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Scaling of light scattered from fractal aggregates at resonance
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Due to the scale invariance of fractal aggregates, light scattered from them often decays as a power of the
scattering wave vector. The exponent in this power law has been usually interpreted as the geometrical fractal
dimension. However, the validity of this interpretation is questionable for frequencies close to the resonances
of the system, for which multiple scattering becomes important. In this work we calculate the dipole moments
optically induced in fractal aggregates and the corresponding self-consistent field, as well as the electromag-
netic normal modes. To this end, we develop a multiresolution hierarchical representation of the aggregate that
allows the study of large systems taking fully into account the long range of the interactions. We analyze the
scaling properties of the dynamically induced dipolar distribution. We find that under resonant conditions,
scaling with the geometric fractal dimension is only observed for systems much larger than a length scale that
is related to the linewidth of each individual resonance. The relevance to this result for the interpretation of
light scattering experiments is discussed.
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I. INTRODUCTION large number of interacting parts. In the case of fractal ag-
Many objects in natufehave a geometry that is best de- gregates, the multiresolution approach has been applied to
scribed as fractal. Such is the case of colloidal aggregatesimulate the growth of clusters with up to®particles!®
which are scale invariant within a range of length scales In this work we develop a hierarchical multilengthscale
bounded from below by the size of each individual monomeralgorithm that employs a binary tree data structure and al-
and from above by the size of the complete system. Théows the simulation of the growth of large aggregate clusters
number of colloidal particledl(R) within a ball of radiusR ~ as well as an efficient calculation of their optical properties
increases as a power laRff. The exponent;, known as taking full account of the long range of the electromagnetic
the fractal dimension, is lower than the topological dimen-interactions between monomers. We employ this algorithm
sion d of the space in which the object is embedded and igo explore the problem of scattering from fractal structures in
frequently a noninteger. Similarly, the correlation functionthe resonant regime and to shed light on the problem of the

C(r), proportional to the probability of finding two particles interpretation of the scattering data. . _
a separationT apart, scales a<'t—%. In order for the fractal Throughout the last two decades, the scattering of light

geometry to manifest itself, the highest and lowest lengt as been an important experimental tool in the study of the

. _15 . . _
scales should be far apart, and thus the aggregate must ¢ nhysms of fractal systems. ™ Light scattering has fre

tai | b f ticl For thi th quently been interpreted within the first Born approximation,
ain a very large number of particles. For this reason, g, i-n 5ecounts only for single scattering events. This means

simulatiqn of physiF:aI properties OT an aggregate, such athat each particle in the aggregate is assumed to respond to
their optical properties, usually requires a large scale compyy,q incoming field only, but does not “feel” the field pro-

tation. duced by the rest of the particles. In this case, the angular

_ Early works proposed simple models for the computa-igyrinytion of the light statically scattered, characterized by
tional simulation of several fractal structures found in naturey,  qitferential cross sectiodo/dQ, is proportional to the

ﬁ;ﬁgés tzﬁrjgtae.:,e c;fg<;|rf2§;(t)ignl|(rlr:1)||t_eéjA:;1,%gr(rag:(t:?tcixcl)hr]:f_ Lllirsrlwci)tre]:d structure faEtoS(Q), which, being simply tfje Fourier trans-
aggregatiorf, and reaction-limited cluster aggregativithe ~ form of C(r) with scattering wave vecto®, scales for a
increase of computational capacity and the development dfactal of dimensiord asQ™ . For small scattering angles
algorithms has allowed the solution of problems involving 6, Q is orthogonal to the wave vector of the incident light
many interacting bodiesSince the 1980s, algorithms em- and Q~ (w/c) 6, wherew is the frequency. Thus, informa-
ploying multiple length and time scales have been employetion about the geometry of the system may be obtained by
to treat many-particle interacting systefihey have been measuringdo/dQ). In particular, from the decay of the in-
most useful for simulations in astrophysics and cosmologyensity with angle we may infer the fractal dimensin.

which involve a large number of particles subject to the un- The general validity of the first Born approximation is
screened long-range gravitational interacfioRrequently, —questionablé’ especially for frequencies close to a reso-
this kind of method employs a binary tree data organizatiomance. For those frequencies, the response of each particle is
scheme where the lengthscales are refined as the tree eégpected to be very large. Therefore, its interactions with
climbed. Fast multipole methodsombine multipole expan- nearby particles should not be neglected. A significant effort
sions with the multiresolution approach and have proved adhas been done to understand the optical properties of fractal
vantageous for attacking manifold classical problems with aaggregates, for which optically active resonant modes with a
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very high local field concentrated in just a few small regionsinterpretation of light scattering experiments. Finally, Sec. V
have been reportéd. The number of theskot spots their  is devoted to conclusions.
position, and their mutual distances have been shdéio
vary abruptly with frequency, so that the spatial distribution Il. THEORY
of the intensity cannot be characterized by a single localiza- A Local field
tion length. Although the normal modes display inhomoge- '
neous localization and are neither localized nor extended in We consider an aggregate made ugNot 1 small spheri-
the usual sense, in a recent workve obtained that even cal particles of radiuR, with dielectric functione embed-
when multiple scattering is accounted for, it is still possibleded within a host with response functieR. When a long-
to get an approximate power law decay for the scatteredvavelength fieldE acts on one sphere, it induces a dipole
intensity as in the case of single scattering, but only at somgoment p=yE, where the monomer polarizability is
spectral regions, while no scaling at all was found at othegjiyen by
regions. In this work we do a more thorough research into
this scaling, we analyze the local field intensity distribution €~ € o
at different resonant regions, and we find the conditions un- YT F 2¢O @
der which scaling is to be expected.

For definitiveness, in this paper we chose a particulafThus, when an incoming optical fielifxs Eex(Fi) shines on
class of systems, namely, those formed by the process afie system, each particle acquires a dipole
diffusion limited cluster-cluster aggregatibrof spherical
particles. To simplify the visualization and the interpretation S
of the results, we limit ourselves to aggregates lying on a flat Pi=Y
surface illuminated by light impinging in the direction nor- o
mal to the surface. We further assume that the wavelength (i=1...N), wheretj;=t(r;—r)) is the dipolar interaction
is much larger than the radiug, of a single sphere and that petween theth andjth spheres located at positionsand
the interactions among the sphere; are dqmlnated by the nopj—’ respectively. The distance between near neighbor par-
retarded part of the dipole-dipole interaction. ticles in an aggregate is of the order of their size, as close

The structure of the paper is the following. Section Il \ejahnors within an aggregate might touch each other.
contains our theory: First we set up a perturbative Calcmat'oﬂ'herefore, the local field variation across each monomer

of the local field and the induced dipoléSec. Il A) with would lead to a coupling of the dipole moment to higher

WhiCh we present th.e. hierarchical' data structures anq al9%der multipoles. The optical spectra of the system would
rithms that allow efficient calculations for problems with a 5\« features arising from this coupling, such as peaks aris-
large nll_meer (;]f partlcle$8e%. II'B), and which we Iar\]ter ing from the multipolar resonances of each individual
generalize to the non-perturbative regirtec. Il Q. The  yaric1e22 Quantitative calculations for specific aggregates
resulting dipole moments are employed to calculate the scafqjgh have to take this into account. For example, it has been
ter:jng of Ilghtl(Slec. I D), the susceptibility of the system, 54,64 that multipolar interactions are responsible for the
and its normal electromagnetic mod&ec. Il B. Inorderto  iy¢areq wing observed in the absorption spectra of some

visualize, discuss, and interpret our results, in Sec. Ill W er colloidal aggregated. Multipolar effects may be ac-
present a simplified scalar model of dipolarly interacting par-

ticles which we employ to present results for DLCA aggre-COl"med by replacing; andp; /m/Eq. (2) by the vectorsof
gates grown in 2D: We obtain the normal mode spectrum fomultipolar momentsyi™ and g} ™ , the polarizabilityy by
systems composed of arbitrary materials and study the dehe multipolar polarizabilities', the fieldE; by the spherical
tailg of individual resonances at var_iou_s spectral regionsyreducible components of its spatial derivati\)ég‘l)éi of
their hot spot structure, and their I_ocahzatlon p(opertm. order I-1, and the tensoif); by the interaction matrix

