PHYSICAL REVIEW B 67, 195305 (2003

Electron-phonon quantum kinetics for spatially inhomogeneous excitations
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The dynamics of optically generated carriers interacting with longitudinal optical phonons in spatially
inhomogeneous systems is analyzed on a quantum kinetic level. A microscopic density-matrix theory is for-
mulated accounting for arbitrary spatial inhomogeneities in the semiconductor structure and the excitation
conditions. The physical origin of the various contributions entering the dynamical equations is discussed. The
theory is applied to the dynamics of a wave packet optically generated locally in a quantum wire. We study
guantum kinetic features due to the interaction with phonons in the expansion process both in a one-band and
a two-band model as well as the generation and dynamics of coherent phonon amplitudes.

DOI: 10.1103/PhysRevB.67.195305 PACS nunider73.63.Nm, 78.4%p, 72.20.Dp

[. INTRODUCTION ities. These inhomogeneities may be either due to a spatial
structure of the sample under consideration or due to an in-
On femtosecond time scales a Boltzmann-like descriptiothomogeneous excitation leading to space-dependent carrier
of scattering processes occurring instantaneously betwedatistributions. While in a spatially homogeneous systemkthe
states with well-defined energy is no more adequate. Insteadpace provides a natural representation because of momen-
a quantum kinetic approach has to be used which takes intisim conservation, in spatially inhomogeneous systems there
account energy-time uncertainty but also features like correis no sucha priori distinction of a basis. Here we will derive
lation effects between initial and final states in a scatteringhe theory in &-space representation because in this way it
process and a mutual influence between different interactiois the natural extension of the homogeneous theory. Other
mechanisms. A variety of such phenomena has been investiases, however, are equally possible. Among the variety of
gated in the past decade both theoretically and experimermther representations we will discuss in some detail the
tally like the time-dependent broadening of phononWigner representation because @f its closest similarity
replicas'—® phonon quantum beat$;®~8the coherent control with semiclassical kinetics(jii) its wide usage in quantum
of phonon quantum beats and dephasing tifi&sphonon  transport theory, andii) its suitability for a physical inter-
scattering between Coulomb-renormalized stdté$quan-  pretation of the terms entering the theory. While on the quan-
tum kinetics of Coulomb scattering proces&ts®plasmons  tum kinetic level the dynamics is still completely indepen-
and the buildup of screening;?* and phonon-plasmon dent of the basis and therefore the choice of the basis is
coupling?? merely a question of convenience, this independence is lost
Besides this enduring reduction in time scales, modernhen applying the MarkoWsemiclassical approximation.
techniques like near-field optical microscépiead to a con-  This approximation requires the selection of slowly varying
tinuous decrease in spatial scales accessible by optical exariables which are typically different in different represen-
periments. Optical resolutions down to less than 40 nm haviations. We will discuss this point in detail by comparing the
already been achiev&tiso that also the assumption of a Markov approximations in thek-space and the Wigner
scattering process occurring at a well-defined position berepresentation.
tween well-defined momentum states inherent in the scatter- In the second part of the paper we will then apply the
ing term of the Boltzmann equation is losing its validity. theory to the dynamics of carriers excited by means of a
Recently, the combination of ultrashort length and timeshort laser pulse in a one-dimensioriaD) quantum wire
scales has become a field of growing interest. Different techmodel. The wire geometry is chosen mainly for technical
nigues have been used to obtain a spatial resolution beloveasons because of the high numerical complexity. Most of
the diffraction limit, in particular the near-field optical the phenomena discussed are not particular for 1D systems
microscop€&°~?°a solid immersion len®3or the excitation ~and therefore they should all be present also in systems of
and detection through small metallic apertutes? Here, higher dimension. First we analyze the role of a homoge-
subjects of the theoretical analysis have been the interactiomeous static electric field for the carrier-phonon scattering
of the carrier system with the electromagnetic field of thedynamics, the intracollisional field effect, as an example for
near-field tif® as well as the role of Coulomb and electron the mutual influences between different interactions. Here,
phonon interaction for the spatial transport of locally createdstrong analogies are revealed between the field effect on pho-
carriers and excitori®:3’ In these studies, however, scatter- non scattering and its influence on carrier generation by light
ing processes have been treated on a semiclagdleakov-  absorption, where the field gives rise to the Franz-Keldysh
ian) level. effect. Then we will study the dynamics of a locally gener-
In this contribution we will extend the density-matrix ap- ated electronic wave packet both in real and momentum
proach to carrier-phonon quantum kinetics which has beespace which will allow us to extract the role of energy-time
successfully used in the past for homogeneousincertainty for the spatial dynamics of the wave packet. Fi-
system&>11383%g systems involving spatial inhomogene- nally we will discuss the generation of coherent optical
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phonons due to the space charges created by a electronic Bq=(by), 2

wave packets. We analyze the dynamics of the resulting lat-

tice polarization as well as its feedback on the eIectroniq,\,herebq denotes the annihilation operator of a phonon with

subsystem. _ _ wave vectorq; ba is the corresponding creation operator.
The paper is organized as follows: In Sec. Il we presentrhe phonon amplitude is directly related to a mean displace-

the physical model and derive the general theoretical framemnent of the lattice atomes and thus in the case of acoustic

work in the k-space representatidiSec. Il A\. In Sec. IIB phonons to a coherent sound wave and in the case of longi-

the important limiting case of a homogeneous electric fieldydinal optical (LO) phonons in a polar semiconductor,
i.e., the intracollisional field effect is discussed. Section Il Cyyhich  will only be considered here, to a lattice

is devoted to the formulation of the theory for an inhomoge-poarization?

neous system in terms of a Wigner representation and in Sec.

I D we show how different assumptions on temporal and . q

spatial scales lead to different Markov limits. Section Iil pre- Por(r) = _prhz —[€l4TB,+e 19TBY], 3
sents numerical results where we discuss in particular the e q g

dynamics in a static homogeneous fiéRkc. Il A), the dy-

namics of locally generated wave packé®ec. Il B), the  where

creation of coherent phonoriSec. Il G, and the feedback

of coherent phonons on the carrier dynam{&ec. Il D). 2mehoLg L 1 1
Finally in Sec. IV we will draw some conclusions. YPh= \/ — . (4)
1% dmegl\e, &g
Il. THEORY e ande., are the static and optical dielectric constants, re-

A. Density-matrix theory for spatially inhomogeneous systems ~ SPECtively, &, is the absolute dielectric constant of the
. . _ _ vacuum,w| o is the phonon frequency, andlis a normaliza-
Most physical variables which are directly related to ob-451 volume. In a homogeneous system onlg=a0 polar-
servables of the charge-carrier system like charge densitieg,ation js possible which, however, often is absent for sym-
current densities, optical polarizations, distribution funcnons,metry reasons. Therefore coherent phonons are usually not
etc. are single-particle quantities. The central variable which.ynsidered in that case.

contains all information for the calculation of such quantities The phonon analog of the single-particle density matrices
is the single-particle density matrix. In a crystalline solid this;s the electronic system is conveniently defined as
density matrix can be separated into intraband and interband

contributions. Here we will restrict ourselves to a two-band - T .

