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Rung-singlet phase of theS=3 two-leg spin-ladder with four-spin cyclic exchange
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Using continuous unitary transformatiof@8UTs) we calculate the one-triplet gap for the antiferromagnetic
S:% two-leg spin ladder with additional four-spin exchange interactions in a high order series expansion about
the limit of isolated rungs. By applying an efficient extrapolation technique we calculate the transition line
between the rung-singlet phase and a spontaneously dimerized phase with dimers on the legs. Using this
extrapolation technique we are able to analyze the crossover from strong rung coupling to weakly coupled
chains.
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After the discovery of highF. superconductivity in cu- the strength of the four-spin magnetic exchange terms. There
prates in 1986, low-dimensional quantum antiferromagds also another way based on cyclic permutatiéhg, to
netism has attracted much attention. Recently it has beconigclude the leading four-spin exchange term. It differs in cer-
clear that the minimum magnetic model for cuprate system#in two-spin terms from Eq1)
has to include four-spin exchange terms in addition to the
usual nearest neighbor Heisenberg exchange interdctt®n. HP=JP> S-S+ ‘]h)z S, Si1,+HE (23
One important subclass of such models are the two-leg lad- | T
der systems. The nearest-neighbor Heisenberg model on the P
t.vvo_—leg quder wnhqut.four-spln interaction is a gapped spin Hp _Iove 2 (P + Pfl(:li)_ (2b)
liquid. This system is in the rung-singlet phase and the first ¥e 2wy !
excitations are triplet§:~4In the limit of zero rung coupling

; ; - : Both Hamiltonians are identical except for couplings
there are two isolated gapless spin chains. Including four- . ) . . .
spin exchange interactions several quantum phasé ong the diagonafsf J, andJ) are suitably redefined. First,

1517 ; . . We use HamiltoniarH (1) since it is established that the
oceur. Possible phases include a spontaneously dlrnerfour-spin terms are the most significant ones if the magnetic

ized phase where the dimers are located in a meanderlikg, iionian is seen as effective model for the low-| ing

structure on the legs, scalar and vector chirality phases, g,yes of 4 realistic insulating three-band Hubbard mbdel.
region of dominant collinear spin, and a ferromagneticg,; reqyits for HamiltoniaHP (2) will also be presented.
phase’® Real two-leg ladder cuprates, however, are always \we use a continuous unitary transformati@UT) to map
in the rung-singlet phase but relatively close to the quantumne HamiltonianH to an effective HamiltoniarH o which

phase transition to the spontaneously dimerized phdse. conserves the number of rung-triplets, i.BHq,He]=0,
Therefore, it is in particular important to understand thewhereH(,::Hl[J —0g..~01- 2 The ground state dfi¢ is the
[~ = eyc”

properties of this transition. rung-triplet vacuum. The effective Hamiltoni&h.g is calcu-
In this paper we will calculate the gap around the limit of}N gtrip X B

. . _ . . ated in order 11 irx:=J;/J, and X¢yci=J¢yc/J, . Thereby,
isolated rungs. We obtain reliable results in a wide range ofye obtained the ground-state enefgy=(0|H4]0) and the

parameters belonging to the rung-singlet phase. The tra”%‘ne-triplet dispersiom (k) = (k|Heg| k) — Eo. The one-triplet
tion curve to the spontaneously dimerized phase is comgispersionw(k) has a minimum fork=, the one-triplet
puted. In addition, starting from the strong coupling limit of g5, A(X,Xeyd :=w (). By such perturbative approaches
isolated rungs, the limit of isolated spin chains is discussedyorking on the operator level the spin ladder without cyclic
We consider th&=; antiferromagnetic two-leg spin lad- exchange has been investigated previously with great
der plus additional four-spin exchange terhig; succesd?20
The standard approach to calculatepa phase transition line
_ with series expansions is to use dlogPad&apolations on
H_JLZ 3,1'3,2+J|\% S SeitHee (18 A(X,X¢yo)- This yields reliable results only in a very small
region about the exactly known phase transition pit
wherei denotes the rungs anc={1,2 the legs and =1/5x¢=1/5] (see gray square in Fig. 3 or similarly in
Fig. 4). Generally, forx= X the dispersion and the gap are

Howe=20eye 20 [(Sy)+S1y1)(Soy S )+ (S0 Syy) KON Xty
plaauetes ©(K)13, =1+[2cogk) - 3]x, (39

X(S1i41Spi 1)~ (S-S0 1)(Syy01-Sz) 1. (1b) 01T, —1— 5 b

The exchange couplings along the rungs and along th&he results extrapolated ir are reliable forxe[0.1,0.3
legs are denoted hy, and byJ;, respectivelyJ., denotes where the gap closes linearly inrandx... For Hamiltonian
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HP (2) the analogous situation is found at and about the exact 0.0 —_—
pointxP=xg,.=1/4 as shown in Ref. 21. We use the param- "
eters with superscrigh to distinguish results for the Hamil- -1.0}
tonianHP (2) clearly from those for the HamiltoniaH (1). *