[l A). We also study the scatteri@ec. Il B), its depen- mi'm’ hich les then'th t of ltinole of
dence on wave vector and its scaling behavior. We find that which couples then'th component of a muftipole o
scaling with the geometrical fractal dimension is approxi-orderl’ atr; to themth component of a multipole of ordér
mately obeyed but only within certain regions of the spec-at r; .24 Nevertheless, we believe that multipolar interac-
trum. Further inquiry reveals, though, that scaling can bdions are nonessential for the understanding of gbaling
observed at any spectral region provided the system is larggroperties of the scattered light which constitute the subject
than certain lengthscale which depends on the linewidth ofmatter of this paper, and the additional structures they intro-
the resonances of the system, and therefore, on the dissipddce into the spectra actually obscure their analysis. It has
tive part of its dielectric response. Since the scalar moddbeen shown that solving Maxwell equations numerically in
employed in Sec. Il is equivalent to the excitation of longi- disordered systems leads to qualitatively similar results as
tudinal dipoles with a longitudinal field, it is unsuitable for a employing the dipolar approximatidf.As it is, Eq. (2)
guantitative calculation of electromagnetic scattering. Thusyould be exact for anodel systenrmade up of point polar-

in Sec. IV we present the corresponding results for a fullizable particles, instead of spheres, with given polarizability
vectorial calculation. We find that the qualitative aspects ofy and located at the centers of the particles that make up the
our most important results carry over into the transverse reactual aggregate. As multipolar effects are known to decay
gime. Thus, they have to be taken into account for the correaxtremely fast as the interparticle distance increa5&%q.

EX+ 2 Tij - 5]) )
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FIG. 2. A binary tree representation of an eight-particle aggre-
gate according to the group structure displayed in Fig. 1.

ticles 4. .. 8, wefinally obtain the whole aggregate The

FIG. 1. Small aggregate made up of particles, 1,28 orga-  hierarchical group structure may be described by a binary
nized hierarchically into groups,b, .. .g. tree (Fig. 2) whose root represents the whole system, whose

internal nodes represent subgroups which decrease in size as

(2) is also appropriate for aggregates whose particles ar@e climb the tree, and whose leaves represent the individual
coated with an optically inactive separatbiVe remark that particles.
it is a common practice to coat colloidal particles in order to  Eachgroup «, either atomic or composite, is character-
control their agregation kinematié® For these reasons, we jzed by its number of particled, and by a sphere of radius

have neglected multipoles in E(). R, centered om,. We chose , at the center of mass of the
particles composing the group and we chBsdarge enough
B. Hierarchical representation to circumscribe all of the particles belonging to the group.
In the limiting case of a very small polarizability  Although the spheres corresponding to different groups may
<R, the induced field is much smaller than the external©verlap one another, and a given particle may be covered by

field and Eq.(2) may be solved by an iterative process. In More than one sphere, group membership is chosen in such a
this case we write way that there are no cycles in the tree representing the ag-

gregate. There are many different group hierarchies that may
5?: yéfx, (3) represent the same aggregate. We employ a strategy that ar-
ranges particles according to their relative distance in order

. . to minimize the overlap between the spheres representing
SN i p]“) (4)  different groups and that attempts to balance both the radius
J and the number of particles of the subgroups that emerge

and iterate over the scattering orde=0,1, ... until we  from any given node. The details of this strategy will be
converge to the fixed poir;=p;° which is the desired so- presented elsewhe?eThe number of nodes of the tree, in-

lution. Although this method has obvious limitations, it has cluding its root and its I_eaves ih2-1, independently of the
found some useful applicatioR®.We use this order-of- U€€ Structure. The height of the tree does depend on the
scattering method to present our hierarchical algorithm an&t”ftut:e’ba?d IS O?ltven by lgly in the optimum case of a
our tree data structure. In Sec. Il C we will generalize ourpetl_eC y ha ance reedd't' I . hvsical "
calculation methods to the more interesting resonant situa[_— 0 €ach group we additionally assign physical properties
tions for which iteration(4) is not adequate. ike those of its constitutive particles, according to the spe-

The most time consuming step when applying the metho&"cIC physmal_problem we wa_nt to sol\?é.ln the present
. . . =il case, we assign to each grofijts total dipole moment
above is the repeated evaluation of the induced &1d" at

all positionsr; due to all the other dipolep] atr;, which R R

naively would requireD(N?) steps. To accelerate the calcu- ngg,g Pis )
lation we introduce the concept difierarchical groupsof

particles as follows. The whole aggregate constitutes a singhghere the sum is taken over all the particidselonging to
group at the highest level of the hierarchy. It is composed ofhe group:, which we abbreviate aiss £. Since each non-
exactly two groups at the next hierarchical level, each conatomic group¢ contains exactly two subgroups, which we

taining a connected fragment of the original aggregate. Eacesignate as itslaughter® and itsson ¢3, its total dipole
of these subgroups is itself divided into two smaller groupsmay be updated recursively as

containing connected fragments of the corresponding sub-
cluster. We proceed with this division obtaining smaller and
smaller subclusters until we reaatomic groupsnade up of
only one particle. Figure 1 illustrates this hierarchical struc- . . eai1 .

ture for apparticular gmall aggregate. In it, particles 1 and 2 Gc.)mg.back to the e"a'“a“S” ?f o we notice that each
form a groupd, which together with particle 3 constitutes contribution of the form3; _t;;- pi" in Eq. (4) may be re-
groupb. Adding groupc, which is built similarly from par- placed by a single terrﬁg- p; if R, is small enough and;,

Pl = W EPHEN Y=y

F;g: 5gd+ 5;5- (6)
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large enough that we may approximae= t,= t(r,—r ). C. Noniterative solution
In this case, we replace the individual interactions be- The iterative solution of Eq(2) to obtain the dipole mo-

tween theith particle and theN, individual particlesje{  ments is not feasible if the polarizability is not small, or
that make up grougd by the single interaction;, between more generally, ay approaches a resonance of the system,
particlei and a fictitious particle located at , and carrying ~ since the sequence of successive scattering orders might di-
the algebraic SUFTﬁ? of the dipole momentg” of all the ~ Verge. Even in this case, the hierarchical representation of
particlesj e ¢. For example, in Fig. 1 we might replace the the aggregate is useful. First, we rewrite E2).as the matrix
two interactions between particle numbered 1 and particles duation
and 8 by a §|pgle interaction between partlc_le 1 and gmpup Mp=[(1/y)1-T]p=E*, 9)
If we are willing to tolerate larger computational errors, we _ _
could even replace the five interactions between particle where the dipole moments of all the particles and the exter-
and particles 4 . . 8 by asingle interaction between particle nal field are represented by the block column vectors
1 and groupe. _ _ - =(p1.p2, ---pn)T and E¥=(ETE, .. .EX)" respec-

It is simple to implement the ideas above in a recursivetively, 1 denotes the unit matrix,
fashion. CallingE;, the field induced at; by all particles

j € a, we calculate thn T ... Ty
er r22 P FZN
- ER i T= : - ; (10
. TiaPa if R, is small : : . :
Ei = (7) FNl FNZ C FNN

“ |E a+E;s Otherwise,

represents the dipolar interactions, and-)" denotes the
where bysmall we mean thaR,/r;,<A or that the group transpose of the matrik--). Notice that in general Eq9) is
contains only a single particle. Herd, is a dimensionless a 3N X 3N matrix equation, and that, due to the long range of
parameter between 0 and 1 which controls the speed arttie dipole-dipole interaction, the matricdd and T are
accuracy of the computatioh.A =0 leads to the exact result dense This is at the core of the numerical difficulty of solv-
but with no speed gain, while with =1 the calculation is ing Eq.(9) for large systems. Now we build a new vecfgr
done in just one step, but the result would be completelyoy appending the dipole moments of the-1 groups to
inaccurate and therefore meaningless. The first correction tihose of the N particles, ie., p’

the approximatior; ,~ T}, p, is given byV,;,:Q,, where  =(py,pz...Pn.Pr,:Pa, - - -Px,_,)"» Where); runs over
Q is the quadrupole moment of the composite grgup\s ~ the N—1 composite group indiceg. By appending the
Viti,~O(t;/ri;) andQ,~O(p,;R,), we expect that the ap- 3(N—1) conditiondEgs.(6)] to the N equation§Eqgs.(2)]
proximation leads to a relative error of ord@(R,/ri;).  we end up with a 3(R—1)X3(2N—1) system
Thus, A is a measure of the relative error we are prepared to ox
allow in the calculation of the field produced by any one M 0 _ 0 ,_ E —eex s
o 1 lcllP' =l o [FED, @Y
whereM is the same BIX 3N matrix as in Eq(9), O repre-

group. The error is actually much smaller as tiemters of

electric polarizationof a group, i.e., the average position of

its particles weighted by the components of the dipolar mo- ; . . , . .
ments, are frequently close to the center of mass, yielding egt; aggp{(;irggg _S'f)ed rrgsmggir]:llelgt(ijv\i,t\”ﬂ:n;?rriietigtmge-
relatively small quadrupole moment for the - groud, scribes the tree structurg ang has elemer):ts

<p;R,. To take retardation effects into account, we have to

M!p!E

consider the wavelength as another length scale for the Cou= (8,0, + 8,s )I

spatial variation of the induced field and we have to comple- fa Fa’ %

ment the conditions above witR,/A<A. Finally, Eq. (4) [*1’ if group ¢ is the father of groupe

can be recast as = _ (12)
0 otherwise,

where 54, and é;s, are Kronecker deltas anddenotes the
unit 3xX 3 tensor.