model of an undoped semiconductor treated in the electron- ”q’,q=<(bq'_Bq')(bq_ Bq)>=<bq'bq>_5q'8q- (5)

hole picture. A generalization to a larger number of bands is

straightforward. In the two-band case the single-particle denlts diagonal elements describe the mean occupation number
sity matrix of the carrier system in a crystal momentumof incoherent phonons in a phonon magler, equivalently,
(k-spaceé representation consists of the electron density mathe fluctuation of the corresponding phonon amplitude, while
trix f¢, the hole density matri", and the interband density the off-diagonal elements give rise to space-dependent pho-

matrix p defined as non distributions.
The single-particle part of the Hamiltonian of our system

fE' k:<0lr0k>, (19 can be decomposed as follows. First, there are the kinetic
’ energies of electrons and hole§ and ¢! in the respective
h T bands. The carriers move in space-dependent potentials
fior k= (A i), (1D which are given by the spatial profiles of the conduction
[VE(r)] and valencéVV(r)] band edge profiles. These pro-
Prr k=(d_k:Cy), (1c) files are determined by the material composition in a hetero-
structure. In low dimensional systems they can be also given
wherecl anddl (ck anddy) describe the creatiofannihila- by spatial variations of the confinement potential as, e.g., in
tion) of an electron and a hole with momentum respec- the case oW- or T-shaped quantum wires. The fields due to
tively. In the homogeneous case, which has been widelyhese internal potentials are complemented by externally ap-
studied in the past, the variables are diagonal, i.e., only thplied electromagnetic fields. For the purpose of the present
components witlkk=k' are nonzero and they can be directly study we will consider in particular a combination of two
interpreted as electron and hole distribution functions or thexternal contributions, a static or temporally slowly varying
momentum components of the interband polarization. homogeneous field and the optical field of a laser pulse. By
As for the electronic subsystem, the information on theapplying the usual dipole approximation based on the as-
state of the phonon system is contained in reduced phonosumptions that the fields are sufficiently slowly varying on
density matrices. Being, however, a Bose system where thihe length scale of the lattice constant, the corresponding
particle number is not conserved, also expectation values a@fingle-particle Hamiltonian is the direct generalization of the
an odd number of operators are possible. Thus the lowestandard Hamiltonian used in semiconductor optics for ho-
order is given by the mean phonon amplitude mogeneous systems,
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where

(12

Tt
- dek/dkr+qu_q

with the Coulomb matrix element,=e?/(Veqe..q%). Here,
we have taken into account only the long-range contributions
en L[ ot ven 3 which are the most important ones for typical phenomena
Vg =]—J e ' veh(r)dsr (7)  studied in this paper. Since the aim of this paper is to study
the electron-phonon quantum kinetics, we will disregard
denote the Fourier transforms of the space dependent elegarrier-carrier scattering processes but we will take into ac-
tron and hole potentials, count the Coulomb interaction on the mean-figithrtree-
F level, which i tained from Eq12 its mean-
VA =VE(r) +eE(r,b)-r, (83 ﬁg@k)coeur?terparf ® optained from Eq12) by fts mea
h Y The main task of a kinetic theory is now to set up equa-
VA =—Vi(r) —eE(r,b)-r, (8D) tions of motion for the dynamical variables defined above.
Eq(t) is the spatial Fourier transform of the external electricThe only equation which is closed within the set of kinetic
field E(r,t), variables introduced so far is the equation for the coherent
phonon amplitude

d
ot

Mk:_ef d3rug (r)ru,(r) ) .
Ve . ! * e h

- - . . . Bq=—lwLo Bq= 3 9q > [fikeq— Fokrgl: (13
is the interband dipole matrix element witly, (u,,) denot- k
ing the lattice periodic Bloch functions of the conduction

(valence band, and, is the volume of an elementary cell. For the other variables, in particular for all electronic density
The Hamiltonian given above can be formally derivedMatrices, however, there is no closed set of equations in a

starting from the usual Coulomb gauge by applying themany-body system and suitable approximation schemes have
Power-Zienau-Woolley transformatiéh?2 This results in an {0 be set up. In a density-matrix approach this consists in

interaction Hamiltonian which can be expressed completelyntroducing higher-order density matrices as new variables
in terms of the fieldE andB. However, the resulting inter- and truncating the hierarchy at a certain level. Here we will

action Hamiltonian is in general nonlocal. A local interaction €Oncentrate on electron-phonon quantum kinetics and in-
is obtained by applying the dipole approximation which iscl_ude the next level of thg phonpn—lnduced branch of .the
well satisfied if the fields are sufficiently slowly varying on hierarchy. The corresponding variables are phonon-assisted
the length scale of an elementary cell. Under the same corflensity matrices. Four different variables appear in a two-
dition the magnetic field contribution of the interaction with Pand model; in the present case they are conveniently intro-
the laser field is negligible because it is of the same order aduced according to
the electric quadrupole contribution. This leads then to the
Hamiltonian given by Eq(6). o [

Finally, the free-phonon Hamiltonian is given by Sk',q,k:ggq“l/(bq_ Bq)Ci), (149

HP=2 fw oblbg. (10) i
g oo Str k=~ 7 9a( 0L (g~ By, (14b)

These parts of the Hamiltonian represent energies corre-

sponding to noninteracting carriers and phonons. As in any i

genuine many-body system they have to be complemented t(kjr)q k:%gq<d—k’(bq_Bq)Ck>v (140

by interaction terms. The central interaction mechanism for o

the problems addressed in this paper is the interaction be-

tween carriers and LO phonons provided by théhfioh

_ [
coupling. It is described by the Hamiltoni&n t(kr,)q,ﬁ - ggé(d—k'(bg— Bg)Ci)- (149
HeP=>" [94CE 1 qDaCk+ 95 CiblCk = 9adi 1 $Podk Since electron-electron interaction via the Coulomb matrix
k.q element ; is taken into account on a mean-field level it does
—gédlbgqu] (11) not give rise to new variables. If the phonon hierarchy is

truncated by factorization on the level of four-point density
with the Frdnlich coupling matrix elemeng,=ivypp/q. I matrices, the dynamics of the carrier-phonon system is de-
addition, the carriers interact among themselves by means stribed by the equations of motion for the single-particle
the Coulomb potential which gives rise to the Hamiltonian density matrices of the carriers,
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(183

_2 vg f k’+qk+q'

uk’,k:_M(1/2)(k’+k)'Ek—k’(t)_§ Vg Pk’ +qk+qs
(18b)

where the upper sign in E¢183 refers to electrons and the
lower sign to holes. The various contributions have the fol-
lowing origin: The first term in Eq.183 is the single-
particle energy,, the second term is due to an internal and
external single-particle potentidl®(r) which is the result,
e.g., of band gap variations in heterostructures or an exter-
nally applied electric field; the third term results from polar-
ization charges associated with coherent phonons; the fourth
term (Hartree term is the induced potential due to a local
charge nonequilibrium between electrons and holes; and the
last term(Fock term) denotes the exchange energy resulting
in a band gap renormalization which is in general space de-
pendent. In Eq(18b) the first term describes the coupling to

a classical electric field with the spatial Fourier component

the equation of motion for the density matrix of incoherentE, treated in dipole approximation with the interband dipole

phonons,

and the equations for the phonon-assisted density matrice

e.g.,

J
Sr
gtk .a

J 9q’ e h
Enq’,q:g_q zk" [Sk+qr gk Skrqr.qkl

2 [SerqqktSeraqqid: (16

q
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e e e e e e
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~e e H e
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e e
+ nq/‘q)fk/’qu,q;(&kﬁyk_ fk",k) - nq/'q( 5k',k"+q’
e e *
— fk’,k"+q')fk",k_ 6‘1',qpk"+q’,k’pk”,k]' (17)

matrix elementM,, and the second term is the interband
Fock part responsible for excitonic effects and the Coulomb
enhancement of interband transitions. These terms are ob-
tained if already from the onset the full carrier-carrier Hamil-
tonian[Eq. (12)] is replaced by the corresponding mean-field
Hamiltonian. If the full Hamiltonian is taken for the deriva-
tion of the equations of motion for the phonon-assisted den-
sity matrices and the factorization is performed afterwards
there appear additional terms describing Coulomb renormal-
gaﬂons of the carrier-phonon interaction processes accord-

01 13

~eh eh
S¢' q, _Z Vq'Skr+q7 qk+q’
q

e h
ivk,_k% [Sk'+q’,q,k+q’+Sk’+qﬁq,k+q’]'

(193

T ()
fo g™~ 2 Vatiolg queq - (19b

q
In particular, Eq(19b) describes the fact that scattering pro-
cesses occur between excitonic states and we have shown
earliet? that in the case of a sufficiently strong electron-
phonon coupling and at elevated temperatures they give rise
to discrete phonon sidebands of the exciton in the absorption
spectrum occurring below the excitonic transition in the gap

The equations fos" andt(*) have the same structure as for and a broadened sideband in the continuum above the exci-
s®. The single-particle part and the mean-field Coulomb conton, which are known from perturbative calculations of linear
tribution is contained in the intra- and interband energyspectra since a long time agbFor the case of excitation

matrices

high up in the band, as will be studied in this paper, they
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have very little influence on the carrier dynamié$iowever, intraband energies. Then the resulting equations of motion
they considerably increase the numerical effort, and thereforfor the single-particle density matrices read
in the following they will be neglected.

