function matrix of the Hamiltonian II,= GM gt cM e (20)
HMZ 1,1°z 1mPz
GM=(E—AM)~1 (15) The eigenstates are classified into two classes depending

on the absolute values of the eigenvalieshe eigenstates

The boundary valuesb(z¥™Y), ®(ZY), ®(zV), and with |\|=1 represent propagating Bloch waves, andkhis

d(2M"*1) are now related to each other, a real number. In the case pf|#1, they are evanescent
waves, and, is extended to the field of a complex number.
DM M m [ BldZM Y The apparent advantage of this method is the possibility that
(z1) _ Gi1 Gim|| 2 o (1) Al of these generalized Bloch states at an assigned efiergy
oz |Gt 6N || BP0 | and lateral Bloch phask are simultaneously obtainable

from Eq.(19). The generalized eigenvalue equati@d) can

where G} is the N,y -dimensional {,j) block-matrix ele- Pe numerically worked out by means of t algorithm,
ment of t’he matrixGM one of standard solvers for a generalized eigenvalue prob-
Because of the periodicity along talirection, the wave lem. In order to demonstrate numerical accuracy of &),

function satisfies th neralized Bloch condition we examined the eigeqvalyes calculated from (Eiq_). Fig-
unction satisfies the generalized Bloch conditio ure 3 shows the multiplication ¢R ;a4 BY |\ minl, Which are

d(z+L,)=\D(2), 17) computed numerically in do_uble precisi_on, wherg,y and
Amin are the eigenvalues with the maximum and minimum
where \=e'*?z, andk, and L, are a Bloch wave-vector absolute values, respectively. It is known that\ifbe an
component and unit-cell length in tredirection, respec- eigenvalue of Eq(19), then\* ! is necessarily an eigen-
tively. In generalk, is a complex number. According to con- value of Eq.(19)."®2* Hence, whem ., and\ i, areexact
dition (17), the relations between the values of the waveeigenvalues of Eq(19), the relation thafX ya, X |\ i =1
function at thez , z)'*? points and those at th&! ~*, zM  should be satisfied by them. Nevertheless, in Fig. 3 one finds

points are given by that the calculated value Qi ., X|\minl is considerably
away from 1 at a cutoff energy higher thanl8 Ry, corre-
D(zM) d(zM Y sponding to a grid spacing smaller thar0.75 a.u*? The
M| =N @M |- (18  breaking of the relatio\ 4 X [\ minl #1 means that eigen-
(z ) (z1) values, therefore eigenvectors as well, are smeared with nu-
merical errors.
Thus, the insertion of Eq(16) into Eq. (18) leads to a Consequently, we conclude for the numerical accuracy of
2N,,~dimensional generalized eigenvalue equdtion the generalized eigenvalue equatid®) that (i) when a cut-
off energy is chosen so high as to implement an accurate
@(zM‘l) db(zm*) calculation, evanescent waves which rapidly grow or decay
11, (MY =\, oMY ! (190  have serious numerical errors, and §ietaccuratesolutions

of both the propagating Bloch waves and the gently growing
or decaying evanescent waves can always be obtained. The
where additional procedure for completely resolving the numerical
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problem concerning rapidly varing evanescent waves will be

shown in the next Sec. IlI B 2.

2. Continued-fraction method

An efficient and simple procedure to determine the ratios
of the generalized Bloch functions on the planes at two

neighboringz points is presented. We first treat the ratios of
the generalized Bloch functions in the left bulR®" of Eq.
(7). As is evident from Eq(A5), theN,,-dimensional matrix
Q@) (=[P, ... @ (Z)]) satisfies

-BlQ(z )+ Az Q™ (Z¥)—B,Q®!(Z{. ,)=0,
(22)

whereA(z}')=E—V(z}"). From Eq.(21), one can see that
the ratio matrix on the neighboringpoints,

R®'(z{)=Q"'(z )Q"™"(zh ™, (22)
satisfies a two-term recursive matrix equatfon
Rz ) =[AZ)-BIR®(Z"]7'B,. (23

Then the successive use of E@3J) leads to a continued-
fraction representation, which link&™f(z}'*1) in the (M
+1)th unit cell toR™®(z}) in the Mth unit cell as

R Y =[AM) - BI[AGM_,)-BI[---—BI
X[A(Zy)-BJ[A(zy) -BIR®(Z{)]7*B,] *
XBZ"']_le]_lBZ]_lBZ. (24)

We see that the calculation of E(4) is a computationally

PHYSICAL REVIEW B67, 195315 (2003
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FIG. 4. Calculation model of the gold nanowire.

initial guesses foR”(z,), the correct solutions are immedi-
ately acquired by only several iterations of self-consistent
cycles, surprisingly.

