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Exact relations between macroscopic moduli of composite media in three dimensions:
Application to magnetoconductivity and magneto-optics of three-dimensional composites
with related columnar microstructures
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Generic three-dimensionéBD) exact relations are found between macroscopic or bulk effective moduli of
composite systems with related microstructures. These relations can be established between effective values of
material coefficients of the same typeg., conductivity and conductivityas well as between different types
of material coefficientde.g., conductivity and permittivily As example of possible application of these
relations, a set of Keller-like quasi-3D relations are derived for the case of columnar-shaped parallel inclusions.
The microstructure in the two samples can, in general, be different. In particular, exact relations between bulk
effective magnetoconductivity tensor components of a pair of composite samples with interchanged constitu-
ents and different columnar microstructuregs well as between two composites with the same host but
different inclusions, e.g., perfectly insulating and perfectly condugtng found for general orientations of the
applied magnetic field. Those relations are tested by comparing with a number of numerical calculations of
macroscopic dc and ac response in such systems.
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. INTRODUCTION microstructuré®!’ (i.e., macroscopically inhomogeneous
media that are uniform in one fixed directjorDespite the
The macroscopic or bulk effective moduli of a compositefact that the geometric or structural characteristics of such a
medium depend on its detailed microstructure, and can usumicrostructure are 2D, the presence of a strong magnetic
ally be calculated only approximately. Notwithstanding thisfield (i.e., conductivity tensors are nonscalaan change the
generic feature, there exist some exact, microstructurecharacter of current flow in such a system from 2D to
independent results for such moduli in the case of twostrongly 3D, and thus invalidate the relations that were found
dimensional2D) composites. These go back to a pioneeringsor real 2D system&.More specifically, we considered the
paper by Keller where it was shown that, in a 2D rectangulagase where the magnetic field is perpendicular to the colum-
periodic array of inclusions, the bulk effective principal CON- nar axis, i.e., an “in-plane” magnetic field.
d%(gt'v't'es of th(ee) phase interchanged ~composites” yoe \e derive generic 3D exact relations between effec-
Tyy (_1‘71"72) and o3, (02,0) are related in the following e moduli of composite systems with different but related
way: microstructures. These relations can be transformed to
quasi-3D Keller-like relations when the composite has a co-
lumnar microstructure and an external magnetic field is ap-
Here the two composites have tkame rectangular micro- plied in certain directions.
structurebut the two constituents, with scalar conductivites ~ The remainder of this article is organized as follows. In
o1, 05, have interchanged their spatial locations. The ternSec. Il we summarize the required theory and write down
conductivity should be understood in a broad sense of thiglifferential equations for the local electrical potential in a
word, i.e., it can refer to either electrical or thermal conduc-pair of two-constituent composites characterized by different
tivity, electrical permittivity, magnetic permeability, etc. This values of the two constituent conductivity tensors as well as
Keller theorem(in Russian literature it is known as the different microstructures. By comparing these equations, as
Dykhne theorerf) became a powerful tool in many studies well as the expressions for the two macroscopic responses,
of transport problems. Thus it is no surprise that attemptsve derive exact relations between the macroscopic conduc-
were made to extend it in various wa$s' including even tivity tensors of the two problems, which hold when certain
application to the fractional quantum Hall efféétt®> How-  relations exist between those problems. These relations are
ever, all of these developments were confined to the case ehlid for arbitrary dimensionality, and in particular for 3D
a strictly 2D compositéSchulgassef and Bergmat? have  composites. In Sec. Il we consider a special case of 3D
even proved the “nonexistence of a Keller-type theorem insystems, namely a composite with columnar microstructure.
three dimensions). For such systems we derive some Keller-like exact relations
Recently we have extended Keller's theorem to a specidior a pair of composite samples withterchanged phases
case of three-dimensiondBD) systems with a columnar and also for a pair of composites with theme host constitu-
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ent but different types of inclusions.g., conductor/perfect first and second problems, respectively. Equati) takes
insulator mixture and normal conductor/perfect conductoithe following forms for these two problems:
mixture. We illustrate our results by comparing them with

numerical computations of magnetoconductivity in such (2) ¢ 80 4z ,;¢
composites. Section IV provides a summary of our main
resu?ts. P ’ a o &23022;3 2 &XB ak o (Z)U(ﬁzﬁ) ‘9X &XB
(2.9
IIl. COORDINATE RE-SCALING AND GENERAL
@ 5 J J
RELATIONS IN THREE DIMENSIONS Hap g Map , oY
ZE V@@ o7 6z, <3 92" 6167 '
The electrical transport on the microscale is assumed to “© VHaatpp 7%a%%p P NHaalpp 7%a B

