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Electron-phonon quantum kinetics for spatially inhomogeneous excitations

M. Herbst, M. Glanemann, V. M. Axt, and T. Kuhn
Institut für Festkörpertheorie, Westfa¨lische Wilhelms-Universita¨t, Wilhelm-Klemm-Str. 10, D-48149 Mu¨nster, Germany
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The dynamics of optically generated carriers interacting with longitudinal optical phonons in spatially
inhomogeneous systems is analyzed on a quantum kinetic level. A microscopic density-matrix theory is for-
mulated accounting for arbitrary spatial inhomogeneities in the semiconductor structure and the excitation
conditions. The physical origin of the various contributions entering the dynamical equations is discussed. The
theory is applied to the dynamics of a wave packet optically generated locally in a quantum wire. We study
quantum kinetic features due to the interaction with phonons in the expansion process both in a one-band and
a two-band model as well as the generation and dynamics of coherent phonon amplitudes.

DOI: 10.1103/PhysRevB.67.195305 PACS number~s!: 73.63.Nm, 78.47.1p, 72.20.Dp
tio
e

ea
in
rr
in
tio
es
e

on
l

er

l e
av
a
be
tte
y.
e

c
lo
l

ti
he
n

te
r-

p-
ee
u

e-

atial
in-
rrier
e
men-
ere

y it
ther

of
the

an-
n-
s is
lost

ng
n-
he
r

he
f a

al
t of
ems
s of
ge-
ing
for
re,

pho-
ght
sh
r-
um
e

Fi-
al
I. INTRODUCTION

On femtosecond time scales a Boltzmann-like descrip
of scattering processes occurring instantaneously betw
states with well-defined energy is no more adequate. Inst
a quantum kinetic approach has to be used which takes
account energy-time uncertainty but also features like co
lation effects between initial and final states in a scatter
process and a mutual influence between different interac
mechanisms. A variety of such phenomena has been inv
gated in the past decade both theoretically and experim
tally like the time-dependent broadening of phon
replicas,1–5 phonon quantum beats,1,2,6–8the coherent contro
of phonon quantum beats and dephasing times,9–11 phonon
scattering between Coulomb-renormalized states,12,13 quan-
tum kinetics of Coulomb scattering processes,14–16plasmons
and the buildup of screening,17–21 and phonon-plasmon
coupling.22

Besides this enduring reduction in time scales, mod
techniques like near-field optical microscopy23 lead to a con-
tinuous decrease in spatial scales accessible by optica
periments. Optical resolutions down to less than 40 nm h
already been achieved24 so that also the assumption of
scattering process occurring at a well-defined position
tween well-defined momentum states inherent in the sca
ing term of the Boltzmann equation is losing its validit
Recently, the combination of ultrashort length and tim
scales has become a field of growing interest. Different te
niques have been used to obtain a spatial resolution be
the diffraction limit, in particular the near-field optica
microscope,25–29a solid immersion lens,30,31or the excitation
and detection through small metallic apertures.32–34 Here,
subjects of the theoretical analysis have been the interac
of the carrier system with the electromagnetic field of t
near-field tip35 as well as the role of Coulomb and electro
phonon interaction for the spatial transport of locally crea
carriers and excitons.36,37 In these studies, however, scatte
ing processes have been treated on a semiclassical~Markov-
ian! level.

In this contribution we will extend the density-matrix a
proach to carrier-phonon quantum kinetics which has b
successfully used in the past for homogeneo
systems2,5,11,38,39to systems involving spatial inhomogen
0163-1829/2003/67~19!/195305~18!/$20.00 67 1953
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ities. These inhomogeneities may be either due to a sp
structure of the sample under consideration or due to an
homogeneous excitation leading to space-dependent ca
distributions. While in a spatially homogeneous system thk
space provides a natural representation because of mo
tum conservation, in spatially inhomogeneous systems th
is no sucha priori distinction of a basis. Here we will derive
the theory in ak-space representation because in this wa
is the natural extension of the homogeneous theory. O
bases, however, are equally possible. Among the variety
other representations we will discuss in some detail
Wigner representation because of~i! its closest similarity
with semiclassical kinetics,~ii ! its wide usage in quantum
transport theory, and~iii ! its suitability for a physical inter-
pretation of the terms entering the theory. While on the qu
tum kinetic level the dynamics is still completely indepe
dent of the basis and therefore the choice of the basi
merely a question of convenience, this independence is
when applying the Markov~semiclassical! approximation.
This approximation requires the selection of slowly varyi
variables which are typically different in different represe
tations. We will discuss this point in detail by comparing t
Markov approximations in thek-space and the Wigne
representation.

In the second part of the paper we will then apply t
theory to the dynamics of carriers excited by means o
short laser pulse in a one-dimensional~1D! quantum wire
model. The wire geometry is chosen mainly for technic
reasons because of the high numerical complexity. Mos
the phenomena discussed are not particular for 1D syst
and therefore they should all be present also in system
higher dimension. First we analyze the role of a homo
neous static electric field for the carrier-phonon scatter
dynamics, the intracollisional field effect, as an example
the mutual influences between different interactions. He
strong analogies are revealed between the field effect on
non scattering and its influence on carrier generation by li
absorption, where the field gives rise to the Franz-Keldy
effect. Then we will study the dynamics of a locally gene
ated electronic wave packet both in real and moment
space which will allow us to extract the role of energy-tim
uncertainty for the spatial dynamics of the wave packet.
nally we will discuss the generation of coherent optic
©2003 The American Physical Society05-1
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phonons due to the space charges created by a elect
wave packets. We analyze the dynamics of the resulting
tice polarization as well as its feedback on the electro
subsystem.

The paper is organized as follows: In Sec. II we pres
the physical model and derive the general theoretical fra
work in the k-space representation~Sec. II A!. In Sec. II B
the important limiting case of a homogeneous electric fie
i.e., the intracollisional field effect is discussed. Section I
is devoted to the formulation of the theory for an inhomog
neous system in terms of a Wigner representation and in
II D we show how different assumptions on temporal a
spatial scales lead to different Markov limits. Section III pr
sents numerical results where we discuss in particular
dynamics in a static homogeneous field~Sec. III A!, the dy-
namics of locally generated wave packets~Sec. III B!, the
creation of coherent phonons~Sec. III C!, and the feedback
of coherent phonons on the carrier dynamics~Sec. III D!.
Finally in Sec. IV we will draw some conclusions.

II. THEORY

A. Density-matrix theory for spatially inhomogeneous systems

Most physical variables which are directly related to o
servables of the charge-carrier system like charge dens
current densities, optical polarizations, distribution functio
etc. are single-particle quantities. The central variable wh
contains all information for the calculation of such quantit
is the single-particle density matrix. In a crystalline solid th
density matrix can be separated into intraband and interb
contributions. Here we will restrict ourselves to a two-ba
model of an undoped semiconductor treated in the elect
hole picture. A generalization to a larger number of band
straightforward. In the two-band case the single-particle d
sity matrix of the carrier system in a crystal momentu
(k-space! representation consists of the electron density m
trix f e, the hole density matrixf h, and the interband densit
matrix p defined as

f k8,k
e

5^ck8
† ck&, ~1a!

f k8,k
h

5^dk8
† dk&, ~1b!

pk8,k5^d2k8ck&, ~1c!

whereck
† anddk

† (ck anddk) describe the creation~annihila-
tion! of an electron and a hole with momentumk, respec-
tively. In the homogeneous case, which has been wid
studied in the past, the variables are diagonal, i.e., only
components withk5k8 are nonzero and they can be direc
interpreted as electron and hole distribution functions or
momentum components of the interband polarization.

As for the electronic subsystem, the information on t
state of the phonon system is contained in reduced pho
density matrices. Being, however, a Bose system where
particle number is not conserved, also expectation value
an odd number of operators are possible. Thus the low
order is given by the mean phonon amplitude
19530
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Bq5^bq&, ~2!

wherebq denotes the annihilation operator of a phonon w
wave vectorq; bq

† is the corresponding creation operato
The phonon amplitude is directly related to a mean displa
ment of the lattice atomes and thus in the case of acou
phonons to a coherent sound wave and in the case of lo
tudinal optical ~LO! phonons in a polar semiconducto
which will only be considered here, to a lattic
polarization,40

PPh~r !5
«0

e
gPh(

q

q

q
@eiq•rBq1e2 iq•rBq* #, ~3!

where

gPh5A2pe2\vLO

V
1

4p«0
S 1

«`
2

1

«s
D . ~4!

