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Rung-singlet phase of theSÄ 1
2 two-leg spin-ladder with four-spin cyclic exchange
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Using continuous unitary transformations~CUTs! we calculate the one-triplet gap for the antiferromagnetic
S5

1
2 two-leg spin ladder with additional four-spin exchange interactions in a high order series expansion about

the limit of isolated rungs. By applying an efficient extrapolation technique we calculate the transition line
between the rung-singlet phase and a spontaneously dimerized phase with dimers on the legs. Using this
extrapolation technique we are able to analyze the crossover from strong rung coupling to weakly coupled
chains.
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After the discovery of high-Tc superconductivity in cu-
prates in 1986, low-dimensional quantum antiferroma
netism has attracted much attention. Recently it has bec
clear that the minimum magnetic model for cuprate syste
has to include four-spin exchange terms in addition to
usual nearest neighbor Heisenberg exchange interaction1–10

One important subclass of such models are the two-leg
der systems. The nearest-neighbor Heisenberg model on
two-leg ladder without four-spin interaction is a gapped s
liquid. This system is in the rung-singlet phase and the fi
excitations are triplets.11–14In the limit of zero rung coupling
there are two isolated gapless spin chains. Including fo
spin exchange interactions several quantum pha
occur.15–17 Possible phases include a spontaneously dim
ized phase where the dimers are located in a meande
structure on the legs, scalar and vector chirality phase
region of dominant collinear spin, and a ferromagne
phase.16 Real two-leg ladder cuprates, however, are alw
in the rung-singlet phase but relatively close to the quan
phase transition to the spontaneously dimerized phas4,9

Therefore, it is in particular important to understand t
properties of this transition.

In this paper we will calculate the gap around the limit
isolated rungs. We obtain reliable results in a wide range
parameters belonging to the rung-singlet phase. The tra
tion curve to the spontaneously dimerized phase is c
puted. In addition, starting from the strong coupling limit
isolated rungs, the limit of isolated spin chains is discuss

We consider theS5 1
2 antiferromagnetic two-leg spin lad

der plus additional four-spin exchange termsHcyc

H5J'(
i

Si ,1•Si ,21Ji(
i ,t

Si ,t•Si 11,t1Hcyc, ~1a!

wherei denotes the rungs andtP$1,2% the legs and

Hcyc52Jcyc (
plaquettes

@~S1,i•S1,i 11!~S2,i•S2,i 11!1~S1,i•S2,i !

3~S1,i 11•S2,i 11!2~S1,i•S2,i 11!~S1,i 11•S2,i !#. ~1b!

The exchange couplings along the rungs and along
legs are denoted byJ' and byJi , respectively.Jcyc denotes
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the strength of the four-spin magnetic exchange terms. Th
is also another way based on cyclic permutationsPi jkl to
include the leading four-spin exchange term. It differs in c
tain two-spin terms from Eq.~1!

Hp5J'
p (

i
Si ,1•Si ,21Ji

p(
i ,t

Si ,t•Si 11,t1Hcyc
p ~2a!

Hcyc
p 5

Jcyc
p

2 (
^ i jkl &

~Pi jkl 1Pi jkl
21 !. ~2b!

Both Hamiltonians are identical except for couplin
along the diagonals3 if J' andJi are suitably redefined. First
we use HamiltonianH ~1! since it is established that th
four-spin terms are the most significant ones if the magn
Hamiltonian is seen as effective model for the low-lyin
modes of a realistic insulating three-band Hubbard mod8

But results for HamiltonianHp ~2! will also be presented.
We use a continuous unitary transformation~CUT! to map

the HamiltonianH to an effective HamiltonianHeff which
conserves the number of rung-triplets, i.e.,@H0 ,Heff#50,
whereH0ªHu [Ji50,Jcyc50] .18 The ground state ofHeff is the
rung-triplet vacuum. The effective HamiltonianHeff is calcu-
lated in order 11 inxªJi /J' and xcycªJcyc/J' . Thereby,
we obtained the ground-state energyE05^0uHeffu0& and the
one-triplet dispersionv(k)5^kuHeffuk&2E0. The one-triplet
dispersionv(k) has a minimum fork5p, the one-triplet
gap D(x,xcyc)ªv(p). By such perturbative approache
working on the operator level the spin ladder without cyc
exchange has been investigated previously with gr
success.19,20

The standard approach to calculate a phase transition
with series expansions is to use dlogPade´ extrapolations on
D(x,xcyc). This yields reliable results only in a very sma
region about the exactly known phase transition point@x
51/5,xcyc51/5# ~see gray square in Fig. 3 or similarly i
Fig. 4!. Generally, forx5xcyc the dispersion and the gap a
known exactly

v~k!/J'511@2cos~k!23#x, ~3a!

D~x,x!/J'5125x. ~3b!

The results extrapolated inx are reliable forxP@0.1,0.3#
where the gap closes linearly inx andxcyc. For Hamiltonian
©2003 The American Physical Society13-1
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Hp ~2! the analogous situation is found at and about the ex
point xp5xcyc

p 51/4 as shown in Ref. 21. We use the para
eters with superscriptp to distinguish results for the Hamil
tonianHp ~2! clearly from those for the HamiltonianH ~1!.