Carrier-phonon scattering processes on the quantum ki- i e:eE(t) ) ife+ '_[ukp —UpF]
netic level are described by the dynamics of the phonon- gtk R gk KR rTRER TR
assisted density matrices. Obviously, the last term on the
right-hand side of Eq.17) has a structure which reminds one + % 2 Re{sﬁ+q,q,k_sﬁ,q,k—q]l (203

of scattering terms in the Boltzmann equation, however, in a
nondiagonal generalization. As will be discussed in more de-

fcail in Sec. Il D the Bpltzmann limit is obtained by perform-_ ﬁfE: _eE(t) . if% I—[L{fkp,k—u,kp’ik]

ing a Markov approximation under the assumption of suffi- at i ok f

ciently slowly varying functions in space and time. Since in

the Boltzmann equation the scattering rates due to different +E 2 Rd:SEJrq,q,k_SE,q,qu]* (20b)
interaction mechanisms simply add up without interference, q

all contributions to Eq(17) resulting from other mechanisms

than carrier-phonon interaction have to be neglected. This 07 e e Jper oot eE(t)

shows that the quantum kinetic treatment, besides the correct at B h[ KIPx h dk ak Pk

treatment of the short time- and length-scale behavior, in- )

cludes a variety of additional phenomena related to the mu- _ '_u [1-fe—f",]

tual influence of different mechanisms. In particular, the K ko Tk

carrier-phonon scattering dynamics is modified by intra- and

interband Fock terms, external fields, band-gap variations, +2 [t () () () ]
self-consistentHartres fields, and lattice polarizations due Pk benak k- thaieral

to coherent phonons. (200

with the intra- and interband energies given by
B. Homogeneous electric field

The theory developed in the previous section is valid for Eﬁ'h= eE—E vqfﬁfq
arbitrary space-dependent external potentials and laser fields. 4

In particular we have seen that also the phonon scattering

dynamics which is described by the phonon assisted density and  U=—M, E(t)_% UqPk+q-
matrices is affected by these external potentials. A subject

which, because of its great importance for many modernthe phonon-assisted density matrices satisfy the following
electronic devices, has been studied by various approachesguations of motion:

the past years is the influence of an electric field on the

scattering dynamics, a phenomenon which is generally called’ e

the intracollisional field effect**~>°In order to get some 4t “k".ak

(21

insight into this problem within our approach let us discuss )
in this section the theory for the limiting case of a homoge- ~ _ I_[ge e g 1sS, ﬁ. J J s
neous electric field in a uniform material. This is the simplest fi LSk T CkT OO gk T | TINE

example for an external influencliring the time it takes to

complete phonon scattering events. We assume that the sys-

tem is homogeneously excited and that all the dynamical ﬁ[

variables remain spatially homogeneous. This means that all

the single- partlcle density matrices are diagonal, |f§, x ngl2

=fc 5k’,k1 f f 6k’ ks Pk, k—pkék/ . Due to Charge

neutrality in the electron-hole system all Hartree-like terms 22)

(induced potentiajsare absent in this case. Furthermore,

only a coherent phonon amplitude with vanishing wave vecwith gq=k’ —k. This is essentially the same set of equations

tor B, describing a homogeneous lattice polarization is comof motion as in the homogeneous case without fettle

patible with the assumption of a homogeneous system. Agaihomogeneous part in each equation, however, is supple-

due to charge neutrality, however, this amplitude is not exmented by a field term which has the same structure as in the

cited by the dynamics of electrons and holes in the homogeBoltzmann equation giving rise to a drift k space. Equa-

neous case. Therefore coherent phonons will be neglected tibns (208—(22) are two-band generalizations including

the present case. mean-field Coulomb contributions of the one-band high-field
For a homogeneous electric field the Fourier transforms ofjuantum transport equations which are usually called

the intraband single-particle potential§" reduce to differ-  Levinson equatiotf or Barker-Ferry equatiof?.* It should

ential operators and they are conveniently separated from thee noted thaE here denotes the full external electric field

(+) (—)=*
ult’tk/,q,k_uktk,q,k']

— [+ nfE (1= ) —ngf(1— L) — PPl
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which in the present case typically consists of two differentln contrast to a distribution function, however, it is not nec-
contributions: the laser field with a frequency in the opticalessarily positive definite and therefore it cannot be inter-
range describing the optical excitation and an additionapreted in a probabilistic way. In the context of quantum
static or slowly varyingcompared to the optical cagskeld.  transport in semiconductor nanostructures like resonant tun-
A close look at the dominant frequency parts of the varioumeling diodes the Wigner function has been extensively used
dynamical variables reveals that for static and low-frequencyn the past year®~%1In most of these calculations scattering
fields the drift terms irk space are most important while for processes have been treated in a simplified way either by
optical fields the interband couplirigis dominant. It should using a relaxation time approximation or by using semiclas-
be noted, however, that in the presence of very strong fieldsical scattering rates. Such rates, however, describe scatter-
also the other terms may become relevant. A static field inng processes at a well-defined position between well-defined
the interband self-energy gives rise to Zener tunneling and amomentum states and therefore they are not consistent with
optical field in the drift terms leads to free-carrier absorption.Heisenberg’s uncertainty relation between momentum and
The most interesting point now is the fact that the drift position. This problem can be overcome within a quantum
terms do not only appear in the equations of motion for thekinetic carrier-phonon model which accounts for both
distribution functions, where they are well known from the energy-time and momentum-position uncertainty in the
semiclassical or Boltzmann case, but they also appear in thé&/igner representation. An iterative approach where the
equations for the polarization and for the phonon-assistetlVigner function is expanded in terms involving a given
density matrices. The polarization describes the lightnumber of scattering events has been discussed and applied
induced dynamics; the presence of a field term modifies th&o the resonant tunneling dio§&% The correlation expan-
corresponding processes like, e.g., light absorption where &ion used in this paper results in a closed set of dynamical
gives rise to the Franz-Keldysh effect. The phonon assistedquations which, after transformation into the Wigner repre-
density matrices describe the phonon-induced dynamics, isentation, allows us to identify most clearly temporal and
particular phonon scattering processes. The field terms agaspatial nonlocalities.
modify this dynamics; thus they describe an intracollisional The Wigner functions corresponding to the single-particle
field effect. Both these effects are absent in a Boltzmanmlensity matrices are defined as the Fourier transforms of the
approach because there all transition rates are calculated b&ngle-particle density matrices with respect to the relative
tween momentum states of the crystal. In addition, themomentum,
present treatment reveals the strong symmetry between the
effect of the field on the light-induced and phonon-induced
dynamics. In this language the Franz-Keldysh effect may be
described as an intracollisional field effect of the light ab-
sorption process exactly in the same way as the intracolli- .
sional field effect of phonon absorption or emission Pe(r) =2, €' Py (112)q.k+ (1/2)q - (23b
processes® We will come back to this point in Sec. Il A a

when discussing numerical results. From the intraband Wigner function both the distribution in
momentum spacéﬁ'h and the carrier densities in real space
n®"(r) are directly obtained as

fﬁ’h(r):% eiq'rfﬁf(uaq,m(l/z)q’ (23a

C. Wigner representation

Let us now return to the full spatially inhomogeneous en L[ 3 _en
system. While in a homogeneous system khepace repre- fie :T}J’ d>r Fe(r), (243
sentation is distinguished from other bases because here the
single-particle density matrices are diagonal, in the absence 1
of translational invariance there is no suahpriori basis neN(ry== >, FeN(r), (24b)
distinction. The laws of quantum mechanics are independent vV
of the choice of a particular basis. The only approximation
that has been made in the derivation of the quantum kineti
model in Sec. Il A is the truncation of the hierarchy. This
truncation is independent of the single-particle basis chose
and therefore the theory is still completely base independent.

