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Fundamentals of graded ferroic materials and devices
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A generalized Landau-Ginzburg model is constructed and used to develop a methodology for analyzing
graded ferroic materials. Material system inhomogeneities are assumed to arise from compositional, tempera-
ture, or stress gradients. These spatial nonuniformities are shown to give rise to local order parameters having
corresponding spatial variation. Functionally graded ferroic systems are thus found to result in nonuniform free
energies with attendant internal potentials, the latter of which are evidenced by displacements of the materials’s
stimulus-response hysteresis plots along the response axis~e.g., polarization, magnetization, or strain axis!.
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I. INTRODUCTION

Ferroics form an essential subgroup of functional~or
smart! materials whose physical properties are sensitive
changes in external conditions such as temperature, pres
electric, and magnetic fields. Ferroelectric, ferromagne
and ferroelastic materials are the best-known example
ferroics that are principally distinguished by two main ch
acteristics: First, their property-specific order paramet
~e.g., polarization, magnetization, or self-strain, for ferroel
trics, ferromagnets, and ferroelastics, respectively! spontane-
ously assume nonzero values below a threshold tempera
even in the absence of an applied stimulus. Thus these
stances are usually high-energy–density materials that ca
configured to store and release energy~electrical, magnetic,
and mechanical! in well-regulated manners, making the
highly useful as sensors and actuators. Second, ferroics~as a
general class of materials! exhibit hysteresis in their
stimulus-response behavior: e.g., polarization versus
plied electric field, magnetization versus applied magne
field, and strain versus applied stress.

While extensively studied both theoretically and expe
mentally, ferroic research has by and large been confi
primarily to investigating the properties of homogeneous a
layered materials. In recent years, however, an investiga
of the properties of compositionally graded ferroelectric th
films has been undertaken.1 Unlike homogeneous ferroelec
trics, which are characterized by a symmetric hysteresis l
with respect to the polarization and applied field axes, gra
ferroelectric devices display strikingly new behavior, t
most notable being a translation of the hysteresis loop al
the polarization axis with an attendant charge offset,1–7 as
shown in Fig. 1.

The ‘‘up’’ and ‘‘down’’ shifts observed in graded ferro
electric hysteresis have been shown to be dependant upo
degree of compositional gradient normal to the growth s
face of the films. This behavior has been attributed to
‘‘built-in’’ potential that finds its origin in the attendant po
larization gradient that arises as the result of the comp
0163-1829/2003/67~18!/184104~6!/$20.00 67 1841
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tional gradient. Such structures have given rise to a new c
of transcapacitive ferroelectric devices~or ‘‘transpacitors’’!
viewed to be the dielectric equivalent of semiconductor ju
tion devices, having potential applications in infrared det
tion, actuation, and energy storage. Two types of gra
ferroelectric device~GFD! structures have been demonstra
ed: ‘‘up’’ and ‘‘down.’’ 2–5,8–10 This terminology arises
from the fact that, unlike homogeneous ferroelectric mate
als, GFD yield ferroelectric charge-voltage hysteresis pl
which are translated along the charge axis, up or down, w
the GFD is placed in a modified Sawyer-Tower circuit a
excited with a periodic alternating field.2,5,9 Both types of
devices have been formed from a wide variety of thin-fi
material systems,2–5,8–11 though more recent research h
shown that such translations are intrinsic in origin~having
been replicated in bulk materials! and are not the result o
extraneous artifacts.7,12 However, while much is known ex
perimentally concerning graded ferroelectric structures, t
oretical descriptions and analysis of these or other transp
tive devices have been significantly lacking.

Considering the similarity of many ferroic systems, th
report attempts to develop a common theoretical descrip
for graded ferroic devices and structures. Starting from
generalized Landau-Ginzburg theory, we show that we
provide a quantitative theoretical analysis of the offset h
teresis behavior of polarization-graded ferroelectric mat
als. We also show that this approach is quite general
readily expandable to graded ferromagnets, ferroelastics,
other transponent and graded ferroic systems with pro
modifications.

II. THEORY

Let us consider the expansion of the free energy o
ferroic phase transformation of a single-domain system w
order parametersh i such that it is a harmonic function of th
order parameters~and thus does not contain odd powers!:
©2003 The American Physical Society04-1
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F~h i !5E
V
Fa i j h ih j1b i jkl h ih jhkh l1¯1Ai jkl ~¹ih j•¹kh l !