Rewriting the system of equation®) as Eq.(11) in-
wherea denotes the root of the tree that represents the wholereases the number of equations and unknowns frbhd
aggregate and!, is calculated recursively employing Eq. 3(2N—1). However, we may take advantage of the hierar-
(7). The algorithm above may be modified simply addingchical representation of the aggregate in order to manipulate
higher mu|tipo|es to the groups. The Corresponding advanmatriXM " and reduce ConSiderably the Computational cost of
tages of permitting a more accurate calculation of the insolving Eq.(11). Thus, wheneveR, is small enough as com-
duced field for a givem have to be weighted against the pared tor;, in the same sense as in K@), we may replace
computational cost of storing and updating the multipolarthe N, entries T; , (j € {) with block indicesij by the null
moments of each group in the hierarchy. tensor Gif we simultaneously perform the single replacement

Py t=y(EP+EL), ®
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0— t;, at the block with indices¢. With this procedure we for aggregates with a very large numkrof particles be-
can reduce significantly the number of non-zero element§omes computationally feasible using a variety of
of M’ producing asparse matrixM” such that solving the methods’2*3while the solutionp” approximates the desired

equation solutionp’ with an arbitrary accuracy, controlled by the pa-
rameterA.
E* | ider th te shown in Figs. 1
M0 — (19 As an example, consider the aggregate shown in Figs.
P 0 and 2. The corresponding mati4’ is given by
1 2 3 4 . 8 a b c d
1 | 1 ! oL
My —T —Tis —Tu fig 0 O 0 0 — 1
M= 0 © 0 0 6 1 -1 -1 6 ...|l« a. (14)
6 0 -1 © 6 0 1 0 -1 — b

The first row of this matrix indicates the interactions of the first particle with the external field and with patticle8.Rows
2 ...8 aresimilar. On the other hand, row states that the dipole moment of the whole aggregasesimply the sum of the
dipole of groupb plus that of groupc. Similarly, row b indicates that grouf is made up of particle 3 and group The
remaining rows are analogous.

Assumingthat groupc of Fig. 1 may be consideredmall enough and far enoughiom particle 1, so that the five
interactionst,; (jec—{4 ...8) may be replaced by a single interactigg, the resulting matrixM"” would look like

1 2 3 4 8 a b c d
! ! o Ll o
My, —Tp —T13 0 ... 000 -t 0 ...\— 1
M = '11 12 13 ' 1c ' B (15)

Comparing Eqs(15) and(14) we can appreciate the increase respondsndividually to the local field that polarizes it. When

in the number of null elements. It is unlikely that groap calculating that field we treat whole groups of particles as a
could actually be considered far enough from particle 1 insingle dipole, butonly if that group happens to be small
the particular aggregate shown in Fig. 1 to permit this parenough and far away enough so that this replacement does
ticular replacement. However, similar replacements mayiot introduce an appreciable error. Otherwise, apenthe
safely be done for larger systems without introducing appregroup and consider recursively the field produced by its sub-
ciable errors, the resulting savings become considetafole ~ groups or by its particles. Thus, with our procedure we can
realistic cases and they increase with the size of the aggr@btain the local field with an arbitrary accuracy. The renor-
gates. As matrixM” may be simply constructed on the fly malization procedure of Claro and Fuchs would lead to er-
from the distances,, and the tree structure of the aggregate,’°rS @nd would not be applicable unless there is a large

it is not even necessary to store its relatively few non-null€nough distance between all groups at each level in the hi-
elements. erarchy, as compared to their size. For the colloidal aggre-

A hierarchical approach to the calculation of the electro-9al€S We consider here, neighboring groups might overlap

magnetic response of fractal systems has been previous Ch othefsee Fig. 1, so that the approach of Ref. 34 is not
employed by Claro and FucR&.In that calculation, each pplicable.
group in the hierarchy was replaced by a singgeticle with

an appropriate size and with a renormalized response calcu-

lated iteratively in terms of thparticlesit contains one level

below in the hierarchy; each group was considered indivis- Once we have obtaingg, , we can proceed to the calcu-
ible after that replacement and when calculating its interaclation of the differential scattering cross sectibam/d(). We

tion with neighbor groups. This constitutes an essential difassume that the the external field is a long-wavelength in-
ference from our present scheme, in which each particleoming wave

D. Scattering
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Ejex: Eoei(qin~rj—wt) (16) so that

of frequencyw and wave vectorj,,= (o0, and with qoR, 1/y=(1—3u)/R3. (23)

<1, where the hat denotes a unit vector. The scattered field _ _ . o

is simply the sum of the far fields radiated by all of the Using Dirac’s notation we represent the incoming field by a
dipolesp; . Factoring out from the induced dipoles the phasek€t|E®)=E®= VNE,|0), where|0) is normalized{0/0)=1.

and magnitude of the incident field and normalizing away itsThe induced dipole moment can similarly be represented by

units employing the distand®, through the definition a ket|p)=p. The work done per unit time by the external
o L field due to the presence of the spher®s; » Im(Z;(E{™)*
pj=d;RHEqe (@in i~ D), (17 .p;)/2, maytherefore be written as

we calculate Poynting’s vector and we obtain the differential )

scattering cross section per unit solid angle in the direction P=wVIm(x)|Eq%/2, (24)

out: whereV=4xN RS/S is the total volume occupied by thé

2R spheres of radiuR, that make up the aggregate, and
do/dQ=ey(qoRo)NRE(IB* (D)), (1§ P ° b The aggred

where Q=q,,— i, iS the scattering wave vectoN,
=(Qo0out IS the outgoing wave vector in the observation di-

rection,ﬁ(@) is a Fourier representation of the normalized. L . .
) \ is a macroscopic dimensionless susceptibility. The normal
induced dipoles

modes of the system are the oscillations it can sustain in the
1 o absence of an external field, and can therefore be identified
D(Q)=—d(Q)= > aje—iQr;' (190  with the poles of the susceptibility(u).
JN N For dissipationless spheres made up 02f a Drude conductor
and the superscript. denotes the transverse projection Within yacium, we can identifyu= w*/ wp, where e()
=1-owy/o” andw, is the plasma frequency of the conduc-

_)L -4 = -4 . ~ . _
D™(Q) of D(Q), perpendicular t@,. For disordered sys or. Thus,u is frequently identified withw. For example, a

Lii:fkgg add an ensemble average, denoted by the angut 'Sonance with a relatively large or smalimay be called

blue or red respectively. We will follow this practice, al-

We take advantage again of the hierarchical data structur, . .
: : .~ ~ though the actual frequency corresponding to a givete-
to accelerate the calculation of the scattering cross section b . .
-2 ends on the material properties of both the spheres and the

replacing the contributiod (Q)=X; . ,dje”'®"i to the sSum  post implicitly throughe(w) and en(w). Thus it is in general
in Eq. (19) by the single ternd,(0)e %"« whenever the a complex valued, complicated nonmonotonic function.
size R, of the group{ and the wave vectof) are small _ By writing T in t'erms. of its normalized eigenyectdtg),
enough, QR,<1, so that we can approximate 'O with a corresponding eigenvalig, we may rewrite

~e ' for all particlesj e {. Thus, we write

—io 1-3u)1-R3T]7 Y0 25
x—477<|[( u) oT1710) (25

1

3 (0[tn){tn|0)
X=7= 2 —————. (26)
.1 4m ‘v 1-3u—R3t,
D(Q)= \/—Nda(Q), (20)
Notice that in the absence of retardation, the dipolar interac-
and evaluate recursively tion
. [d 0 QT if R, is small 3fr 29
Q=1 4 81 4d o5 otherwise @D ij= - IJ5 - (1-4y) (27)
dad(Q)+da5(Q) Ise. rij
E. Normal modes is independent o€ and of e,,, and thereforgy depends on

