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Scaling of light scattered from fractal aggregates at resonance

Guillermo P. Ortiz1,2,* and W. Luis Mocha´n2,†

1Facultad de Ciencias, Universidad Auto´noma del Estado de Morelos, Av. Universidad s/n, 62210 Cuernavaca, Morelos, Mexic
2Centro de Ciencias Fı´sicas, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexic

~Received 19 December 2001; revised manuscript received 2 January 2003; published 16 May 2003!

Due to the scale invariance of fractal aggregates, light scattered from them often decays as a power of the
scattering wave vector. The exponent in this power law has been usually interpreted as the geometrical fractal
dimension. However, the validity of this interpretation is questionable for frequencies close to the resonances
of the system, for which multiple scattering becomes important. In this work we calculate the dipole moments
optically induced in fractal aggregates and the corresponding self-consistent field, as well as the electromag-
netic normal modes. To this end, we develop a multiresolution hierarchical representation of the aggregate that
allows the study of large systems taking fully into account the long range of the interactions. We analyze the
scaling properties of the dynamically induced dipolar distribution. We find that under resonant conditions,
scaling with the geometric fractal dimension is only observed for systems much larger than a length scale that
is related to the linewidth of each individual resonance. The relevance to this result for the interpretation of
light scattering experiments is discussed.
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I. INTRODUCTION

Many objects in nature1 have a geometry that is best d
scribed as fractal. Such is the case of colloidal aggreg
which are scale invariant within a range of length sca
bounded from below by the size of each individual monom
and from above by the size of the complete system. T
number of colloidal particlesN(R) within a ball of radiusR
increases as a power lawRdf . The exponentdf , known as
the fractal dimension, is lower than the topological dime
sion d of the space in which the object is embedded and
frequently a noninteger. Similarly, the correlation functi

C(rW), proportional to the probability of finding two particle

a separationrW apart, scales asr df2d. In order for the fractal
geometry to manifest itself, the highest and lowest len
scales should be far apart, and thus the aggregate must
tain a very large number of particles. For this reason,
simulation of physical properties of an aggregate, such
their optical properties, usually requires a large scale com
tation.

Early works proposed simple models for the compu
tional simulation of several fractal structures found in natu
Such is the case of diffusion-limited aggregation,2 diffusion-
limited cluster aggregation ~DLCA!,3 reaction-limited
aggregation,4 and reaction-limited cluster aggregation.5 The
increase of computational capacity and the developmen
algorithms has allowed the solution of problems involvi
many interacting bodies.6 Since the 1980s, algorithms em
ploying multiple length and time scales have been emplo
to treat many-particle interacting systems.7 They have been
most useful for simulations in astrophysics and cosmolo
which involve a large number of particles subject to the u
screened long-range gravitational interaction.8 Frequently,
this kind of method employs a binary tree data organizat
scheme where the lengthscales are refined as the tre
climbed. Fast multipole methods9 combine multipole expan
sions with the multiresolution approach and have proved
vantageous for attacking manifold classical problems wit
0163-1829/2003/67~18!/184204~17!/$20.00 67 1842
es
s
r
e

-
is

h
on-
e
s

u-

-
.

of

d

y
-

n
is

d-
a

large number of interacting parts. In the case of fractal
gregates, the multiresolution approach has been applie
simulate the growth of clusters with up to 106 particles.10

In this work we develop a hierarchical multilengthsca
algorithm that employs a binary tree data structure and
lows the simulation of the growth of large aggregate clust
as well as an efficient calculation of their optical propert
taking full account of the long range of the electromagne
interactions between monomers. We employ this algorit
to explore the problem of scattering from fractal structures
the resonant regime and to shed light on the problem of
interpretation of the scattering data.

Throughout the last two decades, the scattering of li
has been an important experimental tool in the study of
physics of fractal systems.11–15 Light scattering has fre-
quently been interpreted within the first Born approximatio
which accounts only for single scattering events. This me
that each particle in the aggregate is assumed to respon
the incoming field only, but does not ‘‘feel’’ the field pro
duced by the rest of the particles. In this case, the ang
distribution of the light statically scattered, characterized
the differential cross sectionds/dV, is proportional to the
structure factorS(QW ), which, being simply the Fourier trans
form of C(rW) with scattering wave vectorQW , scales for a
fractal of dimensiondf asQ2df . For small scattering angle
u, QW is orthogonal to the wave vector of the incident lig
and Q'(v/c)u, wherev is the frequency. Thus, informa
tion about the geometry of the system may be obtained
measuringds/dV. In particular, from the decay of the in
tensity with angle we may infer the fractal dimension.16

The general validity of the first Born approximation
questionable,17 especially for frequencies close to a res
nance. For those frequencies, the response of each parti
expected to be very large. Therefore, its interactions w
nearby particles should not be neglected. A significant ef
has been done to understand the optical properties of fra
aggregates, for which optically active resonant modes wit
©2003 The American Physical Society04-1
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very high local field concentrated in just a few small regio
have been reported.18 The number of thesehot spots, their
position, and their mutual distances have been shown19,20 to
vary abruptly with frequency, so that the spatial distributi
of the intensity cannot be characterized by a single local
tion length. Although the normal modes display inhomog
neous localization and are neither localized nor extende
the usual sense, in a recent work21 we obtained that even
when multiple scattering is accounted for, it is still possib
to get an approximate power law decay for the scatte
intensity as in the case of single scattering, but only at so
spectral regions, while no scaling at all was found at ot
regions. In this work we do a more thorough research i
this scaling, we analyze the local field intensity distributi
at different resonant regions, and we find the conditions
der which scaling is to be expected.

For definitiveness, in this paper we chose a particu
class of systems, namely, those formed by the proces
diffusion limited cluster-cluster aggregation3 of spherical
particles. To simplify the visualization and the interpretati
of the results, we limit ourselves to aggregates lying on a
surface illuminated by light impinging in the direction no
mal to the surface. We further assume that the wavelengl
is much larger than the radiusR0 of a single sphere and tha
the interactions among the spheres are dominated by the
retarded part of the dipole-dipole interaction.

The structure of the paper is the following. Section
contains our theory: First we set up a perturbative calcula
of the local field and the induced dipoles~Sec. II A! with
which we present the hierarchical data structures and a
rithms that allow efficient calculations for problems with
large number of particles~Sec. II B!, and which we later
generalize to the non-perturbative regime~Sec. II C!. The
resulting dipole moments are employed to calculate the s
tering of light ~Sec. II D!, the susceptibility of the system
and its normal electromagnetic modes~Sec. II E!. In order to
visualize, discuss, and interpret our results, in Sec. III
present a simplified scalar model of dipolarly interacting p
ticles which we employ to present results for DLCA agg
gates grown in 2D: We obtain the normal mode spectrum
systems composed of arbitrary materials and study the
tails of individual resonances at various spectral regio
their hot spot structure, and their localization properties~Sec.
III A !. We also study the scattering~Sec. III B!, its depen-
dence on wave vector and its scaling behavior. We find
scaling with the geometrical fractal dimension is appro
mately obeyed but only within certain regions of the sp
trum. Further inquiry reveals, though, that scaling can
observed at any spectral region provided the system is la
than certain lengthscale which depends on the linewidth
the resonances of the system, and therefore, on the dis
tive part of its dielectric response. Since the scalar mo
employed in Sec. III is equivalent to the excitation of long
tudinal dipoles with a longitudinal field, it is unsuitable for
quantitative calculation of electromagnetic scattering. Th
in Sec. IV we present the corresponding results for a
vectorial calculation. We find that the qualitative aspects
our most important results carry over into the transverse
gime. Thus, they have to be taken into account for the cor
18420
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interpretation of light scattering experiments. Finally, Sec
is devoted to conclusions.

II. THEORY

A. Local field

We consider an aggregate made up ofN@1 small spheri-
cal particles of radiusR0 with dielectric functione embed-
ded within a host with response functioneh . When a long-
wavelength fieldEW acts on one sphere, it induces a dipo
moment pW 5gEW , where the monomer polarizabilityg is
given by

g5
e2eh

e12eh
R0

3 . ~1!

Thus, when an incoming optical fieldEW i
ex[EW ex(rW i) shines on

the system, each particle acquires a dipole

pW i5gS EW i
ex1(

j
tJ i j •pW j D ~2!