be describable in terms of a local curl-free electric field (2.9
E(r)=V¢(r) and a local divergence-free current density
J(r), which are related to each other linearly by means of g2,

local resistivity tensorp(r) or a local conductivity tensor

We would like to make these two equatiof®.4) and
5 identical. That can be achieved by assuming that

a(r)=1/p(r): I(r)=o(r)-E(r). We can express(r) in oQ=-03), pwl=—-ul), for ap, (2.6
terms of the constituent conductivity tensersand the char-

acteristic functionss;(r) [6,(r)=1 if o(r)=0;, otherwise 01=01, .7
0,(r)=0]. In the case of a two-constituent composite me-

dium we can write a(r)=016,(r) + 0,0,(r) =0, 00as _ Optap 28
—8a64(r), So=0,— o4. Using this notation, the usual dif- \/05530223 \/Mfﬁ#ﬁfg

ferential equatiorV-o-V¢=0 can be written as ) N
If Egs. (2.6)—(2.8) hold, and if the same boundary conditions

V-0, V=V -550,-V. (2.1 (BC) are imposed uporp and ¢, then these two potential
) . ) ~ fields will be identical. It is clear that BC should be the same
The local electric potentia¢ can be found by solving this i, the new, re-scaled, coordinates. However, since the values

equation with appropriate boundary conditions. f the effecti ductivities:. & th .
The bulk effective or macroscopic conductivity tensor of O the ENECUVE CONGUCHVILIeSre, e are € Macroscopic
moduli of the samples considered, and therefore do not de-
the composneae, as well as the bulk effective resistivity nenq on the applied external fields or macroscopically uni-
tensorp=1/c,, are defined as providing the linear relation- form BC, we will not discuss here how BC in the re-scaled
ship between the volume averages of electric field and cufeoordinate system relate to BC in the initial coordinate sys-

rent density(Jy=o-(V¢(r)), where() denotes a volume tem. We can expect that the effective conductivity tensqrs
average over the entire system. From this we can write thgnq 7, of the unrescaled physical problems will also be

following expression foir : equal.
Starting from Eq«(2.2) written in the new re-scaled coor-
(U(e% 0(2/;)_ - S0 (.Y, (2.2 dinates[see Eqs(2.3)] we get the following pair of equa-
¢ ¢ ay Y ! . H .
Y tions:
where we have introduced the notatief®)(r) for the elec-
. . . . . . L (€)
trical potential field in the composite which satisfies oo IpP\ Y 00 oy o 9
(V$P))=Vr,=e,, wheree; is the unit vector alongs. ,/g(fggﬁ(?g X S \/ga(?gg(y?y) 1 x|
We now write the partial differential equatiaf2.1) for (2.9
two different problems: The first is characterized by the po-
tential ¢ and conductivitiesr, o, while the second is char- oul  [au®\ ity (M(B)
acterized by the potentiah and conductivitiesw, du. In MOMO) P B) (2) )
order to transform these equations into similar forms, from Paalps \ 92 Vigau &ZY (2.10

which we will attempt to find relations between the two
problems, we execute a rescaling transformation of the CalFrom these equations, together with E28), it now follows

tesian coordinates in each problem: that the macroscopic analog of E.8) is also valid:
X =x,INo?B, zl=2,1u?. (2.3 50_(9) 5M(e)
= 2.1
It is important to note that the two rescaling transforma- NG (2) Nmemsa (210

tions are different, in general. Therefore the microstructure,

i.e., the shapes of the inclusions, their separations, even tkhis equation relates the macroscopic responsesu, of a
symmetry, will change in different ways for the two prob- pair of two-constituent composite media which differ in their
lems. We therefore introduce the notatiofigx’), ©1(z’) microstructurdg 6,(r) vs ®(r)] as well as in their constitu-
for the characteristic or indicator functions of the rescaledent physical(electrica) properties.

184416-2



EXACT RELATIONS BETWEEN MACROSCOPIC MODUL. . . PHYSICAL REVIEW B 67, 184416 (2003

This result can be easily extended to the case of multicon- L L L B
stituent composites, including the extreme case where the

local conductivities depend continuously on the coordinates. 15 _

The pair of microstructures under consideration are re- - O —_— O .
lated to each other by the coordinate rescaling transformation i T
of Eqg. (2.3). Thus, ifL, is a characteristic size in the direc- o i @) / gle) 1
. . . . - b [ MZZ ZZ 7
tion « in the first system and, is the analogous value in the Rl R L s .
second system, then these lengths will be related to each jf L SN i
other by - A g