and also higher moments are calculated exactly as in the
Glassical case. The electron and hole current dengfiits)

and kinetic energy densiti¢§"(r) in the case of parabolic
ands are given by

Also the structure of the equations is very similar in other 1 7k
representations. Therefore the basis can be chosen according jevh(r)z — 2 ]—‘E*h(r), (253
to its mathematical or numerical suitability. 4 Me,h

There is one representation which is of particular interest L L22

both for the physical interpretation of the dynamics and for oh
the comparison with a semiclassical kinetic theory. This is ()= Y. Ek" 2Meg p
the phase-space representation introduced by Wigner already '
in 19325 The Wigner function bears the closest similarity and for space points with nonvanishing carrier densities one
with classical distribution functions and all expectation val-can define a local drift velocitw®"(r) and mean kinetic
ues are calculated in complete analogy to the classical casenergy per carrieEE;L‘(r) according to

Fehm), (25h)
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e,h r —ieh r /ne,h r, 26 . A A
YOS 2O )= (WL D] - W TPUNER]
Egn(r)=t"(r)/n®"(r). (26b) . . )
AW U FR(n) ]+ W [FL (DU T}
From the interband Wigner function the space-dependent

- . R . . ] i -
ir::;’;u:t:)oscoplc optical polarizatioR,,(r) is obtained accord _ guk(fﬂ'% [ﬂ(ﬁq)(r)—ﬁ,q)(f)—ﬁkt)q,q(r)
L e ) + T gD, (290
=— + . [
Popl1) =3, 2 IMi PN +MPic(1)] @D where we have introduced the operatf?’ which is de-

fined by its action on two arbitrary phase-space functions
It is convenient to transform also the phonon-assisted densitgccording to
matrices into a Wigner representation according to .,
Woo [gklm)hkz(rz)]

iq'-rg
(r) E e k+q %q qk+2q/! (28@ _ 2 d3r’d3 ” I(O’k”‘l’l—o',k/~l'”)
VZ k’ k”
()= E eid gt " (28b) Xk, + ke (F1+1") D (T2 1), (30)

k+q—lq s k+ 3 50’
Here,o ando’ can take the values1 or —1. By means of

Then the equations of motion for the single-particle densﬂy"’l Taylor expansion this integral operator is formally equiva-
matrices can be cast into the compact form, lent to a differential operator of infinite order:

W7 LGy (F) i (1)]

fk(r ,L{W**[sﬁm K= W [F-NERN] ~ 2 (—D)MiT MGG ™ g g ( J )m
R R o 20 M m! oky ary) \ ok, ary
+W T TU (NP1 ] =W [P (NU(r) T}
X G, (1) hy (1) (3D
+E 2 Re{Squ(r)—SE_q'q(r)], (29a The mean-field part is contained in the intra- and interband
q energies in Wigner representation,
d . . ey ig-r ceh
SFNO = W TEN N FNO =W [FUDERD)] END=2 €T E wog ke oer (323
WU PN =W [PE (DU T} uk(r>=§ €' Us— 2 k+ (11200 (32D
+2 2 RE[SE,q(F)—SE aq(D] (29b) The equation of motion for the phonon assisted density ma-

trix S€ in the Wigner representation reads

d
B S8 1)= T W L€ (1) SEo(N] - W [SE(NEXNT) i 000SE (1)

+,L{W*+[u¢+q<r>7*k (N]=W* LT (Ni(r) 1}

2
lod” L WP (NPT — (gt DWF S, ((N (A= FE]+ngW (1= FE, () FEND (33

and the equations for the other phonon-assisted density maity matrix is diagonal in momentum Space; 4=Ngdy

trices have the same structure. Here, for reasons of simplicityhe generalization to space-dependefitdiagona) phonon
we have assumed that the distribution of incoherent phonordgistributions is straightforward. Equatiof29g and(33) de-
remains spatially homogeneous, i.e., the corresponding deseribe the dynamics of two-band Wigner functions with
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guantum Kkinetic carrier-phonon scattering. Two-band orconsider the low-density limit where all phase-space filling
multiband Wigner equations without scattering have beerfactors (1-F) can be replaced by unity. Due to the qua-

discussed previously for single-partitfeand mean-fiel®  gratic dispersion the operatah’?’ in the parts involving
Hamiltonians. energies effectively reduces to a first-order differential opera-
In this notation the analogy with the spatially homoge-tor while in the source terms for the phonon-assisted density
neous casdsee Ref. 2 becomes particularly transparent: matrix only the zeroth order, i.e., the unity operator remains.
Simple products of the dynamical variables are replaced byhen, the coupled electron-phonon system is described by
products involving the operath""'. In the case of spa- the set of equations of motion
tially homogeneous dynamical variables this operator re-
duces to the unity operator and the spatially homogeneous
set of equations of motion is recovered. For weakly inhomo-
geneous systems the structure of the drift term in the Boltz-

d ik 9
__T¢€ __ . __T%® e
Gt/ == (e S0+ 2 2REST4(1Y

e

mann equation is directly obtained if in all terms involving —Sk_qq(r:D], (363
the intraband self-energieg®" only the first-order deriva-
tives in the differential form ofV”" are kept and all higher- 9 _. i o .
order derivatives are assumed to be negligible. Scattering atsk'q(r’t)_ ﬁ(e"*q €k~ f10L0)Sikq(M )
processes where the factafsand (1—-F) are evaluated at
11 N U'(T, H 1 h 1 (7
the same position result WV is replaced by the unity ——|k+>q| - =SE(r,1)
operator in the source terms for the phonon-assisted density Me 2 gr—xd
matrices. However, as will be discussed below, this still is l0,/?
not sufficient to obtain spatially local scattering processes as + 290 D FE (rt)—n FE(r t
in the Boltzmann picture. 72 [(ng* DFicg(n D —ngFid(r b
The intra- and interband energy functions have a particu- 36b
larly clear structure in the Wigner representation. They can (36D
be written as Equation(36b) can easily be solved formally resulting in
e _ Ailf)(egrq—ex—TiwL o) (t—tg)
ERN(N) =M+ VEN(r) = 2 v FRI (1) Fedy(r), kol 1 D)= @A ac ool
q
1
34 e
(343 xSk'q[r—E k+§q)(t—t0),to}
U(r)y=—My-E(r)— UqPr_o(r), 34b 2,
() « B(r) % a’k q( ) (34b) +|gq2| ft tOdT elit) (et q— ek hwLo)7
where the Hartree and coherent phonon terms give rise to the A= Jo
self-consistent electrostatic potentil. determined by the . h 1
Poisson equation X (Mgt D Fjeg T = o k+ Z4|7t-T
e
V2D (r)= © > [fe(r)—f“(r)]JridivP " o, T 1
s etV X k k €0 PHI)- —ngFy r—ﬁe K+ Sa| Tt (37)
(35

which in turn can be inserted into E¢363 resulting in a

Thus this potential is created both due to electronic anQoseqd integrodifferential equation for the electron Wigner
phononic charges built up by the coupled dynamics of th%unction. Although the action of the operat\il”"' did re-

carrier-phonon system. duce to a unity operation, the resulting scattering kernel is
Equation(33) clearly shows that electron-phonon scatter- y op ’ 9 9