«s and«` are the static and optical dielectric constants,
spectively, «0 is the absolute dielectric constant of th
vacuum,vLO is the phonon frequency, andV is a normaliza-
tion volume. In a homogeneous system only aq50 polar-
ization is possible which, however, often is absent for sy
metry reasons. Therefore coherent phonons are usually
considered in that case.

The phonon analog of the single-particle density matri
for the electronic system is conveniently defined as

nq8,q5^~bq8
†

2Bq8
* !~bq2Bq!&5^bq8

† bq&2Bq8
* Bq . ~5!

Its diagonal elements describe the mean occupation num
of incoherent phonons in a phonon modeq or, equivalently,
the fluctuation of the corresponding phonon amplitude, wh
the off-diagonal elements give rise to space-dependent p
non distributions.

The single-particle part of the Hamiltonian of our syste
can be decomposed as follows. First, there are the kin
energies of electrons and holesek

e and ek
h in the respective

bands. The carriers move in space-dependent poten
which are given by the spatial profiles of the conducti
@VC(r )# and valence@VV(r )# band edge profiles. These pro
files are determined by the material composition in a hete
structure. In low dimensional systems they can be also gi
by spatial variations of the confinement potential as, e.g.
the case ofV- or T-shaped quantum wires. The fields due
these internal potentials are complemented by externally
plied electromagnetic fields. For the purpose of the pres
study we will consider in particular a combination of tw
external contributions, a static or temporally slowly varyin
homogeneous field and the optical field of a laser pulse.
applying the usual dipole approximation based on the
sumptions that the fields are sufficiently slowly varying
the length scale of the lattice constant, the correspond
single-particle Hamiltonian is the direct generalization of t
standard Hamiltonian used in semiconductor optics for
mogeneous systems,
5-2
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Hc5(
k,k8

@~ek
edk,k81Vk2k8

e
!ck8

† ck1~ek
hdk,k81Vk2k8

h
!dk8

† dk

2M (1/2)(k1k8)•Ek2k8ck8
† d2k

†

2M (1/2)(k1k8)
* •Ek2k8

* d2kck8#, ~6!

where

Vq
e,h5

1

VE e2 iq•r Ve,h~r !d3r ~7!

denote the Fourier transforms of the space dependent
tron and hole potentials,

Ve~r ,t !5VC~r !1eE~r ,t !•r , ~8a!

Vh~r ,t !52VV~r !2eE~r ,t !•r , ~8b!

Eq(t) is the spatial Fourier transform of the external elect
field E(r ,t),

Mk52eE
V c

d3ruck* ~r !ruvk~r ! ~9!

is the interband dipole matrix element withuck (uvk) denot-
ing the lattice periodic Bloch functions of the conductio
~valence! band, andVc is the volume of an elementary cel

The Hamiltonian given above can be formally deriv
starting from the usual Coulomb gauge by applying
Power-Zienau-Woolley transformation.41,42This results in an
interaction Hamiltonian which can be expressed comple
in terms of the fieldsE andB. However, the resulting inter
action Hamiltonian is in general nonlocal. A local interacti
is obtained by applying the dipole approximation which
well satisfied if the fields are sufficiently slowly varying o
the length scale of an elementary cell. Under the same c
dition the magnetic field contribution of the interaction wi
the laser field is negligible because it is of the same orde
the electric quadrupole contribution. This leads then to
Hamiltonian given by Eq.~6!.

Finally, the free-phonon Hamiltonian is given by

Hp5(
q

\vLObq
†bq . ~10!

These parts of the Hamiltonian represent energies co
sponding to noninteracting carriers and phonons. As in
genuine many-body system they have to be compleme
by interaction terms. The central interaction mechanism
the problems addressed in this paper is the interaction
tween carriers and LO phonons provided by the Fro¨hlich
coupling. It is described by the Hamiltonian40

Hcp5(
k,q

@gqck1q
† bqck1gq* ck

†bq
†ck1q2gqdk1q

† bqdk

2gq* dk
†bq

†dk1q# ~11!

with the Fröhlich coupling matrix elementgq5 igPh/q. In
addition, the carriers interact among themselves by mean
the Coulomb potential which gives rise to the Hamiltonia
19530
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Hcc5 (
k,k8,q

vqF1

2
ck

†ck8
† ck81qck2q1

1

2
dk

†dk8
† dk81qdk2q

2ck
†dk8

† dk81qck2qG ~12!

with the Coulomb matrix elementvq5e2/(V«0«`q2). Here,
we have taken into account only the long-range contributi
which are the most important ones for typical phenome
studied in this paper. Since the aim of this paper is to stu
the electron-phonon quantum kinetics, we will disrega
carrier-carrier scattering processes but we will take into
count the Coulomb interaction on the mean-field~Hartree-
Fock! level, which is obtained from Eq.~12! by its mean-
field counterpart.

The main task of a kinetic theory is now to set up equ
tions of motion for the dynamical variables defined abo
The only equation which is closed within the set of kine
variables introduced so far is the equation for the coher
phonon amplitude

]

]t
Bq52 ivLO Bq2

i

\
gq* (

k
@ f k,k1q

e 2 f k,k1q
h #. ~13!

For the other variables, in particular for all electronic dens
matrices, however, there is no closed set of equations
many-body system and suitable approximation schemes h
to be set up. In a density-matrix approach this consists
introducing higher-order density matrices as new variab
and truncating the hierarchy at a certain level. Here we w
concentrate on electron-phonon quantum kinetics and
clude the next level of the phonon-induced branch of
hierarchy. The corresponding variables are phonon-assi
density matrices. Four different variables appear in a tw
band model; in the present case they are conveniently in
duced according to

sk8,q,k
e

5
i

\
gq^ck8

†
~bq2Bq!ck&, ~14a!

sk8,q,k
h

52
i

\
gq^dk8

†
~bq2Bq!dk&, ~14b!

tk8,q,k
(1)

5
i

\
gq^d2k8~bq2Bq!ck&, ~14c!

tk8,q,k
(2)

52
i

\
gq* ^d2k8~bq

†2Bq* !ck&. ~14d!

Since electron-electron interaction via the Coulomb ma
elementvq is taken into account on a mean-field level it do
not give rise to new variables. If the phonon hierarchy
truncated by factorization on the level of four-point dens
matrices, the dynamics of the carrier-phonon system is
scribed by the equations of motion for the single-parti
density matrices of the carriers,
5-3
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]

]t
f k8,k

e
5

i

\ (
k9

@E k8,k9
e f k9,k

e
2 f k8,k9

e E k9,k
e

1Uk9,k8
* pk9,k

2pk9,k8
* Uk9,k#1(

q
@sk81q,q,k

e
1sk1q,q,k8

e*

2sk8,q,k2q
e

2sk,q,k82q
e* #, ~15a!

]

]t
f k8,k

h
5

i

\ (
k9

@E k8,k9
h f k9,k

h
2 f k8,k9

h E k9,k
h

1U2k8,2k9
* p2k,2k9

2p2k8,2k9
* U2k,2k9#1(

q
@sk81q,q,k

h
1sk1q,q,k8

h*

2sk8,q,k2q
h

2sk,q,k82q
h* #, ~15b!

]

]t
pk8,k5

i

\ (
k9

@2E 2k9,2k8
h pk9,k2pk8,k9E k9,k

e
1Uk8,k9 f k9,k

e

2Uk9,k~dk8,k92 f 2k9,2k8
h

!#1(
q

@ tk81q,q,k
(1)

2tk82q,q,k
(2)

2tk8,q,k2q
(1)

1tk8,q,k1q
(2)

#, ~15c!

the equation of motion for the density matrix of incohere
phonons,

]

]t
nq8,q5

gq8
gq

(
k

@sk1q8,q,k
e

1sk1q8,q,k
h

#

1
gq*

gq8
* (

k
@sk1q,q8,k

e* 1sk1q,q8,k
h* #, ~16!

and the equations for the phonon-assisted density matr
e.g.,

]

]t
sk8,q,k

e
5

i

\ (
k9

@E k8,k9
e sk9,q,k

e
2sk8,q,k9

e E k9,k
e

2 f k8,k9
e s̃k9,q,k

e

1 s̃k8,q,k9
e f k9,k

e
#2 ivLOsk8,q,k

e

1
i

\ (
k9

@Uk9,k8
* tk9,q,k

(1)
2Uk9,ktk9,q,k8

(2)* 2pk9,k8
* t̃ k9,q,k

(1)

1pk9,k t̃ k9,q,k8
(2)* #1

1

\2 (
k9,q8

gqgq8
* @~dq8,q

1nq8,q! f k8,k91q8
e

~dk9,k2 f k9,k
e

!2nq8,q~dk8,k91q8

2 f k8,k91q8
e

! f k9,k
e

2dq8,qpk91q8,k8
* pk9,k#. ~17!