IIl. APPLICATION TO THE GOLD NANOWIRE

As an example of the method, we investigate the electric
conductance of a single-row gold nanowire sandwiched by
two semi-infinite crystalline gold electrodes when the nano-
wire is stretched. The gold nanowire system consists of a
linear nanowire of three atoms labeled 1-3 and a pair of
four-atom bases connected to both ends of the nanowire, and
all of these are suspended between two semi-infinitel A0
electrodes, as shown in Fig. 4. The transition region is cho-
sen to be the area inside the dashed lines in Fig. 4, which
includes the linear nanowire, the bases, and the respective
three atomic layers of the left and right gold electrodes so
that the potentials at both boundaries in the transition region
can be smoothly connected to the bulklike potentials inside
crystalline electrodes. The distance between the electrode

hard task, since the successive operations of the inversion ag@d the basis as well as the distance between thérigftt)

demanded. In practice, instead of EQ4), we employ a
more efficient formula in terms of the Green’s function ma-
trix elements, which is equivalent to E@4) (see Appendix
B1),

Re(zy'" =GN B, + Gy
xBJ[R®f(z}") -G} Bl1 G} B,.
(25)
On the other hand, along the same line as mentioned abo
the ratio matrixR'"@ of Eq. (8) in the right bulk can be shown
to satisfy analogous equations to E(&3)—(25) (see Appen-
dix B 2).

Since the potential at thieth grid point in the M +1)th
unit cell is equal to that at thieth grid point in theMth unit

cell due to the periodicity, the generalized Bloch conditions

imposed on the ratio matrices now read (ase Appendix

B3)
RAZM ) =RAZ¥)=RA(z)(A=ref and tra).
(26)

The solutionsR?(z,) of the continued-fraction equations
(25 and (B9) under constraint$26) can always be deter-

basis and atom [2) is set to be 0.&,, which is equivalent to

the length between two neighboring layers of the gold crystal
in the[100] direction, wherea, is the lattice constant of the
gold crystal, i.e.,ap=7.71 a.u. The initial geometry in
stretching the nanowire is chosen such that the interatomic
distancesd; and d, (see Fig. 4 are equal to the nearest-
neighbor atomic distance in the gold crystal, 5.48 a.u. In our
real-space finite-difference approach, the grid spatigg
(=hy=hy=h,) is taken to be 0.70 a.u., which corresponds

vio a cutoff energy of 20 Ry, and the second-order finite dif-

ferentiation (N;=2) is adopted for the kinetic energy opera-
tor [see Eq(A2)]. We use a unit cell with length of 15.4 a.u.
in thex andy directions under periodic boundary conditions,
accordingly the total number of grid points in these direc-
tions, N,,=22x22. Wave functions are calculated only at
the I' point in the two-dimensional Brillouin zone. The
exchange-correlation effects are treated within the local den-
sity approximation parametrized by Perdew and Zufiger.

In the calculation of the conductance, we employ a local
pseudopotential of the goldseelectron described in Refs. 35
and 36, neglecting the contribution of thd Blectrons to the
conductance, because the Au nanowfté$*°as well as the
Au bulk®>8 exhibit the electronic structures mostly charac-
terized by the 6 orbital at the Fermi level. The electronic

mined in a self-consistent manner. Indeed, we confirmed ourstructures of the bulk Au and the transition region are calcu-

selves that when the crude solutions of Elf) are chosen as

lated self-consistently using standard supercell geometry
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FIG. 5. Schematic representation of the nanowire attached to 10 .2'0 30 40 50
jellium electrodes. The lengtD represents the distance from the Distance D (a.u.)
surface of the jellium to the square basis of the nanowire. Each
atom of the nanowire is equally located with the interatomic dis-
tance of 5.48 a.u.