: . - - still nonlocal in . Here, th ial nonlocality exclu-
ing processes in a quantum kinetic theory are nonlocal jpill noniocal in space. Here, the spatial honlocality exclu

o sively results from the drift operatgr- (k+ 3q)-(a/dr)] in
space: By means of the operat”” it involves convolu-

s . X ) Eq. (36b). Furthermore, it is clearly seen that the temporal
tions of the Wigner functions both in momentum and real,ng spatial nonlocality are intimately related: both involve
space. However, it is difficult to get a deeper insight into thisy o same integration variabte

nonlocality of scattering processes from the full set of equa-
tions of motion for the two-band system including arbitrary
inhomogeneities, because all the different sources of inho-
mogeneities are mixed together. In order to take a closer look The quantum kinetic approach as discussed in this paper
on the nonlocality of scattering processes it is therefore contakes into account the finite duration of a scattering process
venient to concentrate on a simplified system. Therefore foand the corresponding energy-time uncertainty. On the level
the remaining part of this section we will restrict ourselves toof single-particle density matrices the dynamics is nonlocal
the case of a single electron band without any spacemn time; it involves a memory kernel as can be clearly seen,
dependent single-particle potentials. Furthermore we assume,g., in Eq.(37). In a semiclassical kinetic theory, by means
as usual, a quadratic dispersiep=72k?/(2m,) and we will  of a Markov approximation, memory effects are discarded

D. Markov limits
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resulting in a dynamics of single-particle density matricesity of the Wigner function has to be kept. This results in an
which is local in time. Such a Markov approximation, how- instantaneous but spatially nonlocal scattering term accord-
ever, requires the specification of slowly varying functions.ing to
At this point the results become dependent on the selected
basis because it is usually assumed that the diagonal ele-
ments in a given basis are slowly varying functions while the
off-diagonal elements rotate with the corresponding energy

2
¢ (=2 f drel/ (e g~ s oy o)
0

difference. Physically, the assumption of slowly varying ﬁ 1
functions in the above sense implies that there is a distin- X (gt D) Figsqf 1= |kt 5q |7t
. . . . . e
guished basis of single-particle states such that the carrier
dynamics before and after a scattering event evolves freely in . 1
time without interaction. In inhomogeneous systems, e.g., —NgFy| T m, k+ 39|71 (40)

due to time-dependent self-consistent fields, it is not always
clear which is the correct basis for the description of scatter- The basis for the derivation of E40) has been the as-
ing processes. In this section we will discuss how differentsumption of a temporally slowly varying Wigner function.
assumptions based on different representations lead to diffeAnother possibility which is often applied in problems in-
ent dynamical equations. Transforming the results of differvolving off-diagonal density matrices is the Markov approxi-
ent Markov-type approximations—which all neglect tempo-mation in the original momentum representatiér’ By re-
ral nonlocalities—to the Wigner form allows us to perform astricting ourselves again to the same one-band model
most conclusive comparison of the resulting differences withdiscussed above, the exact formal solution for the phonon-
respect to spatial nonlocalities. assisted density matrix ik representatiofiEq. (17)] is given

The Boltzmann limit for the electron-phonon scattering by
processes is obtained under the assumption that the Wigner

function in Eq.(37) is a slowly varying function ofr when Ser qk(D)= el = ahuo)t~tog?, ak(to)
compared to the exponential function. Obviously, this re-

quires both sufficiently slow temporal and spatial variations N wjt—tod (18) (e — g~ heopo)

of the Wigner functions. In addition it is assumed that the 52 7€

system initially, i.e., atty— —o°, was uncorrelated which

corresponds to a vanishing phonon-assisted Wigner function. X[(ng+ 1)fE’,k+q(t_ T)— anE, _q’k(t— 7)].

This Markov approximation then results in a phonon-assisted
density matrix according to (41)

In this representation it is natural to assume that the main
time dependence of the single-particle density matrix is de-

termined by the free-carrier Hamiltonian, i.effj,’k(t)

X[(ng+1) ﬁ+q(r,t)—nq]-"ﬁ(r,t)] (38) j7ﬁ,’k(t)exp[(i/h)(ek,—ek)t] with a slowly varying function
f€. The Markov approximation now consists in neglecting

the time dependence 6f when evaluating the integral. Con-

i P sidering again the limit,— —c and assuming an uncorre-
D(X)=— —+ 8(x). (39) lated initial condition, the resulting phonon-assisted density
™ X matrix can then be transformed into the Wigner representa-

When inserting this result into E¢364), the imaginary parts tion which resulits in
of the functionD cancel and the semiclassical Boltzmann 2
equation with temporally and spatially local scattering pro- Se o1, t)_|9q| f dreli/®) (e q—a—hoLo)T
cesses is recovered. 72 Jo

However, it should be noted that one could also imagine
situations where the assumption of a slowly varying depen- X FC ( g ﬁ_q t)
dence only holds for one of the two arguments. This holds, k+a 2m 2mg T
e.g., for a spatially slowly varying system excited by an ul- (42)
trashort laser pulse where the spatial nonlocality is negligible
but the temporal nonlocality results in typical quantum ki- Because of the Markov approximation there is no temporal
netic features like energy-time uncertainty. In this case thenemory effect in Eq(42). Nevertheless, the scattering pro-
dynamics is similar to the quantum kinetics in homogeneougesses exhibit a spatial nonlocality similar to E€0). How-
systems extended only by a parametric space dependeneaier, the time-dependent displacements of the space argu-
Technically, this limit is obtained by neglecting the time- ments are obviously different. This clearly shows that
dependent displacement of the space arguments on the riglitepending on the assumptions on slowly varying parts in the
hand side of Eq(37). On the other hand, in a temporally dynamics the spatial nonlocality of the scattering processes
slowly varying system with sufficiently fast spatial variations have different forms. Only if in addition the assumption of
the temporal retardation may be negligible but the nonlocalslowly varying spatial dependences is made the results of the

a
St(r0=—7194*Dl g~ e~ frwio)

with

(Ngt+1)

r,t) —NgFi| r+
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two types of Markov approximation coincide and lead to the 0.007
same spatially local scattering processes as in the semiclas- 0.006 |
sical Boltzmann equation.
0.005 |
lll. RESULTS 0.004 |
0.003 |

After having introduced the theory we will now apply the
guantum kinetic formalism to the study of the spatiotemporal 0.002 |
dynamics on ultrafast time scales. In the general case of ar-

c I
bitrary inhomogeneities the single-particle density matrices % 0.001
depend on twd indices, i.e., they constitute six-dimensional ¢ 0.000
variables. The phonon-assisted density matrices depend on g 0.005
threek indices and thus they constitute nine-dimensional dy- 5
namical variables. Even on a supercomputer this is clearly = 0.004f
out of reach. The dimensions of the variables are reduced 3

either if certain symmetries in the system and the excitation 0.003 |
process are present or if, e.g., in nanostructured materials, the

carrier system is confined in certain directions resulting in a 0.002

dynamics in a lower dimensional space. Here we will apply 0.001 |

the theory developed above to the dynamics in a cylindrical ) ‘

GaAs quantum wire with a 100-rfneross section where the 0.000

carriers are coupled via the Hiech interaction to three- S
dimensional bulk LO phonons. For this purpose we assume -250-200-150-100-50 0 50 100 150 200 250

that the radial dependence of the electron and hole potential sign(k) * E (meV)

Ve(r) is given by a potential well with infinite barriers and  FG. 1. Electron distribution functions as functions of energy at
all radial dependences are projected onto the lowest subbamgo different times showing the relaxation of an initially Gaussian
wave function. This corresponds to replacing thehfioh  distribution in the presence of a homogeneous electric fielé of
and Coulomb interaction matrix elements by their projec-=—1 kv/cm. The different curves refer to the full quantum kinetic
tions according to model with field(QKF), a quantum kinetic model where the effect

of the field on the phonon-assisted density matrices has been ne-

" ) 1 glected(QK), and a semiclassical Boltzmann modBD).
951 =1 Yprd(d, ) — (439
’ VO tai
that in a one-dimensional system in the Markovian approxi-
e2 1 mation electron-electron scattering processes may only ex-
Ung)= P 2 |g(ql)|2ﬁ, (43b change the momenta of the part?cipatin_g carrier; and thus do
| €08 q; q+ac not lead to a relaxation of the distribution functions. There-

wherea: is the wave-vector component alona the wire direc fore also in a quantum kinetic treatment carrier-carrier scat-
q P g tering in quantum wire structures may be expected to be

&oirné 0. is the wave vector in the plane perpendicular to thestrongly reduced when compared to higher dimensional

systems.