The equations forsh and t (6) have the same structure as f
se. The single-particle part and the mean-field Coulomb c
tribution is contained in the intra- and interband ener
matrices
19530
t

es,

-
y

E k8,k
e,h

5ek
e,hdk8,k1Vk2k8

e,h
6@gk2k8 Bk2k81gk82k

* Bk82k
* #

6vk82k(
q

@ f k81q,k1q
e

2 f k81q,k1q
h

#

2(
q

vq f k81q,k1q
e,h , ~18a!

Uk8,k52M ~1/2!(k81k)•Ek2k8~ t !2(
q

vq pk81q,k1q ,

~18b!

where the upper sign in Eq.~18a! refers to electrons and th
lower sign to holes. The various contributions have the f
lowing origin: The first term in Eq.~18a! is the single-
particle energyek , the second term is due to an internal a
external single-particle potentialVe(r ) which is the result,
e.g., of band gap variations in heterostructures or an ex
nally applied electric field; the third term results from pola
ization charges associated with coherent phonons; the fo
term ~Hartree term! is the induced potential due to a loc
charge nonequilibrium between electrons and holes; and
last term~Fock term! denotes the exchange energy resulti
in a band gap renormalization which is in general space
pendent. In Eq.~18b! the first term describes the coupling
a classical electric field with the spatial Fourier compon
Ek treated in dipole approximation with the interband dipo
matrix elementMk , and the second term is the interban
Fock part responsible for excitonic effects and the Coulo
enhancement of interband transitions. These terms are
tained if already from the onset the full carrier-carrier Ham
tonian@Eq. ~12!# is replaced by the corresponding mean-fie
Hamiltonian. If the full Hamiltonian is taken for the deriva
tion of the equations of motion for the phonon-assisted d
sity matrices and the factorization is performed afterwa
there appear additional terms describing Coulomb renorm
izations of the carrier-phonon interaction processes acc
ing to12,13

s̃k8,q,k
e,h

52(
q8

vq8sk81q8,q,k1q8
e,h

6vk82k(
q8

@sk81q8,q,k1q8
e

1sk81q8,q,k1q8
h

#,

~19a!

t̃ k8,q,k
(6)

52(
q8

vq8tk81q8,q,k1q8
(6) . ~19b!

In particular, Eq.~19b! describes the fact that scattering pr
cesses occur between excitonic states and we have sh
earlier12 that in the case of a sufficiently strong electro
phonon coupling and at elevated temperatures they give
to discrete phonon sidebands of the exciton in the absorp
spectrum occurring below the excitonic transition in the g
and a broadened sideband in the continuum above the e
ton, which are known from perturbative calculations of line
spectra since a long time ago.43 For the case of excitation
high up in the band, as will be studied in this paper, th
5-4
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have very little influence on the carrier dynamics,13 however,
they considerably increase the numerical effort, and there
in the following they will be neglected.

Carrier-phonon scattering processes on the quantum
netic level are described by the dynamics of the phon
assisted density matrices. Obviously, the last term on
right-hand side of Eq.~17! has a structure which reminds on
of scattering terms in the Boltzmann equation, however, i
nondiagonal generalization. As will be discussed in more
tail in Sec. II D the Boltzmann limit is obtained by perform
ing a Markov approximation under the assumption of su
ciently slowly varying functions in space and time. Since
the Boltzmann equation the scattering rates due to diffe
interaction mechanisms simply add up without interferen
all contributions to Eq.~17! resulting from other mechanism
than carrier-phonon interaction have to be neglected. T
shows that the quantum kinetic treatment, besides the co
treatment of the short time- and length-scale behavior,
cludes a variety of additional phenomena related to the
tual influence of different mechanisms. In particular, t
carrier-phonon scattering dynamics is modified by intra- a
interband Fock terms, external fields, band-gap variatio
self-consistent~Hartree! fields, and lattice polarizations du
to coherent phonons.

B. Homogeneous electric field

The theory developed in the previous section is valid
arbitrary space-dependent external potentials and laser fi
In particular we have seen that also the phonon scatte
dynamics which is described by the phonon assisted den
matrices is affected by these external potentials. A sub
which, because of its great importance for many mod
electronic devices, has been studied by various approach
the past years is the influence of an electric field on
scattering dynamics, a phenomenon which is generally ca
the intracollisional field effect.3,44–55 In order to get some
insight into this problem within our approach let us discu
in this section the theory for the limiting case of a homog
neous electric field in a uniform material. This is the simpl
example for an external influenceduring the time it takes to
complete phonon scattering events. We assume that the
tem is homogeneously excited and that all the dynam
variables remain spatially homogeneous. This means tha
the single-particle density matrices are diagonal, i.e.,f k8,k

e

5 f k
edk8,k , f k8,k

h
5 f k

hdk8,k , pk8,k5pkdk8,k . Due to charge
neutrality in the electron-hole system all Hartree-like ter
~induced potentials! are absent in this case. Furthermo
only a coherent phonon amplitude with vanishing wave v
tor B0 describing a homogeneous lattice polarization is co
patible with the assumption of a homogeneous system. Ag
due to charge neutrality, however, this amplitude is not
cited by the dynamics of electrons and holes in the homo
neous case. Therefore coherent phonons will be neglecte
the present case.

For a homogeneous electric field the Fourier transform
the intraband single-particle potentialsVq

e,h reduce to differ-
ential operators and they are conveniently separated from
19530
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for the single-particle density matrices read

]

]t
f k

e5
eE~ t !

\
•

]

]k
f k

e1
i

\
@Uk* pk2Ukpk* #

1(
q

2 Re@sk1q,q,k
e 2sk,q,k2q

e #, ~20a!

]

]t
f k

h52
eE~ t !

\
•

]

]k
f k

h1
i

\
@U2k* p2k2U2kp2k* #

1(
q

2 Re@sk1q,q,k
h 2sk,q,k2q

h #, ~20b!

]

]t
pk52

i

\
@E k

e1E 2k
h #pk1

eE~ t !

\
•

]

]k
pk

2
i

\
Uk@12 f k

e2 f 2k
h #

1(
q

@ tk1q,q,k
(1) 2tk2q,q,k

(2) 2tk,q,k2q
(1) 1tk,q,k1q

(2) #,

~20c!

with the intra- and interband energies given by

E k
e,h5ek

e2(
q

vqf k1q
e,h

and Uk52Mk•E~ t !2(
q

vqpk1q . ~21!

The phonon-assisted density matrices satisfy the follow
equations of motion:

]

]t
sk8,q,k

e

5
i

\
@E k8

e
2E k

e2\vLO#sk8,q,k
e

2
eE

\
•S ]

]k8
1

]

]kD sk8,q,k
e

1
i

\
@Uk8

* tk8,q,k
(1)

2Uktk,q,k8
(2)* #

1
ugqu2

\2
@~11nq! f k8

e
~12 f k

e!2nqf k
e~12 f k8

e
!2pk8

* pk#

~22!

with q5k82k. This is essentially the same set of equatio
of motion as in the homogeneous case without field,2 the
homogeneous part in each equation, however, is sup
mented by a field term which has the same structure as in
Boltzmann equation giving rise to a drift ink space. Equa-
tions ~20a!–~22! are two-band generalizations includin
mean-field Coulomb contributions of the one-band high-fi
quantum transport equations which are usually cal
Levinson equation44 or Barker-Ferry equation.45,46 It should
be noted thatE here denotes the full external electric fie
5-5
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which in the present case typically consists of two differe
contributions: the laser field with a frequency in the optic
range describing the optical excitation and an additio
static or slowly varying~compared to the optical case! field.
A close look at the dominant frequency parts of the vario
dynamical variables reveals that for static and low-freque
fields the drift terms ink space are most important while fo
optical fields the interband couplingU is dominant. It should
be noted, however, that in the presence of very strong fi
also the other terms may become relevant. A static field
the interband self-energy gives rise to Zener tunneling and
optical field in the drift terms leads to free-carrier absorptio

The most interesting point now is the fact that the d
terms do not only appear in the equations of motion for
distribution functions, where they are well known from th
semiclassical or Boltzmann case, but they also appear in
equations for the polarization and for the phonon-assis
density matrices. The polarization describes the lig
induced dynamics; the presence of a field term modifies
corresponding processes like, e.g., light absorption whe
gives rise to the Franz-Keldysh effect. The phonon assis
density matrices describe the phonon-induced dynamics
particular phonon scattering processes. The field terms a
modify this dynamics; thus they describe an intracollisio
field effect. Both these effects are absent in a Boltzma
approach because there all transition rates are calculate
tween momentum states of the crystal. In addition,
present treatment reveals the strong symmetry between
effect of the field on the light-induced and phonon-induc
dynamics. In this language the Franz-Keldysh effect may
described as an intracollisional field effect of the light a
sorption process exactly in the same way as the intrac
sional field effect of phonon absorption or emissi
processes.56 We will come back to this point in Sec. III A
when discussing numerical results.