_ _ . the materials forming the system only through the variable
Before studying the scattering of light by fractal aggre-i, the denominator. Thus, E(6) is a particular case of the
gates at resonance, it is convenient to characterize their NOBergman representatidhfor the response of an arbitrary
mal electromagnetic modes. The normal modes depend q&ymposite made up of two materials with different dielectric
the geometry of the system as well as on its Compos't'onproperties. Bergman'’s theory may be set up for an arbitrary
However, the later dependence may be factored out employsomposite by noticing thdt within a transparent dissipation-
ing Bergman'’s spectral density thedyTo this end, we de-  |ass host €.>0), the whole aggregate will be an energy

fine a spectral variable sink (Y">0) or an energy sourcg’’<0) whenever the inclu-
1 sions themselves consume electromagnetic engfgy0, as
u= , (22) expected in thermodynamic equilibrigmor produce it

(1—¢len) (€'<0, as in a pumped system out of equilibrium such as
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a linear optical amplifierrespectively. Here, we abbreviate 1

(---)"=Im(---). Thus, " has the same sign a¢’, and jo dssgs)=1/3, (36)
consequently its poles are necessarily simple and located at

the real,u”=0, axis. From Eq(24), these poles correspond where we denote the angular average of any quatityby

to the optically active normal modes of the system. As it iS(...) and we used the fact thItj =0, as may be verified
thermodynamically allowed to have materials in equilibriumdjrectly from Eq.(27).

with any static valuee>1,e,>1, no poles ofy may appear By defining aHamiltonian
for e/e,>0. Thus, all the normal modes of the system are
confined to the interval €u<1. Finally, using Cauchy’s H=(1- RST)/3, (37)

integral formula we obtain and its corresponding Green’s operator
1 C,

xW=g 2 s,—u

, (29 G(u)=(ul—H) 1, (39

we may identify’
where the sum is taken over all the polgs=[0,1] of y,
C,=—47R,>0, andR,, are the corresponding residues of

x- An equivalent expression is x(u)=-— EGOO(U)' (39
1 (1 g(s) Thus, we may use well known methods developed for the
x(u)= Efo dsc— (290 calculation of the projected Green’s function of electronic

systems and adapt théhi® to the calculation of the
whereg(s) ==,C,8(s—s,) is the normalized spectral den- susceptibility’® An efficient evaluation ofy(u) and g(s)

sity function. Equation(29) may be inverted, yielding may be carried out employing the Haydock recursion
method!°~#?By acting repeatedly on the ki) with H and
g(s)=4Imy(s™), (30 othonormalizing the resulting vectors, we construct a basis

where s*=lim_ y+s+il'. Comparing Eqs(28) and (29) {[k)} in which H becomes tridiagonal,

with Eq. (26) lets us identify ag b, 0 O
Cn=1(0|t,)|? (31 yo|Pro@ P2 O | (40
sh=(1—R3t,)/3, 32
n=( otn) (32 where
and interpret
by 1|k+1)=HIk)—a, k) —b|k—1), (41)
9(s)=2 [{0]tn)|?3(s=sy) (33 ax=(k[H[k), (42
as a density of states projected unto thitial state|0) de- bz, ,=|H|k)||>—aZ—bZ, (43

fined by the external field.
Alternative spectral representations of the response off A )
fractal aggregatéd2° have appeared in the literature, but & normalization constant fdd|k) after it has been orthogo-

they can be trivially mapped to the one above. There are Wema_lize(_j F0| k) and|k— 1> making(k-+1|k+1)=1. OnceH
known sum rules for the Bergman’s spectral function. In the’> " tridiagonal form it is an easy task to obta#,(u) and

present context, we obtain one of them by integrating EqToM it the susceptibility

(33) with respect tcs, obtaining

ith | —1)=0 andby=0. Thus,b,, ; may be interpreted as

. x(u)=— %[1/@—ao—bil{u—al—bgl[u—az
[(as99-3 cOlttlor-(0l0)-1. (34 2
0 n —b%/(u—az— ...)1H] (44

where we used the completeness of the bfs$js}. A sec-  and the spectral function
ond sumrule may be obtained by taking the first moment of

90 g(s)=— %Im[l/(s+—ao—bf/~{s+—a1
1
J 8 599=3 Ol 1-Rttl0)3 —bY[s" —a,—bY(s" —as—..)ID] (45
=(1-R¥0|T|0))/3, (35) through continued fractions.

The evaluation of the Haydock coefficierdg andb, re-
and then averaging over the direction of the external field, quires repeated applications of the mattx each of which
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takes of the order dD(N?) steps due to the long range of the
dipolar interactionsT. However, the computation may be-
come feasible even for very large systems if we follow the
steps that took us from E@9) to Eq. (13). That is, we em-
ploy the hierarchical view of the aggregate and extend the
space of dipolar configurations fromN3 dimensions to
3(2N—1) by adding a coordinate corresponding to the di-
pole moments of each of the groups in the hierarchy, we :
replaceE®™* by (E®)’ as in Eq.(11), and we replacéd by 1/16. 1/8
H”, in a similar fashion as the transformation frdvihto M” 0

in Eq. (13), i.e., by replacing thé&, particle-particle interac- %
tions t;;, je{ by a single particle-group interaction,

whenever it is possible. Additional gains can be obtained in

the evaluation of Eq942) and (43) by replacing theN N, A
particle-particle interactions;;, ie{, jeé by a single

group-group interactioy, if the two groups are sufficiently =
small and far away. The speed and memory usage gains are :

very substantial® For very large systems, the continued 2

fractions in Eqs(44) and(45) may sometimes be truncated,

replacing their tail by a suitable terminator that accounts ap- < R
proximately for the remaining coefficiertdtherefore intro-

ducing additional computational speedups.

1/2

Ill. RESULTS: SCALAR MODEL 1/8
1/ 16 . 1?32 p

In this section we apply the hierarchical methods pre-
sented above to the calculation of the optical properties of an
ensemble of large fractal colloidal aggregates. In order to
simplify the discussion of the results we present results for
DLCA clusters embedded in a two-dimensioraD) plane FIG. 3. SmallN=10° DLCA-2D aggregate with the normalized
and illuminated in the direction normal to the plane, SO thaH|p0|e moment/ Py iNduced by an external field displayed in
the external field is taken as position independent within thehades of gray. The upper panel corresponds to a normal mode with
aggregate Furthermore, we ignore the vectorial character Gbectral variables=0.4865. The following normal mode corre-
p and thus work within a scalar approximation. This couldsponding tos=0. 4887 is shown in the lower panel. A small imagi-
be physically realized if the induced dipole moments werehary partil'=10"*i was added ta.
perpendicular to the plane containing the aggregate, corre-
sponding to a longitudinal excitation. Consistent with this,"

regimes>! In Fig. 3 we illustrate the geometry of a DLCA
we WI|| assume a nonretarded dipolar interactiop cluster_ grown _|n two dimensions. Notice its branching struc-
ture with cavities and protuberances of all lengthscales, cor-

=— 1/r . Thus, instead of calculating the scattering of light . : .
by the aggregate, in this section we calculate the Fourie%eSpondIng to a fractal of dimensiah~1.45. We remark

transform of the spatial correlation function of the dipole hat as our (_:Itésgt%s were grown on a continuum and hoton a
moments induced in the system, closely related todjie discrete I_att|c ;< avoiding thus artifacts which may arise
namic form factof®?° of the system. Nevertheless, to facili- from having only a small number of short range geometric
tate the comparison with the full vectorial calculation of the;:onﬂgura;uons. In Fig. éélwe F;%sgrﬂtégezsgeetratl dens_;tﬁq%nc-
next section, we will employ the language of light scattering lon _g(s) oran ensemble of . ~<D clusters with

to discuss the results of this section. In Sec. IV we presen?art'cIes each, calculated using B45) and the hierarchical
results of a full vectorial calculations which confirm that the representation. There is a single band of normal modes ex-

scaling properties of the longitudinally induced dipoles wel€nding froms=~0.25 tos~0.5 which peaks &~0.48. The

obtain below do correspond qualitatively to those of thef|ne scale structure visible in Fig. 4 is not removed through
nsemble averaging.

transverse dipoles, and that our results are useful to undef? T derstand th i f th d h ved
stand the nature of scaling for the problem of light scattering 0 understan € nafure ot In€é Modes, we have solve