( i 51 . . .N), where tJ i j [ tJ(rW i2rW j ) is the dipolar interaction
between thei th and j th spheres located at positionsrW i and
rW j , respectively. The distance between near neighbor
ticles in an aggregate is of the order of their size, as cl
neighbors within an aggregate might touch each oth
Therefore, the local field variation across each monom
would lead to a coupling of the dipole moment to high
order multipoles. The optical spectra of the system wo
have features arising from this coupling, such as peaks a
ing from the multipolar resonances of each individu
particle.22 Quantitative calculations for specific aggregat
might have to take this into account. For example, it has b
argued that multipolar interactions are responsible for
infrared wing observed in the absorption spectra of so
silver colloidal aggregates.23 Multipolar effects may be ac-
counted by replacingpW i and pW j in Eq. ~2! by thevectorsof

multipolar momentsqi
lm and qj

l 8m8 , the polarizabilityg by

the multipolar polarizabilitiesg l , the fieldEW i by the spherical
irreducible components of its spatial derivatives¹ ( l 21)EW i of
order l 21, and the tensortJ i j by the interaction matrix

t i j
lml8m8 which couples them8th component of a multipole o

order l 8 at rW j to themth component of a multipole of orderl

at rW i .24,25 Nevertheless, we believe that multipolar intera
tions are nonessential for the understanding of thescaling
properties of the scattered light which constitute the sub
matter of this paper, and the additional structures they in
duce into the spectra actually obscure their analysis. It
been shown that solving Maxwell equations numerically
disordered systems leads to qualitatively similar results
employing the dipolar approximation.26 As it is, Eq. ~2!
would be exact for amodel systemmade up of point polar-
izable particles, instead of spheres, with given polarizabi
g and located at the centers of the particles that make up
actual aggregate. As multipolar effects are known to de
extremely fast as the interparticle distance increases,24,25 Eq.
4-2
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SCALING OF LIGHT SCATTERED FROM FRACTAL . . . PHYSICAL REVIEW B 67, 184204 ~2003!
~2! is also appropriate for aggregates whose particles
coated with an optically inactive separator.27 We remark that
it is a common practice to coat colloidal particles in order
control their agregation kinematics.28 For these reasons, w
have neglected multipoles in Eq.~2!.

B. Hierarchical representation

In the limiting case of a very small polarizabilityg
!R0

3, the induced field is much smaller than the exter
field and Eq.~2! may be solved by an iterative process.
this case we write

pW i
05gEW i

ex, ~3!

pW i
n115g~EW i

ex1EW i
n11!5gS EW i

ex1(
j

tJ i j •pW j
nD , ~4!

and iterate over the scattering ordern50,1, . . . until we
converge to the fixed pointpW i5pW i

` which is the desired so
lution. Although this method29 has obvious limitations, it has
found some useful applications.30 We use this order-of-
scattering method to present our hierarchical algorithm
our tree data structure. In Sec. II C we will generalize o
calculation methods to the more interesting resonant si
tions for which iteration~4! is not adequate.

The most time consuming step when applying the met
above is the repeated evaluation of the induced fieldEW i

n11 at

all positionsrW i due to all the other dipolespW j
n at rW j , which

naively would requireO(N2) steps. To accelerate the calc
lation we introduce the concept ofhierarchical groupsof
particles as follows. The whole aggregate constitutes a si
group at the highest level of the hierarchy. It is composed
exactly two groups at the next hierarchical level, each c
taining a connected fragment of the original aggregate. E
of these subgroups is itself divided into two smaller grou
containing connected fragments of the corresponding s
cluster. We proceed with this division obtaining smaller a
smaller subclusters until we reachatomic groupsmade up of
only one particle. Figure 1 illustrates this hierarchical stru
ture for a particular small aggregate. In it, particles 1 and
form a groupd, which together with particle 3 constitute
groupb. Adding groupc, which is built similarly from par-

FIG. 1. Small aggregate made up of particles 1,2, . . . 8 orga-
nized hierarchically into groupsa,b, . . .g.
18420
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ticles 4. . . 8, wefinally obtain the whole aggregatea. The
hierarchical group structure may be described by a bin
tree~Fig. 2! whose root represents the whole system, wh
internal nodes represent subgroups which decrease in si
we climb the tree, and whose leaves represent the individ
particles.

Eachgroup a, either atomic or composite, is characte
ized by its number of particlesNa and by a sphere of radiu
Ra centered onrWa . We choserWa at the center of mass of th
particles composing the group and we choseRa large enough
to circumscribe all of the particles belonging to the grou
Although the spheres corresponding to different groups m
overlap one another, and a given particle may be covered
more than one sphere, group membership is chosen in su
way that there are no cycles in the tree representing the
gregate. There are many different group hierarchies that m
represent the same aggregate. We employ a strategy tha
ranges particles according to their relative distance in or
to minimize the overlap between the spheres represen
different groups and that attempts to balance both the ra
and the number of particles of the subgroups that eme
from any given node. The details of this strategy will b
presented elsewhere.31 The number of nodes of the tree, in
cluding its root and its leaves is 2N21, independently of the
tree structure. The height of the tree does depend on
structure, and is given by log2N in the optimum case of a
perfectly balanced tree.

To each group we additionally assign physical propert
like those of its constitutive particles, according to the sp
cific physical problem we want to solve.31 In the present
case, we assign to each groupz its total dipole moment

pW z[(
i Pz

pW i , ~5!

where the sum is taken over all the particlesi belonging to
the groupz, which we abbreviate asi Pz. Since each non-
atomic groupz contains exactly two subgroups, which w
designate as itsdaughterzd and itsson zs, its total dipole
may be updated recursively as

pW z5pW zd1pW zs. ~6!

Going back to the evaluation ofpW i
n11 , we notice that each

contribution of the form( j PztJi j •pW j
n in Eq. ~4! may be re-

placed by a single termtJi z•pW z
n if Rz is small enough andr i z

FIG. 2. A binary tree representation of an eight-particle agg
gate according to the group structure displayed in Fig. 1.
4-3
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large enough that we may approximatetJi j ' tJ i z[ tJ(rW i2rWz).
In this case, we replace the individual interactionstJ i j be-
tween theith particle and theNz individual particlesj Pz
that make up groupz by the single interactiontJi z between
particlei and a fictitious particlez located atrWz and carrying
the algebraic sumpW z

n of the dipole momentspW j
n of all the

particles j Pz. For example, in Fig. 1 we might replace th
two interactions between particle numbered 1 and particle
and 8 by a single interaction between particle 1 and groug.
If we are willing to tolerate larger computational errors, w
could even replace the five interactions between particl
and particles 4. . . 8 by asingle interaction between particl
1 and groupc.

It is simple to implement the ideas above in a recurs
fashion. CallingEW ia the field induced atrW i by all particles
j Pa, we calculate

EW ia5H tJ iapW a if Ra is small

EW iad1EW ias otherwise,
~7!

where bysmall we mean thatRa /r ia,L or that the group
contains only a single particle. Here,L is a dimensionless
parameter between 0 and 1 which controls the speed
accuracy of the computation.31 L50 leads to the exact resu
but with no speed gain, while withL51 the calculation is
done in just one step, but the result would be complet
inaccurate and therefore meaningless. The first correctio
the approximationEW i z' tJ i z•pW z is given by¹i tJ i z:QJ z , where
QJ z is the quadrupole moment of the composite groupz. As
¹i tJ i z;O(t i z /r i z) andQJ z;O(pzRz), we expect that the ap
proximation leads to a relative error of orderO(Rz /r i z).
Thus,L is a measure of the relative error we are prepare
allow in the calculation of the field produced by any o
group. The error is actually much smaller as thecenters of
electric polarizationof a group, i.e., the average position
its particles weighted by the components of the dipolar m
ments, are frequently close to the center of mass, yieldin
relatively small quadrupole moment for the groupQz

!pzRz . To take retardation effects into account, we have
consider the wavelengthl as another length scale for th
spatial variation of the induced field and we have to comp
ment the conditions above withRa /l,L. Finally, Eq. ~4!
can be recast as

pW i
n115g~EW i

ex1EW ia
n !, ~8!

wherea denotes the root of the tree that represents the wh
aggregate andEW ia

n is calculated recursively employing Eq
~7!. The algorithm above may be modified simply addi
higher multipoles to the groups. The corresponding adv
tages of permitting a more accurate calculation of the
duced field for a givenL have to be weighted against th
computational cost of storing and updating the multipo
moments of each group in the hierarchy.
18420
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C. Noniterative solution

The iterative solution of Eq.~2! to obtain the dipole mo-
ments is not feasible if the polarizabilityg is not small, or
more generally, asg approaches a resonance of the syste
since the sequence of successive scattering orders migh
verge. Even in this case, the hierarchical representation
the aggregate is useful. First, we rewrite Eq.~2! as the matrix
equation

Mp[@~1/g!12T#p5Eex, ~9!