C. Wigner representation

Let us now return to the full spatially inhomogeneo
system. While in a homogeneous system thek-space repre-
sentation is distinguished from other bases because her
single-particle density matrices are diagonal, in the abse
of translational invariance there is no sucha priori basis
distinction. The laws of quantum mechanics are independ
of the choice of a particular basis. The only approximat
that has been made in the derivation of the quantum kin
model in Sec. II A is the truncation of the hierarchy. Th
truncation is independent of the single-particle basis cho
and therefore the theory is still completely base independ
Also the structure of the equations is very similar in oth
representations. Therefore the basis can be chosen acco
to its mathematical or numerical suitability.

There is one representation which is of particular inter
both for the physical interpretation of the dynamics and
the comparison with a semiclassical kinetic theory. This
the phase-space representation introduced by Wigner alr
in 1932.57 The Wigner function bears the closest similar
with classical distribution functions and all expectation v
ues are calculated in complete analogy to the classical c
19530
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In contrast to a distribution function, however, it is not ne
essarily positive definite and therefore it cannot be int
preted in a probabilistic way. In the context of quantu
transport in semiconductor nanostructures like resonant
neling diodes the Wigner function has been extensively u
in the past years.58–61In most of these calculations scatterin
processes have been treated in a simplified way eithe
using a relaxation time approximation or by using semicl
sical scattering rates. Such rates, however, describe sca
ing processes at a well-defined position between well-defi
momentum states and therefore they are not consistent
Heisenberg’s uncertainty relation between momentum
position. This problem can be overcome within a quant
kinetic carrier-phonon model which accounts for bo
energy-time and momentum-position uncertainty in t
Wigner representation. An iterative approach where
Wigner function is expanded in terms involving a give
number of scattering events has been discussed and ap
to the resonant tunneling diode.62,63 The correlation expan-
sion used in this paper results in a closed set of dynam
equations which, after transformation into the Wigner rep
sentation, allows us to identify most clearly temporal a
spatial nonlocalities.

The Wigner functions corresponding to the single-parti
density matrices are defined as the Fourier transforms of
single-particle density matrices with respect to the relat
momentum,

F k
e,h~r !5(

q
eiq•r f k2(1/2)q,k1(1/2)q

e,h , ~23a!

Pk~r !5(
q

eiq•rpk2(1/2)q,k1(1/2)q . ~23b!

From the intraband Wigner function both the distribution
momentum spacef k

e,h and the carrier densities in real spa
ne,h(r ) are directly obtained as

f k
e,h5

1

VE d3rF k
e,h~r !, ~24a!

ne,h~r !5
1

V (
k

F k
e,h~r !, ~24b!

and also higher moments are calculated exactly as in
classical case. The electron and hole current densitiesje,h(r )
and kinetic energy densitieste,h(r ) in the case of parabolic
bands are given by

je,h~r !5
1

V (
k

\k

me,h
F k

e,h~r !, ~25a!

te,h~r !5
1

V (
k

\2k2

2me,h
F k

e,h~r !, ~25b!

and for space points with nonvanishing carrier densities
can define a local drift velocityve,h(r ) and mean kinetic
energy per carrierEkin

e,h(r ) according to
5-6



e

s

it

ns

a-

nd

a-

ELECTRON-PHONON QUANTUM KINETICS FOR . . . PHYSICAL REVIEW B 67, 195305 ~2003!
ve,h~r !5 je,h~r !/ne,h~r !, ~26a!

Ekin
e,h~r !5te,h~r !/ne,h~r !. ~26b!

From the interband Wigner function the space-depend
macroscopic optical polarizationPopt(r ) is obtained accord-
ing to

Popt~r !5
1

V (
k

@Mk* Pk~r !1MkPk* ~r !#. ~27!

It is convenient to transform also the phonon-assisted den
matrices into a Wigner representation according to

S k,q
e,h~r !5(

q8
eiq8•rs

k1q2
1
2 q8,q,k1

1
2 q8

e,h
, ~28a!

T k,q
(6)~r !5(

q8
eiq8•rt

k6q2
1
2 q8,q,k1

1
2 q8

~6 !
. ~28b!

Then the equations of motion for the single-particle dens
matrices can be cast into the compact form,

]

]t
F k

e~r !5
i

\
$Ŵ11@E k

e~r !F k
e~r !#2Ŵ11@F k

e~r !E k
e~r !#

1Ŵ11@Uk* ~r !Pk~r !#2Ŵ11@Pk* ~r !Uk~r !#%

1(
q

2 Re@S k,q
e ~r !2S k2q,q

e ~r !#, ~29a!

]

]t
F k

h~r !5
i

\
$Ŵ11@E k

h~r !F k
h~r !#2Ŵ11@F k

h~r !E k
h~r !#

1Ŵ22@UÀk* ~r !PÀk~r !#2Ŵ22@PÀk* ~r !UÀk~r !#%

1(
q

2 Re@S k,q
h ~r !2S k2q,q

h ~r !#, ~29b!
m
ic
o

de

19530
nt

ity

y

]

]t
P k

e~r !5
i

\
$2Ŵ21@EÀk

h ~r !Pk~r !#2Ŵ11@Pk~r !E k
e~r !#

1Ŵ11@Uk~r !F k
e~r !#1Ŵ21@FÀk

h ~r !Uk~r !#%

2
i

\
Uk~r !1(

q
@T k,q

(1)~r !2T k,q
(2)~r !2T k2q,q

(1) ~r !

1T k2q,q
(2) ~r !#, ~29c!

where we have introduced the operatorŴss8 which is de-
fined by its action on two arbitrary phase-space functio
according to

Ŵss8@gk1
~r1!hk2

~r2!#

5
1

V 2 (
k8,k9

E d3r 8d3r 9ei (sk9•r82s8k8•r9)

3gk11(1/2)k9~r11r 9! hk21(1/2)k8~r21r 8!. ~30!

Here,s ands8 can take the values11 or 21. By means of
a Taylor expansion this integral operator is formally equiv
lent to a differential operator of infinite order:

Ŵss8@gk1
~r1!hk2

~r2!#

5 (
n,m50

`
~21!mi n1msns8m

2n1mn!m!
S ]

]k1
•

]

]r2
D nS ]

]k2
•

]

]r1
D m

3gk1
~r1!hk2

~r2!. ~31!

The mean-field part is contained in the intra- and interba
energies in Wigner representation,

E k
e,h~r !5(

q
eiq•rE k2(1/2)q,k1(1/2)q

e,h , ~32a!

Uk~r !5(
q

eiq•rUk2(1/2)q,k1(1/2)q . ~32b!

The equation of motion for the phonon assisted density m
trix S e in the Wigner representation reads
]

]t
S k,q

e ~r !5
i

\
$Ŵ11@E k1q

e ~r !S k,q
e ~r !#2Ŵ11@S k,q

e ~r !E k
e~r !#%2 ivLOS k,q

e ~r !

1
i

\
$Ŵ11@Uk1q* ~r !T k,q

(1)~r !#2Ŵ11@T k,q
(2)* ~r !Uk~r !#%

2
ugqu2

\2
„Ŵ11@Pk1q* ~r !Pk~r !#2~nq11!Ŵ11@F k1q

e ~r !„12F k
e~r !…#1nqŴ

11@~12F k1q
e ~r !!F k

e~r !#… ~33!
ith
and the equations for the other phonon-assisted density
trices have the same structure. Here, for reasons of simpl
we have assumed that the distribution of incoherent phon
remains spatially homogeneous, i.e., the corresponding
a-
ity
ns
n-

sity matrix is diagonal in momentum space:nq8,q5nqdq8,q .
The generalization to space-dependent~off-diagonal! phonon
distributions is straightforward. Equations~29a! and~33! de-
scribe the dynamics of two-band Wigner functions w
5-7
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quantum kinetic carrier-phonon scattering. Two-band
multiband Wigner equations without scattering have be
discussed previously for single-particle64 and mean-field65

Hamiltonians.
In this notation the analogy with the spatially homog

neous case~see Ref. 2! becomes particularly transparen
Simple products of the dynamical variables are replaced
products involving the operatorŴss8. In the case of spa
tially homogeneous dynamical variables this operator
duces to the unity operator and the spatially homogene
set of equations of motion is recovered. For weakly inhom
geneous systems the structure of the drift term in the Bo
mann equation is directly obtained if in all terms involvin
the intraband self-energiesE e,h only the first-order deriva-
tives in the differential form ofŴss8 are kept and all higher
order derivatives are assumed to be negligible. Scatte
processes where the factorsF and (12F) are evaluated a
the same position result ifŴss8 is replaced by the unity
operator in the source terms for the phonon-assisted de
matrices. However, as will be discussed below, this stil
not sufficient to obtain spatially local scattering processes
in the Boltzmann picture.