It has been shown that the scalar approximation above yielogq' (13 hierarchically to obtain the induced dipoles for

gualitatively correct results in a context similar to the presen |ffe_rent values of the spectral varialdeFigure 3 |Ilustrates
one20 the induced dipole moment for two normal modes with val-

ues ofs close to the peak aj(s) for a particular rather small
cluster. We notice that the local field is very strong on just a
few particles. Thus, in the upper panel of Fig. 3, correspond-
We have employed the hierarchical representation foing to s=0.4865, only those particles in a small region close
simulating the growth of colloidal aggregates in differentto the upper-left corner have an appreciable electric polariza-

A. Normal modes
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100 L e L LA given small subaggregate, not its position, determines the
spectral region at which it resonates, thus becoming a hot
spot, but the interactions with particles that are farther away
1k g within the large aggregate determine the precise frequency of
= the resonance.
o1 r Besides the local geometry, the hot spots also have char-
0.01 _// R 5 ] acteristic phase relationships at different regions of the spec-
trum. In Fig. 5 we present details of the hot spots for two

ettt different frequencies. At the blue eitB) of the spectrum all
0.2 0.25 0.3 035 04 045 05 055 0.6 . . . L.

s of the dipole moments are in phase with each other, reminis-
cent of a ferromagneti@=) ordering, while at the red en)

DLCA-2D aggregates with fOparticles each. To obtain a continu- of the spectrum, nearest neighbor dipoles at the hot spot

ous curve, each mode was given a finite wiflth 10°3. Red(R) altem_ate In §|gn, remm's,cen_t of an antiferromagneéae) .
andblue (B) regions are indicated for later reference. ordering. This behavior is simply understood, as the field

produced by any particle acts over the other particles in the

tion. These strongly polarized regions have been noticed bélirection opposite to its own dipole. Let us consider the
fore and have been referred to last Spot§-8'44The confine- Simple case of Only two interacting pOlarizable partiCIeS sub-
ment of the field to such small regions when the frequency igect to harmonic internal force§ig. 6) lying on a plane and
tuned to a resonance of the fractal produces a field enhanceith their dipole moment normal to the plane. When the two
ment that may be observed through an amplification ofdipoles are parallel, the field produced by one of them op-
nonlinear optical effects such as harmonic generation. Modiposes the dipole moment of the other one, as if the restoring
fying the frequency by very small amounts produces drasprings were stiffened and therefore increased their reso-
matic redistributions of the dipole momerfs?°The lower nance frequency. On the other hand, when the dipoles are
panel of Fig. 3 illustrates how the hot spot at the upper-lefanti-parallel, the field produced by one of them would rein-
corner disappears and a new hot spot appears close to therce the dipole moment of the other one, as if the springs
bottom of the system when the spectral variable increases byere softened and decreased their resonance frequency. The
a very small amount up to the next resonance of the aggradentification of the blue or red shift of a resonance with
gate, ats=0.4887. The long range phase correlation amongespect to the nominal resonance of an isolated sphese at
simultaneously excited hot spots have been studied in detait 1/3 with a F orAF-like short range order at the hot spot is
for dipolarly interacting DLCA-3D clusters and for homoge- not possible when the dipoles lie on the plane of the aggre-
neous random systems in the statiod&f}and the transient gate nor when the aggregate is not planar, as the mutual
regimes?® as well as for planar random systefignd inter-  effect of neighbor dipoles would depend not only on their
esting applications for ultrafast control of electromagneticrelative direction, but also on their relative positions. This is
energy in ultrasmall spatial regions have been suggéSted. one of the reasons for studying our simplified scalar model
A close analysis of the hot spots shows that for values ofirst.
s within a given spectral region, the local geometry of the According to the discussion above, the normal mode with
excited area is similar. For example, in both panels of Fig. 3he largest blueshift would correspond to an F excitation at a
the maximum dipole is attained at some group of four pardense region. In Fig. 7 we show a few small isolated clusters.
ticles forming a small square. The particular square excited’he F resonance for a close packed hexagon s<d.50,
in the upper panel is far away from that excited in the lowerclose to the B end of the spectrum shown in Fig. 4. The close
panel, but its local geometry is similar. Within other spectralpacked cluster does not support an AF mode due to the frus-
regions, the local geometry of the hot spots is different, andration inherent in the triangular lattice. However, an AF
the response may be concentrated, for example, at relativelyode would be expected if the particles are located at sites
low density regions resembling a linear chain or at branchingf a square lattice. The rectangle shown in Fig. 7 has an AF
points resembling a letteY. Thus, the local geometry of a resonance as~0.25, close to the R end of the spectrum.

©
% %O%o %o FIG. 5. Hot spot details for resonances close
ng to the blue endB) of the spectrum §=0.4887
A (rotated with respect to Fig.)3left pane) and

1.00 So close to the red endR) of the spectrum ¢
0:64 0.80 o =0.2527, right panel The shades of gray indi-
+

0.41 0.51 : cate the magnitudes of the dipole moments, while

0.00 L the signs indicate their relative phase. The scale
of gray tones corresponds to successive powers
of 0.8.
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FIG. 6. Model polarizable particles made up of a negative shell
bound by an harmonic restoring force to a positive fixed nucleus. FIG. 8. Participation ratidl averaged over an ensemble of'10
The field produced by the particle at the right acting on the particleparticle aggregates for different sized disks centered at the maxima
at the left is indicated by thick arrows. The Iéfight) panel shows of the induced dipolar moment of each aggregate, as a function of
that their mutual interaction increasédecreasgsthe restoring the numbemN of particles within the disk, for normal modes st
force when the dipoles are parall@ntiparalle). ~0.485(squaresands~0.260(crosse} close to the blu€B) and

red (R) ends of the spectrum. An imaginary paft=10 % was
Notice the similarity of this cluster to the local geometry of added tcs. The straight lines correspond to the power Igi#) with
the hot spot shown in the right panel of Fig. 5. We also show3=0.9(B) and 8=0.8 (R).
in Fig. 7 an antisymmetric mode for a small square, whose
resonance is a~0.32, corresponding to a peak in the spec-mentq. It has been found that small changes of the spectral
tra. Similarly, the symmetric and antisymmetric modes of avariable produce violent fluctuatiotfsof L9, so that a
two particle chain resonate at-0.38 and 0.29, where the single localization length becomes insufficient for character-
spectrum shows a small step and a conspicuous hump rjg_ing the system, requirin_g instead a distr_ibution of localiza-
spectively, and the AF mode of a four particfestructure,  tion lengths'® This behavior is refered to ashomogeneous
common at branching points of the aggregate, issat cha!lzatlonanq is due to the possibility of simultaneous ex-
—0.27, where the spectra shows a tiny but still noticeabléitation of spatially separated hot spots due to the long range
peak. Although they are not conclusive, this examples Sugof the_ mterac_tlon. Actually, sy_stgms with long range nondi-
gest that the abundant small scale structures seen in Fig.PRplar interactions present a similar beha\?fbr. o
may originate from the discrete resonances of small regions An allte.rna.twe characterlzauon of localization is through
with characteristic geometries, which are somewhat shiftede participation ratity
through their interactions with the rest of the aggregate.

According to Eq.(30), the spectral density function is a (
measure of the energy absorbed by the system. As the dipole

moments alternate in sign at the R resonances, the total cou- 1= 4 (46)
pling to the external field is suppressed ay@) becomes NZ Pi

about two orders of magnitude smaller than at the B reso-

nances. [Te[0,1] is a measure of the relative number of particles

Figures 3 and 5 suggest that the dipolar resonances of dhat participates in the excitation, independently of their po-
aggregate are localizé8***” Attempts have been made to sition, makingll better behaved than the localization length
characterize the localization of dipolar excitations in fractalsfor our system. As the number of particlBlsof the system
through a localization length®, related to theith moment  increases, the participation ratio would go to zerolas
of the spatial distribution of the dipole momeRté® The = 1/N if the excitations were exponentially localized around
resulting length depends on the choice of the particular mothe hot spots, even when several spatially separated hot spots
are excited simultaneously. On the other hand, if the excita-
tions were extended and the hot spots were but fluctuations
over an otherwise constant background respohkeyould
become constant asymptotically. Fig. 8 shows that for our
system the participation ratio obeys a power law