= 2aiq; -1 g2

ga.) J' lurol%e ar 44 A. Intracollisional field effect

is the form factor withy(r ) being the lowest subband wave  Let us start by looking at the impact of a homogeneous
function given here by a Bessel functidg. Then, all elec- static electric field on carrier relaxation. In order to concen-
tronic wave vectors are one dimensional while the phonortrate on the relaxation process we will study the dynamics of
wave vectors are three dimensional. We will present resultan electron distribution function in a one-band model which
both for a one-band model, where the relaxation of a givens initially given by a Gaussian in energy centered around an
initial distribution allows us to concentrate on the quantumexcess energy of 150 meV. Figure 1 shows the electron dis-
kinetic effects of the electron-phonon interaction, and for atribution as a function of energy at two different times for the
two-band model, where carrier generation by means of agase of an electric field dE=—1 kV/cm. The calculations
ultrashort laser pulse is explicitly taken into account. For allhave been performed on three different levels of the theory:
calculations a lattice temperature@K has been assumed so (i) the full quantum kinetic modelQKF) according to Egs.
that only phonon emission processes may occur. As has be€p0a and (22) where the field acts both on the distribution
stated above, we will concentrate on carrier-phonon scattefunction and the phonon-assisted density matrix, a quantum
ing processes. Carrier-carrier interaction processes are akinetic model(QK) where the drift term in Eq22) has been
counted for on the mean-field level. This is a good approxineglected, andiii) the semiclassical Boltzmann model with
mation for sufficiently low-carrier densities as will be the usual field-independent scattering rates. It should be
studied in most of the cases. Furthermore, it should be notedoted that the drift term in Eq22) represents the action of
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the field “during” the carrier-phonon scattering process and
is therefore the essence of the intracollisional field effect.

At t=100 fs we notice that the unrelaxed peaks have§
drifted by about 9 meV due to the acceleration by the electric"c;
field. We clearly see the strong broadening of the phonon;

=100 fs [

replicas due to energy-time uncertainty in both quantum ki- % 400
netic cases when compared to the Boltzmann case as it i sl 200
well known from the relaxation in systems without electric , o S

field? The two quantum kinetic cases exhibit slight differ- o L

ences, in particular in the energy ranges between the unre
laxed peaks and the first phonon replicas.tAt200 fs the 50 -200
drift of the unrelaxed peaks is about 18 meV. In the quantum sign(k) x E(meV) 100
kinetic cases now the replicas due to one phonon emissiot
have essentially built up while the higher replicas are still
considerably broadened. The most interesting feature, whict
is shown again in the inset on an enlarged scale, is the dif-
ference in the position of the peak maxima of the first pho-
non replicas. While the full quantum kinetic and the Boltz-
mann case exhibit a good agreement, the QK case where th2
drift term in the equation for the phonon-assisted density
matrix has been neglected is considerably shifted. At first
sight this behavior seems to be surprising because the Bolt , ,
zmann scattering rates are obtained by neglecting the influ- i ' 0 2(hm)
ence of the field on the scattering dynamics, i.e., a solution of -
Eq. (17) without the field term in the Markovian limit. How-
ever, it can be understood from the following argument: In a sign(k)xE(,ﬁgv) 100
quantum kinetic treatment scattering processes take a finite 150
time which is described by the dynamics of the phonon- g1 2. wigner function of electrons at two different times ob-
assisted density matrices. During that time the carriers exp&ajned from a quantum kinetic one-band model for the case of the

rience the action of the electric field expressed by the driffejaxation of an initial Gaussian distribution in energy and space
terms in the respective equations of motion. If this action ofcentered at 120 meV.

the field is neglected as in the case QK, the replicas build up

at different energies. In the Boltzmann case, on the othegayssian both in energy and space coordinate in a one-band
hand, scattering processes are instantaneous events ap@ddel. Then we will come to the more realistic case of a

during the scattering process. For the case of a stationary fy|ly coherent way.

distribution function this “absence of the intracollisional Figure 2 shows the Wigner function for the case of an
field effect” has also been discussed analyticéilin a quan- initial distribution with excess energy of 120 meV centered
tum kinetic calculation which is relevant if the distribution ground z=0 at the timest= 100 fs (upper pant and t
functions are not slowly varying in time, however, it is es- — 300 fg (lower par} as obtained from the quantum kinetic
sential to take into account the influence of the field on thenogel. In Fig. 3 the corresponding results obtained from a
scattering process, i.e., the intracollisional field effect. solution of the semiclassical Boltzmann equation with the
same initial condition are shown. Tlkedependence is plot-
ted as a function of the enerdy’k?/(2m), however, sepa-
rately for positive and negativievalues because this allows
After having studied the influence of a homogeneous elecus to better interpret the phonon emission processes. With
tric field on the electron-phonon scattering process, in théncreasing time we see the motion of the positkveompo-
following we will now investigate the quantum kinetics of nents in positivez direction and of the negativk compo-
spatially inhomogeneous carrier distributions. Such distribunents in negative direction. Ink direction we observe the
tions may be generated, e.g., by means of a short-pulse opuildup of the phonon replicas due to the emission of optical
tical excitation through the fiber tip of an optical near-field phonons. In the quantum kinetic case these replicas exhibit
microscopé’ The resulting distribution will then be charac- the well-known time-dependent broadening due to energy-
terized by a localization i space determined by the excesstime uncertainty as in the case of a spatially homogeneous
energy and spectral shape of the laser pulse and a localizexcitation. Att=100 fs the first replica is strongly broad-
tion in real space determined by the electric-field profile re-ened; att=300 fs this replica has become sharp while the
sulting from the fiber tip. In order to concentrate on thesecond replica is still considerably broadened.
guantum kinetics due to the electron-phonon interaction To analyze the kinetics in a more quantitative way, in Fig.
rather than the kinetics of the carrier generation process wé we have plotted the momentum distribution as well as the
first study the relaxation of an initial distribution which is spatial profiles of the electron density, drift velocity, and

150 - 400

t=300 fs

=1
=]
ks

c

e

ONAANE

c
=
2

- 400

B. Quantum kinetic scattering processes
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=100 s [\ ics (BAL) obtained from a calculation without any carrier-

‘ phonon interaction. It should be noted that the drift velocity
and mean kinetic energy are only well defined at those posi-
tions where the density is essentially nonzero. In the ballistic

400 case(BAL) momentum is a conserved quantity and conse-
quently the momentum distribution is independent of time.
200 The spatial distribution splits into two peaks moving outward
with the drift velocity corresponding to the excess energy.
z(nm) The peaks remain approximately Gaussian. The profiles of
the velocity and of the mean energy are slightly inclined
50 = because the leading edge of the peaks is formed by the car-
sign(k) x E(meV) 100 150 . 200 riers with higher energy and thus higher group velocity. In
the Boltzmann caséBO) we clearly see the buildup of pho-
non replicas in the momentum distribution. Because we are
=300 fs | I .
at low temperatures, no phonon absorption is possible.
Therefore the high-energy decay of the momentum distribu-
tion agrees with the ballistic case: no carriers have higher
energies than without carrier-phonon interaction. This is re-
flected also in the spatial profiles. Also here the front edge of
the carrier density coincides with the ballistic case and both
the drift velocity and mean energy are always below the
corresponding values of the ballistic model. The situation
changes in the quantum kinetic case. In the momentum dis-
tribution energy-time uncertainty leads to the smearing of the
phonon replicas inbetween the two ballistic peaks as already
discussed above. However, with a small but clearly notice-
able probability it also gives rise to transitions to higher en-
FIG. 3. Wigner function(distribution function of electrons at ergy states above the initial distribution. In the logarithmic
two different times obtained from a semiclassical one-band modeplot we clearly see a nonvanishing contribution at energies
for the case of the relaxation of an initial Gaussian distribution inabove the initial distribution. They exhibit an oscillatory be-
energy and space centered at 120 meV. havior which reflects the function (AE)sin(AEt#)) which
in the long-time limit reduces to the energy-conserving delta
mean kinetic energy at the time= 100 fs which have been function. Indeed, the oscillation period in Fig(chis just
extracted from the Wigner function according to E¢@4)  27//100 fs which is 41.4 meV. The high-momentum com-
and(26). Here, in addition to the full quantum kinetic model ponents reflect themselves also in the spatial profiles. Be-
(QK) and the Boltzmann modéBO) where carrier-phonon cause of their higher group velocity those carriers move
scattering processes are treated in the Markovian, spatialfiaster and therefore give rise to a contribution to the density
local limit we have included the completely ballistic dynam- ahead of the ballistic peaks. In these spatial regions the high-