The intra- and interband energy functions have a part
larly clear structure in the Wigner representation. They c
be written as

E k
e,h~r !5ek

e,h1Ve,h~r !2(
q

vqF k2q
e,h ~r !7eFsc~r !,

~34a!

Uk~r !52Mk•E~r !2(
q

vqPk2q~r !, ~34b!

where the Hartree and coherent phonon terms give rise to
self-consistent electrostatic potentialFsc determined by the
Poisson equation

¹2Fsc~r !5
e

«0«`V (
k

@F k
e~r !2F k

h~r !#1
1

«0
div PPh~r !.

~35!

Thus this potential is created both due to electronic a
phononic charges built up by the coupled dynamics of
carrier-phonon system.

Equation~33! clearly shows that electron-phonon scatt
ing processes in a quantum kinetic theory are nonloca
space: By means of the operatorŴss8 it involves convolu-
tions of the Wigner functions both in momentum and re
space. However, it is difficult to get a deeper insight into t
nonlocality of scattering processes from the full set of eq
tions of motion for the two-band system including arbitra
inhomogeneities, because all the different sources of in
mogeneities are mixed together. In order to take a closer l
on the nonlocality of scattering processes it is therefore c
venient to concentrate on a simplified system. Therefore
the remaining part of this section we will restrict ourselves
the case of a single electron band without any spa
dependent single-particle potentials. Furthermore we assu
as usual, a quadratic dispersionek5\2k2/(2me) and we will
19530
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consider the low-density limit where all phase-space filli
factors (12F) can be replaced by unity. Due to the qu
dratic dispersion the operatorŴss8 in the parts involving
energies effectively reduces to a first-order differential ope
tor while in the source terms for the phonon-assisted den
matrix only the zeroth order, i.e., the unity operator remai
Then, the coupled electron-phonon system is described
the set of equations of motion

]

]t
F k

e~r ,t !52
\k

me
•

]

]r
F k

e~r ,t !1(
q

2 Re@S k,q
e ~r ,t !

2S k2q,q
e ~r ,t !#, ~36a!

]

]t
S k,q

e ~r ,t !5
i

\
~ek1q2ek2\vLO!S k,q

e ~r ,t !

2
\

me
S k1

1

2
qD • ]

]r
S k,q

e ~r ,t !

1
ugqu2

\2
@~nq11!F k1q

e ~r ,t !2nqF k
e~r ,t !#.

~36b!

Equation~36b! can easily be solved formally resulting in

S k,q
e ~r ,t !5e( i /\)(ek1q2ek2\vLO)(t2t0)

3S k,q
e F r2

\

me
S k1

1

2
qD ~ t2t0!,t0G

1
ugqu2

\2 E
0

t2t0
dt e( i /\)(ek1q2ek2\vLO)t

3H ~nq11!F k1q
e F r2

\

me
S k1

1

2
qD t,t2tG

2nqF k
eF r2

\

me
S k1

1

2
qD t,t2tG J ~37!

which in turn can be inserted into Eq.~36a! resulting in a
closed integrodifferential equation for the electron Wign
function. Although the action of the operatorŴss8 did re-
duce to a unity operation, the resulting scattering kerne
still nonlocal in space. Here, the spatial nonlocality exc
sively results from the drift operator@;(k1 1

2 q)•(]/]r )# in
Eq. ~36b!. Furthermore, it is clearly seen that the tempo
and spatial nonlocality are intimately related; both invol
the same integration variablet.

D. Markov limits

The quantum kinetic approach as discussed in this pa
takes into account the finite duration of a scattering proc
and the corresponding energy-time uncertainty. On the le
of single-particle density matrices the dynamics is nonlo
in time; it involves a memory kernel as can be clearly se
e.g., in Eq.~37!. In a semiclassical kinetic theory, by mea
of a Markov approximation, memory effects are discard
5-8
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resulting in a dynamics of single-particle density matric
which is local in time. Such a Markov approximation, how
ever, requires the specification of slowly varying function
At this point the results become dependent on the sele
basis because it is usually assumed that the diagonal
ments in a given basis are slowly varying functions while
off-diagonal elements rotate with the corresponding ene
difference. Physically, the assumption of slowly varyi
functions in the above sense implies that there is a dis
guished basis of single-particle states such that the ca
dynamics before and after a scattering event evolves free
time without interaction. In inhomogeneous systems, e
due to time-dependent self-consistent fields, it is not alw
clear which is the correct basis for the description of scat
ing processes. In this section we will discuss how differ
assumptions based on different representations lead to d
ent dynamical equations. Transforming the results of diff
ent Markov-type approximations—which all neglect temp
ral nonlocalities—to the Wigner form allows us to perform
most conclusive comparison of the resulting differences w
respect to spatial nonlocalities.

The Boltzmann limit for the electron-phonon scatteri
processes is obtained under the assumption that the Wi
function in Eq.~37! is a slowly varying function oft when
compared to the exponential function. Obviously, this
quires both sufficiently slow temporal and spatial variatio
of the Wigner functions. In addition it is assumed that t
system initially, i.e., att0→2`, was uncorrelated which
corresponds to a vanishing phonon-assisted Wigner func
This Markov approximation then results in a phonon-assis
density matrix according to

S k,q
e ~r ,t !52

p

\
ugqu2D~ek1q2ek2\vLO!

3@~nq11!F k1q
e ~r ,t !2nqF k

e~r ,t !# ~38!

with

D~x!5
i

p

P
x

1d~x!. ~39!

When inserting this result into Eq.~36a!, the imaginary parts
of the functionD cancel and the semiclassical Boltzma
equation with temporally and spatially local scattering p
cesses is recovered.

However, it should be noted that one could also imag
situations where the assumption of a slowly varying dep
dence only holds for one of the two arguments. This ho
e.g., for a spatially slowly varying system excited by an
trashort laser pulse where the spatial nonlocality is neglig
but the temporal nonlocality results in typical quantum
netic features like energy-time uncertainty. In this case
dynamics is similar to the quantum kinetics in homogene
systems extended only by a parametric space depende
Technically, this limit is obtained by neglecting the tim
dependent displacement of the space arguments on the r
hand side of Eq.~37!. On the other hand, in a temporal
slowly varying system with sufficiently fast spatial variatio
the temporal retardation may be negligible but the nonloc
19530
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ity of the Wigner function has to be kept. This results in
instantaneous but spatially nonlocal scattering term acc
ing to

S k,q
e ~r ,t !5

ugqu2

\2 E
0

`

dte( i /\)(ek1q2ek2\vLO)t

3H ~nq11!F k1q
e F r2

\

me
S k1

1

2
qD t,t G

2nqF k
eF r2

\

me
S k1

1

2
qD t,t G J . ~40!

The basis for the derivation of Eq.~40! has been the as
sumption of a temporally slowly varying Wigner function
Another possibility which is often applied in problems in
volving off-diagonal density matrices is the Markov approx
mation in the original momentum representation.36,37 By re-
stricting ourselves again to the same one-band mo
discussed above, the exact formal solution for the phon
assisted density matrix ink representation@Eq. ~17!# is given
by

sk8,q,k
e

~ t !5e( i /\)(ek82ek2\vLO)(t2t0)sk8,q,k
e

~ t0!

1
ugqu2

\2 E
0

t2t0
dte( i /\)(ek82ek2\vLO)t

3@~nq11! f k8,k1q
e

~ t2t!2nqf k82q,k
e

~ t2t!#.

~41!

In this representation it is natural to assume that the m
time dependence of the single-particle density matrix is
termined by the free-carrier Hamiltonian, i.e.,f k8,k

e (t)

5 f̃ k8,k
e (t)exp@(i/\)(ek82ek)t# with a slowly varying function

f̃ e. The Markov approximation now consists in neglecti
the time dependence off̃ e when evaluating the integral. Con
sidering again the limitt0→2` and assuming an uncorre
lated initial condition, the resulting phonon-assisted dens
matrix can then be transformed into the Wigner represe
tion which results in

S k,q
e ~r ,t !5

ugqu2

\2 E
0

`

dte( i /\)(ek1q2ek2\vLO)tF ~nq11!

3F k1q
e S r2

\q

2me
t,t D2nqF k

eS r1
\q

2me
t,t D G .

