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Exact relations between macroscopic moduli of composite media in three dimensions:
Application to magnetoconductivity and magneto-optics of three-dimensional composites

with related columnar microstructures
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Generic three-dimensional~3D! exact relations are found between macroscopic or bulk effective moduli of
composite systems with related microstructures. These relations can be established between effective values of
material coefficients of the same type~e.g., conductivity and conductivity! as well as between different types
of material coefficients~e.g., conductivity and permittivity!. As example of possible application of these
relations, a set of Keller-like quasi-3D relations are derived for the case of columnar-shaped parallel inclusions.
The microstructure in the two samples can, in general, be different. In particular, exact relations between bulk
effective magnetoconductivity tensor components of a pair of composite samples with interchanged constitu-
ents and different columnar microstructures~as well as between two composites with the same host but
different inclusions, e.g., perfectly insulating and perfectly conducting! are found for general orientations of the
applied magnetic field. Those relations are tested by comparing with a number of numerical calculations of
macroscopic dc and ac response in such systems.
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I. INTRODUCTION

The macroscopic or bulk effective moduli of a compos
medium depend on its detailed microstructure, and can u
ally be calculated only approximately. Notwithstanding th
generic feature, there exist some exact, microstruct
independent results for such moduli in the case of tw
dimensional~2D! composites. These go back to a pioneer
paper by Keller where it was shown that, in a 2D rectangu
periodic array of inclusions, the bulk effective principal co
ductivities of the ‘‘phase interchanged composite
syy

(e)(s1 ,s2) and szz
(e)(s2 ,s1) are related in the following

way:1

syy
(e)~s1 ,s2!szz

(e)~s2 ,s1!5s1s2 . ~1.1!

Here the two composites have thesame rectangular micro-
structurebut the two constituents, with scalar conductiviti
s1 , s2, have interchanged their spatial locations. The te
conductivity should be understood in a broad sense of
word, i.e., it can refer to either electrical or thermal condu
tivity, electrical permittivity, magnetic permeability, etc. Th
Keller theorem~in Russian literature it is known as th
Dykhne theorem2! became a powerful tool in many studie
of transport problems. Thus it is no surprise that attem
were made to extend it in various ways2–11 including even
application to the fractional quantum Hall effect.12,13 How-
ever, all of these developments were confined to the cas
a strictly 2D composite~Schulgasser14 and Bergman15 have
even proved the ‘‘nonexistence of a Keller-type theorem
three dimensions’’!.

Recently we have extended Keller’s theorem to a spe
case of three-dimensional~3D! systems with a columna
0163-1829/2003/67~18!/184416~9!/$20.00 67 1844
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microstructure16,17 ~i.e., macroscopically inhomogeneou
media that are uniform in one fixed direction!. Despite the
fact that the geometric or structural characteristics of suc
microstructure are 2D, the presence of a strong magn
field ~i.e., conductivity tensors are nonscalar! can change the
character of current flow in such a system from 2D
strongly 3D, and thus invalidate the relations that were fou
for real 2D systems.1 More specifically, we considered th
case where the magnetic field is perpendicular to the col
nar axis, i.e., an ‘‘in-plane’’ magnetic field.

Here we derive generic 3D exact relations between eff
tive moduli of composite systems with different but relat
microstructures. These relations can be transformed
quasi-3D Keller-like relations when the composite has a
lumnar microstructure and an external magnetic field is
plied in certain directions.

The remainder of this article is organized as follows.
Sec. II we summarize the required theory and write do
differential equations for the local electrical potential in
pair of two-constituent composites characterized by differ
values of the two constituent conductivity tensors as well
different microstructures. By comparing these equations
well as the expressions for the two macroscopic respon
we derive exact relations between the macroscopic cond
tivity tensors of the two problems, which hold when certa
relations exist between those problems. These relations
valid for arbitrary dimensionality, and in particular for 3D
composites. In Sec. III we consider a special case of
systems, namely a composite with columnar microstructu
For such systems we derive some Keller-like exact relati
for a pair of composite samples withinterchanged phases,
and also for a pair of composites with thesame host constitu
©2003 The American Physical Society16-1
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YAKOV M. STRELNIKER AND DAVID J. BERGMAN PHYSICAL REVIEW B 67, 184416 ~2003!
ent but different types of inclusions, e.g., conductor/perfec
insulator mixture and normal conductor/perfect conduc
mixture. We illustrate our results by comparing them w
numerical computations of magnetoconductivity in su
composites. Section IV provides a summary of our m
results.