FIG. 6. Conductances of the gold nanowire sandwiched between
the jellium electrodes as a function of the distairdetween the
basis and the surface of the semi-infinite jellium electrode. The gold
with the three-dimensional periodic boundary. Thus, the efnanowire is made of three atoms equispaced at 5.48 a.u. The arrow
fective potential determined in this way is employed for theindicatesD =3.85 a.u., which corresponds to the length between
calculation of the conductance. two neighboring layers of the bulk Au in tH&00] direction.

The values of the global scattering wave function near
both boundaries of the transition regioW/(z_;) and in the present casB~2.5 a.u.

W¥(zy+,), are determined by the overbridging boundary- We now turn to the discussion on atomic geometries and
matching formula(11), and then the global wave functions transport properties of the gold nanowire under elongation in
extending over the entire system are calculated using3tq. the case of crystalline electrodes. First, we give in Fig. 7 the
The bulk solutions and their ratios inside the left and rightatomic structure optimized by the first-principles approach
electrodes are acquired from E@$9), (25), and(B9). Some  using the three-dimensional periodic supercell: the supercell
remarks for obtaining the conductance within our method arevith a length of 15.4 a.u. in theandy directions containing
given in Appendix C.

Some authors have reported theoretical studies on trans-

port properties of nanowires sandwiched by feitium elec- (a) <d>=6.32 a.u.

trodes instead of crystalline electrodgs!! Owing to the 12.64 au
existence of a possible artificial interface between the ap- = | RN | -
proximated constant potential of the jellium electrode and ' i
the real potential of the crystal surface, the problem may JOW 1 2 3 QYL
arise that the results for transport properties in the case of the i v vV Vv
jellium electrode are different from those in the case of the IOV |(—>| I
actual crystalline electrode. In practice, no one can know in )\

advance such an appropriate distabcbetween the jellium 6.32a.u.
electrode and the basfsee Fig. % that the correct conduc-

tance in the case of the crystalline electrode may be satisfac- (b) <d>=6.49 a.u.

torily produced upon employing the jellium electrode. Be-

fore moving on to the discussion of transport properties in ’ 12.98 a.u.

the case of the crystalline electrode, we briefly report the 'Y = O
conductance of the gold nanowire suspended between two JOY 1 2 3PV
semi-infinite jellium electrodes for the various values of dis- IVIY V VIV
tance D. The electron density of the jellium electrode is )JJ |( ,I IV
taken equal to the averages @alence-electron density of the

gold crystal ¢s=3.0 a.u.)’ In Fig. 6, the conductances cal- 7.45a.u.

culated at the Fermi level are plotted as a functiorbdior

the gold nanowire made of three atoms equispaced at 5.48 (C) <d> =6.67 a.u.

a.u. It can be seen that the conductances sensitively change

depending oD, even though the geometrical structure of the JJ 13.34 a.u. v
nanowire is kept fixed. The distance 8,5 =3.85 a.u.) in- 'S fe——]
dicated by the arrow in Fig. 6 corresponds to the length JOY 1 2 3¢
between two neighboring layers of the bulk Au in {160 )JIYD QD QoY
direction. The conductance d@=0.53, is found to be )JJ - Y
~0.5G,. This value of the conductance should be compared | — | J
with the true one aD=0.58;, andd;=d,=5.48 a.u. in the 8.10 a.u.

case of the crystalline electrode;1.0G,, which will be

shown later. Accordingly, in order to acquire a more correct

value of the conductance upon employing the jellium elec- FIG. 7. Optimized geometries of the gold nanowire under elon-
trode, we have to choose the distafixevith prudence, e.g., gation.(d)[ =(d;+d,)/2] is the average interatomic distance.
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S (@) <d>=5.48 a.u. || (b) <d>=6.67 a.u.
S 10}

(] equally arranged &
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s fat
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50 55 60 65 70 75 80 0.02-0.01 0.0 0.010.02 0:01 0.0 0.010.02
Average interatomic distance < d > (a.u.) E@u) E(au)

FIG. 8. Conductances of the three-gold-atom wire sandwiched FIG. 9. LDOS of the 6 electron around the linear nanowire part
between the A(LOO) electrodes as a function of the average inter-for the optimized structures &t)=(a)5.48 and(b) 6.67 a.u. as a
atomic distancéd). The solid(dashed curve denotes the conduc- function of the incident electron ener@ymeasured from the Fermi
tance for the optimizedequally arrangedstructure. level. The zero of energy is chosen to be the Fermi level.