where the dipole moments of all the particles and the ex
nal field are represented by the block column vectorsp
5(pW 1 ,pW 2 , . . . pW N)T and Eex5(EW 1

ex,EW 2
ex, . . .EW N

ex)T respec-
tively, 1 denotes the unit matrix,

T5S tJ11 tJ12 . . . tJ1N

tJ21 tJ22 . . . tJ2N

A A � A

tJN1 tJN2 . . . tJNN

D ~10!

represents the dipolar interactions, and (•••)T denotes the
transpose of the matrix~¯!. Notice that in general Eq.~9! is
a 3N33N matrix equation, and that, due to the long range
the dipole-dipole interaction, the matricesM and T are
dense. This is at the core of the numerical difficulty of solv
ing Eq.~9! for large systems. Now we build a new vectorp8
by appending the dipole moments of theN21 groups to
those of the N particles, i.e., p8

[(pW 1 ,pW 2 . . . pW N ,pW l1
,pW l2

. . . pW lN21
)T, where l i runs over

the N21 composite group indicesz. By appending the
3(N21) conditions@Eqs.~6!# to the 3N equations@Eqs.~2!#
we end up with a 3(2N21)33(2N21) system

M 8p8[F S M 0

0 1D 2S 0

CD Gp85S Eex

0 D[~Eex!8, ~11!

whereM is the same 3N33N matrix as in Eq.~9!, 0 repre-
sents appropriately sized matrices filled with zeroes andC is
the 3(N21)33(2N21) group connectivity matrix that de
scribes the tree structure and has elements

Cza5~dzda1dzsa!1I

5H 1I if group z is the father o f groupa

0I otherwise,
~12!

wheredzda anddzsa are Kronecker deltas and 1I denotes the
unit 333 tensor.

Rewriting the system of equations~9! as Eq. ~11! in-
creases the number of equations and unknowns from 3N to
3(2N21). However, we may take advantage of the hier
chical representation of the aggregate in order to manipu
matrix M 8 and reduce considerably the computational cos
solving Eq.~11!. Thus, wheneverRz is small enough as com
pared tor i z , in the same sense as in Eq.~7!, we may replace
the Nz entries tJ i j ,( j Pz) with block indicesi j by the null
tensor 0I if we simultaneously perform the single replaceme
4-4
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0J→ tJ i z at the block with indicesi z. With this procedure we
can reduce significantly the number of non-zero eleme
of M 8 producing asparse matrixM 9 such that solving the
equation

M 9p95S Eex

0 D ~13!
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ts
for aggregates with a very large numberN of particles be-
comes computationally feasible using a variety
methods,32,33 while the solutionp9 approximates the desire
solutionp8 with an arbitrary accuracy, controlled by the p
rameterL.

As an example, consider the aggregate shown in Fig
and 2. The corresponding matrixM 8 is given by
M 85

1 2 3 4 . . . 8 a b c d . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S MJ 11 2 tJ12 2 tJ13 2 tJ14 . . . 2 tJ18 0I 0I 0I 0I . . .

A � �

0I 0I 0I 0I . . . 0I 1I 21I 21I 0I . . .

0I 0I 21I 0I . . . 0I 0I 1I 0I 21I

A � �

D ← 1

A

← a

← b

A

. ~14!

The first row of this matrix indicates the interactions of the first particle with the external field and with particles2 . . . 8.Rows
2 . . . 8 aresimilar. On the other hand, rowa states that the dipole moment of the whole aggregatea is simply the sum of the
dipole of groupb plus that of groupc. Similarly, row b indicates that groupb is made up of particle 3 and groupd. The
remaining rows are analogous.

Assumingthat groupc of Fig. 1 may be consideredsmall enough and far enoughfrom particle 1, so that the five
interactionst1 j ( j Pc↔$4 . . . 8%) may be replaced by a single interactiont1c , the resulting matrixM 9 would look like

M 95

1 2 3 4 . . . 8 a b c d . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
← 1

AS MJ 11 2 tJ12 2 tJ13 0I . . . 0I 0I 0I 2 tJ1c 0I . . .

A � �

D . ~15!
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Comparing Eqs.~15! and~14! we can appreciate the increa
in the number of null elements. It is unlikely that groupc
could actually be considered far enough from particle 1
the particular aggregate shown in Fig. 1 to permit this p
ticular replacement. However, similar replacements m
safely be done for larger systems without introducing app
ciable errors, the resulting savings become considerable31 for
realistic cases and they increase with the size of the ag
gates. As matrixM 9 may be simply constructed on the fl
from the distancesrW ia and the tree structure of the aggrega
it is not even necessary to store its relatively few non-n
elements.

A hierarchical approach to the calculation of the elect
magnetic response of fractal systems has been previo
employed by Claro and Fuchs.34 In that calculation, each
group in the hierarchy was replaced by a singleparticle with
an appropriate size and with a renormalized response ca
lated iteratively in terms of theparticlesit contains one level
below in the hierarchy; each group was considered indi
ible after that replacement and when calculating its inter
tion with neighbor groups. This constitutes an essential
ference from our present scheme, in which each part
n
r-
y
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e-

,
ll

-
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respondsindividually to the local field that polarizes it. Whe
calculating that field we treat whole groups of particles a
single dipole, butonly if that group happens to be sma
enough and far away enough so that this replacement d
not introduce an appreciable error. Otherwise, weopen the
group and consider recursively the field produced by its s
groups or by its particles. Thus, with our procedure we c
obtain the local field with an arbitrary accuracy. The ren
malization procedure of Claro and Fuchs would lead to
rors and would not be applicable unless there is a la
enough distance between all groups at each level in the
erarchy, as compared to their size. For the colloidal agg
gates we consider here, neighboring groups might ove
each other~see Fig. 1!, so that the approach of Ref. 34 is n
applicable.

D. Scattering

Once we have obtainedpW j , we can proceed to the calcu
lation of the differential scattering cross sectionds/dV. We
assume that the the external field is a long-wavelength
coming wave
4-5



fie
e
s
it

tia
tio

di-
ed

n
-
gu

tu
n

e
n

io
lo

a

by
al

al
the

ified

ctor

c-

-

the

ac-

e

y
ric
ary
-
y

as

GUILLERMO P. ORTIZ AND W. LUIS MOCHÁN PHYSICAL REVIEW B 67, 184204 ~2003!
EW j
ex5EW 0ei (qW in•rW j 2vt) ~16!

of frequencyv and wave vectorqW in5q0q̂in and with q0R0
!1, where the hat denotes a unit vector. The scattered
is simply the sum of the far fields radiated by all of th
dipolespW j . Factoring out from the induced dipoles the pha
and magnitude of the incident field and normalizing away
units employing the distanceR0 through the definition

pW j5dW jR0
3E0ei (qW in•rW j 2vt), ~17!

we calculate Poynting’s vector and we obtain the differen
scattering cross section per unit solid angle in the direc
q̂out,

ds/dV5eh~q0R0!4NR0
2^uDW '~QW !u2&, ~18!

where QW 5qW out2qW in is the scattering wave vector,qW out

5q0q̂out is the outgoing wave vector in the observation
rection,DW (QW ) is a Fourier representation of the normaliz
induced dipoles

DW ~QW ![
1

AN
dW ~QW ![

1

AN
(

j
dW je

2 iQW •rW j , ~19!

and the superscript' denotes the transverse projectio
DW '(QW ) of DW (QW ), perpendicular toq̂out. For disordered sys
tems we add an ensemble average, denoted by the an
brackets.

We take advantage again of the hierarchical data struc
to accelerate the calculation of the scattering cross sectio
replacing the contributiondz(QW )[( j PzdW je

2 iQW •rW j to the sum
in Eq. ~19! by the single termdW z(0)e2 iQW •rWz whenever the
size Rz of the groupz and the wave vectorQW are small
enough, QRz!1, so that we can approximatee2 iQW •rW j

'e2 iQW •rWz for all particlesj Pz. Thus, we write

DW ~QW !5
1

AN
dW a~QW !, ~20!

and evaluate recursively

dW a~QW !5H dW a~0!e2 iQW •rWa if Ra is small

dW ad~QW !1dW as~QW ! otherwise.
~21!

E. Normal modes

Before studying the scattering of light by fractal aggr
gates at resonance, it is convenient to characterize their
mal electromagnetic modes. The normal modes depend
the geometry of the system as well as on its composit
However, the later dependence may be factored out emp
ing Bergman’s spectral density theory.35 To this end, we de-
fine a spectral variable

u[
1

~12e/eh!
, ~22!
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so that

1/g5~123u!/R0
3 . ~23!