II. COORDINATE RE-SCALING AND GENERAL
RELATIONS IN THREE DIMENSIONS

The electrical transport on the microscale is assume
be describable in terms of a local curl-free electric fie
E(r )[¹f(r ) and a local divergence-free current dens
J(r ), which are related to each other linearly by means o
local resistivity tensorr̂(r ) or a local conductivity tenso
ŝ(r )51/r̂(r ): J(r )5ŝ(r )•E(r ). We can expressŝ(r ) in
terms of the constituent conductivity tensorsŝ i and the char-
acteristic functionsu i(r ) @u i(r )51 if ŝ(r )5ŝ i , otherwise
u i(r )50]. In the case of a two-constituent composite m
dium we can write ŝ(r )5ŝ1u1(r )1ŝ2u2(r )5ŝ2

2dŝu1(r ), dŝ[ŝ22ŝ1. Using this notation, the usual dif
ferential equation¹•ŝ•¹f50 can be written as

¹•ŝ2•¹f5¹•dŝu1•¹f. ~2.1!

The local electric potentialf can be found by solving this
equation with appropriate boundary conditions.

The bulk effective or macroscopic conductivity tensor
the compositeŝe , as well as the bulk effective resistivit
tensorr̂e51/ŝe , are defined as providing the linear relatio
ship between the volume averages of electric field and
rent densitŷ J&[ŝe•^¹f(r )&, where^ & denotes a volume
average over the entire system. From this we can write
following expression forŝe :

~sab
(e)2sab

(2)!52(
g

dsag•^u1¹gf (b)&, ~2.2!

where we have introduced the notationf (b)(r ) for the elec-
trical potential field in the composite which satisfi
^¹f (b)&5¹r b5eb , whereeb is the unit vector alongr b .

We now write the partial differential equation~2.1! for
two different problems: The first is characterized by the p
tentialf and conductivitiesŝ, dŝ, while the second is char
acterized by the potentialc and conductivitiesm̂, dm̂. In
order to transform these equations into similar forms, fr
which we will attempt to find relations between the tw
problems, we execute a rescaling transformation of the C
tesian coordinates in each problem:

xa8[xa /Asaa
(2), za8[za /Amaa

(2). ~2.3!

It is important to note that the two rescaling transform
tions are different, in general. Therefore the microstructu
i.e., the shapes of the inclusions, their separations, even
symmetry, will change in different ways for the two pro
lems. We therefore introduce the notationsu18(x8), Q18(z8)
for the characteristic or indicator functions of the resca
18441
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first and second problems, respectively. Equation~2.1! takes
the following forms for these two problems:

(
ab

sab
(2)

Asaa
(2)sbb

(2)

]2f

]xa8]xb8
5(

ab

dsab

Asaa
(2)sbb

(2)

]

]xa8
S u18

]f

]xb8
D ,

~2.4!

(
ab

mab
(2)

Amaa
(2)mbb

(2)

]2c

]za8]zb8
5(

ab

dmab

Amaa
(2)mbb

(2)

]

]za8
S Q18

]c

]zb8
D .

~2.5!

We would like to make these two equations~2.4! and
~2.5! identical. That can be achieved by assuming that

sab
(2)52sba

(2) , mab
(2)52mba

(2) , for aÞb, ~2.6!

u185Q18 , ~2.7!

dsab

Asaa
(2)sbb

(2)
5

dmab

Amaa
(2)mbb

(2)
. ~2.8!

If Eqs. ~2.6!–~2.8! hold, and if the same boundary condition
~BC! are imposed uponf and c, then these two potentia
fields will be identical. It is clear that BC should be the sam
in the new, re-scaled, coordinates. However, since the va
of the effective conductivitiesŝe , m̂e are the macroscopic
moduli of the samples considered, and therefore do not
pend on the applied external fields or macroscopically u
form BC, we will not discuss here how BC in the re-scal
coordinate system relate to BC in the initial coordinate s
tem. We can expect that the effective conductivity tensorsŝe

and m̂e of the unrescaled physical problems will also
equal.

Starting from Eq.~2.2! written in the new re-scaled coor
dinates@see Eqs.~2.3!# we get the following pair of equa
tions:

dsab
(e)

Asaa
(2)sbb

(2) K ]f (b)

]xb8
L 52(

g

dsag

Asaa
(2)sgg

(2) K u18
]f (b)

]xg8
L ,

~2.9!

dmab
(e)

Amaa
(2)mbb

(2) K ]c (b)

]zb8
L 52(

g

dmag

Amaa
(2)mgg

(2) K Q18
]c (b)

]zg8
L .

~2.10!

From these equations, together with Eq.~2.8!, it now follows
that the macroscopic analog of Eq.~2.8! is also valid:

dsab
(e)

Asaa
(2)sbb

(2)
5

dmab
(e)

Amaa
(2)mbb

(2)
. ~2.11!

This equation relates the macroscopic responsesŝe , m̂e of a
pair of two-constituent composite media which differ in the
microstructure@u1(r ) vs Q1(r )] as well as in their constitu-
ent physical~electrical! properties.
6-2
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EXACT RELATIONS BETWEEN MACROSCOPIC MODULI . . . PHYSICAL REVIEW B 67, 184416 ~2003!
This result can be easily extended to the case of multic
stituent composites, including the extreme case where
local conductivities depend continuously on the coordina

The pair of microstructures under consideration are
lated to each other by the coordinate rescaling transforma
of Eq. ~2.3!. Thus, if La is a characteristic size in the direc
tion a in the first system andLa is the analogous value in th
second system, then these lengths will be related to e
other by

La5LaAmaa
(2)/saa

(2). ~2.12!