Lo=L Vu2o'?) (2.12 os | A 1

If the tensorsa, and u, have diagonal elements which are
not proportional to each other, then an initial spherical shape T B B B

of inclusions will be transformed to an ellipsoidal shape. In 0 0.5 1

particular cases, however, it is possible to have a situation H

where the shapes of inclusions remain unchanged, i.e.,

LolLg=L,ILg (a#pB). FIG. 1. lllustration of the exact relatior{8.11): Ratios of thezz

We would like to emphasize that the relatiofzs1l) are  andxx components of the macroscopic conductivitiesand . of
established between two samples with microstrcuctures that pair of composite samples where the constituent conductivities
differ in a nonarbitrary fashion: The shapes of the micro-and microstructure are related by E¢®.6)—(2.12). The inclusions
structures in the two samples are related via E2), (2.7),  in the o system are a simple cubic array of identical spheres with
and (2.12. In particular, the rescaling transformati¢®.3) radiusR=0.3a (a is the cubic lattice constanwhile the inclusions
alters not only the inclusion sizes, but also other characterisn the s system are a rectangular-prismatic array of spheroids with
tic lengths(such as the distance between inclusions, macrogj;es chosen in accordance with E23) and conductivitys.. Note
scopic size of the composite sample,)etdowever, the Vol-  hat the aspect ratio of the spheroids in the latter sample, as well as

ume fraction of each constituent remains the same. that of the prismatic unit cells, depend on the magnetic field
Both Eg. (2.8) and Eq.(2.11) are simplified whena  strengthH. Therefore the aspect ratio varies along thaxis of the
=g, or if we assume figure, as indicated by the insets. The stars and triangles represent
the ratiosu'Q/0(®, u{?/0!® as obtained by numerical calcula-
Uff[g Mf,; tions, while the dashed lines depict the ratios of the constituent
NEoEe = Nmamol (213  conductivitiesu(2/(? and w212, in accordance with the pre-
T a9 pp Mool pp dictions of Eq.(2.11). The host and inclusions of the system are

characterized by constituent conductivity tensors which are scalars

In those cases we get O, - .
o,=1 (I is the unit matrix ando;=10l. The host conductivity of

gg}g ,U,fylg the 1 system is taken to have a free electron fa/&) with Ohmic
ol MOk (2.14 resistivity equal to 1 an@ directed along the axis. In that casg.,
\/O-Enza-(ﬁﬁ) \/M&iﬂ(ﬁﬁ) is determined by Eq(2.8).
') ny) tivities 1, o, in the first system. For example, we can take
@0 = D @ (219  the conductivity tensof, to have the form of a free-electron
\/"aa“ﬂﬁ \/'“aw“ﬂﬁ conductivity tensor—see EqA2) in Appendix A. In that

caseu; is determined by Eq(2.8). Sinceu, of Eq. (A2)
usually has unequal diagonal elements wBe0, therefore
the shape of thell inclusions will be ellipsoidal—see Eg.
(2.12. The numerical calculations are in agreement with our

) (2 previous predictions.
(&) — (8 “é‘;“é‘)”_ (2.16 The relations formulated here establish connections be-
Twapp

Pap™ Vap . . . .
tween macroscopic moduli of physical properies whose local
behavior is described by a differential equation like Ex).
In order to verify the relation€2.11), we presentin Fig. 1 Thijs means that not only electrical conductivities obey those
the results of our numericaIAcaIcuIatidﬁsan a composite  relations, but also electrical permittivities, thermal conduc-
sample with host conductivityg, and a periodic simple cu- tivities, and magnetic permeabilities.

bic array of spherical inclusions with conductivity;, where
o1=101, o,=1 (I is the unit matriy. Also shown are cal-
culations on another composite with constituent conductivi-
ties 11, /o The tensorge; and s, are not arbitrary but are The exact relations found in the previous section are valid
connected through Eq$2.6)—(2.8) with the local conduc- for 3D composite media. We believe these relations will have

The latter equations can be re-written in terms of the mac
roscopic resistivity tensor pe=1/os, ve=1/po) compo-
nents

IIl. APPLICATION TO COMPOSITES WITH A
COLUMNAR MICROSTRUCTURE
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* zZ sz)/detED/‘LZ ( ) 3.1)
B .
(2) (2)
\/Myzy)ﬂgzz)/ debpuo)? \/U
B, .~ |
\ W/ deti 1)
) /-Lyy ethu'l _ O-yy
O O ; WO , M(yf,)/detzoﬁz = U%), (3.2
O O S ans =
1
OO0 OO pPidebon; ol as
2)’ :
:Uvzz)/debD/Jvz ng)
(1)

FIG. 2. Composite conductor with columnar microstructure ’LLZV/detQD’Ml _ Iy (3.4)
shaped as a thin film, with magnetic fiédctilted with respect to the (2) ~ o 2 (2’ '
film plane.d is the angle betweeB and the film plane, while is \/'U“W/'L /(debpp,) \/Uyy T2z
the angle between the planar projectionBofB;,, and the volume R
averaged current densify), which is perpendicular to the colum- M&e[);/detZDMe U(e)
nar axisx. = (3.5