Using Dirac’s notation we represent the incoming field by
ket uEex&[Eex[ANE0u0&, whereu0& is normalized,̂ 0u0&51.
The induced dipole moment can similarly be represented
a ket up&[p. The work done per unit time by the extern
field due to the presence of the spheres,P5v Im(( j (EW j

ex)*
•pW j )/2, maytherefore be written as

P5vV Im~x!uE0u2/2, ~24!

whereV54pNR0
3/3 is the total volume occupied by theN

spheres of radiusR0 that make up the aggregate, and

x5
3

4p
^0u@~123u!12R0

3T#21u0& ~25!

is a macroscopic dimensionless susceptibility. The norm
modes of the system are the oscillations it can sustain in
absence of an external field, and can therefore be ident
with the poles of the susceptibilityx(u).

For dissipationless spheres made up of a Drude condu
within vacuum, we can identifyu5v2/vp

2 , where e(v)
512vp

2/v2 andvp is the plasma frequency of the condu
tor. Thus,u is frequently identified withv. For example, a
resonance with a relatively large or smallu may be called
blue or red respectively. We will follow this practice, al
though the actual frequency corresponding to a givenu de-
pends on the material properties of both the spheres and
host implicitly throughe~v! andeh(v). Thus it is in general
a complex valued, complicated nonmonotonic function.

By writing T in terms of its normalized eigenvectorsutn&,
with a corresponding eigenvaluetn , we may rewrite

x5
3

4p (
n

^0utn&^tnu0&

123u2R0
3tn

. ~26!

Notice that in the absence of retardation, the dipolar inter
tion

tJ i j 5
3rW i j rW i j 2r i j

2 1I

r i j
5 ~12d i j ! ~27!

is independent ofe and of eh , and thereforex depends on
the materials forming the system only through the variablu
in the denominator. Thus, Eq.~26! is a particular case of the
Bergman representation35 for the response of an arbitrar
composite made up of two materials with different dielect
properties. Bergman’s theory may be set up for an arbitr
composite by noticing that36 within a transparent dissipation
less host (eh.0), the whole aggregate will be an energ
sink ~x9.0! or an energy source~x9,0! whenever the inclu-
sions themselves consume electromagnetic energy~e9.0, as
expected in thermodynamic equilibrium! or produce it
~e9,0, as in a pumped system out of equilibrium such
4-6
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SCALING OF LIGHT SCATTERED FROM FRACTAL . . . PHYSICAL REVIEW B 67, 184204 ~2003!
a linear optical amplifier! respectively. Here, we abbrevia
(•••)9[Im(•••). Thus, x9 has the same sign asu9, and
consequently its poles are necessarily simple and locate
the real,u950, axis. From Eq.~24!, these poles correspon
to the optically active normal modes of the system. As it
thermodynamically allowed to have materials in equilibriu
with any static valuee.1,eh.1, no poles ofx may appear
for e/eh.0. Thus, all the normal modes of the system a
confined to the interval 0<u<1. Finally, using Cauchy’s
integral formula we obtain

x~u!5
1

4p (
n

Cn

sn2u
, ~28!

where the sum is taken over all the polessnP@0,1# of x,
Cn524pRn.0, andRn are the corresponding residues
x. An equivalent expression is

x~u!5
1

4pE0

1

ds
g~s!

s2u
, ~29!

whereg(s)5(nCnd(s2sn) is the normalized spectral den
sity function. Equation~29! may be inverted, yielding

g~s!54 Imx~s1!, ~30!

where s1[ limG→01s1 iG. Comparing Eqs.~28! and ~29!
with Eq. ~26! lets us identify

Cn5u^0utn&u2 ~31!

and

sn5~12R0
3tn!/3, ~32!

and interpret

g~s!5(
n

u^0utn&u2d~s2sn! ~33!

as a density of states projected unto theinitial stateu0& de-
fined by the external field.

Alternative spectral representations of the response
fractal aggregates18–20 have appeared in the literature, b
they can be trivially mapped to the one above. There are w
known sum rules for the Bergman’s spectral function. In
present context, we obtain one of them by integrating
~33! with respect tos, obtaining

E
0

1

ds g~s!5(
n

^0utn&^tnu0&5^0u0&51, ~34!

where we used the completeness of the basis$utn&%. A sec-
ond sumrule may be obtained by taking the first momen
g(s),

E
0

1

ds sg~s!5(
n

^0utn&~12R0
3tn!^tnu0&/3

5~12R0
3^0uTu0&!/3, ~35!

and then averaging over the direction of the external fiel
18420
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E
0

1

ds sḡ~s!51/3, ~36!

where we denote the angular average of any quantity~¯! by
(¯ )̄ and we used the fact thatt̄ i j 50, as may be verified
directly from Eq.~27!.

By defining aHamiltonian

H[~12R0
3T!/3, ~37!

and its corresponding Green’s operator

G~u![~u12H!21, ~38!

we may identify37

x~u!52
1

4p
G00~u!. ~39!

Thus, we may use well known methods developed for
calculation of the projected Green’s function of electron
systems and adapt them23,38 to the calculation of the
susceptibility.39 An efficient evaluation ofx(u) and g(s)
may be carried out employing the Haydock recursi
method.40–42By acting repeatedly on the ketu0& with H and
othonormalizing the resulting vectors, we construct a ba
$uk&% in which H becomes tridiagonal,

H5S a0 b1 0 0 . . .

b1 a1 b2 0

0 b2 a2 b3

A �

D , ~40!

where

bk11uk11&[Huk&2akuk&2bkuk21&, ~41!

ak5^kuHuk&, ~42!

bk11
2 5iHuk&i22ak

22bk
2 , ~43!

with u21&[0 andb0[0. Thus,bk11 may be interpreted as
a normalization constant forHuk& after it has been orthogo
nalized touk& anduk21&, making^k11uk11&[1. OnceH
is in tridiagonal form it is an easy task to obtainG00(u) and
from it the susceptibility

x~u!52
1

4p
†1/„u2a02b1

2/$u2a12b2
2/@u2a2

2b3
2/~u2a32 . . . !#%…‡ ~44!

and the spectral function

g~s!52
1

p
Im†1/„s12a02b1

2/$s12a1

2b2
2/@s12a22b3

2/~s12a32 . . . !#%…‡ ~45!

through continued fractions.
The evaluation of the Haydock coefficientsak andbk re-

quires repeated applications of the matrixH, each of which
4-7
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takes of the order ofO(N2) steps due to the long range of th
dipolar interactionsT. However, the computation may be
come feasible even for very large systems if we follow t
steps that took us from Eq.~9! to Eq. ~13!. That is, we em-
ploy the hierarchical view of the aggregate and extend
space of dipolar configurations from 3N dimensions to
3(2N21) by adding a coordinate corresponding to the
pole moments of each of the groups in the hierarchy,
replaceEex by (Eex)8 as in Eq.~11!, and we replaceH by
H9, in a similar fashion as the transformation fromM to M 9
in Eq. ~13!, i.e., by replacing theNz particle-particle interac-
tions t i j , j Pz by a single particle-group interactiont i z
whenever it is possible. Additional gains can be obtained
the evaluation of Eqs.~42! and ~43! by replacing theNzNj

particle-particle interactionst i j , i Pz, j Pj by a single
group-group interactiontzj if the two groups are sufficiently
small and far away. The speed and memory usage gains
very substantial.31 For very large systems, the continue
fractions in Eqs.~44! and~45! may sometimes be truncate
replacing their tail by a suitable terminator that accounts
proximately for the remaining coefficients,43 therefore intro-
ducing additional computational speedups.