[MxN~# (47

FIG. 7. Small isolated clusters with normal modes close to feaOVer & couple of decades, whege=0.9 at B and~0.8 at
tures of the spectrum shown in Fig. 4. The left panel shows afX- Thus, it seems that the normal modes are not exponen-
hexagonal close packed cluster with a ferromagneticlike mode dially localized nor extendetf. The observation of Anderson
$~0.50. The center panel shows a rectangular cluster with an antfocalization of light is still an open questicA.The precise
ferromagneticlike resonance s#&0.24. The right panel shows an nhature of the dipolar eigenstates in fractals and, more gener-
antisymmetric mode for a square cluster, with a resonance at ally, within disordered systems with long ranged interactions
~0.32. should be further investigaté.
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FIG. 9. Powers of the dipole momen®,(R) (n=2,4), aver- FIG. 10. Angularly and ensemble averaged normalized scatter-

aged over all particles within annular regioasf radii 0.R and  ing cross sectiofdo(Q)/dQ)/(do(0)/dQ)) as a function of the
1.IR, centered at a hot spot and ensemble averaged, for normabrmalized scattering wave vect@R, for N=10* DLCA-2D ag-
modes close ts=0.485. An imaginary pail'=10"*i was added  gregates. We display results fer0.26 ands=0.48, close to R and
to sand the results were normalized K8/ Eg . B, respectively. An imaginary paif’ =10"4 was added ts. We
also show the structure fact8¢Q)/S(0) and the power lav) =%,
As the value of found above is close to the value ex-
pected for exponential localizatior=1, we look more tation D (Q) of the transverse projection of the dipole mo-

closely at the decay of the excitation as we move away fron?nentsﬁi induced within the system. Although our calcula-

the hot spots. Figure 9 displays the dependence of the €%on was done within a scalar framework, for notational
semble averaged powers of the induced dipoles, '

convenience we will employ scalar equations analogous to
Egs. (17—(19) and discuss the scaling properties of

> PPa(R—T)) (ID(Q)|?) as if it were a differential scattering cross section.
P.(R)= B (n=2,4), (48)  InFig. 10 we show the ensemble and angular averaged val-
S S(R-1y) ues of the fictitiougdo/dQ) for N=10" particle clusters for
- I
|

values ofs close to B and R. For comparison, we also show
. . the geometrical structure fact@(Q)oc(EijeiQ'rii), which
on the distanc® to the largest dipole, calculated close to theWould be proportional tqdo/dQ) in the absence of mul-

blue end of the spectrum. Notice that over a range of Iengthfiple scattering, and the power la@ % characteristic of a
scales of about a decade, we can approximate mathematical iﬁfinite fractal

P R~ (49) As expected, we find th&(Q) is a scaling function pro-

n ' portional toQ ™% in a regionQin< Q< Qmax, bounded on
where a,~2.06 anda,~3.31. We remark thaty,<2as,, one side byQin~1/Ry whereRy, is the total size of the
showing thatP,(R) decays much more slowly thaP2(R)  system Q,~0.0075 andRy~ 100(R, for our 1¢ particle
and is therefore dominated by the large fluctuationgpof ~ aggregatgsand on the other side b .~ 1/R,. The whole
For a disk of large radiuR ContainingNocRdf particles, we  System behaves as a point polarizable particle when sampled
would expect the averaged sum with small wave vectorQ<Q,,. Thus, S(Q) becomes

constant in th&)— 0 limit. The finite sizeR,, of the system
S R iR’ (e - i an is also manifest forQ within the scaling region, where it
“r Pir) RmR R'C(R")(R') " “n=R “Rn, " produces small but observable oscillationsSfQ). When
(50) sampled with very large wave vectos> Q,.x, an oscilla-
tory structure due to the interference between the field scat-
where Ry, is a small distance, of the order &,. As @, tered by nearest neighbor particles appears. In Fig. 10 this
>dg, this sum would become constant for large di$ks structure was calculated as if the particles were pointlike.
—o, and the participation ration would decay asymptoti-Otherwise, we would have had to convolute the form factor
cally asIT—1/N, although the decay is given by a power s the individual particles int&(3Q). Consistency with the
law and is not exponential. However, this regime is notiyng \wavelength approximation would actually make the re-
reached in Fig. 8 as our calculation was done on finiteion o> 1/R, inaccessible. However, it is instructive to ig-
samples and the power lai9) is violated for largeR, as ore this restriction and to explore the calcula{ed/d(})
seen in Fig. 9. The reason for the change in the bghawor cgven for such large wave vectors. The shapes@) for
Py(R) away from a decaying power law will be discussed ,rge 0 and the position of its maxima and minima are well
below. reproduced by the average  contribution (1
+cog2QR,cos@)]) of a single dimer made up of two par-
B. Scattering and scaling ticles a distance R, apart and oriented at a random angle

As shown in Eqgs.(17), (18), and (19), the differential  with respect to the scattering wave vect@r as most of the
section for light scattering is related to the Fourier represenparticles in the aggregate form part of zigzagging linear
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In Sec. lll A we found that at each spectral region the hot
, spots had a particular local geometry. Since the whole aggre-
10° 1'=0.0001 gate is scale invariant, we would expect that the set of sub-
regions with a particular local geometry would constitute by
itself a scale invariant fractal with the same dimension as the
original aggregate. For example, the set of tips, with coordi-
nation number 1, or the set of branching points with coordi-
nation number 3, are fractals statistically similar to the whole
o ) aggregate. Thus, it could reasonably be expected that the set
0.01 0.1 1 10 of hot points at a given frequency should form a fractal with
dimensiond; and that thereforédo/d()) should have scaled
as QY independently of the scattering regime. This con-

FIG. 11. Angularly and ensemble averaged normalized scatteiclusion seems to contradict the numerical results displayed in
ing cross sectioda(Q)/dQ)/(da(0)/dQ) calculated for normal  Fig. 10. This inconsistency could be solved if the hot spots
modes as~0.48, close to B foN= 10" DLCA-2D aggregates. We for each value of the spectral variatdevere so diluted that
display results for three different values of=10"%2  at most, only a handful of them were present at a time within
X 1073,10"2. The power lawQ ™9 is drawn as a reference. the finite aggregates on which we performed our simulations.

To test this idea, we have to inquire into the typical distance

chains with random orientations. The result is proportional tcdhetween hot spots. As also discussed in Sec. Il A, the exact
1+j0(2QRy) wherejg is the O-th order Bessel function of frequency at which a given location resonates depends not
the first kind. only on its local geometry, but also on its environment. As

The scattering cross section calculated$e10.26 is seen there are no two regions with exactly the same global envi-
in Fig. 10 to scale a® ~ 9 within a region somewhat smaller ronment, it is conceivable that when the spectral varialige
than that forS(Q). For smallQ, (da/dQ) is indistinguish-  given a well defined real value, at most a few isolated hot
able fromS(Q), while for QR,>1 the oscillations are out of spots are excited. However, in our calculations above we
phase with the oscillations &(Q). This confirms our pre- have added a small imaginary contributidn to s. This is
vious remark that nearby particles tend to polarize in antiparequivalent to giving a finite widttAs~I" to each of the
allel directions when the excitation frequency lies close tonormal modes, allowing them to overlap nearby resonances.
the red end of the spectrum. On the other handsfef.48  Thus, the number of excited hot spots would depend’on
the largeQ oscillations are in phase with those 8fQ), as  and on the size of the system, and we expect that for a large
the dipoles induced in nearby particles point in the samenough system, or for a large enough dissipation, scaling
direction. Finally, we notice that at the blue end of the specwith the exponent; should be recovered.
trum (do/dQ) does not seem to scale with the fractal di- In Fig. 11 we presentdo/dQ) calculated at B for differ-
mension at all. In this case, Fig. 10 shows that the scatteringnt values of". Clearly, asl’ increases, the scattering cross
cross section presents a wide shoulder which, if linearizegection approaches a scaling behavior. Figure 12 shows the
within small regions, would yield power laws with exponents module|p;| of the local dipole moments induced in a chosen
which differ from the fractal dimension. This suggests thataggregate. The left panel shows that wHens small the
scaling of the scattering cross section under resonance coresponse is appreciable at only a few sites, and therefore no
ditions is only approximate and that the scaling exponentscaling is possible. AF increases the maximum value of the
depend on the frequency of the incoming light and thereforeinduced dipoles decrease and more peaks become visible, as
they should not be naively linked to the geometrical fractalshown in the right panel. Thus, If is large enough, or if the
dimension”*! These results are similar to the spectral de-system is large enough, the excited particles form themselves
pendence of thelynamic form factofound in Refs. 19 and a fractal with the same dimensiat} as the aggregate and
20. scaling is attained, as illustrated in Fig. 11.