_ _ _ mized structures &td)=5.48 and 6.67 a.u. as a function of
the linear nanowire, two bases, and one electrode with thregye energy measured from the Fermi level. The LDOS is
atomic layers of the AWOOQ surface. According to Ref. 10, obtained by integrating the charge density at a given energy
the optimization of the atomic geometries was carried ouyithin a cylinder of radius 7.7 a.u. with ends 1.0 a.u. from
under the restriction that both of the end atoms of the nanothe outermost atoms 1 and 3 in Fig. 4. The LDOS(d}

wire as well as the atoms of the bases and electrodes be kepts 48 a.u. has a distinct peak at the Fermi level, and this
frozen. Our first-principles molecular-dynamid$PMD)  on-peak behavior of the LDOS implies the appearance of a
simulations are based on the real-space finite-differencgylly opened channel at the Fermi level to yield the quantized
method employing the timesaving double-grid technitfue, conductance of- 1G,.8*°0n the other hand, the LDOS of
and the norm-conserving pseudopotentials of the gald 5 (d)=6.67 a.u. exhibits off-peak behavior at the Fermi level,
and 6 electrons are adopted®® We take a grid spacing of which gives rise to zero conductance.

0.33 a.u., corresponding to a cutoff energy of 90.9 Ry. As an  Figure 10 illustrates the density distribution of the 6
initial configuration in FPMD simulations, the gold atoms electron incident from the left electrode at the Fermi level for
in the nanowire are set at equal distances of 5.48 a.u., anfle optimized structures &tl)="5.48 and 6.67 a.u. One can
then relieving the force acting on the central atom 2, Wecjearly recognize that the distribution &t)=5.48 a.u. pos-
repetitiously elongate the electrode spacing. From Figl 7 sesses a characteristic of the resonance state, i.e., an eigen-
one finds that while the average interatomic distancenode pattern with a loop at the center of the nanowire. On
(d) [=(d;1+d,)/2] is between 5.48 and 6.32 a.u., the threethe contrary, the distribution gt)=6.67 a.u. shows a dis-
atoms of the nanowire keep equal spacings. Whenis  appearance of the electron conductance, since electrons in-
larger than 6.32 a.u., the interatomic distance dramatlcally;oming from the left electrode are thoroughly scattered back

changes, and the distandg becomes large up to 8.10 a.u. at around atom 1. Therefore, the bond of the nanowire is break-
(d)=6.67 a.u., as illustrated in Fig.(d. This behavior is ing at(d)=6.67 a.u.

analogous to the result of Ref. 47 based on the FPMD simu-

lation where near-central atoms of the nanowire also MOVE(3) <d>=5.48 a.u.
toward one side of the electrodes in the process of the
stretching.

Next, electron transport properties of the nanowire in the
limit of zero bias are presented. Figure 8 shows the conduc
tances at the Fermi level as a function{(af) for both the
optimized and equally arranged structures of the gold nano:
wire with the three atoms. During the stretching frqu)
=5.48 a.u. to 6.32 a.u., the conductances hardly change bt
keep a nearly quantized value of53. Our result at(d) (b) <d>=6.67 a.u.

=5.48 a.u. is in agreement with the predictions of the tight- I=onQ I=o-J ;
binding approach for the unstretched three-gold-atom (-1,:\) 0@ o Ingh
wire ##¥\When(d) becomes larger than about 6.32 a.u., the = So.\%, =
conductances in both the optimized and equally arrangec J@ ) @3' 0V VIV
cases decrease rapidly. In particular, the conductance in th ") @ J) QoY o

.. L . . \ \7/ Low
optimized case diminishes more drastically and is close to Q-0"Q @-0-@

zero at(d)=6.67 a.u. Thus one sees that a metal-insulator
transition takes place in the three-gold-atom wire while the FiG. 10. Electron-density distribution at the Fermi level for the
average interatomic distange) is from 6.32 a.u. to 6.67 optimized structures &)= (a)5.48 andb) 6.67 a.u. The case of
a.u. the incident & electron coming from the left electrode is consid-

We show in Fig. 9 the local density of statdDOS) of  ered. The planes shown are perpendicular td 1#06] direction and
the 6s electron around the linear nanowire part for the opti-contain the atoms in the nanowire.
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V. SUMMARY The effective potentiabe(r|,2) is described as a sum of