If the tensorsŝ2 and m̂2 have diagonal elements which a
not proportional to each other, then an initial spherical sh
of inclusions will be transformed to an ellipsoidal shape.
particular cases, however, it is possible to have a situa
where the shapes of inclusions remain unchanged,
La /Lb5La /Lb (aÞb).

We would like to emphasize that the relations~2.11! are
established between two samples with microstrcuctures
differ in a nonarbitrary fashion: The shapes of the mic
structures in the two samples are related via Eqs.~2.3!, ~2.7!,
and ~2.12!. In particular, the rescaling transformation~2.3!
alters not only the inclusion sizes, but also other characte
tic lengths~such as the distance between inclusions, mac
scopic size of the composite sample, etc!. However, the vol-
ume fraction of each constituent remains the same.

Both Eq. ~2.8! and Eq. ~2.11! are simplified whena
5b, or if we assume

sab
(2)

Asaa
(2)sbb

(2)
5

mab
(2)

Amaa
(2)mbb

(2)
. ~2.13!

In those cases we get

sab
(1)

Asaa
(2)sbb

(2)
5

mab
(1)

Amaa
(2)mbb

(2)
, ~2.14!

sab
(e)

Asaa
(2)sbb

(2)
5

mab
(e)

Amaa
(2)mbb

(2)
. ~2.15!

The latter equations can be re-written in terms of the m
roscopic resistivity tensor (r̂e[1/ŝe , n̂e[1/m̂e) compo-
nents

rab
(e)5nab

(e)Amaa
(2)mbb

(2)

saa
(2)sbb

(2)
. ~2.16!

In order to verify the relations~2.11!, we present in Fig. 1
the results of our numerical calculations18 on a composite
sample with host conductivityŝ2 and a periodic simple cu
bic array of spherical inclusions with conductivityŝ1, where
ŝ1510Î , ŝ25 Î ( Î is the unit matrix!. Also shown are cal-
culations on another composite with constituent conduct
ties m̂1 , m̂2. The tensorsm̂1 andm̂2 are not arbitrary but are
connected through Eqs.~2.6!–~2.8! with the local conduc-
18441
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tivities ŝ1 , ŝ2 in the first system. For example, we can ta
the conductivity tensorm̂2 to have the form of a free-electro
conductivity tensor—see Eq.~A2! in Appendix A. In that
casem̂1 is determined by Eq.~2.8!. Since m̂2 of Eq. ~A2!
usually has unequal diagonal elements whenBÞ0, therefore
the shape of them̂1 inclusions will be ellipsoidal—see Eq
~2.12!. The numerical calculations are in agreement with o
previous predictions.

The relations formulated here establish connections
tween macroscopic moduli of physical properies whose lo
behavior is described by a differential equation like Eq.~2.1!.
This means that not only electrical conductivities obey tho
relations, but also electrical permittivities, thermal condu
tivities, and magnetic permeabilities.

III. APPLICATION TO COMPOSITES WITH A
COLUMNAR MICROSTRUCTURE

The exact relations found in the previous section are va
for 3D composite media. We believe these relations will ha

FIG. 1. Illustration of the exact relations~2.11!: Ratios of thezz

andxx components of the macroscopic conductivitiesŝe andm̂e of
a pair of composite samples where the constituent conductiv
and microstructure are related by Eqs.~2.6!–~2.12!. The inclusions

in the ŝ system are a simple cubic array of identical spheres w
radiusR50.3a (a is the cubic lattice constant!, while the inclusions

in the m̂ system are a rectangular-prismatic array of spheroids w

sizes chosen in accordance with Eq.~2.3! and conductivitym̂. Note
that the aspect ratio of the spheroids in the latter sample, as we
that of the prismatic unit cells, depend on the magnetic fi
strengthH. Therefore the aspect ratio varies along theH axis of the
figure, as indicated by the insets. The stars and triangles repre
the ratiosmxx

(e)/sxx
(e) , mzz

(e)/szz
(e) as obtained by numerical calcula

tions, while the dashed lines depict the ratios of the constitu
conductivitiesmxx

(2)/sxx
(2) andmzz

(2)/szz
(2) , in accordance with the pre

dictions of Eq.~2.11!. The host and inclusions of theŝ system are
characterized by constituent conductivity tensors which are sca

ŝ25 Î ( Î is the unit matrix! and ŝ1510Î . The host conductivity of

the m̂ system is taken to have a free electron form~A2! with Ohmic

resistivity equal to 1 andB directed along thez axis. In that casem̂1

is determined by Eq.~2.8!.
6-3
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a broad range of applications in different branches of ph
ics. In order to illustrate the consequences and powe
these relations, we apply them here to the problem of m
netoconductance and magnetoresistance in composites w
columnar microstructure, i.e., we consider a heterogene
medium, characterized by a local resistivity tensor that
pends only upony and z. This is a 3D medium with 2D
heterogeneity, with thex axis as columnar symmetry axis—
see Fig. 2. We note that, in spite of the 2D character
heterogeneity, the transport processes will, in general,
three dimensional, i.e., the local current densityJ(r ) will
usually have a nonzero component along the columnar s
metry axisx wheneverB has a nonvanishing component
they,z plane~the ‘‘in-plane’’ component! BinÞ0, even if the
macroscopic or volume averaged current density^J& is per-
pendicular tox.

