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Criterion for the size of the scaling regime for the metal-insulator transition
of doped semiconductors
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In the intermediate regime.<n<ncg the Fermi levelEr is above the mobility edge &, and below the
conduction-band edge &g in the so-called impurity band. A simple criterion is developed for the crossover
densityn., dividing the scaling portion from the more classical portion of the intermediate regime. The scaling
of the Hall coefficient determines the itinerant electron density, namelye Ry =n;=An.(n/n,—1)%. Using
the two-component modei,,.+n;=n, wheren;(n) is a smooth monotonically increasing function of the
doping densityn, one obtains a relation betweirandg and obtainsi.,=n./(1—g). This approach yields an
expression for the fraction of localized electrorS<(E;) n./n. for nc<n<ng. These predictions are
compared with the Hall, NMR, specific heat, and electron spin susceptibility data. This comparison suggests
for weak compensation that hg<n. ,<2n., while for stronger compensatian,>3n; .
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It has been known for decades that there are local mo- In the two-component model connected with the second-
ments on the metallic side of the metal-insulator transitionorder MIT atT=0 there are localized electrons with density
(MIT), and this fact is consistent with the two-componentn, . below the mobility edge aE. (E<E.) and itinerant
inhomogeneity model formulated by Mikoshibto explain  electrons with density; above the mobility edgeE>E.).

specific-hedt * and spin-susceptibilii’ data. In addition, The sum of these two densities must equal the net doping

density of itinerant electrpns _decreas%d toward_ Zermas i n.—n. The divergence of the Hall coefficiem,(T

_>|n0+' Mr(])reovei.r, CEfSﬁ "F‘?W'dth d"i&é hasdprov'ldetlj_l're- . —0) asn—n.+, wheren, is the critical density for the

sults on the scaling of the itinerant electron density. Histori- : o .

cally, as a functiongof doping densitythe behavior hgs been MIT leads to the notion the itinerant electron densityn)
- . . . scales to zero as—n.+ and suggests;(n) can be repre-

described in terms of three regim@ge review by Alexander sented byn (n) = Ang(n/n,—1)9, where is a constant co-

and HolcomBY): (1) n<n, where asT—0 the electrons are ... ) . ) .
) (1 ¢ _ efficient andg is the scaling exponent. Of interest here is the

all in localized states(2) n>ncg, where the Fermi level is densitv d d ) b
in the host conduction band3) an intermediate regime density dependence of,(n) asn increases above.. Let

where n,<n<ncg and the Fermi level is in the so-called US definéfi,c=nic/nc, which will be given by
impurity band.n. has been defined by the Mott criterion g

(nY3a* ~0.26, wherea* is an effective Bohr radiysand floc(X) =X+ 1=\ (X)9, (1)
Ncg~(16/m)n; by the Matsubara-Toyozawacriterion. At _wherex=n/n,—1. Physically it is plausible thaft,.(x) de-
the lower end of this intermediate regime the transport i eases smoothly and monotonically wittthe reduced den-
characterized by scaling behavior, which is best documente ty, asx increases. At some value &f which we denote as
by the scaling behavior afg{n>n.,T—0). Phillips® has x*f’,oc(x) will becbme zero. Physically one must have

called this scaling regime the phase or filamentary phase . . .
and has assumed the current is carried coherently, not diff Joc(X) =0 becaus@; <n. This behavior can bf guaranteed if
(x) has a minimum @f,,./dx=0) at x=x*. Note that