We advance extrapolation techniques23,22 in order to in-
vestigate the rung-singlet phase for larger/lower values ox
and xcyc. The series expansion is expressed not in exte
parameters such asx and xcyc, but in an internal energy
similar in spirit to work for the Ising model.23 So high series
expansion and renormalization group ideas are combin
Our approach outreaches previous work in two aspects~i!
Our final results are given as functions of the external v
ables.~ii ! In the problem studied, the natural internal variab
is the one-triplet gap which we compute including all info
mation on short distances. Previously only three macrosc
moments were addressed to define a correlation length.
caveat induced considerable qualitative differences betw
the continuum and the lattice model.23 We define

G~x!512D̄~x!512
D~x,rx !

~11x!J'

, ~4!

where r 5xcyc/x5Jcyc/Ji will be kept constant for the ex
trapolation inx. The functionG(x) behaves asG}x for x
→0 so that any expansion inx can be converted in an ex
pansion inG. Using the expansion forD(x) we calculated
the inverse functionx5x(G) as a series inG up to order 11
from Eq. ~4!. The quantityD̄5D/@(11x)J'# measures the
gap in units ofJ'1Ji to ensure empirically a monotoni
behavior ofD̄ as function ofx. Then the existence of th
inversex(G) is assured. Next we consider the derivative
D̄(x)

dD̄~x!

dx
52

dG

dx
. ~5!

Substitutingx5x(G) in Eq. ~5! we obtain

2
dG

dx
5P~G!, ~6!

whereP(G) is the truncated series of order 10 inG. Note
that even the convergence of the truncated seriesP(G) is
significantly better than the convergence of the truncated
riesD8(x) in x.22 Because the gap is a monotonic decreas
function for r 5const we can use dlogPade´ extrapolations for
P(G) since 2dG/dx is non-negative. Integrating Eq.~6!
yields

2E
0

G0 dG

P~G!
5E

0

x0
dx5x0. ~7!

Therefore, integrating the left hand side toG051, i.e., D
50, provides the phase transition point@x0 ,rx0# for a given
r. For anyG0P@0,1@ the gap isD(x0 ,rx0)/J'5(11x0)(1
2G0). In this way,D(x,xcyc) is obtained.

First, we examine the behavior of the gap in the limit
small r andG51. This corresponds to the situation of tw
spin chains which are weakly coupled by the four-spin int
18441
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actions. Bosonization results show that the only relevant
erator is the four-spin leg-leg interaction.21 The triplet gap
scales as

D5lJ'2l8Jcyc ~8!

in leading order inJ' andJcyc. Herel andl8 are nonuni-
versal constants.15 In our case we have a critical theory wit
central chargec5 3

2 and SU~2! symmetry which is described
as the k52 Wess-Zumino-Witten model.15,24 Rearranging
Eq. ~8! we obtain

D

Ji
5

l

xc

xc2x

x
, ~9!

wherexc5l/(l8r ) is the value ofx where the gap vanishe
for given r. Therefore, the derivative ofD̄ for small r at G
51, i.e.,x5xc , is given by

D̄8~G51,r !52
~l8r !2

l1l8r
. ~10!

In the case ofr→0 we expectD̄850 and D̄852l/x25

2D̄2/l from Eq. ~9!. Exploiting D̄852D̄2/l in a biased
dlogPade´ extrapolation we findl50.460.03 in very good
agreement with quantum Monte Carlo resultslQMC50.41
60.01 from Ref. 25.

In Fig. 1 the solid line corresponds to the dlogPade´ @7,2#

for D̄8(G51,r ). For r ,0.3 the asymptotic formula~10! is
well reproduced by the extrapolation. A minute~not discern-
ible! offset at r 50 occurs as a natural consequence of
dlogPade´ extrapolation which describes a quantity of a giv
sign only. Using the valuel50.4160.01 we deduce for the
second nonuniversal constantl8 the value

l850.8560.2. ~11!

FIG. 1. For HamiltonianH ~1!; black lines show the dlogPad´

approximants fordD̄/dx at G51 as a function ofr 5xcyc/x. The
gray line is a fitted spline which follows the asymptotic behav
~10! with l50.41 andl850.85 at small values ofr and approxi-
mates the available dlogPade´ results. The points marked by stars a
set by hand to guide the spline smoothly in the intermediate reg
The extrapolations in Figs. 3 and 4 require actually only the val
r'0.5.
3-2
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If we perform the same analysis for Hamiltonian~2! we ob-
tain Fig. 2 leading to the same result forl8 given in Eq.~11!.
This supports the validity of the analysis and agrees perfe
with Ref. 21 in that the relevant term in the cyclic exchan
is the leg-leg coupling so that both Hamiltonians~1!,~2! lead
to the same result for large leg couplings and small cy
exchange couplings.