Although columnar microstructures are special, i.e., th
are not generic 3D microstructures, they are neverthe
very common and very important, especially in fiber re
forced composites and also in various types of heterogen
thin films. In particular, a thin film with a periodic columna
microstructure, such as a periodic array of perpendicular
lindrical etched holes, is easier to fabricate than any 3D
riodic array.23,24

In Refs. 16, 17, 25, and 26 it was shown that, in a co
posite with a columnar microstructure, the electrical tra
port in the plane perpendicular to the columnar axis can
treated separately from the transport in other directions
particular, ifx is the columnar axis, then they,z components
of ŝe , m̂e only depend on they,z components of the con
stituent tensorsŝ i , m̂ i , and they can be calculated by impl
menting the 2D version of Eqs.~2.1! and ~2.2! in the y,z
plane—see Appendix B. In that plane, the classical dua
symmetry of Dykhne2 is valid, which leads to Mendelson’
generalization of Keller’s theorem for 2D systems.3,4 This is
now exploited by using the dual tensorsm̂d

( i )[m̂ i
T/det2Dm̂ i ,

i 51,2 (m̂ i
T denotes the transposed matrix ofm̂ i) in place of

m̂ i in Eqs.~2.13! and~2.14!. In this way we get the following
expressions:

FIG. 2. Composite conductor with columnar microstructu
shaped as a thin film, with magnetic fieldB tilted with respect to the
film plane.q is the angle betweenB and the film plane, whilew is
the angle between the planar projection ofB, Bin , and the volume
averaged current density^J&, which is perpendicular to the colum
nar axisx.
18441
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mzy
(2)/det2Dm̂2

Amyy
(2)mzz

(2)/~det2Dm̂2!2
5

syz
(2)

Asyy
(2)szz

(2)
, ~3.1!

myy
(1)/det2Dm̂1

myy
(2)/det2Dm̂2

5
syy

(1)

syy
(2)

, ~3.2!

mzz
(1)/det2Dm̂1

mzz
(2)/det2Dm̂2

5
szz

(1)

szz
(2)

, ~3.3!

mzy
(1)/det2Dm̂1

Amyy
(2)mzz

(2)/~det2Dm̂2!2
5

syz
(1)

Asyy
(2)szz

(2)
, ~3.4!

mab
(e) /det2Dm̂e

Amaa
(2)mbb

(2)/~det2Dm̂2!2
5

sab
(e)

Asaa
(2)sbb

(2)
. ~3.5!

Equations~3.1!–~3.4! cannot be solved in a unique fashio
for m̂1 and m̂2. On the other hand, some unique explic
forms for m̂1 andm̂2 can be obtained by splitting each of th
Eqs.~3.2!–~3.4! into two parts. This can be done in differen
ways, leading to different types of exact relations amo
elements of the macroscopic moduliŝe and m̂e .

A. Relations for composites with the same microstructures
and hosts but different inclusion properties

We first consider samples where the 2D host medium
the same. This means thatmyy

(2)5syy
(2) andmzz

(2)5szz
(2) . Equa-

tion ~3.1! will then hold automatically, if we also assume th
mzy

(2)5syz
(2) , due to Eq.~2.6!. Therefore we can write

m̂2D
(2)5S syy

(2) szy
(2)

syz
(2) szz

(2)D 5S syy
(2) 2syz

(2)

2szy
(2) szz

(2) D . ~3.6!

This can be realized trivially whenmyz
(2)5mzy

(2)5syz
(2)5szy

(2)

50, which in the free-electron model@see Eq.~A2!# corre-
sponds to the caseH2x

(m)5H2x
(s)50, H2y

(m)H2z
(m)5H2y

(s)H2z
(s)

50, discussed in Refs. 16 and 17. However, Eq.~3.6! can be
also realized when H2x

(m)52H2x
(s) and H2y

(m)H2z
(m)

52H2y
(s)H2z

(s) . That is, we keep the host in them̂ system the

same as it was in theŝ system, but reverse signs of th
appropriate field components

The form of the conductivity tensor of the other constit
ent, namely the inclusions,m̂1, can be found from Eqs
~3.2!–~3.4!:

m̂2D
(1)5

det2Dm̂1

det2Dm̂2

ŝ2D
(1) , ~3.7!

where all the tensors and determinants should be unders
as 2D~in the y,z plane!. Constructing from this the 2D de
terminant det2Dm̂1, we find that
6-4
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det2Dm̂15
~det2Dŝ2!2

det2Dŝ1

. ~3.8!