sively. Unlike magnetic phase transitions where the critical, loc . ) i ] T )
behavior and critical exponents may only be observed veryor X=X fio(X) increases withx—x*, which is unphysical
close toT,, the breadth of the scaling regime is remarkablyP&havior; hence the scaling regime fg(n) is limited to 0
large (up to 2n,) and the reasons for the large breadth of the<X<x* andx* provides a direct measure of the size of the
scaling regime have not been well understood. Below &caling regime. Fok>x* Eqg. (1) is no longer valid anah,
simple model is employed to provide a result for the breadtr=n. In doped semiconductors® represents the crossover
of the scaling regime characterized by a crossover densitgensityng, [ne,=n.(1+x*)] between scaling behavior and
Ne=nN./(1—g) whereg is the scaling exponent of the itin- more classical behavion.<n<n, defines the scaling re-
erant electron density; . The simplest interpretation of the gime, while n>n., denotes the classical regime, but the
Hall data [—1/eRy(n, T—0)=n;(n, T—0)=\n.(n/n, Fermi energyEr is still well below the conduction-band
—1)9] yields the scaling exponegt There is now an exten- edgeEcg. The conditiond f,./dx|,« =0 is equivalent to the
sive body of Hall data for Ge:SH,Si:As!® Si:P!*1"Si:B®  conditiondn;/dn=1 atn,, or that there is no slope change
and other MIT systems that provide experimental determinain n; vs n at ne,. Contrarily, if there were a kinKslope
tions ofg and\. However, the smooth behavior of on both  change at n., this would imply some change in the physics
sides ofn., also yields a relation between the prefact@and  not typically associated with doped semiconductors. Using
g. A comparison of this model's predictions with various f,.(x*)=0 anddf,./dx/,—« =0, one obtains

experimental data provides significant support for this

model. X*+1—-\(x*)?=0, (29
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FIG. 2. ni,c/n vs reduced density/n.— 1 for five values ofg,
FIG. 1. (8 \ versusg for K, =0 andK,=0.05.\ is symmetrical  namely 3, £ 3, £ and2 for K,=0. ForK,>0 the minimum in
aboutg=% for the former and slightly asymmetrical for the latter. n,,./n for A<\ ,{K,) moves above zero. These curves are only
The model yields\ ., =2 for g=3 for K,=0. (b) x* vs g for K, physically valid forx<x* =ng,/n.— 1.
=0 andK,=0.05. For a particulag, Eq. (38 givesx*«1—-K,.

either side ofg=3%. For the range ofy values shown in

1-gh(x*)971=0. (2b)  experiments 1.86 A\ <2. This indicates that in the region of
_ _ experimental interest only varies by about 7%, suggesting
The solution of Egs(2a and (2b) is straightforward and it will take accurate experimental results to confirm the pre-

leads to diction for \(g) given in Eq.(3b). It is also worth noting that
x*=(1/lg—1)"1, (39  if the impurities have a valencg other than 1(as in the
M,Si;_, and M,Ge,_, alloys one should replace. by

(AQ)V1-9=(1/g—1) L=x*. (3b) Zegh, WhereZqg is the effective valence of the metallic im-

purity. Figure 1 also shows(g,K,=0.05), which shows the

Equations (38 and (3b) demonstrate that the single- X\ values are reduced andg,K,=0.05) is no longer sym-
parameter scaling exponegptietermine* and the constant metrical aboug= 3.
coefficient\. Thus, withg and\ determined one can calcu-  f,,. has been calculated for five valuesgtbetweenrs and
late f|o(X) for x<x*. Sinceg and\ can both be determined £, and the results are shown in Fig. 2. The features of the five
from experimental results of the Hall data, the system is ovecurves arg1) the minimum atx* moves to higher values as
determined and the experimental valuesno€an be com- g is increased, but fog=3 the minimum is ak* =1 corre-
pared with the values obtained frognwith Eq. (3b). How-  sponding ton.,=2n.; (2) as the reduced density/n,—1
ever, the principal feature of the analysis is that it provides @ecomes smalf,,. heads toward unity, but note that the
potentially reliable calculation of,(x) that depends on the spread inf,. values at a fixed reduced density can be large;
single parameteg. (3) at a fixed value off,y (i.e., f,,c=3) the change in re-