III. RESULTS: SCALAR MODEL

In this section we apply the hierarchical methods p
sented above to the calculation of the optical properties o
ensemble of large fractal colloidal aggregates. In order
simplify the discussion of the results we present results
DLCA clusters embedded in a two-dimensional~2D! plane
and illuminated in the direction normal to the plane, so t
the external field is taken as position independent within
aggregate. Furthermore, we ignore the vectorial characte
pW and thus work within a scalar approximation. This cou
be physically realized if the induced dipole moments w
perpendicular to the plane containing the aggregate, co
sponding to a longitudinal excitation. Consistent with th
we will assume a nonretarded dipolar interactiont i j

521/r i j
3 . Thus, instead of calculating the scattering of lig

by the aggregate, in this section we calculate the Fou
transform of the spatial correlation function of the dipo
moments induced in the system, closely related to thedy-
namic form factor19,20 of the system. Nevertheless, to faci
tate the comparison with the full vectorial calculation of t
next section, we will employ the language of light scatteri
to discuss the results of this section. In Sec. IV we pres
results of a full vectorial calculations which confirm that t
scaling properties of the longitudinally induced dipoles
obtain below do correspond qualitatively to those of t
transverse dipoles, and that our results are useful to un
stand the nature of scaling for the problem of light scatteri
It has been shown that the scalar approximation above yi
qualitatively correct results in a context similar to the pres
one.20

A. Normal modes

We have employed the hierarchical representation
simulating the growth of colloidal aggregates in differe
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regimes.31 In Fig. 3 we illustrate the geometry of a DLCA
cluster grown in two dimensions. Notice its branching stru
ture with cavities and protuberances of all lengthscales,
responding to a fractal of dimensiondf'1.45. We remark
that as our clusters were grown on a continuum and not o
discrete lattice,19,20 avoiding thus artifacts which may aris
from having only a small number of short range geome
configurations. In Fig. 4 we present the spectral density fu
tion g(s) for an ensemble of 30 DLCA-2D clusters with 104

particles each, calculated using Eq.~45! and the hierarchica
representation. There is a single band of normal modes
tending froms'0.25 tos'0.5 which peaks ats'0.48. The
fine scale structure visible in Fig. 4 is not removed throu
ensemble averaging.

To understand the nature of the modes, we have so
Eq. ~13! hierarchically to obtain the induced dipolespi for
different values of the spectral variables. Figure 3 illustrates
the induced dipole moment for two normal modes with v
ues ofs close to the peak ofg(s) for a particular rather smal
cluster. We notice that the local field is very strong on jus
few particles. Thus, in the upper panel of Fig. 3, correspo
ing to s50.4865, only those particles in a small region clo
to the upper-left corner have an appreciable electric polar

FIG. 3. SmallN5103 DLCA-2D aggregate with the normalize
dipole momentsp/pmax induced by an external field displayed i
shades of gray. The upper panel corresponds to a normal mode
spectral variables50.4865. The following normal mode corre
sponding tos50.4887 is shown in the lower panel. A small imag
nary partiG51024i was added tos.
4-8
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SCALING OF LIGHT SCATTERED FROM FRACTAL . . . PHYSICAL REVIEW B 67, 184204 ~2003!
tion. These strongly polarized regions have been noticed
fore and have been referred to ashot spots.18,44The confine-
ment of the field to such small regions when the frequenc
tuned to a resonance of the fractal produces a field enha
ment that may be observed through an amplification
nonlinear optical effects such as harmonic generation. Mo
fying the frequency by very small amounts produces d
matic redistributions of the dipole moments.18–20 The lower
panel of Fig. 3 illustrates how the hot spot at the upper-
corner disappears and a new hot spot appears close to
bottom of the system when the spectral variable increase
a very small amount up to the next resonance of the ag
gate, ats50.4887. The long range phase correlation amo
simultaneously excited hot spots have been studied in d
for dipolarly interacting DLCA-3D clusters and for homog
neous random systems in the stationary19,20 and the transien
regimes,45 as well as for planar random systems,26 and inter-
esting applications for ultrafast control of electromagne
energy in ultrasmall spatial regions have been suggested46

A close analysis of the hot spots shows that for values
s within a given spectral region, the local geometry of t
excited area is similar. For example, in both panels of Fig
the maximum dipole is attained at some group of four p
ticles forming a small square. The particular square exc
in the upper panel is far away from that excited in the low
panel, but its local geometry is similar. Within other spect
regions, the local geometry of the hot spots is different, a
the response may be concentrated, for example, at relat
low density regions resembling a linear chain or at branch
points resembling a letterY. Thus, the local geometry of

FIG. 4. Spectral density functiong(s) for an ensemble of 30
DLCA-2D aggregates with 104 particles each. To obtain a continu
ous curve, each mode was given a finite widthG51023. Red~R!
andblue ~B! regions are indicated for later reference.
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given small subaggregate, not its position, determines
spectral region at which it resonates, thus becoming a
spot, but the interactions with particles that are farther aw
within the large aggregate determine the precise frequenc
the resonance.

Besides the local geometry, the hot spots also have c
acteristic phase relationships at different regions of the sp
trum. In Fig. 5 we present details of the hot spots for tw
different frequencies. At the blue end~B! of the spectrum all
of the dipole moments are in phase with each other, remi
cent of a ferromagnetic~F! ordering, while at the red end~R!
of the spectrum, nearest neighbor dipoles at the hot s
alternate in sign, reminiscent of an antiferromagnetic~AF!
ordering. This behavior is simply understood, as the fi
produced by any particle acts over the other particles in
direction opposite to its own dipole. Let us consider t
simple case of only two interacting polarizable particles s
ject to harmonic internal forces~Fig. 6! lying on a plane and
with their dipole moment normal to the plane. When the tw
dipoles are parallel, the field produced by one of them
poses the dipole moment of the other one, as if the resto
springs were stiffened and therefore increased their re
nance frequency. On the other hand, when the dipoles
anti-parallel, the field produced by one of them would re
force the dipole moment of the other one, as if the sprin
were softened and decreased their resonance frequency
identification of the blue or red shift of a resonance w
respect to the nominal resonance of an isolated spheres
51/3 with a F orAF-like short range order at the hot spot
not possible when the dipoles lie on the plane of the agg
gate nor when the aggregate is not planar, as the mu
effect of neighbor dipoles would depend not only on th
relative direction, but also on their relative positions. This
one of the reasons for studying our simplified scalar mo
first.

According to the discussion above, the normal mode w
the largest blueshift would correspond to an F excitation a
dense region. In Fig. 7 we show a few small isolated clust
The F resonance for a close packed hexagon is ats'0.50,
close to the B end of the spectrum shown in Fig. 4. The cl
packed cluster does not support an AF mode due to the f
tration inherent in the triangular lattice. However, an A
mode would be expected if the particles are located at s
of a square lattice. The rectangle shown in Fig. 7 has an
resonance ats'0.25, close to the R end of the spectrum
se

ile
ale
ers
FIG. 5. Hot spot details for resonances clo
to the blue end~B! of the spectrum (s50.4887
~rotated with respect to Fig. 3!, left panel! and
close to the red end~R! of the spectrum (s
50.2527, right panel!. The shades of gray indi-
cate the magnitudes of the dipole moments, wh
the signs indicate their relative phase. The sc
of gray tones corresponds to successive pow
of 0.8.
4-9
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Notice the similarity of this cluster to the local geometry
the hot spot shown in the right panel of Fig. 5. We also sh
in Fig. 7 an antisymmetric mode for a small square, wh
resonance is ats'0.32, corresponding to a peak in the spe
tra. Similarly, the symmetric and antisymmetric modes o
two particle chain resonate ats'0.38 and 0.29, where th
spectrum shows a small step and a conspicuous hump
spectively, and the AF mode of a four particleY structure,
common at branching points of the aggregate, is as
50.27, where the spectra shows a tiny but still noticea
peak. Although they are not conclusive, this examples s
gest that the abundant small scale structures seen in F
may originate from the discrete resonances of small reg
with characteristic geometries, which are somewhat shi
through their interactions with the rest of the aggregate.

According to Eq.~30!, the spectral density function is
measure of the energy absorbed by the system. As the d
moments alternate in sign at the R resonances, the total
pling to the external field is suppressed andg(s) becomes
about two orders of magnitude smaller than at the B re
nances.

Figures 3 and 5 suggest that the dipolar resonances o
aggregate are localized.18,44,47Attempts have been made t
characterize the localization of dipolar excitations in fract
through a localization lengthL (q), related to theqth moment
of the spatial distribution of the dipole moments.23,48 The
resulting length depends on the choice of the particular m

FIG. 6. Model polarizable particles made up of a negative s
bound by an harmonic restoring force to a positive fixed nucle
The field produced by the particle at the right acting on the part
at the left is indicated by thick arrows. The left~right! panel shows
that their mutual interaction increases~decreases! the restoring
force when the dipoles are parallel~antiparallel!.

FIG. 7. Small isolated clusters with normal modes close to f
tures of the spectrum shown in Fig. 4. The left panel shows
hexagonal close packed cluster with a ferromagneticlike mod
s'0.50. The center panel shows a rectangular cluster with an
ferromagneticlike resonance ats'0.24. The right panel shows a
antisymmetric mode for a square cluster, with a resonances
'0.32.
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mentq. It has been found that small changes of the spec
variable produce violent fluctuations48 of L (q), so that a
single localization length becomes insufficient for charact
izing the system, requiring instead a distribution of localiz
tion lengths.19 This behavior is refered to asinhomogeneous
localizationand is due to the possibility of simultaneous e
citation of spatially separated hot spots due to the long ra
of the interaction. Actually, systems with long range non
polar interactions present a similar behavior.26

An alternative characterization of localization is throu
the participation ratio49

P[K S (
i

pi
2D 2

N(
i

pi
4 L . ~46!