Therefore Eq.~3.7! can also be written in the form

m̂2D
(1)5

det2Dŝ2

det2Dŝ1

ŝ2D
(1) . ~3.9!

The relation between the in-plane elements ofŝe and m̂e
can be written in the following explicit form

syy
(e)S mzz

(e)2
myz

(e)mzy
(e)

myy
(e) D ~3.10!

5szz
(e)S myy

(e)2
myz

(e)mzy
(e)

mzz
(e) D ~3.11!

52szy
(e)S myz

(e)2
myy

(e)mzz
(e)

mzy
(e) D ~3.12!

52syz
(e)S mzy

(e)2
myy

(e)mzz
(e)

myz
(e) D 5det2Dŝ2 . ~3.13!

Note that, sincesyy
(2)5myy

(2) , szz
(2)5mzz

(2) , the sizes of the in-

clusions in them̂ system are the same as in theŝ system.
The relations derived here are generalizations of th

found in Ref. 16: The magnetic field is no longer restricted
lie in the y,z plane.

B. Relations for composites with different microstructures and
different constituents

It is possible to get other types of exact relations fro
Eqs. ~3.2!–~3.4!. The expression forszy

(1) follows directly
from Eq.~3.4!, while syy

(1) , szz
(1) can be found as a result of

different non-trivial splitting of Eqs.~3.2! and~3.3!. We can,
for example, assume that the numerators of the lhs of E
~3.2! and ~3.3! are equal to the denominators on the rig
hand side of these equations and vice versa. In this way
get

myy
(1)

det2Dm̂1

5
1

syy
(2)

, ~3.14!

mzz
(1)

det2Dm̂1

5
1

szz
(2)

, ~3.15!

myz
(1)

det2Dm̂1

5
szy

(1)

det2Dm̂2

Amyy
(2)mzz

(2)

szz
(2)syy

(2)
, ~3.16!

myy
(2)

det2Dm̂2

5
1

syy
(1)

, ~3.17!
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mzz
(2)

det2Dm̂2

5
1

szz
(1)

, ~3.18!

myz
(2)

det2Dm̂2

5
szy

(2)

det2Dm̂2

Amyy
(2)mzz

(2)

szz
(2)syy

(2)
. ~3.19!

Constructing the 2D determinants from these equations,
obtain

det2Dm̂15
syy

(2)szz
(2)syy

(1)szz
(1)

det2Dŝ1

, ~3.20!

det2Dm̂25
syy

(1)szz
(1)syy

(2)szz
(2)

det2Dŝ2

. ~3.21!

Substituting these back into Eqs.~3.14!–~3.19!, we get

m̂2D
(1)5

syy
(1)szz

(1)

det2Dŝ1 S szz
(2) szy

(1)Asyy
(2)szz

(2)

Asyy
(1)szz

(1)

syz
(1)Asyy

(2)szz
(2)

Asyy
(1)szz

(1)
syy

(2) D ,

~3.22!

and a similar expression form̂2D
(2) , where the subscripts 1 an

2 should be interchanged. Thus each of the conductivity t
sorsm̂1 and m̂2 depends on both of the constituent condu
tivities ŝ1 and ŝ2. If ŝ1 and ŝ2 are taken to have the free
electron form of Eq.~A2!, with B directed alongz, i.e.,
syz

( i )5szy
( i )50, i 51,2, then they,z components ofm̂1 andm̂2

simplify to

m̂2D
(1)5

1

r0
(2)~11H2

2!
S 11H2

2 0

0 1D , ~3.23!

m̂2D
(2)5

1

r0
(1)~11H1

2!
S 11H1

2 0

0 1D . ~3.24!

Since there are no restrictions on the other tensor com
nents ofm̂e , those can be chosen so as to make the entire
tensorsm̂1 , m̂2 free-electron like. That means takingmxx
51/r0(11H2), myx52mxy5Hmxx , myz5mzy50. When
constructed in this fashion, the 3D tensorsm̂1 andm̂2 corre-
spond to free-electron conductors withBiy, i.e., rotated by
90° with respect toB in the ŝ system. Recalling that this
entire discussion is also based on the duality symmetry,
should not be surprised to find that the exact relations wh
follow involve a pair of composites withinterchanged con-
stituents, as in the case of the 2D Keller expression~1.1!, but
with the magnetic field rotated by 90°.

Taking into account Eqs.~3.14!–~3.21!, we obtain the fol-
lowing relations from Eq.~2.11!:
6-5
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syy
(e)S mzz

(e)2
mzy

(e)myz
(e)

myy
(e) D 5syy

(1)syy
(2) , ~3.25!

szz
(e)S myy

(e)2
myz

(e)mzy
(e)

mzz
(e) D 5szz

(1)szz
(2) , ~3.26!