The quantityf,,, does not have to be zero &t because duced densityn/n.— 1 with g can be more than an order of
there might be a small fraction of localized electrons thatmagnitude for a factor-of-2 change m (4) although the
remain localized well above.,. These might arise from curvesf (x—x*) are quadratic neax* for small enough
close donor pairs that are well separated from conductingalues off . the curves are not symmetrical abatit (which
networks(filamentg formed in the random system. i, (& would be better illustrated on a linear soal€he large sen-
constank is designated as the residual valueff at x*,  sitivity of f,,((x) to the value ofg is not surprising and can
Egs.(28) and(2b) are still readily solved yielding the results be useful for a comparison with certain types of data that
x*=(1-K,)/(llg—1) and Gg)Y*"9=(1-K,)/(Llg—1) vyield experimental information on the magnitude fgf. at
=x*. For x>x*f,.=K,=const, but note thatn../n  specific values oh/n,>1. As we shall discuss below, the
=K,(n./n) and thatn,,./n decreases asriivith increasing value ofg determined from the scaling of R4 (T—0) in a
n for x>x*. Certain experimental ddtauggesK, is small magnetic field may not yield the same valuegads observed
(<0.01) for weakly compensated Si:P. in H=0 experiments. Below we discuss several different

Figure 1 shows values of* and\ versusg in the regime  experiments and compare the experimental values of
0<g<1. Note thatx* increases wittg in a nonlinear fash-  with those in Fig. 2. Even fan/n, significantly larger than 2,
ion and diverges ag— 1. The known experimental values of there might still be some localized electrons that would per-
g lie in the range 0.349<0.69.\(g,K,=0) is shown as a sist deeper into the metallic regime. This can be addressed by

symmetrical function abouy=3 and slowly decreases on settingf,. to be a constark, at the minimum ak* instead
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of zero. The curves fof,(g,K,) will have similar shapes to TABLE |. Parameters from Hall data.
those in Fig. 2. Just as for the,=0 case the curves for
floc(@) vs n/n,—1 are only physically meaningful for Ne
X<X*. (units

fd(g=3,\) has been calculated for three values.of of 10') g AMK=0)  Nexpt  Neo/Ne
(1.95, 2.00, 2:01_3to investigate thg effects of When Ed. gp 352 036:0.02 1.92 197004 156
(3b) is not satisfied and is not uniquely determined by. ;. 352 044-004 1984 225 178

The values off,,; at the minimum are 0.05, 0.00, and g; 5 860 035002 191 193004 154

—0.049, respectively, and the minima are still closexto Si-Rde 4.06 045 1.99 4.0 1.82
=1. However, thex =2.05 case yields,,.=0 at x=0.64,

and the slope is finite, indicating for there will be a kink or 4.22 037 1.93 1.59
AN pel : g 1o €aKNKOr oo 0.168 0.6¢-0.1  1.857 157 3.22
finite change in the slope aof;(n) vs n for x<0.64 andx 0.144 183

>0.64. This illustrates the point that a larger value\ahan
that given in Fig. 18) can lead to unphysical behavior, while aReference 16
a smaller value ok than that in Fig. (a) leads to a minimum bReference 17'_ ‘Reference 14.
in foe(X) f_or _f,oc>0 ano_l is simulated by a finite value_ lﬁ_t . Reference 15. 9Reference 22.