PP@0,1# is a measure of the relative number of particl
that participates in the excitation, independently of their p
sition, makingP better behaved than the localization leng
for our system. As the number of particlesN of the system
increases, the participation ratio would go to zero asP
}1/N if the excitations were exponentially localized arou
the hot spots, even when several spatially separated hot s
are excited simultaneously. On the other hand, if the exc
tions were extended and the hot spots were but fluctuat
over an otherwise constant background response,P would
become constant asymptotically. Fig. 8 shows that for
system the participation ratio obeys a power law

P}N2b ~47!

over a couple of decades, whereb'0.9 at B andb'0.8 at
R. Thus, it seems that the normal modes are not expon
tially localized nor extended.19 The observation of Anderson
localization of light is still an open question.50 The precise
nature of the dipolar eigenstates in fractals and, more ge
ally, within disordered systems with long ranged interactio
should be further investigated.26

ll
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-
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ti-

FIG. 8. Participation ratioP averaged over an ensemble of 104

particle aggregates for different sized disks centered at the max
of the induced dipolar moment of each aggregate, as a functio
the numberN of particles within the disk, for normal modes ats
'0.485~squares! ands'0.260~crosses!, close to the blue~B! and
red ~R! ends of the spectrum. An imaginary partiG51024i was
added tos. The straight lines correspond to the power law~47! with
b50.9 ~B! andb50.8 ~R!.
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As the value ofb found above is close to the value e
pected for exponential localization,b51, we look more
closely at the decay of the excitation as we move away fr
the hot spots. Figure 9 displays the dependence of the
semble averaged powers of the induced dipoles,

Pn~R![K (
i

pi
nd~R2r i !

(
i

d~R2r i !
L ~n52,4!, ~48!

on the distanceR to the largest dipole, calculated close to t
blue end of the spectrum. Notice that over a range of leng
scales of about a decade, we can approximate

Pn}R2an, ~49!

where a2'2.06 anda4'3.31. We remark thata4,2a2,
showing thatP4(R) decays much more slowly thanP2

2(R)
and is therefore dominated by the large fluctuations ofpi .
For a disk of large radiusR containingN}Rdf particles, we
would expect the averaged sum

K (
r i,R

pi
nL }E

Rm

R

R8dR8C~R8!~R8!2an}Rdf2an2Rm
df2an ,

~50!

where Rm is a small distance, of the order ofR0. As an
.df , this sum would become constant for large disksR
→`, and the participation ration would decay asympto
cally asP→1/N, although the decay is given by a pow
law and is not exponential. However, this regime is n
reached in Fig. 8 as our calculation was done on fin
samples and the power law~49! is violated20 for largeR, as
seen in Fig. 9. The reason for the change in the behavio
Pn(R) away from a decaying power law will be discuss
below.

B. Scattering and scaling

As shown in Eqs.~17!, ~18!, and ~19!, the differential
section for light scattering is related to the Fourier repres

FIG. 9. Powers of the dipole momentsPn(R) (n52,4), aver-
aged over all particles within annular regionsa of radii 0.9R and
1.1R, centered at a hot spot and ensemble averaged, for no
modes close tos50.485. An imaginary partiG51024i was added
to s and the results were normalized toGn/E0

n .
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tation DW '(QW ) of the transverse projection of the dipole m
mentspW i induced within the system. Although our calcul
tion was done within a scalar framework, for notation
convenience we will employ scalar equations analogous
Eqs. ~17!–~19! and discuss the scaling properties

^uD(QW )u2& as if it were a differential scattering cross sectio
In Fig. 10 we show the ensemble and angular averaged
ues of the fictitiouŝds/dV& for N5104 particle clusters for
values ofs close to B and R. For comparison, we also sh
the geometrical structure factorS(Q)}^( i j e

iQW •rW i j &, which
would be proportional tô ds/dV& in the absence of mul-
tiple scattering, and the power lawQ2df characteristic of a
mathematical infinite fractal.

As expected, we find thatS(Q) is a scaling function pro-
portional toQ2df in a regionQmin,Q,Qmax, bounded on
one side byQmin;1/RM whereRM is the total size of the
system (Qmin'0.0075 andRM'1000R0 for our 104 particle
aggregates! and on the other side byQmax;1/R0. The whole
system behaves as a point polarizable particle when sam
with small wave vectorsQ,Qmin . Thus, S(Q) becomes
constant in theQ→0 limit. The finite sizeRM of the system
is also manifest forQ within the scaling region, where i
produces small but observable oscillations inS(Q). When
sampled with very large wave vectorsQ.Qmax, an oscilla-
tory structure due to the interference between the field s
tered by nearest neighbor particles appears. In Fig. 10
structure was calculated as if the particles were pointli
Otherwise, we would have had to convolute the form fac
of the individual particles intoS(QW ). Consistency with the
long-wavelength approximation would actually make the
gion Q.1/R0 inaccessible. However, it is instructive to ig
nore this restriction and to explore the calculated^ds/dV&
even for such large wave vectors. The shape ofS(Q) for
largeQ and the position of its maxima and minima are w
reproduced by the average contribution ^1
1cos@2QR0cos(u)#& of a single dimer made up of two par
ticles a distance 2R0 apart and oriented at a random angleu

with respect to the scattering wave vectorQW , as most of the
particles in the aggregate form part of zigzagging line

al

FIG. 10. Angularly and ensemble averaged normalized sca
ing cross section̂ds(Q)/dV&/^ds(0)/dV& as a function of the
normalized scattering wave vectorQR0 for N5104 DLCA-2D ag-
gregates. We display results fors50.26 ands50.48, close to R and
B, respectively. An imaginary partiG51024i was added tos. We
also show the structure factorS(Q)/S(0) and the power lawQ2df.
4-11
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chains with random orientations. The result is proportiona
11 j 0(2QR0) where j 0 is the 0-th order Bessel function o
the first kind.

The scattering cross section calculated fors'0.26 is seen
in Fig. 10 to scale asQ2df within a region somewhat smalle
than that forS(Q). For smallQ, ^ds/dV& is indistinguish-
able fromS(Q), while for QR0.1 the oscillations are out o
phase with the oscillations ofS(Q). This confirms our pre-
vious remark that nearby particles tend to polarize in antip
allel directions when the excitation frequency lies close
the red end of the spectrum. On the other hand, fors'0.48
the largeQ oscillations are in phase with those ofS(Q), as
the dipoles induced in nearby particles point in the sa
direction. Finally, we notice that at the blue end of the sp
trum ^ds/dV& does not seem to scale with the fractal d
mension at all. In this case, Fig. 10 shows that the scatte
cross section presents a wide shoulder which, if lineari
within small regions, would yield power laws with exponen
which differ from the fractal dimension. This suggests th
scaling of the scattering cross section under resonance
ditions is only approximate and that the scaling expone
depend on the frequency of the incoming light and therefo
they should not be naively linked to the geometrical frac
dimension.17,51 These results are similar to the spectral d
pendence of thedynamic form factorfound in Refs. 19 and
20.

FIG. 11. Angularly and ensemble averaged normalized sca
ing cross section̂ds(Q)/dV&/^ds(0)/dV& calculated for normal
modes ats'0.48, close to B forN5104 DLCA-2D aggregates. We
display results for three different values ofG51024,2
31023,1022. The power lawQ2df is drawn as a reference.
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In Sec. III A we found that at each spectral region the h
spots had a particular local geometry. Since the whole ag
gate is scale invariant, we would expect that the set of s
regions with a particular local geometry would constitute
itself a scale invariant fractal with the same dimension as
original aggregate. For example, the set of tips, with coor
nation number 1, or the set of branching points with coor
nation number 3, are fractals statistically similar to the wh
aggregate. Thus, it could reasonably be expected that th
of hot points at a given frequency should form a fractal w
dimensiondf and that thereforêds/dV& should have scaled
as Q2df , independently of the scattering regime. This co
clusion seems to contradict the numerical results displaye
Fig. 10. This inconsistency could be solved if the hot sp
for each value of the spectral variables were so diluted that
at most, only a handful of them were present at a time wit
the finite aggregates on which we performed our simulatio
To test this idea, we have to inquire into the typical distan
between hot spots. As also discussed in Sec. III A, the ex
frequency at which a given location resonates depends
only on its local geometry, but also on its environment.
there are no two regions with exactly the same global en
ronment, it is conceivable that when the spectral variables is
given a well defined real value, at most a few isolated
spots are excited. However, in our calculations above
have added a small imaginary contributioniG to s. This is
equivalent to giving a finite widthDs'G to each of the
normal modes, allowing them to overlap nearby resonan
Thus, the number of excited hot spots would depend onG
and on the size of the system, and we expect that for a la
enough system, or for a large enough dissipation, sca
with the exponentdf should be recovered.