1d i jkxi j hk1
1

2
qi jkl xi j hkh l1

1

2
Ci jkl xi j xkl

2
1

2
V i

Dh i2V ih i GdV, ~1!

where a i j , b i jkl , and Ai jkl are the free-energy expansio
coefficients, d i jk and qi jkl are the bilinear and linear
quadratic coupling coefficients between the order param
and the strainxi j , Ci jkl are the elastic coefficients,V i is an
externally applied electrical or magnetic field, andV i

D is the
internal depolarization or demagnetization field. Prop
ferroelectric, ferromagnetic, and ferroelastic phase trans
mations can be described via the above relation with
polarizationPi , magnetizationMi , or the self-strainxi j

0 as
the order parameter, respectively. For a graded material
a systematic spatial variation in the order parameter,¹i•h j

Þ0, resulting in a nonuniform~electric or magnetic! dipole
moment density in ferroelectrics and ferromagnets an
nonuniform displacement in ferroelastic materials. It is t
gradient which provides the basis for the offset of the h
teresis with respect to the applied electrical, magnetic,
stress fields.

To link with prior experimental results we confine o
initial analysis to perovskite ferroelectric oxides such
BaTiO3 which exhibit a cubic-tetragonal phase transform
tion. A systematic variation in the polarization can
achieved~and has been achieved experimentally! in a num-
ber of ways including a variation in the composition of t
material,2 impressing a temperature gradient across
structure,12 or by imposing nonuniform external stres
fields,13 as illustrated in Fig. 2. For analysis, we conside
monodomain ferroelectric of thicknessL sandwiched be-
tween two metallic electrodes with the easy axis of polari
tion along thez axis such thatP15P250, P35P5 f (z).
The ferroelectric is assumed to be homogeneous along tx
and y directions, reducing the problem to only one dime
sion. Accordingly, the general free energy expansion give
Eq. ~1! reduces to the well-known Landau-Ginzbur
Devonshire~LGD! free energy per unit area:14

FIG. 1. Schematic of a compositionally graded barium stronti
titanate film forming an ‘‘up-’’ graded ferroelectric stack and th
corresponding asymmetric hysteresis loops with attendant ch
offset DQ ~see Refs. 1 and 2 for specific experimental details!.
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F5E
0

LFaP2

2
1

bP4

4
1

gP6

6
1

A

2 S dP

dzD 2

2
1

2
EDP

2EP1Fel
i Gdz. ~2!

wherea, b, g, andA are the free-energy expansion coef
cients. The temperature dependence of the dielectric stiffn
a is given by the Curie-Weiss lawa5(T2T0)/«0C, where
T0 andC are the Curie-Weiss temperature and constant,
spectively, and«0 is the permittivity of free space. It is as
sumed that the coefficientsb and g do not depend on the
temperature. The gradient term represents additional en
from the nonuniform distribution of the polarization an
serves to damp out spatial variations in polarization.14,15The
coefficientA can be approximated asd2uau, whered is the
characteristic length along which the polarization varies.E is
the external electric field along thez direction, andED is the
depolarization field.16 We assume that the contribution of th
depolarization field is negligible due to the small but fin
conductivity of the material as well as local compensation
defects such as oxygen vacancies in perovskite ferroelect
This term cannot be omitted in the analysis of ferromagne
materials since there is no mechanism analogous to ch
compensation in ferroelectrics.

The difference between the free-energy functional of E
~2! and the standard LGD free-energy expansion is the
term of Eq.~2!: Fel

i . It represents a contribution due to th
internal stresses resulting from variation of the lattice para
eter within the compositionally graded or temperatu
graded unconstrained ferroelectric bar. The bar may
thought of being composed of ‘‘layers’’ with a uniform po
larization along thez direction as shown in Fig. 3. Ther
exists a biaxial stress state with equal orthogonal com
nents in thexy plane of each layer, and the correspondi
mechanical boundary conditions are given bys15s2 and
s35s45s55s650, wheres i are the components of th

ge

FIG. 2. Three methods of obtaining polarization graded fer
electric materials:~a! temperature gradient,~b! compositional gra-
dient (BT: BaTiO3 : BST: BaxSr12xTiO3), and~c! strain gradi-
ent.
4-2
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internal stress tensor in the contracted notation. Thus
total internal elastic energy for each ‘‘layer’’ can then
expressed as

Fel
i 5

1

2
~s1x11s2x2!, ~3!