We advance extrapolation technigé®&< in order to in- T 20
vestigate the rung-singlet phase for larger/lower values of il
andX... The series expansion is expressed not in external = 30 Fit Eanction
parameters such as and X, but in an internal energy, 1< —— dlogPade[7,2] \
similar in spirit to work for the Ising modéf So high series ol | ==—= dlogPadef5.4] N
expansion and renormalization group ideas are combined. ' ]
Our approach outreaches previous work in two aspeits. ) ) ) .
Our final results are given as functions of the external vari- 00 oz 02 o6 08 10
ables. (i) In the problem studied, the natural internal variable r

is the one-triplet gap which we compute including all infor-
mation on short distances. Previously only three macroscopic
moments were addressed to define a correlation length. Th
caveat induced considerable qualitative differences betwe
the continuum and the lattice modélWe define

FIG. 1. For HamiltoniarH (1); black lines show the dlogPade
proximants fodA/dx at G=1 as a function of =xg/x. The
ray line is a fitted spline which follows the asymptotic behavior
0) with A=0.41 and\’=0.85 at small values af and approxi-
mates the available dlogPadksults. The points marked by stars are
set by hand to guide the spline smoothly in the intermediate region.

A(x,rx) (4) The extrapolations in Figs. 3 and 4 require actually only the values

C)=1-A00=1~ 7557 r~0.5.

wherer =Xcyo/X=J¢yc/J) will be kept constant for the ex-
trapolation inx. The functionG(x) behaves a&xx for x
—0 so that any expansion xcan be converted in an ex-
pansion inG. Using the expansion foA(x) we calculated
the inverse functiox=x(G) as a series is up to order 11
from Eq. (4). The quantityA=A/[(1+x)J, ] measures the
gap in units ofJ, +J; to ensure empirically a monotonic in leading order inJ, andJ.,. Herex and\’ are nonuni-
behavior ofA as function ofx. Then the existence of the Vversal constants’In our case we have a critical theory with
inversex(G) is assured. Next we consider the derivative ofcentral charge=3 and SU2) symmetry which is described
A(%) as thek=2 Wess-Zumino-Witten modéf:** Rearranging
Eq. (8) we obtain

actions. Bosonization results show that the only relevant op-
erator is the four-spin leg-leg interactiéhThe triplet gap
scales as

A=NI; —N gy (8)

dA(x)  dG
dx — dx’

(5 A N X=X
‘]H_Xc X

©)

Substitutingx=x(G) in Eq. (5) we obtain ) .
wherex.=\/(\'r) is the value ofx where the gap vanishes

dG for givenr. Therefore, the derivative of for smallr at G
_H_P(G)’ (6) =1, i.e., X=X, is given by
where P(G) is the truncated series of order 10 G Note — (N'1)?
that even the convergence of the truncated sePig8) is A'(G=1r)=~— NS (10
significantly better than the convergence of the truncated se-
rieSA/(X) in X'22 Because the gap is a monotonic decreaSinqn the case off —0 we eXpeCtK' =0 and K/ _ _)\/X2:

function forr =const we can use dlogPadetrapolations for

A2 AT A2 -
P(G) since —dG/dx is non-negative. Integrating Eqe) A/ from Eq. (9). Exploiting A’=—A®/\ in a biased

dlogPadeextrapolation we fincd\ =0.4+0.03 in very good

ields
y agreement with quantum Monte Carlo resultgyc=0.41
Go dG Xo +0.01 from Ref. 25.
- fo m:j dx=Xo. (7) In Fig. 1 the solid line corresponds to the dlogPade?]

for A’(G=1yr). Forr<0.3 the asymptotic formul&l0) is

Therefore, integrating the left hand side &=1, i.e.,, A well reproduced by the extrapolation. A minyteot discern-

=0, provides the phase transition pdjint,rx,] for a given ible) offset atr=0 occurs as a natural consequence of the

r. For anyGye[0,1 the gap isA(xq,rxe)/Jd, =(1+x,)(1  dlogPadeextrapolation which describes a quantity of a given

—Gyp). In this way,A(X,Xcd) is obtained. sign only. Using the valugé =0.41+0.01 we deduce for the
First, we examine the behavior of the gap in the limit of second nonuniversal constant the value

smallr and G=1. This corresponds to the situation of two

spin chains which are weakly coupled by the four-spin inter- A'=0.85+0.2. (17
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FIG. 2. Same as in Fig. 1 for Hamiltonia#® (2).

If we perform the same analysis for Hamiltonié2) we ob-
tain Fig. 2 leading to the same result for given in Eq.(11).
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FIG. 4. Same as in Fig. 3 in tk[e(p,xgyc] plane for Hamiltonian
HP (2). The gray square is the exactly known transition p@ift
=1/4xg,c= 1/4]. The black circles are points taken from the curves
in Ref. 21. The triangles are DMRG resulgownward from Ref.

This supports the validity of the analygis and agr'ees perfectl%e; upward from Ref. 16 The diamond is determined from the
with Ref. 21 in that the relevant term in the cyclic exchangemayimization of the central charge by exact diagonalizatRef.

is the leg-leg coupling so that both Hamiltoniais,(2) lead

24).

to the same result for large leg couplings and small cyclic

exchange couplings.