We have presented new first-principles procedures tcl)ocal potentials vion(r),2), the Hartreg potentla!
ulp(r),2)], and the exchange-correlation potential

handle a system of the nanoscale junction attached to senfi . . .
infinite crystalline electrodes on both sides. Our method enl—)XC[p(tL|| ’Z)]tw'th the e_tle;;tionl_c crlalrge dznsw)(rﬂ 2)- \{Ve
ables us to implement highly accurate calculations on thgse the aloml_c d'ur'lcl Sf _tﬁ_m: an asg_umte ch
electronic structure and transport properties of almost anglmensmna periodicity for the [ =(x,y)] coordinates an

infinitely extending system without periodicity, such as a o?petL'Od'C't)l/ for thaf_o_r:e.d_ﬁ h ¢
genuine surface, an interface, and a tip-sample system, n the real-space Tinite-aiflerence approach, wave tunc-

S ; . . .
well as a nanoscale junction. The main points of the metho%ons’ electronic charge density, anq potenﬂals are directly
are as follows: A global wave function extending over therepresented on uniform three-dimensional real-space

entire system, being treated as a scattering wave functio%r.'ds'8 ’ Thgxandy Coordlnate._s in the unit cell of pel’.I.Od-
satisfying proper asymptotic conditions of scattering, is delClty are d'V'd(.ad |nto'gr|ds'{xi i=1,... Ny and {Yi ']
termined by matching together its near-boundary values out- ' " * : Ny} with eqwsp_am_ngshx and .hy.' re_spectlv_ely,
side the transition region intervening between two semi—\’vh'Ie due to the nonperiodicity, the axis 1 d'Y'ded Into
infinite bulks, i.e., its values near the right boundary of theg”ds{zk;k: —,...,~101 .. '_’+°O}_W'th an mterva_l o_f
left bulk and those near the left boundary of the right bqu,hZ‘ Then, the K(_)h_n-Sham equatigal) is expressed within
by making use of the Green's function matrix carrying all of tN€ real-space finite-difference approach as

the information on the transition region. As a consequence,

for each incident propagating wave, the global wave function 1 Nt

is constructed from this Green’s function matrix and the ratio— 5 > [ehy(xi+nhy,y, 1Z) +Cyi(xi,y;+nhy,z)

matrices made of the generalized Bloch functions on neigh- n=-Ni

boring grid points in the respective bulks. These ratio matri- + (X Y1 Zk b ) T+ verd(Xi Vi Z) WX Y Zi)
ces are directly obtained by solving self-consistently the ‘ ’ ’ J
continued-fraction equations derived from the Kohn-Sham =E(X;,y;,z), (A2)

equation inside the periodic bulks. A sequence of the proce-

dures completely excludes the computational errors Causqgjherecz (r=x,y,2) are constant parameters due to the fi-
by the appearance of exponentially growing and decreasingite differentiation of kinetic energy operatoer V2. For
evanescent waves. simplicity, we deal below with the simplest case of the cen-

As an app;lick?tiorr]], we h?&/e calculated electk:oré tlr)ansporgra| finite difference N;=1) with the parameters;lzci
roperties of the three-gold-atom wire stretched between. 4.2 0_ 2 (0 -
prop 9 L1/h? and c)=—2Mh’ (v=xy,2). When higher-order

semi-infinite AU100) electrodes. The transition from a me- g0 litference formulas are employed, see Ref. 29 for the
tallic conductance of-1Gg to an insulating one is observed alues ofc" . Owing to the periodicity of' thec andy direc-
w

when the average interatomic distance changes from 6. ns, the following Bloch conditions are imposed on the

a.u. to 6.67 a.u. S L
By virtue of the simplicity of its scheme, our method can wave function: in thex direction

readily include norm-conserving pseudopotential techniques. L
We will discuss this developement in an extended paper later. P(Xo,Yj2i) = €KX, Y 420, (A3a)
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APPENDIX A: REPRESENTATION OF THE KOHN-SHAM where ="t (e9%y) represent the Bloch phase factors
EQUATION IN THE REAL-SPACE FINITE- due to the periodicity of thez(y) Q|rect|on.k‘|=(kx ,ky) and
DIFFERENCE APPROACH (Lx,Ly) denote the two-dimensional vectors of Bloch wave

numbers and lateral lengths of the unit cell, respectively.
The Kohn-Sham equation for the system depicted in Fig. It is convenient to treat a set of values of the wave func-
1 is written as tion on the x-y plane at thez=z, point {#(X;,y;,zJ):i
L =1,...Ny,j=1,... Ny} as a columnar vectow(z) of
N,y (=N,XN,) dimensions. Taking into account the Bloch
B EVZ+Ueff(rH 2) [P, 2) =By(r),2) (—o<z<=). cérﬁc&itionxs(ASy)) and (A4), we now ?ewrite Eq(A2) in the
(A1) case of the central finite difference as
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—BIW¥(z.1)+[E-V(2)]¥(z)—B,¥(z:1)=0