2syz
(e)S mzy

(e)2
myy

(e)mzz
(e)

myz
(e) D 52szy

(e)S myz
(e)2

myy
(e)mzz

(e)

mzy
(e) D

5Asyy
(1)szz

(1)syy
(2)szz

(2). ~3.27!

Sincem̂2Þŝ2, it follows from Eq. ~2.12! that the inclu-
sions in them̂ system are compressed by different factors
different directions.

Naturally, Eqs.~3.25!–~3.27! can be translated into exac
relations among the different components of the macrosc
resistivity tensorsr̂e[1/ŝe and n̂e[1/m̂e . In the general
case, the forms of the relations written in terms ofr̂e , n̂e are
more complicated than the expressions given above in te
of ŝe , m̂e . Moreover, these more complicated expressio
will usually involve components ofr̂e , n̂e other than just the
y,z-plane components. Only in the special case of isotro
constituents with a magnetic field perpendicular to the
lumnar axisB'x were simple relations obtained in terms
r̂e , n̂e—see Ref. 28.

The relations between the macroscopic responses ofŝ

system and am̂ system with ‘‘interchanged’’ constituents an
different microstructures were checked numerically for
pairs of two-constituent composite samples shown in Fig
The ŝ sample was taken to be a free-electron host med
with metallic cylindrical inclusions as a periodic square l
tice. ~By ‘‘metallic,’’ as opposed to ‘‘semiconducting,’’ we
mean conductors for which the Hall and other nondiago
components ofŝ are negligible, therefore the conductivit
tensor is well approximated by a scalarŝ5s0Î .! The m̂
sample is a composite where the host is metallic, while
inclusions are characterized by a semiconducting fr
electron conductivity with nonzero magnetic fieldB. The
shape of the inclusions, as well as other characteristic s
in them̂ sample should differ from the corresponding sizes
the ŝ system, in accordance with Eq.~2.3!.

C. ac case

The above discussion remains valid if we reinterpret
vergence equation¹•J50 as referring to the electrical dis
placement fieldD5 «̂(r )•E, where «̂(r ) is position depen-
dent tensor of electrical permittivity, instead of to the curre
density J. Instead of Eq.~2.1! we will then have¹• «̂(r )
•¹f50. This means that all the conductivity tensorsŝ get
replaced by electrical permittivity tensors«̂, which in the
quasistatic regime can be written as«̂5«0Î 1 i (4p/v)ŝ,
wherev is the angular frequency,«0 is the scalar dielectric
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constant of the background ionic lattice,Î is the unit tensor,

and ŝ is the ac conductivity tensor@see Appendix A, Eq.
~A3!, and Refs. 29–31#.

Relations~3.25!–~3.27! can then be easily rewritten fo
the ac case by replacing each of the conductivity tensorŝ

by an electrical permittivity tensor«̂. Otherwise we retain
our previous definitions and expressions form̂. In particular,
relations~3.25!–~3.27! can be used in order to connect tw

FIG. 3. Illustrations of the exact relations~3.25! and~3.26! for a
pair of composite samples with ‘‘interchanged’’ constituents.~a! yy

andzz components of the macroscopic conductivity tensorsŝe and

m̂e vs H. The m̂ system is obtained from theŝ system by inter-
changing the constituents and rescaling the coordinate axes in
isotropic fashion.~b! The combinations~3.25! and ~3.26!: Open
circles are the values obtained by numerical computations, w
the dashed lines are theoretical curves. Top: Sketch of the unit

of the periodic composites used in our calculations. In theŝ sample
the host~shown as white area! is a free-electron conductor chara
terized by Eq.~A2! with r051 andB directed alongy, while the
inclusions~shown as a dashed area! are a square array of paralle
metallic circular cylinders, with axes alongx, scalar conductivity

tensor ŝ1510Î @therefore syy
(1)syy

(2)510, szz
(1)szz

(2)510/(11H2)]
and radiusR50.3a, wherea is the lattice parameter of the squa

array. Them̂ sample is obtained by interchanging the constituen
rescaling the coordinate axes, and performing the duality trans

mation. The host is now metallic withm̂25ŝ1, and the inclusions

are free-electron conductors withm̂1 having a form similar toŝ2

but with the magnetic field alongz, i.e., rotated by 90° in they,z
plane. The inclusion shapes and sizes, as well as the lattice~inclu-
sion array! parameters, are transformed in accordance with
~2.3!. Note that the inclusion sizes and other characteristic leng

in the m̂ system keep changing withH. The dependence ofmyy
(e) and

mzz
(e) on H @see~a!# reflects those changes, thus it cannot be und

stood as simple magnetoconductivity in a free-electron conduc
which would arise from inverting a resistivity matrix where only th
Hall components depend uponH.
6-6
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different situations: A system«̂ of conducting host with an
array of insulating inclusions and a systemm̂ of insulating
host with an array of conducting inclusions. In Fig. 4 we p
directly computed components of the macroscopic permit
ity tensors«̂e , m̂e of two such systems vs the frequencyv,
and also of combinations of those components correspon
to Eq. ~3.25! vs v. The latter combinations are compared
the values predicted by the right-hand side of that equat
The so-called surface plasmon resonances~shifted by pres-
ence of the magnetic field! can be seen at frequenciesv
5v res(H)—expressions for these frequencies are given
Refs. 29–31. The shape of the inclusions is changed in
cordance with Eq.~2.12!. In order not to deal with rescaling