The principal experimental approach for determining theigeference 18.
scaling exponeng has been from the divergence of the Hall
coefficient. The difficulty with the Hall measurement is the values of\ ¢,y since (1h)eRy(n=2n;,T—0)= ¢y The
application of a magnetic field that alters the wave functiongeasons for the 13% too large valuexgf, for Si:P(Ref. 179
of the itinerant electrons. The size of the electron wave packand the 100% too large value for Si:B are unclear. The values
ets can be estimated from the uncertainty principle. The unef nc,/n. range from 1.55 to 3.2. The large value for Ge:Sb
certainty ink in the vicinity of ke will be of order ke is due to compensation, which implies there will be more
=2m/\gs, leading to a wave-packet sizex>\ gg/27. For  localized electrongand local momenjsto larger values of
electrons with smallek values the wave-packet size will be "/Nc., which is clearly demonstrated by the data for Ge:Sb.
correspondingly larger. However, the magnetic length ~ The Si:P and Si:As datévery weak compensatigrshow
=(ficleH)¥?is 81 A at 10 T and 810 A at 0.1 T. For ad- from the Hall data than.,/n;>1.5 but the data do not ex-
equate Hall voltages it is difficult to go to fields well below tend to large enough to see the high density resuif=n
0.1 T. For Si:As one hasgs=150 A at 2n, and 1500 A at  (for K,=0). The early extensive data of Yamanouchi, Mi-
n=1.0In.. For magnetic fields in the 0.1—1-T rangg will  2uguchi, and Sasakiover a range of 100 in donor density
be the same order or smaller than the wave-packet size arfgearly shows this crossover. For>6x10"%cm’ nj=n,
the itinerant electron wave functions will be affected by theWhile n; drops rapidly belown for n<4.33x 10'%cn.
magnetic field. Other MIT systems such as Si:P, Si:B, Ge:As] hese densities were determined by RT Hall res(atsdo-
Ge:Ga with smaller values of, will have larger values of Nors ionized and —1/eRy=n, neglecting the HalA factor
Ags and the problem will be more severe. It is not really correction @~1.2—1.3 for Si:P with 1¥<n<10). Ne-
possible to avoid this problem for barely metallic samplesglecting A yields 2.88<n.<3.12<10'¥cm® and suggests
close to the critical density,. The magnetic field case rep- that 1.4<nq,/n.<2, which agrees qualitatively with the re-
resents a different universa”ty C|a$gnitarw, and it is sults in Table | for Si:P. These data were at 4.2 K and will not
known that the scaling exponent of the dc conductisiti) give a reliable value ofi;, but the results are reliable for
increases in a magnetic field for SiRef. 19 and Si:B(Ref. ~ N>1.3n; whereEg—E >kT.
20). It is reasonable to suppose the Hall carrier density ex- The zero magnetic field transport data suggest the diffu-
ponentg(H) will also be affected by a magnetic field, but Sivity D=vZ7/3 scales with an exponent twice that for
this has not yet been documented experimentally everrg(n, T—0)=(Eg— E.)Y2, which when combined with the
though it has been shown for Si:P and Si:B that the conducEinstein relationeD=3(Er—E.)x suggestsy does not
tivity scaling exponens(H) increases from to near 1 for  scale. The Boltzmann-Drude resutg.=n;eux then implies
large magnetic fields in the 8-T range. However, one carhat n;(n/n.—1)¥2, g=3%, andn./n.=2. The scaling of
now argue that irH=0 the exponeng should be; from  the excess CESR linewidth vyieldsAH,p<1/7,
various zero field experimental results and from the theoret=N;ve(0o), whereN;=n; for no compensation. The experi-
ical prediction of Phillips! mental result? for Si:As lead tog=0.45 and for Si:Py

Table | gives the experimental valuesg@ind\ and the =0.4, leading to 1.66 n.,/n.<1.82. In the scaling regime
calculated values of(g) and ng/n. from Egs.(3b) and kgl<1 and this quantity scales to zero ms-n.. The in-
(3a), respectively. The overall agreement is satisfactory, buequality | (n)<d(n)<\4g(n) is obeyed, wheré(n) is the
it takes very accurate data and a reliable value db obtain  mean free pathd(n) is the mean donor spacing, akgg(n)
good agreement. The best agreement is for’8ig¥As, and is the de Broglie wavelength associated with the itinerant
Ge:Sb, but the latter case involves significant compensatioalectrons. Just abowve, I(n)<<Ag4g(n) and the size of the
(K~20%). However, using the smaller valuergf reported  itinerant electron wave packets is very much larger tifan
by Ootuka, Matsuoka, and Kobaya&hior Ge:Sb improves [I(n)=v3(D7)*?]. Thus, the scaling regime represents dif-
the agreement fax considerablyg can be affected signifi- fusive behavior, contrary to the Phillifsassumption of co-
cantly by small errors im. .2 Errors inn, directly affect the  herent conduction in the filaments.