In the limit x—, we conclude from Eq(9) that the

For larger values of or r” we interpolate between vari- yansition line converges against the asymptotic line

ous extrapolations. This works better for Hamiltoni&?)
(see Fig. 2 than for Hamiltonian(1) (see Fig. 1 But the
interpolating functions are quite similar. The uncertainty in

XGrTPE NN ~0.52+0.14 (12)

the interpolation leads to the error bars in the subsequenfsing the values fon and A’ obtained above. This result

extrapolations shown in Figs. 3 and 4. The extrapolations arfolds again for both Hamiltoniar{4),(2). We cannot confirm
done for values <0.5 by subtracting the interpolated values the value ofx%/™P=0.22 advocated in Ref. 21.

depicted in Figs. 3 and 4 from the truncated serie\fqiG)

In Fig. 3 the extrapolated values of the spin gap of the

so that we obtain the series of a function that vanishes aHamiltonian (1) in the [x,X..| plane are presented. The

G=1. We find that many in this way biased dlogPaaje

black solid lines denot& (xg,X.,o) for a fixedx, as a func-

proximants yield reliable results which supports our ap-tion of x.. These lines are shifted by, in the x direction
proach to include the properties of the weakly coupled chainproducing a quasi-three-dimensional plot. The end point of a
in the extrapolations. Finally the subtracted bias is readded tplack line corresponds td (X,X¢yd =0 yielding the gray

arrive at the proper result.
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FIG. 3. Extrapolated spin gaps for Hamiltoni&h (1) in the
[X,Xeycl plane(see main text The gray line is the obtained phase
transition lineA=0 and the gray square is the exactly known tran-
sition point[x=1/5x.,.=1/5]. The points marked by gray circles

cyc

solid line which is the transition line between the rung-
singlet phase and the spontaneously dimerized phase. We use
biased extrapolations in the range [0.3¢0] for the transi-

tion line. In the rangexe[0.1,0.3 the unbiased extrapola-
tions are safe due to the good convergence of the series near
the exactly known transition poirigray squarg In the limit

x— 0 even the truncated series gives quantitative results. Us-
ing Eq. (7) one finds in addition strong evidence for

da 1-G)” 13
(11—
4 “(1-6) (13
at x=0 where =0.3=0.02. The transition point, i.eA
=0, for x=0 is found to be[0,0.3+0.002. The smooth
connection between the different extrapolations corroborates
the reliability of our results in a wide region in thie, x|
plane.

In Fig. 4 the corresponding results for the spin gap of the
Hamiltonian(2) in the[xp,xf:’yc] plane are depicted. The bi-

and error bars indicate the estimated accuracy of the extrapolationdS€d extrapolation is used faf=0.4. In addition to quan-
On the left side of the transition line the system is in the rung-titative differences there occurs one qualitative difference at

singlet phase and on the right side in the spontaneously dimerize@w values ofx. For Hamiltonian(2) no closing of the gap

phase.

on increasing®, . occurs forxP=<0.1 as in Ref. 21. Thus the
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gray line is not prolonged below”=0.1. Apart from this interactions. We used a continuous unitary transformation to
point, the shape of the transition line is similar for both calculate the one-triplet gap in a high order series expansion
Hamiltonians. about the limit of isolated rungs. The use of an internal en-
Quantitatively, it is interesting to compare to results ob-ergy scale as the new expansion variable enabled us to cal-
tained by other approachébig. 4). References 26,16 use culate the transition line between the rung-singlet phase and
density matrix renormalization. Reference 24 analyzes thgye spontaneously dimerized phase reliably in a wide region
finite size scaling to determine the maximum central chargef parameter space. Our results are consistent with the
c. The cyclic exchange whereis maximum yields the criti-  osonization results in the limit of weakly coupled chains
cal xgy.. The spread and the error bars of the various resultghere we reproduce their properties. In addition, we give an

allow one to assess the accuracy of the data. We concludgsiimate of the nonuniversal constantand A’ which ap-
that it is at present not yet settled where precisely the tran

ition b d inal 4 dimerized ph ear in the bosonization treatment. The valueNas in very
SItIOﬂf ettr\:vegn tgap.pel drgng—\?\llng etan tlmerlze pt ase fOE'ood agreement with quantum Monte Carlo restitsVe
gurts orthe |s|c_) ropic dat efr. fag.roposte 0 (;arr)ll ou (t:r?re Uhave given an example that the combination of high order
finite-size scaling on data fqrerodic systems 1o carlfy IS series expansion and renormalization group ideas can be a
issue. The symmetry change between the rung-singlet a
L .~ powerful tool.

the dimerized phase cannot be represented properly in ‘a
single opersystem. We thank A. Bihler, C. Knetter, U. Lay, and E. Miller-

In summary, we have investigated the rung-singlet phaselartmann for helpful discussions and the DFG for financial
of the S=3 two-leg spin ladder with additional four-spin support in SP 1073 and in SFB 608.
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