~42!

Because of the Markov approximation there is no tempo
memory effect in Eq.~42!. Nevertheless, the scattering pr
cesses exhibit a spatial nonlocality similar to Eq.~40!. How-
ever, the time-dependent displacements of the space a
ments are obviously different. This clearly shows th
depending on the assumptions on slowly varying parts in
dynamics the spatial nonlocality of the scattering proces
have different forms. Only if in addition the assumption
slowly varying spatial dependences is made the results of
5-9



he
cl

e
ra
f a
ce
al
d
dy
ar
ce
tio
,
n
pl
ica
e

m
nt
d
ba

c

c
th

e

o
ul
e
m

r
a

a
o
be
tte

x
e
ot

xi-
ex-

s do
re-
at-
be
nal

us
n-
of

ich
an

dis-
he

ry:

n
tum

h
be

f

at
an
f
ic
ct

ne-

M. HERBST, M. GLANEMANN, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 195305 ~2003!
two types of Markov approximation coincide and lead to t
same spatially local scattering processes as in the semi
sical Boltzmann equation.

III. RESULTS

After having introduced the theory we will now apply th
quantum kinetic formalism to the study of the spatiotempo
dynamics on ultrafast time scales. In the general case o
bitrary inhomogeneities the single-particle density matri
depend on twok indices, i.e., they constitute six-dimension
variables. The phonon-assisted density matrices depen
threek indices and thus they constitute nine-dimensional
namical variables. Even on a supercomputer this is cle
out of reach. The dimensions of the variables are redu
either if certain symmetries in the system and the excita
process are present or if, e.g., in nanostructured materials
carrier system is confined in certain directions resulting i
dynamics in a lower dimensional space. Here we will ap
the theory developed above to the dynamics in a cylindr
GaAs quantum wire with a 100-nm2 cross section where th
carriers are coupled via the Fro¨hlich interaction to three-
dimensional bulk LO phonons. For this purpose we assu
that the radial dependence of the electron and hole pote
Ve,h(r ) is given by a potential well with infinite barriers an
all radial dependences are projected onto the lowest sub
wave function. This corresponds to replacing the Fro¨hlich
and Coulomb interaction matrix elements by their proje
tions according to

gqi ,q'
(1D) 5 igphG~q'!

1

Aqi
21q'

2
, ~43a!

vqi

(1D)5
e2

V«0«`
(
q'

uG~q'!u2
1

qi
21q'

2
, ~43b!

whereqi is the wave-vector component along the wire dire
tion, q' is the wave vector in the plane perpendicular to
wire,

G~q'!5E uc~r'!u2eiq'•r'd2r' ~44!

is the form factor withc(r') being the lowest subband wav
function given here by a Bessel functionJ0. Then, all elec-
tronic wave vectors are one dimensional while the phon
wave vectors are three dimensional. We will present res
both for a one-band model, where the relaxation of a giv
initial distribution allows us to concentrate on the quantu
kinetic effects of the electron-phonon interaction, and fo
two-band model, where carrier generation by means of
ultrashort laser pulse is explicitly taken into account. For
calculations a lattice temperature of 0 K has been assumed s
that only phonon emission processes may occur. As has
stated above, we will concentrate on carrier-phonon sca
ing processes. Carrier-carrier interaction processes are
counted for on the mean-field level. This is a good appro
mation for sufficiently low-carrier densities as will b
studied in most of the cases. Furthermore, it should be n
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that in a one-dimensional system in the Markovian appro
mation electron-electron scattering processes may only
change the momenta of the participating carriers and thu
not lead to a relaxation of the distribution functions. The
fore also in a quantum kinetic treatment carrier-carrier sc
tering in quantum wire structures may be expected to
strongly reduced when compared to higher dimensio
systems.

A. Intracollisional field effect

Let us start by looking at the impact of a homogeneo
static electric field on carrier relaxation. In order to conce
trate on the relaxation process we will study the dynamics
an electron distribution function in a one-band model wh
is initially given by a Gaussian in energy centered around
excess energy of 150 meV. Figure 1 shows the electron
tribution as a function of energy at two different times for t
case of an electric field ofE521 kV/cm. The calculations
have been performed on three different levels of the theo
~i! the full quantum kinetic model~QKF! according to Eqs.
~20a! and ~22! where the field acts both on the distributio
function and the phonon-assisted density matrix, a quan
kinetic model~QK! where the drift term in Eq.~22! has been
neglected, and~iii ! the semiclassical Boltzmann model wit
the usual field-independent scattering rates. It should
noted that the drift term in Eq.~22! represents the action o

FIG. 1. Electron distribution functions as functions of energy
two different times showing the relaxation of an initially Gaussi
distribution in the presence of a homogeneous electric field oE
521 kV/cm. The different curves refer to the full quantum kinet
model with field~QKF!, a quantum kinetic model where the effe
of the field on the phonon-assisted density matrices has been
glected~QK!, and a semiclassical Boltzmann model~BO!.
5-10
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ELECTRON-PHONON QUANTUM KINETICS FOR . . . PHYSICAL REVIEW B 67, 195305 ~2003!
the field ‘‘during’’ the carrier-phonon scattering process a
is therefore the essence of the intracollisional field effect

At t5100 fs we notice that the unrelaxed peaks ha
drifted by about 9 meV due to the acceleration by the elec
field. We clearly see the strong broadening of the phon
replicas due to energy-time uncertainty in both quantum
netic cases when compared to the Boltzmann case as
well known from the relaxation in systems without elect
field.2 The two quantum kinetic cases exhibit slight diffe
ences, in particular in the energy ranges between the u
laxed peaks and the first phonon replicas. Att5200 fs the
drift of the unrelaxed peaks is about 18 meV. In the quant
kinetic cases now the replicas due to one phonon emis
have essentially built up while the higher replicas are s
considerably broadened. The most interesting feature, w
is shown again in the inset on an enlarged scale, is the
ference in the position of the peak maxima of the first ph
non replicas. While the full quantum kinetic and the Bolt
mann case exhibit a good agreement, the QK case wher
drift term in the equation for the phonon-assisted den
matrix has been neglected is considerably shifted. At fi
sight this behavior seems to be surprising because the B
zmann scattering rates are obtained by neglecting the in
ence of the field on the scattering dynamics, i.e., a solutio
Eq. ~17! without the field term in the Markovian limit. How
ever, it can be understood from the following argument: I
quantum kinetic treatment scattering processes take a fi
time which is described by the dynamics of the phono
assisted density matrices. During that time the carriers ex
rience the action of the electric field expressed by the d
terms in the respective equations of motion. If this action
the field is neglected as in the case QK, the replicas build
at different energies. In the Boltzmann case, on the o
hand, scattering processes are instantaneous events
therefore it is consistent to disregard the action of the fi
during the scattering process. For the case of a statio
distribution function this ‘‘absence of the intracollision
field effect’’ has also been discussed analytically.53 In a quan-
tum kinetic calculation which is relevant if the distributio
functions are not slowly varying in time, however, it is e
sential to take into account the influence of the field on
scattering process, i.e., the intracollisional field effect.

B. Quantum kinetic scattering processes

After having studied the influence of a homogeneous e
tric field on the electron-phonon scattering process, in
following we will now investigate the quantum kinetics o
spatially inhomogeneous carrier distributions. Such distri
tions may be generated, e.g., by means of a short-pulse
tical excitation through the fiber tip of an optical near-fie
microscope.27 The resulting distribution will then be charac
terized by a localization ink space determined by the exce
energy and spectral shape of the laser pulse and a loca
tion in real space determined by the electric-field profile
sulting from the fiber tip. In order to concentrate on t
quantum kinetics due to the electron-phonon interact
rather than the kinetics of the carrier generation process
first study the relaxation of an initial distribution which
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Gaussian both in energy and space coordinate in a one-
model. Then we will come to the more realistic case o
two-band model where carrier generation is accounted fo
a fully coherent way.

Figure 2 shows the Wigner function for the case of
initial distribution with excess energy of 120 meV center
around z50 at the timest5100 fs ~upper part! and t
5300 fs ~lower part! as obtained from the quantum kinet
model. In Fig. 3 the corresponding results obtained from
solution of the semiclassical Boltzmann equation with t
same initial condition are shown. Thek dependence is plot
ted as a function of the energy\2k2/(2m), however, sepa-
rately for positive and negativek values because this allow
us to better interpret the phonon emission processes. W
increasing time we see the motion of the positivek compo-
nents in positivez direction and of the negativek compo-
nents in negativez direction. Ink direction we observe the
buildup of the phonon replicas due to the emission of opti
phonons. In the quantum kinetic case these replicas exh
the well-known time-dependent broadening due to ener
time uncertainty as in the case of a spatially homogene
excitation. At t5100 fs the first replica is strongly broad
ened; att5300 fs this replica has become sharp while t
second replica is still considerably broadened.