Scattering Cross Section

0.001

QR

1Tp; /Bl 1Tp; /Bl

1
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0.2

FIG. 12. Normalized magnitude of the induced dipole momeriﬁsp(ﬂ) for aN=10* DLCA-2D aggregate excited at~0.48, close
to B. The left panel corresponds fo=10"* and the right panel correspondsTte=2x 10 3.
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FIG. 15. Normalized averaged differential scattering cross sec-
tion T'(do(Q)/dQ)/{dc(0)/dQ) vs normalized scattering wave
vectorQ* =QR, /T evaluated as~0.48 close to B for different

Figure 13 shows the corresponding results $or0.26, 1S oIl =ax10 D10 BX10 ., 002, 004, and 006
g p g R Cl:or clarity, the curves are truncated beyond the left e@je

close to R. We notice that the magnitude of the induce * ; .
. . . <Qr.(I') of the scaling region.
dipoles is much smaller than that corresponding to B, shown Qmin(T) ng reg!

in the left panel of Fig. 12. This is due to the AF-like nature where we introduced the typical distante>R, between

of the R normal modes; the coupling of a given dipole 10 theajonhoring induced dipole peaks. As the total number of

external field is nearly canceled by the coupling of its neareﬁganic'es in the fractal scales B{Ry,) < (Ry /Ry)%f, we can

neighbors, which tend to be in antiphase. For the same re olve Eqs(51) and(52) for L, and write

FIG. 13. Normalized magnitude gf; as in Fig. 12 but fors
~0.26, close to R, witl'=10"%.

son, the total dipole moment of any large area is small and its
influence on the resonance frequency of far away hot spots QuRyx (gIM) Y, (53
becomes negligible. Thus, the distribution of excited hot
spots for a givers at the red end of the spectrum is quite WhereQ,=1/L,,. Notice that scaling ofdo/dQ) asQ ™%
homogeneous, even for relatively small valued'ofit is for ~ can only be expected for wave vectdds<Qy, that are too
these reasons that scaling is apparent in Fig. 10 at R but ngMmall to sample the details of each individual hot spot. As
at B. scaling requires wave vectof3>Q,, able to sample the
As g(s) may be interpreted as a projected normalizedinnards of the system, no scaling at all may be obtained for
density of states, the number of excited hot spggscan be ~ finite systems of siz&y <L, smaller than the distance be-

estimated as the number of normal modes, tween hot spots. On the other hand, scaling is expected for
large clusters of siz&y,>L,,, and, in particular, it should
Np~Ngl’, (51 always be present for infinitely large clusters independently

- . o of the linewidthI". These are the main results of the present
that fall within the widthAs~1" of each individual reso- ,aner We have calculated the differential cross section for
nances,. As we argued above, we expect that in a largeseyera| values of, as in Fig. 11, and we have identified
enough system, the hot spots form a fractal by themselveépproximately the wave vectd®,, that bounds the corre-
with the same dimensionl; as the aggregate. Thudl,  sponding scaling region. The results are shown in Fig. 14.

should depend on the sizg, of the aggregate as Although the precise identification d®;, from Fig. 11 is
R.\ g difficult due to the oscillations originated in the finite size of
Nh(RM)“<—M> , (52) the sample, leading to large errors, Fig. 14 is seen to be in
L good agreement with E¢53). Scaling of the scattering cross

section with the fractal dimension within a regi@,i,<Q
L A <Qp can be further demonstrated by plottifgo/d() as a
o1 L | function of the scaled wave vect@* =QR,/T"*¥. Figure
] 15 shows that curves for different valueslofcoalesce into
one curve within a regio®@7,;,<Q* <Q} where we identify

o *
a Qp~0.5.
The existence of the lengthscdlg also explains the be-
havior of P,(R) and P,(R), which, as shown in Fig. 9,

0.01 | E decay as a poweR™ “n of the distanceR to the main hot

spot, but increases again for larBeas other hot spots, at a
distanceR~L,, are reached. Notice that the computation of a
localization length in terms of the moments of the dipole
FIG. 14. Maximum scaling wave vect@;, as a function of the Moments induced in dissipative systems of a $izemuch
linewidth I" for resonances at~0.48, close to B. The straight line larger tharL;, would necessarily yield a result of the order of
corresponds to Ed53). The error bars arise from the oscillations of Ry due to the presence of many hot spots separated typically
(do/dQ) and are estimated subjectively. by the distancd ;. For systems of siz&,~L,, the local-

0.001 0.01 0.1
r
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FIG. 16. Spectral density functiog(s) for an ensemble of 30
DLCA-2D aggregates with TOparticles each illuminated by a FIG. 18. Angularly and ensemble averaged normalized scatter-
transverse electromagnetic wave propagating normal to the plan#ég cross sectiofido(Q)/d€2)/(do(0)/dQ2) calculated for normal
Each mode was given a widih=2x10"3. Red(R) and Blue (B) modes ats~0.15, close to the left band edge of Fig. 16, fér
regions are indicated for later reference. =10* DLCA-2D aggregates excited by an in-plane field. We dis-

play results for three different values 8f=2x10"3, 6x10 3,

ization length is expected to vary wildly as some modes?.02, and 0.06. The power la@ % is drawn as a reference.
would have one hot spot and nearby modes might have a few

Separated hot Spots Simu|taneous|y exd'f)ed_ Flg 4. The main peak is now redshifted with reSpeCt to the
single particle resonance st 1/3, the bandwidth is slightly
IV. RESULTS: VECTORIAL MODEL larger, and the size of(g) does not vary as much across the

band as in Fig. 4. There are no simple explanations, as in
In Sec. lll we presented results for a scalar model, correFigs. 57, for the nature of each mode, as a couple of nearby
sponding to aggregates lying on a plane and excited by dipoles in phase or in antiphase might reinforce or oppose
field which points along the normal to the plane and whosesach other, pushing the resonance frequency towards the red
value is constant along the plane, i.e., a longitudinal fieldor towards the blue end of the spectrum depending on their
The ensuing longitudinal dipoles would be unable to radiateelative positions, while in the scalar model they always in-
electromagnetic waves in the near forward direction, so thaduce a blueshift when in phase and a redshift when in an-
their Fourier transforms illustrated in Figs. 10 and 11 cannotiphase.
be strictly interpreted in terms of differential light scattering In Fig. 17 we show the scattering cross sections corre-
cross sections. In this section we present results correspongponding to the same system as in Fig. 16 and for different
ing to a fully vectorial model, and we show that the mainvalues ofs. As for the scalar modédFig. 10, we found that
conclusions of the previous section are fit for the analysis ofhere is scaling with the fractal dimension within regions
actual light scattering, notwithstanding the criticism above. which depend on the the spectral varialsleClose to the
In Fig. 16 we show the spectral functigiis) correspond- peaks~0.15 ofg(s) at the redR) end of the spectrum, Fig.

ing for the same 2D DLCA aggegates as on Sec. lll, butl7 shows no scaling with the fractal dimensidgnwhen I’
illuminated by true transverse electromagnetic waves propa=0.002, although it might be argued that fra@r~0.02R,
gating in the direction normal to the plane of the aggregateto Q~0.3RR, scaling is apparent with a smaller exponent.
The spectral function differs considerably from that shown inFor large wave vectors there are oscillations in phase with
those of the structure fact@(Q), as in the scalar model at
R. On the other hand, &=0.45 and close to the blu@)
end, there is a small scaling region with expongnéxtend-