(2),,(2) " \2 0-(2)0(2)
a broad range of applications in different branches of phys- \/Mawu,B,B/(detZDﬂz) \/ aa9pp
ics. In order to illustrate the consequences and power OEquatlons(B .1)~(3.4) cannot be solved in a unique fashion
these relations, we apply them here to the problem of ma Ml and 1. On the other hand, some unique explicit

netoconductance and magnetoresistance in composites with 2 ; d4i be ob 4 by spl h of th
columnar microstructure, i.e., we consider a heterogeneo Q ms 0”‘1 andu; can be o talr?e ytS)p |(tjt|ng ea((:j ﬁo the
medium, characterized by a local resistivity tensor that de=dS-(3:2—(3.4) into two parts. This can be done in different

pends only upory and z. This is a 3D medium with 2D ways, leading to different types of exact relations among
heterogeneity, with the axis as columnar symmetry axis— €lements of the macroscopic modti and s, .

see Fig. 2. We note that, in spite of the 2D character of

heterogeneity, the transport processes will, in general, be A Relations for composites with the same microstructures
three dimensional, i.e., the local current denslfy) will and hosts but different inclusion properties

usually have a nonzero component along the columnar sym-
metry axisx wheneverB has a nonvanishing component in
they,z plane(the “in-plane” componentB;,# 0, even if the
macroscopic or volume averaged current denéifyis per-

We first consider samples where the 2D host medium is

the same. This means tha{?)= o2 andu{?=0{? . Equa-

tion (3.2) will then hold automatically, if we also assume that

. (2)— (2) i
pendicular tox. Mzy =0y, due to Eq.(2.6). Therefore we can write
Although columnar microstructures are special, i.e., they @ @) @)
are not generic 3D microstructures, they are nevertheless Oyy Ozy Oyy 7 Oyz
; : y o= . ~(2)_
very common and very important, especially in fiber rein- M2D= g§,22) oD = —gg) o | (3.6

forced composites and also in various types of heterogeneous
thin films. In particular, a thin film with a periodic columnar
microstructure, such as a periodic array of perpendicular cy
lindrical etched holes, is easier to fabricate than any 3D pe-

This can be realized trivially whep(?=u)=o{2= o)

=0, which in the free-electron modgdee Eq.(A2)] corre-

fiodic arrav2324 sponds to the casély)=H{)=0, HYHL =HDHL)
In Refs. 16, 17, 25, and 26 it was shown that, in a com-= 0, discussed in Refs. 16 (ar)1d 17. I(—lewever (Boﬁ)( c)an( b)e
posite with a columnar microstructure, the electrical transalso realized when H’=—H35’ and HY’HY,

port in the plane perpendicular to the columnar axis can be= —H{)HS) . That is, we keep the host in thesystem the

treated separately from the transport in other directions. Igame as it was in the system, but reverse signs of the
partlcular ifxis the columnar axis, then thez components  5pnropriate field components

of o¢, e ONnly depend on thg,z components of the con- The form of the conductivity tensor of the other constitu-

stituent tensorsr; , ;, and they can be calculated by imple- ent, namely the inclusionsg,, can be found from Egs.
menting the 2D version of Eq$2.1) and (2.2) in they,z  (3.2—(3.4):
plane—see Appendix B. In that plane, the classical duality
symmetry of Dykhnéis valid, which leads to Mendelson’s
generalization of Keller’s theorem for 2D systeffsThis is

now exploited by using the dual tensqﬁéi)zﬁf/detmﬁi ,

i— 1,2 (4 denotes the transposed matrix/@f) in place of ~ where all the tensors and determinants should be understood
i in Egs.(2.13 and(2.14. In this way we get the following &S 2D(in they,z plang. Constructing from this the 2D de-
expressions: terminant degD,ul, we find that

g dekokas q)

3.7
debpus
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. (detpoy)? e 1
debpu=—5—. (3.9 L=ﬁ, (3.189
debpoq debpu, 0y;
Therefore Eq(3.7) can also be written in the form @ - GO
/uyz a-zy Myy Mzz
-1y _debas- a6 detop, det o@a@) 19
Hop™ detz—a' 2D~ (3.9 DIU’Z DMZ zz Oyy
DTl Constructing the 2D determinants from these equations, we
The relation between the in-plane elementsrpfand . obtain
can be written in the following explicit form (2)5(2) 5 D) 1)
~ 0' O' 0' 0'
deppu,=—2—— 3 22 (3.20
(e) (e DF1 ’
Myz Mzy debpo,
o - 5208 10
yy . 0(1)0(1)0(2)02)
uul) T @20
=o| w5~ (3.1 o .
M2z Substituting these back into Eq8.14—(3.19, we get
(e, (e
(e)( - “yy('“)ZZ) (3.12 2 oNePa?
e (1 2z T
Mzy X (1)_U§y)ggz) Vool
M2p = ~ (1 ) 7 ’
() (e) detpog oy a'yyO' e
_ @ o KyyHaz — detp (3.13 = ayy
yz zy () DY2- : \/O'y( yja'zt Zj
v (3.22
Note that, sincer(y)=ul?), 0= u?, the sizes of the in-