(k:—OO’ P ,_110,11 e 100)!

where B, is a constant
Ny,-dimensional unit matrix,

matrix

(A5)

proportional

PHYSICAL REVIEW B67, 195315 (2003

1

B,=— —I,
“ 2n?

(A6)

to andV(z,) is the following N,,-dimensional matrix defined
on thex-y plane at thez=z, point:

[ Ve, (Y1) By 0 0 B! T
Bl  Va(y2) B, 0 0
0 .
V(z) = : (A7)
. 0
0 0 B;: Vz (Yn,-1) By
e—ikyLyBy 0 . 0 B; Vzk(yNy)
whereB, is anN,-dimensional matrix similar td3,,
B,= ! I (A8)
Yo2n2”
and the block matrwzk(yj) is defined on the line at the §;,z,) point as
i ij ,Zk(xl) bx 0 cee 0 eikaxbx 9
bx ij ,zk(XZ) bx 0 ce 0
0 . . .
V, (y))= , (A9)
0
0 . 0 by ij |zk(XNX7 1) by
e~k 0 0 b, vy, z(Xn,)
|
1 1 1 APPENDIX B: MATHEMATICAL DETAILS CONCERNING
b= — Eciz -3 e e (A10) RATIO MATRICES
X 1. Proof for the validity of Eq. (25)
1 1 1 From Eq.(16), it is found that the sets of the generalized
by, 2 ()= 5+ S5+ S5 Hven(xi 20 (ALD) Bloch functions(?refhgzgf) and Q’if(szzllink together with
hy hy h; the other set®"®'(z;, ) andQ"™'(z}' ™) as

After all, it should be remarked that within the framework of
the real-space finite-difference formalism, the discretized
Kohn-Sham equatiofA2) under the Bloch conditionéA3)

and (A4) is rewritten as Eq(A5) which is in a relation of
three adjacent terms along thelirection?®

Qref(zg/l) — ng\_/,llQrEf(Zm —l) + WlM,mQref(ZlM +1), (Bl)

Qref(ZM) :Wm,lQref(Zm - 1) + Wm,mQrEf(ZlM +1), (BZ)
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whereW!, =GB! andwW! =GM B,(i=1,m). Multiplica-
tion on“”(z'\’I 1) L from the right side of Eq(B1) leads to

Rref(le)_1:WM1+W’]\_/,lmQr6f( M+1)Qref(ZM 1) l
(53)

and similarly, Eq(B2) multiplied by Q"¢(z}'**) ~* from the
right side takes a form

Rref(zg\-/l-%—l):melQref(Zm—l)Qref(ZlMﬁ—l)—l_f_Wm'm_
(B4)
Rewriting Eq.(B3) as
QUM hQref(ZM ) 1:[Rref(Z:I\L/I)—1_WlM'1]—lWlM'm
(B5)
and inserting Eq(B5) into Eq. (B4), we have Eq(25).

2. Equations for the ratio matrix R to satisfy

The ratio matrixR'"@ of Eq. (8) in the right bulk defined
by

Rtl’a(sz) — Qtra(zaﬂ)Qtra(Za/L 1)—1 (BG)
is found to obey a matrix equation
R"™(z)=[A({)~BR™(z{, )] 'B]  (BY)

and the corresponding continued-fraction equation

R3(ZY)=[A(Z)) —BA(ZY)—BJ--- —B[A(Z"_,)

—B[A(zm)—R"™(z'"H]7'B;]7*B] 17
xB}]7'B;]7'B] (B8)
and, further, a practically more useful form
R'"(zy!) = GYB} + GY\yB R (1 ™) 7
-GN B,] 'Gm.Bl. (B9)

3. Relation between the ratio matrices in successive unit cells

We show that the ratio matrix at thg' in the Mth unit
cell is equal to that at the same positiall ** in the (M
+1)th unit cell. TheN,,-dimensional math(zk) is de-
fined byN,, generalized Bloch stateh,(zk )(I=1~Ny,) as

QZ=[P1(Z), ... P (ZN)].