®Reference 23.
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Before discussing other types of data one should mentiopauli susceptibilityyp for itinerant electrons is valid fon
a different approach of dividing the intermediate regime i”t0>nco, but a modified scaling form must be employed for
a scaling regime and a metallic regime given by Shlimak<p_ . These authors used a Curie-Weiss form for the sus-
et al”® These authors suggest a scaling region followed by @eptibility of localized electrons rather than the more suc-
metallic region with a crossover between the scaling an@essful treatment of Bhatt and %8ef a wide range of an-
metallic regions occurring at a value of(n>n.,T<1K) tiferromagnetic Heisenber@d(R;;) and xo(T)*T~ ¢, where
=0, Whereo,, is Mott’s minimum metallic conductivity. « is near 0.6, but some d4tauggest a density-dependent
Based on Ge:As data they obtaig,/n.~1.27. From earlier ~a(n). The Si:P electron spin susceptibility data yield 0.35
data they suggest a ratio 1.26 for Ge:Sbh and 1.08 for Ge:Ga<g<0.57.
If this same criterion were applied to Si:P and Si:As one The NMR data of Brown and Holcombor 3P show a
would find ratios of 1.0059 for Si:P and 1.0054 for Si:As. mean Knight shift(K) that increas as decreases toward
This represents about a factor of 50 riin.—1 for these 2n., and these authors note the lack of evidence for local
different systems, which provides no evidence for universalmoments. This is consistent witlh>n., for their samples
ity. In all of the systemso(n>n.,T—0) exhibits scaling and K,~0. Alloul and Dellouv& performed a particularly
behavior to much larger values ofn,, namely of order 2 interesting3P NMR study spanning the MIT for 0.%5
for weakly compensated Si:P and Si:As and to even largexxn<21n.. They observed thaK) increased with decreas-
values for compensated Ge:8hrhe Ge:As data in Fig. 2 in ing n down to 1.h, with no apparent change in behavior
Ref. 25 shows no evidence of deviations from scaling up thear 2. They also observed a substantial decrease in their
n/n.~1.6. However,ag(n>n.,T—0) is not as sensitive a 3P intensity measured by=n;/n, namely, the fraction of
measure of the crossover from scaling as the other measuriginerant electrons. When this is convertedidn, the com-
ments discussed herein. parison with the above two-component model is satisfactory

The Si:P specific hedf and susceptibility dafagive in-  qualitatively, but leads to values df in the range?<g
formation on the density of localized momersote that < 0.9, which is too large for weakly compensated Si:P. These
nv<nNjec Since some donor pairs and even clusters withmeasurements are at much larger magnetic figitis 2 T)
very large exchange coupling have negligible local mo- and the lowest temperaturd € 1.65 K) is not low enough
menty. Paalaneret al? estimaten; /n=0.25 and 0.10 for just aboven, where there is a significart dependence of
their 1.09; and 1.25. samples when all the electrons are x(T). In additionx is still less than 1 at 8, (f,c~0.39),
localized forn<n.. From Fig. 2 these values would corre- which is consistent with significant compensation and a
spond tog in the 0.33-0.37 range ifi y=n,,, but with  larger values ofy.
slightly larger values fon,y,<n,.. From specific-heat mea- In summary, the two-component model and smooth varia-
surementgincluding the Schottky anomaly results in a fixed tion of n;(n) through the crossover density,=n./(1—g)
magnetic field Lakner and v. Lbneysef obtain for a vyields a relation between the scaling exporgand the pref-
sample close to 2; n; /n~0.003 (1 /n.~0.006). From actor\ and permits the calculation &f,.(n)=n,.(n)/n, for
Fig. 2 this yieldsg~3+ € (€<0.02). Despite this possibly n.<n<ng,. The comparison of this model with a large body
fortuitous agreement witg= 3 the results in Ref. 4 do not of experimental data, with particularly good agreement for
yield a maximum inny at n; but rather in the vicinity of the Si:P and Si:As Hall data, suggests the validity of the
0.6n.. At T=0 the maximum im,,. must occur ah.. The  model, providing a simple explanation for the large breadth
Quirt and Markd Si:P spin susceptibility data from ESR of the scaling regime between, andn.,. The physical sig-
measurements shows virtual Pauli behavior for-1.3  nificance is that scaling expressions must be used for physi-
x 10'%cm®; however, they report for a 5:910" sample cal quantities such &g —E., 1/eRy, D, kg, the mean free
(n/ng~1.58) n_, /n~0.14. From Fig. 2 this corresponds to pathl, the density of stateBl(Eg), and yp in this scaling
g~0.57. However, it should be emphasized the standardegime.
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