To analyze the kinetics in a more quantitative way, in F
4 we have plotted the momentum distribution as well as
spatial profiles of the electron density, drift velocity, an

FIG. 2. Wigner function of electrons at two different times o
tained from a quantum kinetic one-band model for the case of
relaxation of an initial Gaussian distribution in energy and sp
centered at 120 meV.
5-11
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M. HERBST, M. GLANEMANN, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 195305 ~2003!
mean kinetic energy at the timet5100 fs which have been
extracted from the Wigner function according to Eqs.~24!
and~26!. Here, in addition to the full quantum kinetic mod
~QK! and the Boltzmann model~BO! where carrier-phonon
scattering processes are treated in the Markovian, spat
local limit we have included the completely ballistic dynam

FIG. 3. Wigner function~distribution function! of electrons at
two different times obtained from a semiclassical one-band mo
for the case of the relaxation of an initial Gaussian distribution
energy and space centered at 120 meV.
19530
lly

ics ~BAL ! obtained from a calculation without any carrie
phonon interaction. It should be noted that the drift veloc
and mean kinetic energy are only well defined at those p
tions where the density is essentially nonzero. In the balli
case~BAL ! momentum is a conserved quantity and con
quently the momentum distribution is independent of tim
The spatial distribution splits into two peaks moving outwa
with the drift velocity corresponding to the excess ener
The peaks remain approximately Gaussian. The profiles
the velocity and of the mean energy are slightly inclin
because the leading edge of the peaks is formed by the
riers with higher energy and thus higher group velocity.
the Boltzmann case~BO! we clearly see the buildup of pho
non replicas in the momentum distribution. Because we
at low temperatures, no phonon absorption is possi
Therefore the high-energy decay of the momentum distri
tion agrees with the ballistic case: no carriers have hig
energies than without carrier-phonon interaction. This is
flected also in the spatial profiles. Also here the front edge
the carrier density coincides with the ballistic case and b
the drift velocity and mean energy are always below
corresponding values of the ballistic model. The situat
changes in the quantum kinetic case. In the momentum
tribution energy-time uncertainty leads to the smearing of
phonon replicas inbetween the two ballistic peaks as alre
discussed above. However, with a small but clearly noti
able probability it also gives rise to transitions to higher e
ergy states above the initial distribution. In the logarithm
plot we clearly see a nonvanishing contribution at energ
above the initial distribution. They exhibit an oscillatory b
havior which reflects the function (1/DE)sin(DEt/\)) which
in the long-time limit reduces to the energy-conserving de
function. Indeed, the oscillation period in Fig. 4~c! is just
2p\/100 fs which is 41.4 meV. The high-momentum com
ponents reflect themselves also in the spatial profiles.
cause of their higher group velocity those carriers mo
faster and therefore give rise to a contribution to the den
ahead of the ballistic peaks. In these spatial regions the h

el
in

n

FIG. 4. ~a! Momentum distribution,~b! elec-
tron density,~c! drift velocity, and~d! mean ki-
netic energy at the timet5100 fs in a one-band
model corresponding to the Wigner functions
Figs. 2 ~QK! and 3~BO!. The long-dashed lines
refer to the ballistic case without carrier-phono
interaction~BAL !.
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ELECTRON-PHONON QUANTUM KINETICS FOR . . . PHYSICAL REVIEW B 67, 195305 ~2003!
momentum carriers dominate and therefore both the drift
locity and even more pronounced the mean kinetic ene
assume values much higher than in the ballistic case.

The previous results have been obtained within a o
band model where we have studied the relaxation of a gi
initial distribution. Of course, such an initial distribution ha
to be created somehow. As already mentioned, the gener
of a spatially localized carrier distribution may be realized
exciting the system by a short laser pulse through the tip
near-field microscope. To take into account this genera
process we now consider the full two-band model where
laser excitation is modeled by an electric field amplitu
which is Gaussian both in time and space. Figure 5 sh
the resulting Wigner function of electrons at two differe
times for the case of excitation by a 100-fs laser pu
peaked att50. As can be seen by comparing Figs. 5 and
the times 50 and 250 fs in the two-band model corresp
roughly to the times 100 and 300 fs in the one-band c
with initial condition. At t550 fs the laser has been actin
on the system roughly;100 fs but the pulse is not yet com
pleted. Therefore in addition to the broadening of the phon
replica we observe the time-dependent broadening of
photogenerated peaks resulting from the coherent dyna
of the interband polarization.66–68 At t5250 fs the pulse is
finished. The generated peak and the first phonon rep
have essentially reached their final width while, as in
one-band case, the second replica still exhibits a consider

FIG. 5. Wigner function of electrons at two different times o
tained from a quantum kinetic two-band model for the case of
citation by a 100-fs laser pulse with an excess energy of 120 m
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broadening. This clearly demonstrates that, as can be
pected, the typical quantum kinetic features of carri
phonon interaction are the same in the one-band and
two-band model. In the latter, however, additional featu
related to the dynamics of the polarization and, in princip
also to the dynamics of the hole distribution are super
posed. This justifies the use of the simpler one-band cas
concentrate on the quantum kinetics of electron-phonon
teraction. The quantitative modeling of a realistic experime
tal situation of course requires a two-band model.

C. Coherent phonon dynamics

Spatially inhomogeneous carrier distributions where el
tron and hole distributions do not exactly coincide a
sources for an internal electric field which, by means of
Fröhlich interaction, acts on the ions in a polar crystal a
leads to the generation of coherent phonons.69–73Such a situ-
ation is realized in the scenarios studied in the previous s
tion where carriers have been generated locally in space
a given excess energy. In this section we will study the
namics of coherent phonons which are excited by the e
tron and hole distributions according to Eq.~13!. We will
again consider both a one-band model with given initial d
tribution and a two-band model including carrier photog
neration. In order to satisfy overall charge neutrality, whi
is necessary to obtain reasonable results, the initial distr
tion in the one-band model has been compensated by a
distribution assuming, however, an infinite hole mass so
the holes do not move. The initial spatial distributions
electrons and holes have been chosen to be identical. We
concentrate on the coherent phonons by switching off
contributions due to incoherent phonons~i.e., all phonon-
assisted density matrices are switched off! and then take into
account also the incoherent phonons.

In Fig. 6 we have plotted thez component of the lattice
polarization along the axis of the quantum wire~solid lines!
obtained at three different times in the one-band~left col-
umn! and two-band~right column! model without incoherent
phonon contributions. The excess energy of the electron
again 120 meV as in the previous section. The dashed l
display the charge density due to electrons and holes. H
we have chosen a low-density condition such that the s
energy contributions due to Hartree and coherent pho
terms @Eq. ~18a!# are negligible. Then, in the absence
incoherent phonon parts the carriers move ballistically. In
one-band model the density profiles of the electrons sligh
spread due to the free-carrier dispersion relation while
holes with their infinite mass remain fixed. Inbetween t
two electronic peaks in the charge density we clearly notic
spatially oscillating lattice polarization. The physical orig
of this behavior can be understood as follows: As the el
trons pass by some point in space, they nearly insta
neously switch on an electric field at this point. This leads
new equilibrium positions of the lattice ions and, due to t
fast switching, the ions start to oscillate with the LO phon
frequency around this new equilibrium position. The moti
of the electronic wave packet then translates this temp
oscillation also in a spatial oscillation. Being a quasi-on

-
V.
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M. HERBST, M. GLANEMANN, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 67, 195305 ~2003!
dimensional system, the electric field between electrons
holes decreases with increasing distance. This leads
slight reduction of the oscillation amplitude with increasi
distance from the origin. The right column in Fig. 6 show
the charge densities and the lattice polarization obtained
full two-band model with finite hole mass where the carr
generation by a 100-fs laser pulse has been taken into
count. The finite duration of the generation process lead
an additional spatial broadening mainly of the electron d
tribution, the finite hole mass leads to a motion also of
positive charge density. Qualitatively we find the same
havior as in the one-band model, however, the spatial pro
are more complicated due to the motion of the holes. W
the holes pass by a given point they again change the ele
field which gives rise to an additional kick on the lattice ion
Because of the slower motion of the holes the resulting s
tial profile exhibits a smaller period than after the electro
excitation.