Wignet function

10
t=100fs (@] 107" (b)1
10° A A ~ ol \
o g 107 ¢ \
7 o \|
- c
10 105 L |
i s
. | ' T 5 ; \ ,l . FIG. 4. (8 Momentum distribution(b) elec-
0 : : —— 0 : — o i i i i-
-300 -200 -100 0 100 200 300 300 -200 -100 0 100 200 300 tror_u density,(C) drift yelocny, and_(d) mean ki
sign(k) x E(meV) 2 (nm) netic energy at the time=100 fs in a one-band
200 400 model corresponding to the Wigner functions in
| Figs. 2(QK) and 3(BO). The long-dashed lines
100 (C)_ 300 | K :' (d)_ refer to the ballistic case without carrier-phonon
2 7’ S ; ] interaction(BAL).
o
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1=50 fs broadening. This clearly demonstrates that, as can be ex-
pected, the typical quantum Kkinetic features of carrier-
phonon interaction are the same in the one-band and the
two-band model. In the latter, however, additional features
related to the dynamics of the polarization and, in principle,

400 also to the dynamics of the hole distribution are superim-
posed. This justifies the use of the simpler one-band case to

200 concentrate on the quantum kinetics of electron-phonon in-
teraction. The quantitative modeling of a realistic experimen-
z(nm) tal situation of course requires a two-band model.
sign(k) x E(mev) 90 C. Coherent phonon dynamics

Spatially inhomogeneous carrier distributions where elec-
=250 fs A tron and hole distributions do not exactly coincide are

\ sources for an internal electric field which, by means of the
Frohlich interaction, acts on the ions in a polar crystal and
leads to the generation of coherent phon®hé®Such a situ-
ation is realized in the scenarios studied in the previous sec-
tion where carriers have been generated locally in space with
a given excess energy. In this section we will study the dy-
namics of coherent phonons which are excited by the elec-
tron and hole distributions according to Ed.3). We will
again consider both a one-band model with given initial dis-
tribution and a two-band model including carrier photoge-
sign(k) x E(meV) : neration. In order to satisfy overall charge neutrality, which

150 - 400 is necessary to obtain reasonable results, the initial distribu-

tion in the one-band model has been compensated by a hole
distribution assuming, however, an infinite hole mass so that
the holes do not move. The initial spatial distributions of
electrons and holes have been chosen to be identical. We first
concentrate on the coherent phonons by switching off all
momentum carriers dominate and therefore both the drift vecontributions due to incoherent phonofig., all phonon-
locity and even more pronounced the mean kinetic energyssisted density matrices are switched affd then take into
assume values much higher than in the ballistic case. account also the incoherent phonons.

The previous results have been obtained within a one- In Fig. 6 we have plotted the component of the lattice
band model where we have studied the relaxation of a givepolarization along the axis of the quantum wismlid lineg
initial distribution. Of course, such an initial distribution has obtained at three different times in the one-bdtaft col-
to be created somehow. As already mentioned, the generatiaimn) and two-bandright column model without incoherent
of a spatially localized carrier distribution may be realized byphonon contributions. The excess energy of the electrons is
exciting the system by a short laser pulse through the tip of again 120 meV as in the previous section. The dashed lines
near-field microscope. To take into account this generatiomlisplay the charge density due to electrons and holes. Here
process we now consider the full two-band model where thave have chosen a low-density condition such that the self-
laser excitation is modeled by an electric field amplitudeenergy contributions due to Hartree and coherent phonon
which is Gaussian both in time and space. Figure 5 showgerms [Eq. (183] are negligible. Then, in the absence of
the resulting Wigner function of electrons at two different incoherent phonon parts the carriers move ballistically. In the
times for the case of excitation by a 100-fs laser pulseone-band model the density profiles of the electrons slightly
peaked at=0. As can be seen by comparing Figs. 5 and 2spread due to the free-carrier dispersion relation while the
the times 50 and 250 fs in the two-band model correspontioles with their infinite mass remain fixed. Inbetween the
roughly to the times 100 and 300 fs in the one-band casewo electronic peaks in the charge density we clearly notice a
with initial condition. Att=>50 fs the laser has been acting spatially oscillating lattice polarization. The physical origin
on the system roughly- 100 fs but the pulse is not yet com- of this behavior can be understood as follows: As the elec-
pleted. Therefore in addition to the broadening of the phonornrons pass by some point in space, they nearly instanta-
replica we observe the time-dependent broadening of thaeeously switch on an electric field at this point. This leads to
photogenerated peaks resulting from the coherent dynamiegew equilibrium positions of the lattice ions and, due to the
of the interband polarizatio?"®® At t=250 fs the pulse is fast switching, the ions start to oscillate with the LO phonon
finished. The generated peak and the first phonon replickequency around this new equilibrium position. The motion
have essentially reached their final width while, as in theof the electronic wave packet then translates this temporal
one-band case, the second replica still exhibits a considerabtescillation also in a spatial oscillation. Being a quasi-one-

\

I
O

A\

¥

FIG. 5. Wigner function of electrons at two different times ob-
tained from a quantum kinetic two-band model for the case of ex
citation by a 100-fs laser pulse with an excess energy of 120 me
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FIG. 6. Lattice polarizatior{solid line9 and electronic charge 200 o (C)
densities(dashed linegsalong the wire axis at three different times
obtained for the dynamics of a Gaussian initial distribution of elec- 60L H/”“‘““\\ : ; : IR R E R T TS
trons and holes with holes of an infinite effective méds& pane) Y g NV ; AR bbbt
and for the dynamics of electrons and holes generated by a 100-f a0 ;ﬁﬁ:{iff,;:* ; k Z j ;;;i/’ff”"'
laser pulse with an excess energy of 120 n{eyht panel. Inco- __ 20} ;;:E ; /1“::\ t ; ; ;111,11i::i:i:
herent phonon dynamics has been switched off. E | {;‘ o ‘ﬂ C‘ T
~ g E e T ———
dimensional system, the electric field between electrons anc " 20} ::1; : :ﬁ::*: : : : :::\\‘*****ﬁ“
holes decreases with increasing dist . This leads to T A PSS I iy
g distance IS leads 10 i 4ol IanITTI0wea s / F gy AR
slight reduction of the oscillation amplitude with increasing :;::\\\\u‘§§¢ : Y : : :::::::::::
distance from the origin. The right column in Fig. 6 shows  ~%| A VIR IR NR NN
the charge densities and the lattice polarization obtained in ¢ 0 50 100 150 200 250
full two-band model with finite hole mass where the carrier z (nm)

generation by a 100-fs laser pulse has been taken into ac-
counctj.d'_r_he fllmte d_urlaélon é)f the gen_erlatloP Erocless Ieadds_ tPadial (r) coordinate at the time=200 fs obtained for the dynamics
ah a_ itiona _Sp_at'a roadening mainly of t _e electron ISuf a Gaussian initial distribution of electrons and infinite-mass
tribution, the finite hole mass leads to a motion also of th&,gjes (a) z component(b) r component, andc) direction field.
positive charge density. Qualitatively we find the same be-

havior as in the one-band model, however, the spatial profiles o i
are more complicated due to the motion of the holes. WheRf the quantum wire is about 5.6 nm; thus we find that the

the holes pass by a given point they again change the electrphonon amplitudes extend to several times the radius into the
field which gives rise to an additional kick on the lattice ions.Parrier regions. As required by symmetry, on the wire axis
Because of the slower motion of the holes the resulting spathe lattice polarization has only acomponent. If we move
tial profile exhibits a smaller period than after the electronicaway from the axis, the polarization also acquires a radial
excitation. component. The different shapes of the radial and longitudi-
The electric field created by the electrons and holes is natal components already indicate a nontrivial space depen-
restricted to the quantum wire. Therefore also coherent phadence of the complete vector fieRjy,. This is shown in Fig.
non amplitudes are not only excited in the wire region, they7(c) where we have plotted the corresponding directional
also extend into the barrier regions. Figure 7 shows the fulfield of the polarization vector. It turns out that away from
spatial profile of thez componen{Fig. 7(a)] and the radial the wire axis the lattice ions perform a quite complicated
component [Fig. 7(b)] of the lattice polarization att motion because here also the direction of the electric field
=200 fs for the one-band case discussed above. The radi@ssociated with the moving charges changes with time.