For larger values ofr or r p we interpolate between vari
ous extrapolations. This works better for Hamiltonian~2!
~see Fig. 2! than for Hamiltonian~1! ~see Fig. 1!. But the
interpolating functions are quite similar. The uncertainty
the interpolation leads to the error bars in the subsequ
extrapolations shown in Figs. 3 and 4. The extrapolations
done for valuesr &0.5 by subtracting the interpolated valu
depicted in Figs. 3 and 4 from the truncated series forD̄8(G)
so that we obtain the series of a function that vanishe
G51. We find that many in this way biased dlogPade´ ap-
proximants yield reliable results which supports our a
proach to include the properties of the weakly coupled cha
in the extrapolations. Finally the subtracted bias is readde
arrive at the proper result.

FIG. 2. Same as in Fig. 1 for HamiltonianHp ~2!.

FIG. 3. Extrapolated spin gaps for HamiltonianH ~1! in the
@x,xcyc# plane~see main text!. The gray line is the obtained phas
transition lineD50 and the gray square is the exactly known tra
sition point @x51/5,xcyc51/5#. The points marked by gray circle
and error bars indicate the estimated accuracy of the extrapolat
On the left side of the transition line the system is in the run
singlet phase and on the right side in the spontaneously dimer
phase.
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In the limit x→`, we conclude from Eq.~9! that the
transition line converges against the asymptotic line

xcyc
asympt5l/l8'0.5260.14 ~12!

using the values forl and l8 obtained above. This resu
holds again for both Hamiltonians~1!,~2!. We cannot confirm
the value ofxcyc

asympt50.22 advocated in Ref. 21.
In Fig. 3 the extrapolated values of the spin gap of t

Hamiltonian ~1! in the @x,xcyc# plane are presented. Th
black solid lines denoteD(x0 ,xcyc) for a fixedx0 as a func-
tion of xcyc. These lines are shifted byx0 in the x direction
producing a quasi-three-dimensional plot. The end point o
black line corresponds toD(x,xcyc)50 yielding the gray
solid line which is the transition line between the run
singlet phase and the spontaneously dimerized phase. W
biased extrapolations in the rangexP@0.3,̀ # for the transi-
tion line. In the rangexP@0.1,0.3# the unbiased extrapola
tions are safe due to the good convergence of the series
the exactly known transition point~gray square!. In the limit
x→0 even the truncated series gives quantitative results.
ing Eq. ~7! one finds in addition strong evidence for

dD̄

dx
}~12G!h ~13!

at x50 whereh50.360.02. The transition point, i.e.,D
50, for x50 is found to be@0,0.360.002#. The smooth
connection between the different extrapolations corrobora
the reliability of our results in a wide region in the@x,xcyc#
plane.

In Fig. 4 the corresponding results for the spin gap of
Hamiltonian~2! in the @xp,xcyc

p # plane are depicted. The bi
ased extrapolation is used forxp*0.4. In addition to quan-
titative differences there occurs one qualitative difference
low values ofxp. For Hamiltonian~2! no closing of the gap
on increasingxcyc

p occurs forxp&0.1 as in Ref. 21. Thus the

-

ns.
-
ed

FIG. 4. Same as in Fig. 3 in the@xp,xcyc
p # plane for Hamiltonian

Hp ~2!. The gray square is the exactly known transition point@xp

51/4,xcyc
p 51/4#. The black circles are points taken from the curv

in Ref. 21. The triangles are DMRG results~downward from Ref.
26; upward from Ref. 16!. The diamond is determined from th
maximization of the central charge by exact diagonalization~Ref.
24!.
3-3
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gray line is not prolonged belowxp50.1. Apart from this
point, the shape of the transition line is similar for bo
Hamiltonians.

Quantitatively, it is interesting to compare to results o
tained by other approaches~Fig. 4!. References 26,16 us
density matrix renormalization. Reference 24 analyzes
finite size scaling to determine the maximum central cha
c. The cyclic exchange wherec is maximum yields the criti-
cal xcyc

p . The spread and the error bars of the various res
allow one to assess the accuracy of the data. We conc
that it is at present not yet settled where precisely the tr
sition between gapped rung-singlet and dimerized phase
curs for the isotropic ladder. We propose to carry out care
finite-size scaling on data forperiodicsystems to clarify this
issue. The symmetry change between the rung-singlet
the dimerized phase cannot be represented properly
single opensystem.

In summary, we have investigated the rung-singlet ph
of the S5 1

2 two-leg spin ladder with additional four-spi
.
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interactions. We used a continuous unitary transformation
calculate the one-triplet gap in a high order series expan
about the limit of isolated rungs. The use of an internal e
ergy scale as the new expansion variable enabled us to
culate the transition line between the rung-singlet phase
the spontaneously dimerized phase reliably in a wide reg
of parameter space. Our results are consistent with
bosonization results in the limit of weakly coupled chai
where we reproduce their properties. In addition, we give
estimate of the nonuniversal constantsl and l8 which ap-
pear in the bosonization treatment. The value forl is in very
good agreement with quantum Monte Carlo results.25 We
have given an example that the combination of high or
series expansion and renormalization group ideas can
powerful tool.
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