FIG. 4. ~a! and~b!: Plots of the real~solid lines! and imaginary
~dashed lines! parts of theyy and zz components of the macro

scopic electrical permittivity tensors«̂e andm̂e vs the dimensionless
frequency v/vp (vp is the plasma frequency of the metall
constituent—see Appendix A!. ~c! and~d!: Real and imaginary parts

of the combination~3.25! with ŝ replaced by«̂. The predicted
values are shown as dashed lines, while the values obtained
numerical computations are shown as open circles. Insets: Ske
of the unit cells of the periodic composites used in our calculatio

In the «̂ sample@see ~a!# the host~shown as shaded area! is a
free-electron conductor characterized by Eq.~A3! with B directed
alongz, while the inclusions~shown as a white area! are a square

array of parallel dielectric circular cylinders with axes alongx, «̂

5 Î , and radiusR50.3a, wherea is the lattice parameter of th

square array. Them̂ sample is obtained by interchanging the co
stituents, rescaling the coordinate axes, and performing the du

transformation. The host is now a dielectric withm̂25 Î and the

inclusions are free-electron conductors withm̂1 similar to Eq.~A3!
but with the magnetic field alongy, i.e., rotated by 90° in they,z
plane. The inclusion shapes, as well as all the characteristic len

in the m̂ system are changed in accordance with Eq.~2.12!. The

following values were used in constructingm̂1 @see Eq.~A3!#:
tvp530, v/vp;1, «050.
18441
t
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transformations involving complex valued lengths~note that
«̂ and m̂ are now complex valued tensors!, we consider the
limit vt@1, when 12 ivt' ivt ~heret is the conductivity
relaxation time—see Appendix A!. The characteristic sizes in
the m̂ system will then be related to the sizes in the«̂ system
by Ly>Ly /A«1vp

2t2/(H22v2t2), Lz>LzA«1vp
2/v2.

This simplification of what would have otherwise been
complex coordinate rescaling transformation@see Eq.~2.3!#
leads to sustantial deviations of the computed results fr
theoretical predictions only in a narrow interval of freque
cies near each of the surface plasmon resonancesv res(H).
In all other frequency domains there is good agreement
tween the two sets of values. In order to achieve better ag
ment ~especially near the surface plasmon resonance! a
more careful calculation should be performed, which do
not ignore the nonreal nature of the rescaling transformat
This will be described elsewhere. Note that forBiz andBiy,
the off-diagonal componentsmyz

(e) , mzy
(e) vanish, therefore the

combination which appears on the rhs of Eq.~3.25! reduces
to the product«yy

(e)mzz
(e) .

IV. SUMMARY

Exact relationswere found among elements of the ma
roscopic or bulk effective conductivity tensors of pairs
two-constituent composites. These relations are valid e
when those elements have quite general values, i.e., non
lar, nonsymmetric, and nonreal. Since these relations fol
directly from a comparison of different differential equatio
and are not connected with any duality transformation, th
are valid for systems of arbitrary dimensionality. They c
relate between composites with different microstructur
and even between different physical moduli of different co
posites: They can relate between the macroscopic con
tivities of two composites with different microgeometries
well as with different constituent properties, and they c
also relate between electrical conductivity and electrical p
mittivity or thermal conductivity, etc.

In the special case of composites with a columnar mic
structure, quasi-3D generalizations of the Keller relations
be obtained from the above described relations by invok
the duality symmetry. These apply to pairs of composi
with interchanged constituents as well as to pairs of comp
ites with different microgeometries.

Both the generic 3D exact relations and the quasi-3D g
eralizations of Keller’s relations were tested against num
cal computations. In the case of ac electrical permittivity,
relations that were found can be used to make connect
between different types of physical phenomena. For
ample, the magneto-optical response of a conducting
film with an array of subwavelength holes, where extraor
nary light transmission has been observed,29,32can be related
to the magneto-optical response of an array of parallel c
ducting sticks embedded in a dielectric host, which are be
studied and discussed extensively as systems where neg
electrical permittivity and negative magnetic permeabil
are attainable simultaneously.33–36 Magneto-optical respons
of such arrays of parallel conducting sticks are also be
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studied in connection with other interesting modes
behavior.30,31,37,38

Experimental tests of the relations presented in this pa
for both dc and ac response would also be desirable.
applicability of the generalized Keller relations is not r
stricted to columnar systems of infinite thickness. Fin
thickness films will also satisfy it very well if the film thick
ness,, heterogeneity length scalea, and Hall-to-Ohmic re-
sistivity ratio H of the normal conductor constituent satis
the inequalityH,@a ~see Ref. 39!.
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APPENDIX A: FREE-ELECTRON MODEL

1. dc case

In a free-electron Drude model, the resistivity tensorr̂ i

and the conductivity tensorŝ i5 r̂ i
21 can be written in the

following forms

r̂ i5r0
( i )S 1 Hz

( i ) 2Hy
( i )

2Hz
( i ) 1 Hx

( i )

Hy
( i ) 2Hx

( i ) 1
D , ~A1!