clusions in theu system are the same as in tbesystem and a similar expression fquzzD, where the subscripts 1 and
The relations derived here are generalizations of thos@ should be mterchanged Thus each of the conductivity ten-

found in Ref. 16: The magnetic field is no longer restricted toSOfSM and u, depends on both of the constituent conduc-
lie in they,z plane. tivities o; and o,. If o, and o, are taken to have the free-
electron form of Eq.(A2), with B directed alongz, i.e.,

B. Relations for composites with different microstructures and 0')(2= og}: 0,i=1,2, then they,z components oft; and .,

different constituents simplify to
It is possible to get other types of exact relations from 14H2 0O
Egs. (3.2—(3.4). The expression fon ) follows directly ~ 1y 1 2
from Eq.(3.4), while o{)), {2 can be found as a result of a Map = p@(1+H2) o 1/ (3.23
different non-trivial splitting of Eqgs(3.2 and(3.3). We can, 2
for example, assume that the numerators of the lhs of Egs. )
(3.2) and (3.3 are equal to the denominators on the right- . 1 1+H; O
hand side of these equations and vice versa. In this way we M35= W 0 1]- (3.29
get (1+H7)
1) Since there are no restrictions on the other tensor compo-
Pyy =—3 (3.14  nents ofu,, those can be chosen so as to make the entire 3D
debouy oy tensorsu,, u, free-electron like. That means taking,,

=1po(1+ HZ): Myx= = Mxy= H yx s /-LyzA: szzg- When
constructed in this fashion, the 3D tensgrs and u, corre-
spond to free-electron conductors wigy, i.e., rotated by
90° with respect taB in the o system. Recalling that this
M(l) pEY M(Z)M(Z) entire discussion is also based on the duality symmetry, we
yz_ __ "%V oz (3.16  should not be surprised to find that the exact relations which
debpu; debpits (g (2) follow involve a pair of composites witmterchanged con-
stituents as in the case of the 2D Keller expressiarn), but

ply 1

detpu; o2

(3.195

w? 1 with the magnetic field rotated by 90°.
Y =5 (3.17) Taking into account Eq$3.14—(3.21), we obtain the fol-
debpe, lowing relations from Eq(2.11):
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H=0

(e) ,(e) y H#0 y
GO Lo _Favhyzl ) @ (3.29 9. L. Tefu 7 | e
w|#e T e yy Tyy o : Q < @9 Tav
4 o) = %)
(e) (e) __I T T T |( T T T T I T T T T I T T T T | T T T I__
Myz 8 My 1
(e ,(e_yzirzy |\ (1) (2) C vy ]
0'zz< vy M(e) = 027027 (3.26 6 E © 3
zz ° o 22 ]
o) 4 F @ ]
(€, (e (), - ale 1
_G(e)( (o) HyyHzz __U(e>< (e)_HyyHzz 2 E 24 o
yz zy - zy yz - e h
lu’§/ez) ,Uzgi,) 0 Coov o | o — s |va. L
— 5 0 1 2 3 4 5
— o o o o . (32D [T rrrpr 117 LI I LA LI
VOyy Y2z Cyy @2z C _ ]
- oD+ ) =0p)a) :
. ~ ~ . . O p==—0——>——9 -0 -0 oo 4
Since u,# o, it follows from Eq.(2.12 that the inclu- 0 \Q\ :
sions in the,& system are compressed by different factors in 3 E ~ ]
. U 5 - (&) ile) =g(DgR —
different directions. I T ol (u)+...) =0 7
Ngturally, Eqs.(3.23—(3.27) can be translated into exact _ 0 T T e,
relations among the different components of the macroscopic 0 1 2 3 4 5
resistivity tensorspe=1/o, and v,=1/1,. In the general H
case, the forms of the relations written in termsef v, are FIG. 3. lllustrations of the exact relatiof3.25 and(3.26) for a

more cqmpllcated than the expressions given above in term&air of composite samples with “interchanged” constituerdsyy

of e, pe. Moreover, these more C(Emplicated expressionNsindzz components of the macroscopic conductivity tensargnd

will usually involve components @b, v, other than just the ;Le vs H. The :ZL system is obtained from the system by inter-
y,z-plane components. Only in the special case of isotropi¢hanging the constituents and rescaling the coordinate axes in an-
constituents with a magnetic field perpendicular to the coisotropic fashion.(b) The combinationg3.25 and (3.26: Open
lumnar axisBL x were simple relations obtained in terms of circles are the values obtained by numerical computations, while
;)e, ;e—see Ref. 28. the dashed lines are theoretical curves. Top: Sketch of the unit cells