In Fig. 11 we present̂ds/dV& calculated at B for differ-
ent values ofG. Clearly, asG increases, the scattering cro
section approaches a scaling behavior. Figure 12 shows
moduleupi u of the local dipole moments induced in a chos
aggregate. The left panel shows that whenG is small the
response is appreciable at only a few sites, and therefor
scaling is possible. AsG increases the maximum value of th
induced dipoles decrease and more peaks become visibl
shown in the right panel. Thus, ifG is large enough, or if the
system is large enough, the excited particles form themse
a fractal with the same dimensiondf as the aggregate an
scaling is attained, as illustrated in Fig. 11.

r-
FIG. 12. Normalized magnitude of the induced dipole momentspi[p(rW i) for a N5104 DLCA-2D aggregate excited ats'0.48, close
to B. The left panel corresponds toG51024 and the right panel corresponds toG5231023.
4-12
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Figure 13 shows the corresponding results fors'0.26,
close to R. We notice that the magnitude of the induc
dipoles is much smaller than that corresponding to B, sho
in the left panel of Fig. 12. This is due to the AF-like natu
of the R normal modes; the coupling of a given dipole to
external field is nearly canceled by the coupling of its nea
neighbors, which tend to be in antiphase. For the same
son, the total dipole moment of any large area is small and
influence on the resonance frequency of far away hot s
becomes negligible. Thus, the distribution of excited h
spots for a givens at the red end of the spectrum is qui
homogeneous, even for relatively small values ofG. It is for
these reasons that scaling is apparent in Fig. 10 at R bu
at B.

As g(s) may be interpreted as a projected normaliz
density of states, the number of excited hot spotsNh can be
estimated as the number of normal modes,

Nh'NgG, ~51!

that fall within the widthDs'G of each individual reso-
nancesn . As we argued above, we expect that in a lar
enough system, the hot spots form a fractal by themse
with the same dimensiondf as the aggregate. Thus,Nh
should depend on the sizeRM of the aggregate as

Nh~RM !}S RM

Lh
D df

, ~52!

FIG. 14. Maximum scaling wave vectorQh as a function of the
linewidth G for resonances ats'0.48, close to B. The straight line
corresponds to Eq.~53!. The error bars arise from the oscillations
^ds/dV& and are estimated subjectively.

FIG. 13. Normalized magnitude ofpi as in Fig. 12 but fors
'0.26, close to R, withG51024.
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where we introduced the typical distanceLh.R0 between
neighboring induced dipole peaks. As the total number
particles in the fractal scales asN(RM)}(RM /R0)df , we can
solve Eqs.~51! and ~52! for Lh and write

QhR0}~gG!1/df , ~53!

whereQh[1/Lh . Notice that scaling of̂ ds/dV& as Q2df

can only be expected for wave vectorsQ,Qh that are too
small to sample the details of each individual hot spot.
scaling requires wave vectorsQ.Qmin able to sample the
innards of the system, no scaling at all may be obtained
finite systems of sizeRM,Lh smaller than the distance be
tween hot spots. On the other hand, scaling is expected
large clusters of sizeRM@Lh , and, in particular, it should
always be present for infinitely large clusters independen
of the linewidthG. These are the main results of the prese
paper. We have calculated the differential cross section
several values ofG, as in Fig. 11, and we have identifie
approximately the wave vectorQh that bounds the corre
sponding scaling region. The results are shown in Fig.
Although the precise identification ofQh from Fig. 11 is
difficult due to the oscillations originated in the finite size
the sample, leading to large errors, Fig. 14 is seen to b
good agreement with Eq.~53!. Scaling of the scattering cros
section with the fractal dimension within a regionQmin,Q
,Qh can be further demonstrated by plottingGds/dV as a
function of the scaled wave vectorQ* [QR0 /G1/df . Figure
15 shows that curves for different values ofG coalesce into
one curve within a regionQmin* ,Q* ,Qh* where we identify
Qh* '0.5.

The existence of the lengthscaleLh also explains the be
havior of P2(R) and P4(R), which, as shown in Fig. 9
decay as a powerR2an of the distanceR to the main hot
spot, but increases again for largeR as other hot spots, at
distanceR;Lh are reached. Notice that the computation o
localization length in terms of the moments of the dipo
moments induced in dissipative systems of a sizeRM much
larger thanLh would necessarily yield a result of the order
RM due to the presence of many hot spots separated typic
by the distanceLh . For systems of sizeRM'Lh the local-

FIG. 15. Normalized averaged differential scattering cross s
tion G^ds(Q)/dV&/^ds(0)/dV& vs normalized scattering wav
vectorQ* [QR0 /G1/df evaluated ats'0.48 close to B for different
values ofG5431023, 631023, 831023, 0.02, 0.04, and 0.06.
For clarity, the curves are truncated beyond the left edgeQ*
,Qmin* (G) of the scaling region.
4-13
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ization length is expected to vary wildly as some mod
would have one hot spot and nearby modes might have a
separated hot spots simultaneously excited.19

IV. RESULTS: VECTORIAL MODEL

In Sec. III we presented results for a scalar model, co
sponding to aggregates lying on a plane and excited b
field which points along the normal to the plane and who
value is constant along the plane, i.e., a longitudinal fie
The ensuing longitudinal dipoles would be unable to radi
electromagnetic waves in the near forward direction, so
their Fourier transforms illustrated in Figs. 10 and 11 can
be strictly interpreted in terms of differential light scatterin
cross sections. In this section we present results corresp
ing to a fully vectorial model, and we show that the ma
conclusions of the previous section are fit for the analysis
actual light scattering, notwithstanding the criticism abov

In Fig. 16 we show the spectral functiong(s) correspond-
ing for the same 2D DLCA aggegates as on Sec. III,
illuminated by true transverse electromagnetic waves pro
gating in the direction normal to the plane of the aggrega
The spectral function differs considerably from that shown

FIG. 17. Angularly and ensemble averaged normalized sca
ing cross section̂ds(Q)/dV&/^ds(0)/dV& as a function of the
normalized scattering wave vectorQR0 for N5104 DLCA-2D ag-
gregates illuminated with a transverse electromagnetic wave
with values ofs50.15 and 0.45, corresponding to thered ~R! and
blue ~B! ends of the spectrum shown in Fig. 16 with an imagina
part iG50.002i . As a reference, we also show the power lawQ2df.

FIG. 16. Spectral density functiong(s) for an ensemble of 30
DLCA-2D aggregates with 104 particles each illuminated by a
transverse electromagnetic wave propagating normal to the p
Each mode was given a widthG5231023. Red~R! andBlue ~B!
regions are indicated for later reference.
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Fig. 4. The main peak is now redshifted with respect to
single particle resonance ats51/3, the bandwidth is slightly
larger, and the size of g~s! does not vary as much across th
band as in Fig. 4. There are no simple explanations, a
Figs. 5–7, for the nature of each mode, as a couple of nea
dipoles in phase or in antiphase might reinforce or opp
each other, pushing the resonance frequency towards the
or towards the blue end of the spectrum depending on t
relative positions, while in the scalar model they always
duce a blueshift when in phase and a redshift when in
tiphase.

In Fig. 17 we show the scattering cross sections co
sponding to the same system as in Fig. 16 and for differ
values ofs. As for the scalar model~Fig. 10!, we found that
there is scaling with the fractal dimension within regio
which depend on the the spectral variables. Close to the
peaks'0.15 ofg(s) at the red~R! end of the spectrum, Fig
17 shows no scaling with the fractal dimensiondf when G
50.002, although it might be argued that fromQ'0.02/R0
to Q'0.3/R0 scaling is apparent with a smaller expone
For large wave vectors there are oscillations in phase w
those of the structure factorS(Q), as in the scalar model a
R. On the other hand, ats50.45 and close to the blue~B!
end, there is a small scaling region with exponentdf extend-

r-

nd

FIG. 18. Angularly and ensemble averaged normalized sca
ing cross section̂ds(Q)/dV&/^ds(0)/dV& calculated for normal
modes ats'0.15, close to the left band edge of Fig. 16, forN
5104 DLCA-2D aggregates excited by an in-plane field. We d
play results for three different values ofG5231023, 631023,
0.02, and 0.06. The power lawQ2df is drawn as a reference.