ŝ i5
1

r0
( i )~11Hi

2!

3S 11~Hx
( i )!2 Hx

( i )Hy
( i ) Hz

( i )Hx
( i )

Hx
( i )Hy

( i ) 11~Hy
( i )!2 Hy

( i )Hz
( i )

Hz
( i )Hx

( i ) Hy
( i )Hz

( i ) 11~Hz
( i )!2

D
1

1

r0
( i )~11Hi

2! S 0 Hz
( i ) 2Hy

( i )

2Hz
( i ) 0 Hx

( i )

Hy
( i ) 2Hx

( i ) 0
D ,

~A2!

where the Ohmic resistivityr0
( i ) is a scalar quantity indepen

dent of the magnetic fieldB, while the Hall resistivity com-
ponentsr0

( i )Hx
( i ) , r0

( i )Hy
( i ) , r0

( i )Hz
( i ) form an axial vector that

is proportional toB. Consequently, the vectorH is a dimen-
sionless form of the magnetic field whose magnitude is
noted byH[6 zHz[6vct, wherevc5euBu/mc is the cy-
clotron frequency, whileB is the magnetic field measured
conventional units, andt is the conductivity relaxation time
The sign ofH can be either positive or negative, and refle
the sign of the majority charge carriers.

2. ac case

The electrical permittivity tensors«̂ in a quasistatic ap-
proximation can be written as«̂5«0Î 1 i (4p/v)ŝ, wherev
18441
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is angular frequency,«0 is the scalar dielectric constant o
the background ionic lattice, andÎ is a unit tensor. The con
ductivity tensorŝ can be taken in the same forms as for
case@see Eq.~A2!# but divided on (12 ivt) and the mag-
netic fieldsH should be substituted byH/(12 ivt). Noting
thats05N0e2t/m ~hereN0 is the charge-carrier density an
m is electron mass! can be expressed though plasma f
quencyvp5(4pe2N0 /m)1/2, the local ac permittivity tensor
«̂ of the metal forBiz can be written as29–31

«̂5«0Î 1 ivp
2

3
t

v S 12 ivt

~12 ivt!21H2

2H

~12 ivt!21H2 0

H

~12 ivt!21H2

12 ivt

~12 ivt!21H2 0

0 0
1

12 ivt

D .

~A3!

APPENDIX B: DUALITY IN A 3D SYSTEM WITH
COLUMNAR SYMMETRY

The current flow in a 3D medium with 2D heterogenei
with thex axis as columnar symmetry axis~see Fig. 2!, sepa-
rates into a 1D problem for flow along that axis and a 2
problem for flow in they,z plane when the constituent con
ductivity tensors have no elements connectingx to the other
directions. That is the case for isotropic conductors when
externally applied magnetic field lies alongx. By contrast,
when one or more of the elementsmxy , myx , mxz , mzx is
nonzero, as whenB has a nonzeroy or z component, the
current flow becomes 3D in a nontrivial fashion. It wa
shown in Refs. 26 and 27, that the local fieldsJ and E
always depend only ony andz and also thatEx has a uniform
value everywhere in the system. If the boundary conditio
are such thatEx50, then Eqs.~2.1! and Eq.~2.2! both re-
duce to equations for a strictly 2D system which is just t
y,z section of the columnar medium. Alternatively, one m
define new potential fields by adding terms tof that are
linear in y andz ~see Refs. 16 and 40!. Using either one of
these approaches, the problem of calculating the four
plane y,z tensor components ofm̂e separates out from the
full 3D problem and becomes a strictly 2D problem. Det
mination of the other five tensor componentsmxi

(e) andm ix
(e) ,

i 5x,y,z, is a separate problem. As shown in Refs. 28 a
41, in some cases the latter components are obtainabl
linear combinations of the in-plane tensor componentsmab

(e) ,
a,b5y,z.

It is therefore possible to define a dual 2D conductiv
problem in they,z plane: This is done by rotating they and
z components ofE andJ by 90° at every point in that plane
and calling the rotated fieldsJd andEd , respectively.2 These
are the dual current density or flux and dual electric fie
and they satisfy the 2D equations¹3Ed5¹•Jd50 in the
y,z plane. From the relation
6-8
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J~r !5m̂~r !•E~r !, m̂[S myy myz

mzy mzz
D , ~B1!

between the original 2D in-plane components ofE andJ, it
follows that the dual fields are related by4

Jd~r !5m̂d~r !•Ed~r !, ~B2!
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