The relations between the macroscopic responses&)f a of the periodic composites used in our calculations. In&hiample
the host(shown as white argas a free-electron conductor charac-

S}’Stem anq qu system with “interchanged” Const.ituents and terized by Eq.(A2) with po=1 andB directed alongy, while the
different microstructures were checked numerically for thejnciysions(shown as a dashed ajemre a square array of parallel
palrsAof two-constituent composite samples shown in Fig. 3metallic circular cylinders, with axes along scalar conductivity
The o sample was taken to be a free-electron host mediungensor o, =10 [therefore o{)o =10, o{Yo?)=10/(1+H?)]

with metallic cylindrical inclusions as a periodic square lat-and radiusR=0.3a, wherea is the lattice parameter of the square
tice. (By “metallic,” as opposed to “semiconducting,” We  array. Thep sample is obtained by interchanging the constituents,
mean conductors for which the Hall and other nondiagonatescaling the coordinate axes, and performing the duality transfor-
components ofr are negligible, therefore the conductivity mation. The host is now metallic with,= o, and the inclusions
tensor is well approximated by a scalar=c,l.) The u  are free-electron conductors wifla, having a form similar too,
sample is a composite where the host is metallic, while théut with the magnetic field along i.e., rotated by 90° in thg,z
inclusions are characterized by a semiconducting freeplane. The inclusion shapes and sizes, as well as the l4iticie-
electron conductivity with nonzero magnetic fieRl The sion array parameters, are transformed in accordance with Eq.
shape of the inclusions, as well as other characteristic sizdd.3. l}lote that the inclusion sizes and other characteristic lengths
in the . sample should differ from the corresponding sizes inin the x system keep changing with. The dependence afyy) and

(e) i
A . . ny? onH [see(@] reflects those changes, thus it cannot be under-
the o system, in accordance with E(2.3). stood as simple magnetoconductivity in a free-electron conductor,

which would arise from inverting a resistivity matrix where only the
C. ac case Hall components depend updh
The above discussion remains valid if we reinterpret di-
vergence equatiolV - J=0 as referring to the electrical dis- constant of the background ionic lattideis the unit tensor,

placement field>=z(r)-E, wherez(r) is position depen- and & is the ac conductivity tensdisee Appendix A, Eq.
dent tensor of electrical permittivity, instead of to the currenta3), and Refs. 29-31

density J. Instead of Eq.(2.1) we will then haveV-&(r) Relations(3.25—(3.27 can then be easily rewritten for
-V¢=0. This means that all the conductivity tenserget the ac case by replacing each of the conductivity tensors
replaced by electrical permittivity tensoes which in the by an electrical permittivity tensog. Otherwise we retain

quasistatic regime can be written as= el +i(47/ w)o, our previous definitions and expressions farln particular,
wherew is the angular frequency, is the scalar dielectric relations(3.25—(3.27) can be used in order to connect two
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20 F T T T T o transformations involving complex valued lengiimete that
10F @_ﬁ g(e)(H”Z) /\ 3 & and . are now complex valued tensrsve consider the
ok _____Zyg,gﬁg—oj\k; 3 limit w7>1, when I-iwt~iwt (herer is the conductivity
N T il S relaxation time—see Appendix)AThe characteristic sizes in
20 ——25 oo I — L the 1« system will then be related to the sizes in theystem
10 f—MﬁZ)(HHY) 1 % L —f by_ Ey_E LY/_\/s.-i- wSTZ/(HZ—wZTZ), L= Llesfwzp/wz.
E N HY E This simplification of what would have otherwise been a
0 5_b e E complex coordinate rescaling transformatimee Eq.(2.3)]
-otb—L v = 1 L leads to sustantial deviations of the computed results from
0.5 1 15 theoretical predictions only in a narrow interval of frequen-
2 7] R @@ N E cies near each of the surface plasmon resonangggH).
g ele@(uid+...)] E | ; :

o b o0 0.0 5 60 O n all other frequency domains there is goo'd agreement be-
2 E Oﬁngﬂﬂm*’ 3 tween the two sets of values. In order to achieve better agree-
4B < T ment (especially near the surface plasmon resongnees

5 Oi5 _ } _ 1i5 _ more careful calculation should be perfo_rmed, which d(_)es

2 B\ Im[e©(u@+..)] 3 not ignore the nonreal nature of the rescaling transformation.

LE yy \Maz T 3 This will be described elsewhere. Note that Bjz andB||y,

0F , T—o2000_ e00600e 20000 the off-diagonal componenis{? , 1'% vanish, therefore the
1 E d. | , ¢ . %y % 0 combination which appears on the rhs of Eg825 reduces

0.5 ! 15w/, to the producte(S) (3 .