The electric field created by the electrons and holes is
restricted to the quantum wire. Therefore also coherent p
non amplitudes are not only excited in the wire region, th
also extend into the barrier regions. Figure 7 shows the
spatial profile of thez component@Fig. 7~a!# and the radial
component @Fig. 7~b!# of the lattice polarization att
5200 fs for the one-band case discussed above. The ra

FIG. 6. Lattice polarization~solid lines! and electronic charge
densities~dashed lines! along the wire axis at three different time
obtained for the dynamics of a Gaussian initial distribution of el
trons and holes with holes of an infinite effective mass~left panel!
and for the dynamics of electrons and holes generated by a 10
laser pulse with an excess energy of 120 meV~right panel!. Inco-
herent phonon dynamics has been switched off.
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of the quantum wire is about 5.6 nm; thus we find that t
phonon amplitudes extend to several times the radius into
barrier regions. As required by symmetry, on the wire a
the lattice polarization has only az component. If we move
away from the axis, the polarization also acquires a rad
component. The different shapes of the radial and longitu
nal components already indicate a nontrivial space dep
dence of the complete vector fieldPph. This is shown in Fig.
7~c! where we have plotted the corresponding directio
field of the polarization vector. It turns out that away fro
the wire axis the lattice ions perform a quite complicat
motion because here also the direction of the electric fi
associated with the moving charges changes with time.

-

-fs

FIG. 7. Lattice polarization as a function of longitudinal~z! and
radial~r! coordinate at the timet5200 fs obtained for the dynamic
of a Gaussian initial distribution of electrons and infinite-ma
holes.~a! z component,~b! r component, and~c! direction field.
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ELECTRON-PHONON QUANTUM KINETICS FOR . . . PHYSICAL REVIEW B 67, 195305 ~2003!
Taking into account the incoherent phonon contributio
leads to an additional spatial broadening because now
carriers do not anymore move ballistically. The cons
quences for the dynamics of coherent phonons is show
Fig. 8 where the lattice polarization~solid lines! and charge
density~dashed lines! are plotted again for the one-band~left
column! and two-band model~right column! now including
incoherent phonons. The carriers which have emitted on
several optical phonons are slower and therefore accumu
inbetween the two ballistic peaks. Therefore the carrier d
sity in the ballistic peak decreases with increasing time
sulting in a reduced switching-on of the electric field. As c
be seen, in particular in the one-band case~left column! this
leads to an effective spatial damping of the coherent pho
oscillations. In the two-band case this behavior is even m
more pronounced because here, as already mentioned a
the finite generation time leads to a spatial broadening du
the generation and also the phonon emission already s
during the generation which leads again to an increa
broadening. This leads to much smaller time derivatives
the induced electric field and thus to a strongly reduced
citation of coherent phonons. The region with considera
lattice polarization is here essentially confined to the reg
where the carriers have been generated.

D. Phononic screening

As has been discussed in the previous section, space
time-dependent electronic charge densities in polar semi
ductors excite coherent phonon amplitudes. These am

FIG. 8. Same as Fig. 6 but including incoherent phon
dynamics.
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tudes, in turn, affect the dynamics of electrons and ho
since they enter in the energy matrices according to
~18a!. In this section we will analyze in more detail th
feedback mechanism.

The excitation of coherent phonons is proportional to
carrier density@see Eq.~18a!#, therefore also the feedback o
the carrier dynamics will depend on the density. Since a
the Hartree and intraband Fock terms are linear in the ca
densities, these contributions will be of the same order as
coherent phonon contribution. In the previous sections
have always restricted ourselves to the low-density lim
where the influence of coherent phonons and Hartree-F
terms on the carrier dynamics~except for the Coulomb en
hancement in the generation process! has been negligible
Now we will consider the excitation of a spatially localize
electron-hole distribution with a higher density where the
terms will come into play.

In Fig. 9 we have plotted the electron@part ~a!# and hole
density@part ~b!# at the timet5400 fs for the case of exci
tation with a 100-fs laser pulse at an excess energy of
meV. In order to concentrate on the effects of coher
phonons and Hartree-Fock terms incoherent phonon co
butions have been neglected in these calculations. The cu
refer to different levels of the theory@see Eq.~18a!#: For the
dotted lines only the Fock terms in the dynamics have b

FIG. 9. Spatial profile of~a! electron and~b! hole density at the
time t5400 fs for the case of carriers generated by a 100-fs la
pulse with an excess energy of 30 meV. Incoherent phonon dyn
ics has been switched off. The curves refer to calculations tak
into account Fock terms~F!, Hartree and Fock terms~HF!, as well
as additionally coherent phonons~HF1CP!.
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included. Physically this corresponds to taking into acco
Coulomb enhancement and band-gap renormalization.
see essentially a ballistic motion of the carriers. Due to th
much higher effective mass the holes are generated wi
much lower group velocity and consequently they tra
much slower. If we now switch on the Hartree terms~dash
dotted lines! the carriers experience the repulsion due to
effective field created by the carriers of the same sort as
as the attraction due to the field created by the carriers
opposite charge. As a result of the repulsion we find a c
siderable broadening of the spatial profiles of electron
hole density. In addition, the maxima are shifted due to
attractive forces: The holes are accelerated by the fa
moving electrons while the electrons are slowed down by
holes. The solid lines finally refer to a calculation whe
besides Hartree and Fock terms also the coherent pho
contributions have been included. We can clearly see
they reduce the influence of the Hartree terms by reduc
both the broadening and the shift of the maxima. This
ready points to the interpretation that here the field crea
by the coherent phonons screens the interaction among
carriers.

To get more insight into this phenomenon, Fig. 10 sho
for two different times the self-consistent potential in Wign
representation for the electronsVsc

e (z)52eFsc(z) along the
wire axis @Eq. ~34a!# which is equivalent to the solution o
the Poisson equation@Eq. ~35!#. The corresponding potentia
for the holes is simply Vsc

h (z)5eFsc(z)
52Vsc

e (z). The Hartree contribution~dotted lines! exhibits
maxima at the position of the electrons which give rise to
broadening of the density profile and minima at the posit
of the holes which lead to the slowing down of the motion
the electrons. The coherent phonon contribution~dashed
lines! exhibits essentially the same shape as the Hartree
tribution, however, with the opposite sign and a smaller a
plitude giving rise to a total potential~solid curve! which is
indeed a screened Hartree potential. We want to point
that the phonon oscillation time 2p/vLO'115 fs is just of
the same order as the spatial dynamics of the electron-
system, thus the lattice displacement does not adiabatic
follow the motion of electrons and holes as has been s
also in the previous section. The calculations including
herent phonon amplitudes, however, describe the phon
screening of external as well as of Hartree potentials i
fully dynamical way.

IV. CONCLUSIONS

In this paper we have presented a systematic analys
the role of carrier-phonon interaction for the ultrafast carr
dynamics in photoexcited semiconductors in the presenc
spatial inhomogeneites. For this purpose we have exten
the density-matrix formalism for electron-phonon interacti
which has been previously used for the study of spatia
homogeneous systems to include arbitrary space de
dences both in the semiconductor structure and in the ph
excitation process. A natural consequence in the correla
expansion is the appearance of coherent phonon amplit
in the first order of the correlation expansion. The seco
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order then gives rise to incoherent phonon contributions
phonon emission and absorption processes. By transform
the resulting equations of motion into the Wigner repres
tation we have clearly identified the spatial nonlocal
which turned out to be intimately related to the tempo
nonlocality. Different Markov-type approximations based
different assumptions concerning the slowly varying parts
the dynamical variables give rise to different forms of t
spatial nonlocality.

The theory has been applied to the dynamics of
carrier-phonon system after excitation with a short opti
pulse. In the presence of a static electric field it turned ou
be essential to include the drift ink space also in the scatte
ing dynamics if, as is done in the quantum kinetic approa
the finite collision duration is taken into account. In the ca
of excitation of a localized electron and/or hole wave pac
we have seen in thek-space dynamics typical quantum k
netic features like energy-time uncertainty as they are w
known in homogeneous systems. Here, however, they
modify the spatial dynamics because of the population
high-energetick states which are not occupied in the sem
classical limit. The charge densities created by the drift

FIG. 10. Self-consistent potential for electrons at two differe
times for the same parameters as in Fig. 9. The curves refer to
Hartree contribution (VH

e ), the coherent phonon contribution (Vcp
e ),

and the total self-consistent potential (Vsc
e ).
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ELECTRON-PHONON QUANTUM KINETICS FOR . . . PHYSICAL REVIEW B 67, 195305 ~2003!
and relaxing wave packets excite coherent phonon osc
tions which are effectively damped by the phonon emiss
processes because these processes lead to a strong
broadening of the charge density and therefore reduce
electric field responsible for the displacement of the latt
ions. Coherent phonons screen the Coulomb interaction
tween the carriers. The quantum kinetic approach descr
this screening in a fully dynamical way.
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