According to the generalized Bloch conditioQ(z
the (M +1)th unit cell is written as

(B10)

M+l) in

Qz! ™ =[M®a(z), ... Ay Py, (2], (BLD

where)\, is thelth generalized Bloch phase factor for thk

PHYSICAL REVIEW &, 195315(2003

A 0
R(ZY™H=Q(z¢" HQ(zZ{'""H =z )
0 An
A 0]°1?
X Q) '=R(z). (B12)
0 An

APPENDIX C: CALCULATION OF CONDUCTANCE

We here describe how the conductance is calculted in our
formalism. The expression of the conductaizat the zero
bias limit is simply given by the Landauer-Biker formula®

(CD

2y
h 5" vy’

wherev; and v; are thez components of the expectation
value of the velocity for thgth incident Bloch statd)'“ and

that for theith transmitted Bloch staté!"®, respectlvelyr’1
andt;; denotes the corresponding transmission coefficient.
The procedure to calculate the transmission coefficients is
shown below. In our formalism, the scattering wave function
Wi(Zim+2) = Ziti; @ (zms 2) [see Eq.(6)] is directly deter-
mined by solving Eq(11). Because the transition region is
chosen large enough that the potential is effectively screened,
WV(zn+2) in the bulk region is actually constructed from
only propagating Bloch waves with negligible contribution
of evanescent waves. Therefore, the transmission coefficients
t;; are obtainable from the following equation for given val-
ues of ¥(z,,,) and transmitted propagating waves
<I>"a(2m+z)

- + T -
tra tra tra’ gtra
e;" -0y oy (I’th ty;
T t t .
(I)tra 'q)tra (I)tra 'q)tra N i
th 1 th th tp
_ t -
tra
= ) . (C2
(I)tl’aJr V)
Nip |

Here, Ny, denotes the number of transmitted propagating
waves and a dot-§j means the inner product. The summation

state. Therefore, we can derive the simple relation betweeim the inner product is taken over grid points within a unit

R(z¥'*1) andR(z}") defined by Eq(22) or (B6),

cell on thex-y plane atz=z,, ,.

195315-11



Y. FUJIMOTO AND K. HIROSE

*Electronic address: fujimoto@cp.prec.eng.osaka-u.ac.jp

1s. DattaElectronic Transport in Mesoscopic Systef@smbridge
University Press, New York, 1995J. M. van Ruitenbeek, in
Metal Clusters at Surfaces Structur€uantum Properties
Physical Chemistryedited by K. H. Meiwes-BroefSpringer,
Berlin, 2000, and references therein.

2H. Ohnishi, Y. Kondo, and K. Takayanagi, Natuteondon 395,
780(1998.

SA. 1. Yanson, G. R. Bollinger, H. E. van den Brom, N. Agrand
J. M. van Ruitenbeek, Natu&ondon 395, 783(1998.

41.-W. Lyo and Ph. Avouris, Scienc@Vashington, DC, U.$.245
1369(1989.

5N. D. Lang, Phys. Rev. B55, 9364 (1997).

6J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science,;

(Washington, DC, U.$.286, 1550(1999.

M. Di Ventra, S.-G. Kim, S. T. Pantelides, and N. D. Lang, Phys.

Rev. Lett.86, 288(2001).
8S. Tsukamoto and K. Hirose, Phys. Rev6B 161402(2002.

9JoseLuis Mozos, C. C. Wan, G. Taraschi, J. Wang, and H. Guo,

Phys. Rev. B56, R4351(1997).

10\, Okamoto and K. Takayanagi, Phys. Rev6B 7808(1999.

1IN. Kobayashi, M. Aono, and M. Tsukada, Phys. Rev.6B
121402(2001).

12K Hirose and M. Tsukada, Phys. Rev. L&t8 150(1994); Phys.
Rev. B51, 5278(1995.

13p, M. Marcus and D. W. Jepsen, Phys. Rev. L2@.925(1968.