FIG. 19. Maximum scaling wave vectorQh as a function of the
linewidth G for resonances ats'0.15, close to the left band edge o
Fig. 16, for N5104 DLCA-2D aggregates excited by an in-plan
field. The straight line corresponds to Eq.~53!.
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ing from from Qmin'0.0075/R0 to Qh(0.4510.002i )
'0.05/R0. Unlike the scalar model, there are small oscil
tions for largeQ with twice the period of the oscillations o
S(Q), due to the presence of both F and AF tendencies al
different directions. Furthermore, there is a peak atQR0
'1 suggesting oscillations in the dynamic form factor with
period'6R0, not unlike those reported in Refs. 19 and 2
For a fixed frequency, Fig. 18 shows that scaling depend
the dissipation parameterG and that the scaling range in
creases withG as in the scalar model. The dependence ofQh
on the dissipation parameter is shown in Fig. 19. Notice t
Qh}G21/df , thus confirming with a full vectorial calculation
the results obtained in the previous section within a sc
model. Scaling within the regionQmin–Qh may be further
demonstrated by multiplying the scattering cross section
G and plotting it as a function of the scaled wave vectorQ* .
Figure 20 shows that, as in Fig. 15, curves correspondin
different values ofG coalesce on top of each other within
regionQmin* (G),Q* ,Qh* , where we identifyQh* '0.7.

It has been reported that the scaling of the light scatte
by aggregated aqueous Au colloids16 may be removed by
dilution,17 but it has been further argued that if care is tak
not to break the individual aggregates,52 scaling remains
even after dilution. These experimental results would be c
sistent with our calculations, if the typical sizeRM of the
aggregates was much larger thanLh only in the experiments
where scaling was observed16,52 but not in others.17 Thus, an
independent measurement of the size of the scatterers w
be useful to settle the ensuing controversy.51 It has been fur-
ther observed that the scaling exponent depends on the w
length. For instance, light scattered from three dimensio
DLCA colloidal clusters made up ofR0'8 nm Au spheres
was measured in Ref. 17 and scalingds/dV}Q2y was ob-
tained, but with an exponenty'1.78 for l1'457 nm and
with a different valuey51.64 for l2'632 nm. We have
performed full vectorial calculations31 of the spectral density
function g(s) for DLCA-3D aggregates whose fractal d
mension isdf'1.8 and we have found a band of norm
modes that extends froms'0.15 to 0.53. Fortunately, bot
wavelengthsl1 and l2 correspond to similar valuesu8

FIG. 20. Normalized averaged differential scattering cross s
tion G^ds(Q)/dV&/^ds(0)/dV& vs normalized scattering wav
vectorQ* [QR0 /G1/df evaluated ats'0.15 close to R for different
values ofG5231023, 631023, 0.02, and 0.06. For clarity, the
curves are truncated beyond the left edgeQ* ,Qmin* of the scaling
region.
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'0.15 of the real part of the spectral variable@Eq. ~22!#,
close to the left edge of the band. Thus, from the imagin
partsG5u9 we may compare the corresponding lengthsLh
employing Eq.~53!. It turns out thatLh is about five times
larger close tol2 than close tol1. Thus, it is possible to
have clusters that are large enough so that their scatte
cross sections scales with the fractal dimension close tol1
but at the same time so small that a different exponen
even no scaling is found atl2. This might explain the results
of Ref. 17. Similarly,u8'0.18 atl'480 nm for both Au
and Ag particles in water. However,G is much larger for Au
than for Ag at this wavelength, so that the minimum si
required to ensure scaling with exponentdf of the light scat-
tered by Ag colloids turns out to be about 17 times larg
than the corresponding size for Au colloids. Therefore, it
possible to grow Au colloids of such size that the light th
scatter does scale with exponentdf , while similarly grown
Ag colloids of the same size and dimension show no s
scaling.

V. CONCLUSION

We have developed and applied a multi-resolution bina
tree data representation and the corresponding hierarc
algorithms to calculate the dipole moments induced by
external field acting on an ensemble of large fractal agg
gates. We calculated the Bergman spectral functiong(s)
which accounts for the geometry of the system and may
employed to calculate its susceptibility for an arbitrary co
position. For DLCA-2D clusters polarized in the directio
normal to their embedding plane, and subject to long ra
nonretarded dipolar interactions, we obtained a band of n
mal modes that extends froms'0.25 to 0.50 with a narrow
peak ats'0.48, wheres is the spectral variable. For th
same clusters but polarized along their embedding plane
band extends froms'0.14 to 0.51 and is slightly peaked a
s'0.15.

We analyzed individual normal modes for polarizatio
normal to the plane and fors at both ends of the spectrum
We found that the response was confined to small hot s
whose position varies wildly withs but whose local geom-
etry is characteristic for each spectral region. At theblueend
of the spectrum, the induced dipoles are arranged in a fe
magnetical fashion, while at thered end they are arrange
antiferromagnetically. The spectral function displays a sm
scale structure which may be related to the normal exc
tions of small subclusters with characteristic geometries.
inquired into the localization properties of the normal mod
and found that the participation ratioP tends to zero as the
number of particlesN increases, following a power lawN2b,
where b'0.8–0.9, according to the spectral region. Thu
the states are not extended nor localized in the usual se
Further analysis showed that the averaged powers of the
duced momentsPn(R) (n52,4) decay asR2an, with a2
'2.06 anda4'3.31. As it turns out thatan.df , we would
have obtainedb51 asymptotically, as for localized state
were it not for the appearance of a dissipation depend
lengthscaleLh which characterizes the typical distance b
tween hot spots. We calculated the Fourier transform of

c-
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dipolar distribution, and from it, the differential scatterin
cross section̂ds/dV&. We found that even under resona
conditions,^ds/dV& might scale asQ2df , but only if the
size of the systemRM is larger than the characteristic di
tanceLh among hot spots. Our use of the longitudinal d
poles induced by a longitudinal field lead to a simple int
pretation of our results. We were thus able to understand
geometry of the hot spots at different spectral regions,
relative phase of the dipoles induced at nearby positions
the overall shape of the spectrum. Although not as eas
interpret, we verified that full vectorial calculations fo
DLCA-2D clusters excited by transverse electromagne
waves yield similar results.

To simplify our calculations we made use of some a
proximations. As we neglected the multipolar interactio
between nearest neighbor particles, our spectrum cont
the resonances that arise from thel 51 surface plasmon o
the individual spheres ats51/3, but misses the resonanc
expected to arise from thel .1 surface plasmons24,25of each
particle ats5 l /(2l 11). We expect multipolar corrections t
the spectral functiong(s) when the colloidal particles actu
ally touch each other, although these corrections may
minimized by coating the particles before aggregation. N
ertheless, we believe that our main result regarding the e
tence of a dissipation dependent length scale which de
mines the scaling region will prove robust. We also neglec
retardation in the particle-particle interactions. As in our s
tem, nearest neighbors actually touch each other, the no
tarded interactions between them are much stronger than
retarded interactions with faraway particles. Thus, we m
separate the interparticle interactions into a strong no
tarded part and a small retarded correction that only beco
important at distances of the order of the wavelength. O
approach is thus equivalent to accounting for the nonretar
interaction through an infinite order multiple scattering c
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culation, while treating the corrections due to retardat
within the first Born approximation. It has been shown18 that,
when applied to colloidal aggregates, this approach lead
negligible errors.

In conclusion, the differential cross section for the sc
tering of light does scale with the scattering wave vectorQ
asQ2df even in the multiple scattering regime, but only f
aggregates with a sizeRM larger than the distanceLh be-
tween hot spots and for wave vectors that obeyQmin,Q
,Qh , whereQmin;1/RM and Qh;1/Lh . The distanceLh
depends on the real partu8 of the spectral variable throug
the nature of the excited modes, and it decreases with t
linewidth u95G as Lh}G21/df . Thus, for a given composi
tion, Lh depends on the frequency of the exciting lightv
through the dielectric functions of the particlese(v) and of
the hosteh(v). It is then possible that the light scattered b
a given aggregate scales with exponentdf for certain wave-
lengths and does not scale or seem to scale with a diffe
exponent for another wavelength. It is also possible tha
some fixed wavelength, scattering from some aggreg
scale with exponentdf while scattering from aggregates wit
identical geometry but a different composition do not. Th
frequency, size, and composition dependent behavior m
lie at the core of the ongoing controversy over scaling and
interpretation in the scattering of light by fractal aggrega
under resonance conditions.17,51–53
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