1

s 10!
B
$ [T v T AL LI | ]
) 10-2 1
v B
o -
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_3 0.1 F s -
2 10 ) f
3 o e
= = o
5] -4 ) e
g 0 k. [ PE:
0.001 001 0.1 i
o, A
001 k™ &+ 0 =
FIG. 17. Angularly and ensemble averaged normalized scatter- 0.001 0.01

ing cross sectioqdo(Q)/dQ)/{dc(0)/dQ) as a function of the
normalized scattering wave vect@rR, for N=10* DLCA-2D ag-
gregates illuminated with a transverse electromagnetic wave and FIG. 19. Maximum scaling wave vect@}, as a function of the
with values ofs=0.15 and 0.45, corresponding to tre=l (R) and linewidth I" for resonances a~0.15, close to the left band edge of
blue (B) ends of the spectrum shown in Fig. 16 with an imaginaryFig. 16, for N=10" DLCA-2D aggregates excited by an in-plane
partil’'=0.002. As a reference, we also show the power @, field. The straight line corresponds to E§3).
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~0.15 of the real part of the spectral varialjleg. (22)],
close to the left edge of the band. Thus, from the imaginary
partsI'=u"” we may compare the corresponding lengths
employing Eq.(53). It turns out thatl}, is about five times
larger close to\, than close to;,. Thus, it is possible to
have clusters that are large enough so that their scattering
cross sections scales with the fractal dimension close;to
but at the same time so small that a different exponent or
even no scaling is found at,. This might explain the results

of Ref. 17. Similarly,u’~0.18 atA~480 nm for both Au
and Ag particles in water. Howevdr, is much larger for Au

han for A his wavelength hat the minimum siz
FIG. 20. Normalized averaged differential scattering cross secJE an for Ag at this wavelength, so that the um size

tion I(der(Q)/d0Y/(de(0)/dQ) vs normalized scattering wave required to ensure scaling with exponelptof the Ilght scat-
vectorQ* =QR, /T evaluated as~0.15 close to R for different tered by Ag CO"mdS. turns out to be abqut 17 times Iar_ggr
values of ' =2x 1072, 6x 102, 0.02, and 0.06. For clarity, the than 'the corresponding size for Au co]lmds. Therefore, it is
curves are truncated beyond the left ed@e<Qy,, of the scaling possible to grow Au (_:0IIO|ds of such s_lze t_ha_t the light they
region. scatter does scale with exponeaht, while similarly grown
Ag colloids of the same size and dimension show no such
scaling.

Scattering Cross Section

ing from from Q.,,~0.0075R, to Qu(0.45+0.002)
~0.05R,. Unlike the scalar model, there are small oscilla-
tions for largeQ with twice the period of the oscillations of

S(Q), due to the presence of both F and AF tendencies along e have developed and applied a multi-resolution binary-
different directions. Furthermore, there is a peakQ#®, tree data representation and the corresponding hierarchical
~ 1 suggesting oscillations in the dynamic form factor with aalgorithms to calculate the dipole moments induced by an
period ~6R,, not unlike those reported in Refs. 19 and 20.external field acting on an ensemble of large fractal aggre-
For a fixed frequency, Fig. 18 shows that scaling depends Ofates. We calculated the Bergman spectral functigg)
the dissipation parametdi and that the scaling range in- which accounts for the geometry of the system and may be
creases witl" as in the scalar model. The dependenc®pf employed to calculate its susceptibility for an arbitrary com-
on the dissipation parameter is shown in Fig. 19. Notice thaposition. For DLCA-2D clusters polarized in the direction
QeI Y1, thus confirming with a full vectorial calculation normal to their embedding plane, and subject to long range
the results obtained in the previous section within a scalanonretarded dipolar interactions, we obtained a band of nor-
model. Scaling within the regio®,,—Qn may be further mal modes that extends fross=0.25 to 0.50 with a narrow
demonstrated by multiplying the scattering cross section byeak ats~0.48, wheres is the spectral variable. For the
I' and plotting it as a function of the scaled wave ve@dr.  same clusters but polarized along their embedding plane the
Figure 20 shows that, as in Fig. 15, curves corresponding thand extends frons~0.14 to 0.51 and is slightly peaked at
different values of" coalesce on top of each other within a s~0Q.15.
regionQ,i(I') <Q* <Qy , where we identifyQj ~0.7. We analyzed individual normal modes for polarization
It has been reported that the scaling of the light scatteredormal to the plane and far at both ends of the spectrum.
by aggregated aqueous Au collditisnay be removed by We found that the response was confined to small hot spots
dilution,!” but it has been further argued that if care is takenwhose position varies wildly witts but whose local geom-
not to break the individual aggregat¥sscaling remains etry is characteristic for each spectral region. At bhee end
even after dilution. These experimental results would be conef the spectrum, the induced dipoles are arranged in a ferro-
sistent with our calculations, if the typical sif, of the  magnetical fashion, while at thed end they are arranged
aggregates was much larger thanonly in the experiments antiferromagnetically. The spectral function displays a small-
where scaling was obsen@d?but not in others” Thus, an  scale structure which may be related to the normal excita-
independent measurement of the size of the scatterers woulidns of small subclusters with characteristic geometries. We
be useful to settle the ensuing controvetsit has been fur-  inquired into the localization properties of the normal modes
ther observed that the scaling exponent depends on the wavand found that the participation ratld tends to zero as the
length. For instance, light scattered from three dimensionahumber of particle®\ increases, following a power laW~#,
DLCA colloidal clusters made up d®qo~8 nm Au spheres where 8~0.8-0.9, according to the spectral region. Thus,
was measured in Ref. 17 and scalihg/dQ)«Q ™Y was ob-  the states are not extended nor localized in the usual sense.
tained, but with an exponent~1.78 for \;~457 nm and Further analysis showed that the averaged powers of the in-
with a different valuey=1.64 for A,~632 nm. We have duced moment®,(R) (n=2,4) decay aR™ “*n, with «,
performed full vectorial calculatiof5of the spectral density ~2.06 anda,~3.31. As it turns out that,,>d;, we would
function g(s) for DLCA-3D aggregates whose fractal di- have obtained3=1 asymptotically, as for localized states,
mension isd;~1.8 and we have found a band of normal were it not for the appearance of a dissipation dependent
modes that extends fros=~0.15 to 0.53. Fortunately, both lengthscalel, which characterizes the typical distance be-
wavelengths\; and A\, correspond to similar values’ tween hot spots. We calculated the Fourier transform of the

V. CONCLUSION
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dipolar distribution, and from it, the differential scattering culation, while treating the corrections due to retardation
cross sectiofdo/dQ)). We found that even under resonant within the first Born approximation. It has been shdfhat,
conditions,(do/dQ) might scale agQ "%, but only if the  when applied to colloidal aggregates, this approach leads to
size of the systenR,, is larger than the characteristic dis- negligible errors.

tanceL, among hot spots. Our use of the longitudinal di- In conclusion, the differential cross section for the scat-
poles induced by a longitudinal field lead to a simple inter-tering of light does scale with the scattering wave ve€or
pretation of our results. We were thus able to understand thesQ % even in the multiple scattering regime, but only for
geometry of the hot spots at different spectral regions, the@ggregates with a sizR,, larger than the distancky, be-
relative phase of the dipoles induced at nearby positions aniveen hot spots and for wave vectors that oligy,<Q

the overall shape of the spectrum. Although not as easy tecQy, where Q,,,~1/Ry and Q,~1/L,. The distancd.,
interpret, we verified that full vectorial calculations for depends on the real paut of the spectral variable through
DLCA-2D clusters excited by transverse electromagnetiche nature of the excited modes, and it decreases with their
waves yield similar results. linewidth u”=T asL,I' Y. Thus, for a given composi-

To simplify our calculations we made use of some ap-tion, L,, depends on the frequency of the exciting light
proximations. As we neglected the multipolar interactionsthrough the dielectric functions of the particle&w) and of
between nearest neighbor particles, our spectrum containke hoste,(w). It is then possible that the light scattered by
the resonances that arise from thel surface plasmon of a given aggregate scales with exponenfor certain wave-
the individual spheres a=1/3, but misses the resonanceslengths and does not scale or seem to scale with a different
expected to arise from tHe>1 surface plasmoR$?®of each  exponent for another wavelength. It is also possible that at
particle ats=1/(21+1). We expect multipolar corrections to some fixed wavelength, scattering from some aggregates
the spectral functiom(s) when the colloidal particles actu- scale with exponerd; while scattering from aggregates with
ally touch each other, although these corrections may balentical geometry but a different composition do not. This
minimized by coating the particles before aggregation. Nevfrequency, size, and composition dependent behavior might
ertheless, we believe that our main result regarding the exidie at the core of the ongoing controversy over scaling and its
tence of a dissipation dependent length scale which deteinterpretation in the scattering of light by fractal aggregates
mines the scaling region will prove robust. We also neglectedinder resonance conditiohs>*~53
retardation in the particle-particle interactions. As in our sys-
tem, nearest neighbors actually touch each other, the nonre-
tarded interactions between them are much stronger than the
retarded interactions with faraway particles. Thus, we may We acknowledge the support received from DGAPA-
separate the interparticle interactions into a strong nonredJNAM (Grants Nos. IN110999 and IN117402nd CIP-
tarded part and a small retarded correction that only becomeéSOMEX. We are grateful to Fraots Leyvraz, Ronald
important at distances of the order of the wavelength. OuFuchs, and to Hernan Larralde for very illuminating discus-
approach is thus equivalent to accounting for the nonretardesions and to Catalina lpez-Bastidas for her useful sugges-
interaction through an infinite order multiple scattering cal-tions.
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