FIG. 4. (a) and(b): Plots of the rea(solid lineg and imaginary
(dashed lingsparts of theyy andAzz corrlponents of the macro- V. SUMMARY
scopic electrical permittivity tensoes, and u vs the dimensionless )
frequency w/w, (w, is the plasma frequency of the metallic ~ Exact relationswere found among elements of the mac-
constituent—see Appendix)A(c) and(d): Real and imaginary parts roscopic or bulk effective conductivity tensors of pairs of
of the combination(3.25 with o replaced bys. The predicted two-constituent composites. These relations are valid even
values are shown as dashed lines, while the values obtained froifhen those elements have quite general values, i.e., nonsca-
numerical computations are shown as open circles. Insets: Sketchl&, nonsymmetric, and nonreal. Since these relations follow
of the unit cells of the periodic composites used in our calculationsdirectly from a comparison of different differential equations
In the;; samp|e[see (a)] the host(shown as shaded ajess a and are not connected with any duallty transformation, they
free-electron conductor characterized by E43) with B directed ~ are valid for systems of arbitrary dimensionality. They can
along z, while the inclusiongshown as a white argare a square relate between composites with different microstructures,
array of parallel dielectric circular cylinders with axes alogge ~ and even between different physical moduli of different com-
posites: They can relate between the macroscopic conduc-
tivities of two composites with different microgeometries as
ell as with different constituent properties, and they can
so relate between electrical conductivity and electrical per-
mittivity or thermal conductivity, etc.

:f, and radiusR=0.3a, wherea is the lattice parameter of the

square array. Théc sample is obtained by interchanging the con-
stituents, rescaling the coordinate axes, and performing the dualitg
transformation. The host is now a dielectric with,=1 and the :

inclusions are free-electron conductors with similar to Eq.(A3) In the special case of composites with a columnar micro-
but with th? magnetic field along, i.e., rotated by 90° in _th_g,z structure, quasi-3D generalizations of the Keller relations can
plane. :Fhe inclusion shapes, as well as all the characteristic IengtiBse obtained from the above described relations by invoking
in the » system are changed in accordance with Ej12. The  yhe gality symmetry. These apply to pairs of composites
following values were used in constructing, [see Eq.(A3):  jith interchanged constituents as well as to pairs of compos-
Twp=30, w/wp~1, £0=0. ites with different microgeometries.

. N - . . Both the generic 3D exact relations and the quasi-3D gen-
different situations: A systera of °°”d“Ct”Jg host with an eralizations %f Keller’s relations were tested agqainst nun?eri-
array of insulating inclusions and a systemof insulating  cal computations. In the case of ac electrical permittivity, the
host with an array of conducting inclusions. In Fig. 4 we plotre|ations that were found can be used to make connections
direCtly COITIpUEed ComponentS of the macrOSCOpiC permittiV‘between different types Of physica' phenomena' For ex-
ity tensorse., we Of two such systems vs the frequenoy  ample, the magneto-optical response of a conducting thin
and also of combinations of those components correspondinfgym with an array of subwavelength holes, where extraordi-
to Eq.(3.25 vs w. The latter combinations are compared to nary light transmission has been obser¢etf,can be related
the values predicted by the right-hand side of that equatiorto the magneto-optical response of an array of parallel con-
The so-called surface plasmon resonan@bsfted by pres- ducting sticks embedded in a dielectric host, which are being
ence of the magnetic fieldcan be seen at frequencies studied and discussed extensively as systems where negative
= w,es(H)—expressions for these frequencies are given irelectrical permittivity and negative magnetic permeability
Refs. 29—-31. The shape of the inclusions is changed in a@re attainable simultaneousfy.*® Magneto-optical response
cordance with Eq(2.12. In order not to deal with rescaling of such arrays of parallel conducting sticks are also being
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studied in connection with other interesting modes ofis angular frequency, is the scalar dielectric constant of

: 0,31,37,38 . . . A~ .
behavior’ the background ionic lattice, aridis a unit tensor. The con-

Experimental tests of the relations presented in_ this pape(fuctivity tensora can be taken in the same forms as for dc
for both dc and ac response would also be desirable. Th