where x15x2 and s15s2 are the internal stresses an
strains in thexy plane. The layer that has a polarizatio
equivalent to the average polarization is distinguished by
light gray color in Fig. 3. The strainx15x2 in each indi-
vidual layer is given as17

x1~z!5x2~z!5x0~z!1~z2L/2!
]2w

]x2 5x0~z!1~z2L/2!k,

~4!

wherew is the out-of-plane displacement.x0(z) represents
the variation of the misfit in thexy plane between a particula
layer and the average self-strainQ12̂ P&2,

x0~z!5Q12@P2~z!2^P&2#, ~5!

where Q12 is the electrostrictive coefficient and̂P& is the
average polarization:

^P&5
1

L E
0

L

P~z!dz. ~6!

k in Eq. ~4! is the radius of curvature resulting from th
bending moment given by18

k5
24

L3 E
0

L

~z2L/2!x0~z!dz. ~7!

Combination of Eqs.~4!–~7! leads to

x~z!5x0~z!1
24~z2L/2!

L3 E
0

L

~z2L/2!x0~z!dz, ~8!

and using the mechanical boundary conditions, the total
ternal elastic energy for each ‘‘layer’’ can then be expres
as

Fel
i ~z!5

1

2
~s1x11s2x2!

5C̄$Q12@P2~z!2^P&2#1~z2L/2!k%2, ~9!

FIG. 3. Schematic diagrams showing the one-dimensional va
tion in the misfit between a particular ‘‘layer’’ and the layer wi
average self-strain given byx0(z)5Q12@P2(z)2^P&2#. The self-
strain results in a bending momentM.
18410
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whereC̄ is an effective elastic constant given by

C̄5C111C122
2C12

2

C11
, ~10!

andCi j are the elastic moduli at constant polarization.
The minimization of the free energy with respect to t

polarization in the absence of an external electric field yie
the Euler-Lagrange equation

A
d2P

dz2 5āP1b̄P31gP5, ~11!

where the renormalized coefficientsā and b̄ are given by

ā5a14C̄Q12@~z2L/2!k2Q12̂ P&2#, ~12!

b̄5b14C̄Q12
2 . ~13!

The inhomogeneous nature of the three systems is
flected through the position-dependent expansion coeffici
with respect to spatial temperature, composition, and st
variations. For compositionally graded ferroelectrics,ā, b̄,
and A are a functions of the composition and therefore
location dependent@i.e., ā(z), b̄(z), andA(z)].

For temperature-graded ferroelectrics,A andā depend on
the temperature and thus are location dependent. Assum
that steady-state heat transfer is established@i.e., the tem-
perature across the ferroelectric bar in Fig. 2~a! is a linear
function of the position#, the normalized coefficientā(z) in
Eq. ~12! becomes

ā~z!5
L~T12T0!1z~T22T1!

L«0C

14C̄Q12@~z2L/2!k2Q12̂ P&2#. ~14!

The strain-graded ferroelectric is analyzed in terms o
simple cantilever beam setup@see Fig. 2~c!#. A bending force
is applied along thez direction, resulting in a systemati
variation along thez direction for the normal strain~com-
pressive or tensile!. The resulting stress conditions in th
cantilever beam ares1Þ0 and s25s350. The coupling
between the polarization and applied bending force modi
the Euler-Lagrange equation as follows:

A
d2P

dz2 5~a22Q12C* x1!P1bP31gP5, ~15!

where

C* 5C112
2C12

2

~C111C12!
~16!

is the effective modulus in bending andx1(z) is the position-
dependent normal strain due to the external bending fo
The normal strainx1(z) is related to the bending angleu and
the length of the bended beamS through

a-
4-3
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used in the calculations are summarized in Table I.22–26
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x1~z!5S z2
L

2D u

S
. ~17!

The polarization profile then can be used to calculate
charge offset per unit areaDQ based on the one-dimension
Poisson’s relation. Basic electrostatic theory shows tha
inhomogeneous distribution of the polarization is associa
with a bound charge:19

rn52¹i•Pj52
dP~z!

dz
, ~18!

wherern is the volume density of the bound charge. Acco
ing to Poisson’s relation, this bound charge generate
built-in electrical field and the resulting built-in potentialVint
is given by3

Vint52
1

CFL E
0

L

zrn~z!dz5
1

CFL E
0

L

zS dP~z!

dz Ddz,

~19!

whereCF is the ferroelectric capacitance. Then, the cha
offset due to this built-in potential is