FIG. 7. Lattice polarization as a function of longitudirfal and
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FIG. 8. Same as Fig. 6 but including incoherent phonon FIG. 9. Spatial profile ofa) electron andb) hole density at the
dynamics. time t=400 fs for the case of carriers generated by a 100-fs laser
pulse with an excess energy of 30 meV. Incoherent phonon dynam-
Taking into account the incoherent phonon contributionscs has been switched off. The curves refer to calculations taking
leads to an additional spatial broadening because now thgto account Fock termé), Hartree and Fock term#iF), as well
carriers do not anymore move ballistically. The conse-as additionally coherent phonofidF+CP).
guences for the dynamics of coherent phonons is shown in
Fig. 8 where the lattice polarizatigisolid lineg and charge . )
density(dashed linesare plotted again for the one-bafidft tgdes, in turn, affgct the dynamics qf electrons .and holes
column and two-band modelright column now including ~ SINce they _enter in the energy matrlc_es accordmg_ to .Eq.
incoherent phonons. The carriers which have emitted one dit83- In this section we will analyze in more detail this
several optical phonons are slower and therefore accumulaf§@dback mechanism. , _
inbetween the two ballistic peaks. Therefore the carrier den- 1N€ €xcitation of coherent phonons is proportional to the

sity in the ballistic peak decreases with increasing time reCarrier densitjsee Eq(18a], therefore also the feedback on

sulting in a reduced switching-on of the electric field. As canth® carrier dynamics will depend on the density. Since also
be seen, in particular in the one-band céeé column this the Hartree and intraband Fock terms are linear in the carrier

leads to an effective spatial damping of the coherent phono[;jensities, these contributions will be of the same order as the
oscillations. In the two-band case this behavior is even mucfoherent phonon contribution. In the previous sections we

more pronounced because here, as already mentioned abo}@/e always restricted ourselves to the low-density limit

the finite generation time leads to a spatial broadening durin§/N€re the influence of coherent phonons and Hartree-Fock
rms on the carrier dynamig¢except for the Coulomb en-

the generation and also the phonon emission already sta X X o
during the generation which leads again to an increaseflancement in the generation progesas been negligible.

broadening. This leads to much smaller time derivatives of\OW We will consider the excitation of a spatially localized

the induced electric field and thus to a strongly reduced exglectron-hole distribution with a higher density where these

citation of coherent phonons. The region with considerabld€Ms will come into play.

lattice polarization is here essentially confined to the region N Fig. 9 we have plotted the electrépart ()] and hole
where the carriers have been generated. density[part (b)] at the timet=400 fs for the case of exci-
tation with a 100-fs laser pulse at an excess energy of 30

meV. In order to concentrate on the effects of coherent
phonons and Hartree-Fock terms incoherent phonon contri-
As has been discussed in the previous section, space- abdtions have been neglected in these calculations. The curves
time-dependent electronic charge densities in polar semicomefer to different levels of the theolgee Eq(18a]: For the
ductors excite coherent phonon amplitudes. These ampldotted lines only the Fock terms in the dynamics have been

D. Phononic screening
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included. Physically this corresponds to taking into account 3 . . . . .
Coulomb enhancement and band-gap renormalization. We Ve (2) — —
see essentially a ballistic motion of the carriers. Due to their 2r Cg
much higher effective mass the holes are generated with a VR (2) e
much lower group velocity and consequently they travel < 1r s = Vi (2) ]
much slower. If we now switch on the Hartree terfassh [
dotted line$ the carriers experience the repulsion due to the ~_E« 0
effective field created by the carriers of the same sort as well .8
as the attraction due to the field created by the carriers of § -1
opposite charge. As a result of the repulsion we find a con- g 5
siderable broadening of the spatial profiles of electron and )
hole density. In addition, the maxima are shifted due to the 3
attractive forces: The holes are accelerated by the faster hl ’ 1
moving electrons while the electrons are slowed down by the 4 , , , , ,
holes. The solid lines finally refer to a calculation where 3
besides Hartree and Fock terms also the coherent phonon ' ' ' ' '
contributions have been included. We can clearly see that 2
they reduce the influence of the Hartree terms by reducing
both the broadening and the shift of the maxima. This al-
ready points to the interpretation that here the field created > 0
by the coherent phonons screens the interaction among the £ 1
carriers. =
To get more insight into this phenomenon, Fig. 10 shows E -2
for two different times the self-consistent potential in Wigner % 3
representation for the electron§(z) = —ed.(z) along the Q
wire axis[Eq. (349] which is equivalent to the solution of 4 t-4001s 7
the Poisson equatidiEq. (35)]. The corresponding potential 5L )l
for the holes is simply Vi(z)=ed(7) ¥ 0¥
=—VE(z). The Hartree contributiondotted line$ exhibits '§300 200 100 O 100 200 300

maxima at the position of the electrons which give rise to the
broadening of the density profile and minima at the position
of the holes which lead to the slowing down of the motion of |G, 10. Self-consistent potential for electrons at two different

the electrons. The coherent phonon contributiaashed  times for the same parameters as in Fig. 9. The curves refer to the

lines) exhibits essentially the same shape as the Hartree cOpfartree contribution\(a)‘ the coherent phonon contributio)dgp)‘
tribution, however, with the opposite sign and a smaller amand the total self-consistent potentialZ().

plitude giving rise to a total potentidbolid curve which is
indeed a screened Hartree potential. We want to point out
that the phonon oscillation time7® w o~115 fs is just of  order then gives rise to incoherent phonon contributions like
the same order as the spatial dynamics of the electron-holghonon emission and absorption processes. By transforming
system, thus the lattice displacement does not adiabaticalhe resulting equations of motion into the Wigner represen-
follow the motion of electrons and holes as has been seetation we have clearly identified the spatial nonlocality
also in the previous section. The calculations including cowhich turned out to be intimately related to the temporal
herent phonon amplitudes, however, describe the phononigonlocality. Different Markov-type approximations based on
screening of external as well as of Hartree potentials in alifferent assumptions concerning the slowly varying parts of
fully dynamical way. the dynamical variables give rise to different forms of the
spatial nonlocality.

The theory has been applied to the dynamics of the
carrier-phonon system after excitation with a short optical

In this paper we have presented a systematic analysis @ulse. In the presence of a static electric field it turned out to
the role of carrier-phonon interaction for the ultrafast carrierbe essential to include the drift knspace also in the scatter-
dynamics in photoexcited semiconductors in the presence afg dynamics if, as is done in the quantum kinetic approach,
spatial inhomogeneites. For this purpose we have extenddtie finite collision duration is taken into account. In the case
the density-matrix formalism for electron-phonon interactionof excitation of a localized electron and/or hole wave packet
which has been previously used for the study of spatiallywe have seen in thk-space dynamics typical quantum ki-
homogeneous systems to include arbitrary space depenetic features like energy-time uncertainty as they are well
dences both in the semiconductor structure and in the photdnown in homogeneous systems. Here, however, they also
excitation process. A natural consequence in the correlatiomodify the spatial dynamics because of the population of
expansion is the appearance of coherent phonon amplitudésgh-energetidk states which are not occupied in the semi-
in the first order of the correlation expansion. The secondlassical limit. The charge densities created by the drifting

z (nm)

IV. CONCLUSIONS
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