L ; ) X Ease[see Eq.(A2)] but divided on (+iwt) and the mag-
appllczblllty 01|‘ the generalized If(elltf‘;\r relaﬂor;(s IS not re- |~.etic[fie|ds|—(|q (sho)u]ld be substituted(hyll(l)—iwt) NOtiﬂgg
stricted to columnar systems of infinite thickness. Finite - 2 ; U
thickness films will also satisfy it very well if the film thick- a170=No€"7/m (hereNy is the charge-carrier density and

ness, heterogeneity length scate and Hall-to-Ohmic re- m is electron magscan be expressed though plasma fre-

_ 2 1/2 A
sistivity ratio H of the normal conductor constituent satisfy quencywy (4e"No/m)™, the local ac permittivity tensor

the inequalityH¢>a (see Ref. 39 ¢ of the metal forB||z can be written &85!
~ T2
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APPENDIX A: FREE-ELECTRON MODEL 0 0 1
1. dc case l-ioT

In a free-electron Drude model, the resistivity tenéor (A3)

and the conductivity tensos;=p; * can be written in the
following forms APPENDIX B: DUALITY IN A 3D SYSTEM WITH
) ) COLUMNAR SYMMETRY
1 H® —H®O
. _ _ ‘ J The current flow in a 3D medium with 2D heterogeneity,
Pi ZPS) - Hg) 1 H>(<') ) (A1)  with thex axis as columnar symmetry axisee Fig. 2, sepa-
HO O 1 rates into a 1D problem for flow along that axis and a 2D
y X problem for flow in they,z plane when the constituent con-
ductivity tensors have no elements connectirtg the other
e directions. That is the case for isotropic conductors when the
p&(1+H?) externally applied magnetic field lies alomg By contrast,
: N N when one or more of the elemenis,, tyx, Mxz, Mo IS
1+(H§<I))2 HQ)HQ) HS)HQ) nonzero, as wheiB has a nonzery )(/)r zycomponent, the
% HS)Hg) 1+(H(yi))2 Hg)HS) current flow becomes 3D in a nontrivial fashion. It was
HQ)HQ) HS)HQ) 1+(H9))2 Zm;vn in Refs. 26 and 27, that the local f|elmsar!d E
ys depend only opandz and also thaE, has a uniform

aj

0 Hg) —HO value everywhere in the system. If the boundary conditions

1 0 (g are such thaE.x=O, then Eqs(2.1) and Eq.(2.2) bc.)th. re-
+ poEET H; 0 HY' |, duce to equations for a strictly 2D system which is just the
Po ! HS) —H® 0 y,z section of the columnar medium. Alternatively, one may

define new potential fields by adding terms dothat are

(A2)  linear iny andz (see Refs. 16 and #0Using either one of
where the Ohmic resistivity{ is a scalar quantity indepen- theseé approaches, the problem of calculating the four in-
dent of the magnetic fiel@, while the Hall resistivity com-  planey,z tensor components gt separates out from the
ponentSpS)Hf('), p(()')H(y'). pS)HS) form an axial vector that full 3D problem and becomes a strictly 2D problem. Deter-
is proportional toB. Consequently, the vectdt is a dimen-  mination of the other five tensor componept) and (2,
sionless form of the magnetic field whose magnitude is det=X,y,z, is a separate problem. As shown in Refs. 28 and
noted byH=*|H|=+* w.7, Wherew.=¢€|B|/mcis the cy- 41, in some cases the latter components are obtainable as
clotron frequency, whild is the magnetic field measured in linear combinations of the in-plane tensor componeifs,
conventional units, and is the conductivity relaxation time. «,B8=Y,z.
The sign ofH can be either positive or negative, and reflects It is therefore possible to define a dual 2D conductivity

the sign of the majority charge carriers. problem in they,z plane: This is done by rotating theand
z components oE andJ by 90° at every point in that plane,
2. ac case and calling the rotated fieldk, andE, respectively These

) o . o are the dual current density or flux and dual electric field,
The electrical permittivity tensors in a quasistatic ap- and they satisfy the 2D equatio¥sx Eq4=V-J4=0 in the
proximation can be written as= gl +i(47/w)o, Wherew v,z plane. From the relation
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Ky H
S Y

J(r)=p(r)-E(r), ,15(

Mzy Mzz

between the original 2D in-plane componentsoéndJ, it
follows that the dual fields are related*y

Ja(r) = g(r)-Eq(r), (B2

PHYSICAL REVIEW B 67, 184416 (2003

~ 1 ( Myy  Hazy (B3)

d= ~
debpu \ Byz  Hzz
A similar relation holds between the macroscopic 2D con-
ductivity tensors of the original and dual problems, denoted

by e, u

w sy

w uld

(8 = !

—_— . (B4)
debpue
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