D, W. Jepsen and P. M. Marcus, (Bomputational Methods in
Band Theory edited by P. M. Marcus, J. F. Janak, and A. R.
Williams (Plenum, New York, 1971

153, A. Appelbaum and D. R. Hamann, Phys. Re%,B166(1972.

18E. Foo, M. F. Thorpe, and D. Weaire, Surf. S&7, 323(1976.

17E. J. Mele and J. D. Joannopoulos, Surf. 6.38(1977); Phys.
Rev. B17, 1816(1978.

8D, H. Lee and J. D. Joannopoulos, Phys. Re2334988(1981);
23, 4997(1981).

19p, sautet and C. Joachim, Phys. Re\3® 12 238(1988.

20G. Taraschi, Joskuis Mozos, C. C. Wan, H. Guo, and J. Wang,
Phys. Rev. B58, 13 138(1998.

21D, Wortmann, H. Ishida, and S. Bjel, Phys. Rev. B55, 165103
(2002.

22G. Wachutka, Phys. Rev. B4, 8512(1986.

2M. D. Stiles and D. R. Hamann, Phys. Rev3B, 2021(1988.

24\, Hummel and H. Bross, Phys. Rev.38, 1620(1998.

25K. Kobayashi, Phys. Rev. B9, 13 251(1999.

26H. J. Choi and J. Ihm, Phys. Rev. 3, 2267(1999.

27Y. Fujimoto and K. Hirose, Nanotechnolody, 147 (2003.

283, R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. L&.
1240(1994.

PHYSICAL REVIEW B67, 195315 (2003

293 R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B
50, 11 355(1994.

30x. Jing, N. Troullier, D. Dean, N. Binggeli, J. R. Chelikowsky, K.
Wu, and Y. Saad, Phys. Rev. 8, 12 234(1994).

313, R. Chelikowsky, X. Jing, K. Wu, and Y. Saad, Phys. Re&38
12 071(1996.

32T, Ono and K. Hirose, Phys. Rev. Le@2, 5016(1999.

33p, Hohenberg and W. Kohn, Phys. R&@6, B864 (1964).

34W. Kohn and L. J. Sham, Phys. Red40, A1133(1965.

35D, R. Hamann, M. Schter, and C. Chiang, Phys. Rev. Le83,
1494(1979.

36G. B. Bachelet, D. R. Hamann, and M. Sdely Phys. Rev. E26,

4199(1982.

N. Troullier and J. L. Martins, Phys. Rev. 483, 1993(199J).

38K. Kobayashi, Comput. Mater. Sci4, 72 (1999.

39The solution of a second-order differential equation can be deter-
mined by specifying a value and a first derivative at one point or
by specifying values at two different points. We here adopt the
latter.

40Taking a smalleh;(i=x, ), which corresponds to the inclusion
of plane waves with a higher frequency in the lateral directions,
gives rise to more rapidly growing and decaying evanescent
waves.

4! Analogous expressions of the generalized eigenvalue equation are
found in Refs. 22-27.

“The cutoff energy is expressed byr/a"lgs)2 (Ry), wherehg is
the grid spacinda.u). See Ref. 32.

433. P. Perdew and A. Zunger, Phys. Rev2B 5048(1981).

4M. Brandbyge, N. Kobayashi, and M. Tsukada, Phys. Re60B
17 064(1999.

453, Tsukamoto, T. Ono, Y. Fujimoto, K. Inagaki, H. Goto, and K.
Hirose, Mater. Trans42, 2257(2001).

46N. V. Smith, Phys. Rev. B, 1365(1974).

473. A. Torres, E. Tosatti, A. Dal Corso, F. Ercolessi, J. J. Kohanoff,
F. D. Di Tolla, and J. M. Soler, Surf. Sck26, L441 (1999.

BE. G. Emberly and G. Kirczenow, Phys. Rev6B, 6028(1999.

“¥The description of the Kohn-Sham equation in the relation of
three adjacent terms is also possible in the Laue representation
that employs a two-dimensional plane-wave expansion in the
lateral directions and a real-space discretization forzticeor-
dinate(e.g., see Ref. )2The advantage of our real-space finite-
difference method is that the finite differentiation for the kinetic
operator is treated on the same footing in all the three directions.

S0M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B
31, 6207(1985.

51The method for calculating the componentk=i,j) is found in
J. A. Appelbaum and E. I. Blount, Phys. Rev.88483(1973.

195315-12



