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Hubbard model in one dimension with a general bond-charge interaction:
Analytical ground-state solution for the pairing of two particles
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In this work we solve a general Hubbard Hamiltonian for two interacting particles in a periodic and
nonperiodic infinite one-dimensional lattice, using a real-space mapping method, the renormalized perturbation
expansionRPB), and the Green-function technique. This Hamiltonian considers a general bond-charge inter-
action, the on-site interaction, and the general intersite interaction. The real-space method is based on mapping
the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding problem in a
higher-dimensional space. Analyzing the periodic and the quasiperiodic lattices in this new space, we obtained
the analytical solution for the binding condition at the ground state. Our general results for the periodic chain
reproduce completely the limit cases of the numerical solution obtained previously and those obtained in
reciprocal space
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[. INTRODUCTION ing different approximations. One of the most common tech-
niques is the mean-field approximatigMFA), which has
The one-dimensional simple Hubbard model is the protobeen used to analyze different probletfisince with this
type of an exactly solvable model for correlated electrons irféchnique the many-body problem can be reduced to a one-
narrow-band systemls> where at half-filling the ground state body problem in an effective medium. However, it is well
iS found to be antiferromagnetic and insu'ating for a repu'_knOWn that the MFA is not sufficient to describe electronic
sive potential. The other exact solution for the Hubbardcorrelations, because the fluctuations are not included within

Hamiltonian is the case of an infinite-dimensional sp’ace.this approximation. Another useful technique to deal with the

The exact solutions, particularly those obtained using the Be-ubPard Hamiltonian is the slave-boson formalitiHow-

the ansatz, have brought very important progress to the urEVer, since in this formalism the Hilbert space of fermion

derstanding of strongly correlated systems. However, th<§tates is replaced by an enlarged Hilbert space of fermion

conditions for integrability using the Bethe ansatz are veryand boson states, approximations are still necessary. On the

restrictive, and only a very limited class of realistic modelsOther hand, quantum Monte Carlo technicidesrovide a

) X . . N natural framework for numerical calculations in strongly in-
can be solved with this technigdéor instance, it is difficult gy

1o include additional int " in the Hubbard model teracting electron models, but these techniques have been
0 Include additional interactions [n the Rubbard model SO,seq only for small clusters. The renormalization group
that the resulting Hamiltonian is still integrable.

_ _ _ method® has been used for very large systems. This method
The Hubbard modeis the simplest used to describe cor- onsists of constructing iteratively a variational ground state
relations in narrow-band systems and has been studied Ky dividing the system into many cells. Since for each step
tensively. However, even when the Hubbard model is conpnly the lowest-lying energy states in each cell are taken into
ceptually very simple, this model is very difficult to solve in account, sometimes the results are far away from the exact
general with few tractable limits. When bonding dominatessolution. Finally, the exact diagonalization method is the
we have the so-called weak-coupling limit, which leads to amost desirable one. However, this method is applicable only
noninteracting electron gas and is therefore fairly well underto small systems, since the dimension of the Hamiltonian
stood. But even with weak coupling there are some surprisesnatrix increases very rapidly with the number of sites and
For a bipartite lattice at half-filling, an infinitesimal short- the number of particle¥
range Coulomb repulsion drives the system through a metal- The diluted limit of the Hubbard model has been previ-
insulator transitiorf,a result that is not contained in the free ously studied by analytical and numerical meth&4¥:*8in-
electron description. Strong-coupling limit is hardly under-cluding different kinds of disordé¥?* and also the bond-
stood at all. At half-filling, the model maps onto an insulat- charge interactio”>~2°> However, a solution for the general
ing spin-half Heisenberg mod®lIf the charge density is Hubbard Hamiltonian has not yet been given, even for the
away from half-filling, the behavior remains a mystery. Thislow-density limit.
model has been applied successfully to describe some new In this Brief Report we wish to address the low-density
electronic phenomena where electronic correlations are verymit, two particles in one-dimensiondllD) periodic and
important, such as the metal-insulator transitidtinerant  quasiperiodic empty lattices. An analytical solution with a
magnetisnt charge-density and spin-density wavemd lo- general Hubbard Hamiltonian, using a real-space mapping
cal pair formation, which may play a significant role in the method, the renormalized perturbation expan$RRE), and
explanation of the high, superconductot$!! and super- the Green-function technique, is presented.
conductivity in heavy-fermion systems. In Sec. Il we give a brief description of the Hamiltonian
The Hubbard Hamiltonian has been widely studied by ustogether with the generalization of the mapping method,
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which allows us to diagonalize exactly the general Hubbard
Hamiltonian, and in Sec. Il we present results and a discus
sion of the analytical solution for two interacting particles in
1D periodic and quasiperiodic empty lattices. Finally, in Sec.
[V we summarize our results.

Il. THE MODEL AND THE MAPPING METHOD

The Hubbard model is the simplest model that is able to
describe electronic correlation in narrow-band systems anc
was obtained by Hubbatdrom the general Hamiltonian

H= 2 ti,jci-t—ocj,o
(i.j).o

+% 2 <ij|v|k|>CiJ,r¢er+,g’C|,o"Ck,0'1 (1)
i,j.k 1,00
by making some approximations in the interaction term. This
Hamiltonian has been called the general Hubbard Hamil-
tonian and will be considered here to study the problem of
two correlated particles. In Eql), ciT’U (ci ) is the creation

(annihilatior) opergtor W'th_ spinc=1 or | at S'te." <"J,> FIG. 1. Geometric representation of the two-particle states for a
denote nearest-neighbor sites, and the transfer integré8  periodic chain. The states are represented by circles with site energy
written ast; ;=t; ;=t for a periodic lattice. The parameter jngicated inside. The direction of the projection procedure is shown
(ij[v[kl) is the matrix element of the Coulomb interaction py dashed lines. The final chain is formed by effective states, rep-
with respect to the Wannier functions at the siig$, k, I. It resented by ellipses, and the effective hopping parameters.

is worth mentioning that in principle, the general two- ) o
particle interaction parametéij |v|k1) is positive because it t-U-V extended Hubbard model, which has been studied in-
is a direct Coulomb integral, but it could be negative if ant€nsively by analytical and numerical methods. .
attractive indirect interaction through phonons or other N order to find an analytical solution of E(S) we will

. L ; -~ Mse the mapping method, previously introduced and ex-
g%i?g:rﬁt)e):ggﬁrs?gﬁ is included and is stronger than the dlreérglained in detail in Refs. 17, 26 for different lattice topolo-

In this work, we will consider the matrix elements of the 2'°*: The states assoc_|ated with our Hgmntonlz_an given by
interaction as ' Eqg. (3) have a geometric representation in a periodic square
lattice (see Fig. 1, which can be described by a one-body
tight-binding effective Hamiltonian with ordered site and

Bji—j for k=i and I=] bond impurities. This new one-body Hamiltonian is written

(ijlvkl)=

Aty for j=I, (i,k) and (i,l)y, or (I,k),,  as follows?’
2
together witho’ = — . Taking into account these interac- H:Z EibiniJriZ Ti,jbinM )
tions one obtains the following general Hubbard Hamil- !
tonian: where the operatds creates the many-body stat&, rep-

resents the self-energy of the two-particle stésee Fig. 1,
andT; ; is the hopping amplitude between nearest-neighbor

H=t 2 C;r,ocj,o+%2 Eji—jjnin; two-particle states. Sites in Fig. 1 represent the two-body
(Liyo h states and not the usual Wannier wave function. A simple
At,, S way to obtain the solution is to take advantage of the trans-

+ - > Ci oCrk.oM o (3)  lational symmetry of the site and bond impurities and project
(UL the two-dimensional lattice of states onto a linear chain of

wheren;=n; ;+n; | with n, ,=c{ c; , and the on-site and effective states as is shown in Fig. 1, wherg
the intersite interactions are given Ig;_; for i=j andi =2t cosa/v2) and ;= 2At; cosalv2), the lattice param-
+j, respectively(i,j), means that andj are mth nearest etera=1 andK is the wave vector in the projection direc-

neighbors(when m=0 we havei=j). The prime on the tion

third term indicates that terms already cqns_idt_ared previously IIl. RESULTS AND DISCUSSIONS FOR TWO

for eachm should be excluded and that, is limited by Eq. CORRELATED PARTICLES

(2). At,, is the bond-charge interaction considering many

sites, which may be viewed as a general density-dependence A. Analytical solution for a periodic chain

hopping. The special cagg, ;=U fori=j, E;_;=V fori In order to obtain the ground-state analytical solution for

and j nearest neighbors andt,,=0 corresponds to the two interacting particles in a one-dimensional periodic lat-
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tice, we will use the renormalized perturbation exparéion The limit casek;=0 in Eq.(7) gives the binding condition
to solve the new effective tight-binding Hamiltonian given obtained by Marsiglio and Hirsctf.The same condition was
by Eg. (4) and the impurity chain represented by ellipses infound within the BCS theory for a constant density of states
Fig. 1. model in the low-density limit.

Let us consider, in the impurity linear chain represented Including the next-nearest-neighbor interaction, the con-
by ellipses in Fig. 1, the nearest-neighbor interaction, whichdition in our impurity linear chair(Fig. 1) is

give us the following case:
Bi=E;=0 for i=3. (8)

Bi=Ei=0 fori=2. 5 . . . . .
For this case, we can obtain the following condition for bind-
The Green function for the effective linear chdffig. 1) at  ing particles in this interaction regime:
the central site is given by

1 \/ (1+kp)2
BG(0,0:) = , (1+e€g)(1+€)+(1+€p) l_—2+62—(1+k2)2 -1

3(1+ko)?
<kg. €)
X— %61_ %(1"‘ kl)z(xi \/Xz—l)

X— €0
(6) From this equation, the binding condition given in E@)
B _ _ . . can be obtained by using,=k,=0.
wherex=E/B, €,=Eo/B, €=2E;/B (valid for i>0), and The solution for the general case, or the general impurity
ki=pi/p. Here, we have writtey, €;, andk; in a general jinear chain shown in Fig. 1, can also be obtained. The gen-
way in order to include all the cases we will study bellow.

eral condition is given b
For the ground state we hag=2g3, with =2t and 3, g y

:ZAtl . ﬁi:EiIO f0r i>n+l, (10)
Finding the poles of Eq(6) for x>>1 andt<0, we can _ . _ .
obtain the condition for binding particles wheren is thenth-nearest-neighbor interaction that has been

considered. The Green function for this general impurity lin-
V(1+€)(1+€e)+(1+eg)[1—(1+ky)?]—1<ky. (7) ear chain at the central site is

1
BG(0,0;x)= . (11
3(1+ko)?
X_EO_
- F(1+ky)?
—le—
’ . F(1+kp)?
X— 56— :
X—(1/d) e,— (M/2)(1+k,)2(x= X2~ 1)
|
Here,d=1, m=2 for n=0, andd=2, m=1 for n>0. N(n)=N(n—1)+N(n—2),
B. Analytical solution for a Fibonacci chain N, (n)=N(n—1) (12

A Fibonacci sequence consists of two lettArandB, and
the entire sequence is generated by successive application of Ng(n)=N(n—2).
the substitution rule. The first few generations &g= B, S )
G,=A, G,=AB, G;=ABA G,=ABAAB..., G In the quasiperiodic limit f—<), the ratio N, (n)/Ng(n)
=G, ,G,_, fori=2, whereG; indicates the generatignin  converges toward the golden mea (V5+1)/2.
a Fibonacci chain, the lette’® and B from the Fibonacci To study the electronic correlation of two particles with
sequence may denote two different atgigise model or two  antiparallel spins in a Fibonacci chain, we use the general
different bonds separating identical atorfiansfer model Hubbard model and the real-space mapping method de-
In this work we will study the transfer model, where the scribed above to obtain all the state configuration as was
hopping integrals take two valués andtg corresponding to  done for the periodic chain. Here, the states have a geometric
a large bond I() and a short bondS), respectively. In the representation in a square lattice with bond-quasiperiodic
transfer model the number of large bondNis(n) and the  symmetry in different directions, which can be described by
number of short bonds idg(n). The total number of bonds a one-dimensional tight-binding effective Hamiltonian. For
in a generatiom is represented b)(n). These numbers are the ground state we can approximate the projection of the
related by two-dimensional lattice of states onto a chain of effective
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states, similar to the projection given in Fig. 1 for the peri-space mapping method, the renormalized perturbation expan-
odic chain. In the ground state of the extended Hubbardion, and the Green-function technique. We obtained the
Hamiltonian, for the above chain of effective states we haveground-state analytical solution for the pairing condition of
Eo=U, E;=V, E;=0 for i>1, B;=0, and B=2tJ(foc  two interacting particles in an infinite one-dimensional peri-
+1)/(o+1)] with t, =ftg (see Fig. L In our limit of low  odic and nonperiodic empty lattice. In order to find the solu-

concentration, the condition for pairing is tion for the general Hubbard Hamiltonian, a generalization of
the mapping method has been done. In the periodic case, the
V(1+u)(1+v)—1<0, general expression for the pairing condition obtained in this

whereu=U/B and v=2V/B with B=283. The effects of paper reproduces completely the limit cases: the numerical
quasiperiodicity, in the analytical expression for the pairingresylts_ and those coming frqm the reciprocal space. The non-
condition, are introduced through the effective hopping paperIOdIC case an_alyzed n this paper was the F|b(_)_naCC| chain,
rameter B, which reproduces the results for the IOeriodiCwhere an analytical solution for the pairing condition of two

chain whenf=1, ort, =ts. interacting particles is also given.
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