FIG. 4. Theoretical, normalized polarization profiles along thz
direction for temperature-~TG!, composition- ~CG!, and strain-
~SG! graded systems.
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DQ5CQVint5
k

L E
0

L

zS dP~z!

dz Ddz, ~20!

wherek is the ratio of the capacitance of a load capacitor
Sawyer-Tower circuitCQ to the capacitance of the grade
ferroelectricCF. It should be noted that in addition to th
built-in electric field, there is built-in internal stress field du
to the spatial variation of the polarization-induced self-stra

III. RESULTS

Using the boundary conditionsdP/dz50 at z50 andz
5L corresponding to complete charge compensation at
ferroelectric/electrode interfaces, we plot the polarizat
profile normalized with respected to the average polariza
^P& for the three cases in Fig. 4. HereP(z) is numerically
obtained from Eqs.~11!–~17! using a finite-difference
method having an accuracy of~successive iterations! ap-
proximately 1027. For the analysis we have chosen BaTiO3
as the prototypical system for the temperature- and str
graded ferroelectrics and BaxSr12xTiO3 for the analysis of a
compositionally graded ferroelectric system with 0,x,1.
The latter was selected primarily because there exists a g
deal of information on the thermodynamic parameters a
physical properties of BaTiO3 and SrTiO3 . The coefficients
a, b, and g and the elastic constantsC11 and C12 for
BaxSr12xTiO3 were obtained by averaging the correspond
parameters of BaTiO3 and SrTiO3 due to lack of thermody-
namic data on single crystals of BaxSr12xTiO3 . For compo-
sitions close to SrTiO3 , it should be taken into account tha
upon cooling, bulk SrTiO3 undergoes a cubic-to-tetragon
antiferrodistortive transition at2168 °C~105 K!, well below
the temperature range considered in this report. A ferroe
tric transformation in stress-free SrTiO3 crystals is not ob-
served, but it is possible to induce ferroelectricity v
external20,21and internal stresses.22 The electrostrictive coef-
ficients are assumed to be insensitive to variations in co
position and temperature in the range of the analysis. T
modynamic and physical properties of BaTiO3 and SrTiO3
d-

ite
TABLE I. Thermodynamic and physical properties of BaTiO3 and SrTiO3 used in the calculations~com-
piled from Refs. 22–26, SI units,T in °C!. Data for BaxSr12xTiO3 are obtained by averaging the correspon
ing parameters of BaTiO3 and SrTiO3 . The coefficientg of BaTiO3 is used for BaxSr12xTiO3 as an approxi-
mation. The electrostrictive coefficientQ12 of BaxSr12xTiO3 is assumed to have a typical value for perovsk
oxides.

BaTiO3 SrTiO3 BaxSr12xTiO3

T0 118 2253 371x2253
C 1.73105 0.83105 (9x18)3104

a 6.653105(T2118) 1.413106(T1253) 1.123107(T2371x1253)/(9x18)
b 3.563109 8.43109 (211.96x18.4)3109

g 2.731011 2.731011

C11 1.7631011 3.4831011 (3.4821.72x)31011

C12 8.4631010 1.0031011 (120.154x)31011

Q12 20.043 20.034
4-4
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As can be seen from Fig. 4, the normalized polarizat
decreases monotonically across the structure with a varia
of the polarization along thez direction predicted in all three
graded systems. The polarization gradient diminishes c
to the surfaces because of the boundary conditions. For
temperature-graded BaTiO3 system, the hot end and cold en
are chosen to be atT0 ~Curie-Weiss temperature! and room
temperature (RT525 °C), respectively. If the hot-end tem
perature is higher thanT0 , a paraelectric region with no
spontaneous polarization will form at this end, a feature
portant for analyzing the charge offset behavior with resp
to the temperature as well. Within the ferroelectric regio
the polarization profile exhibits similar behavior as the o
shown in Fig. 4. The end-point compositions for compo
tionally graded systems are BaTiO3 ~at z50) and
Ba0.75Sr0.25TiO3 ~at z5L), respectively, and a linear relation
ship between the composition and position is assumed.
worth mentioning that the magnitude and direction of t
polarization gradient depend upon the temperature, comp
tion, and strain gradient. For example, the direction of
polarization gradients will be reversed if the positions of t
hot- and cold-heat sinks in Fig. 2~a! are exchanged. In the
strain-graded BaTiO3 system, the deflection angleu of the
level arm is taken as 1.5°. A more abrupt polarization gra
ent should be expected with increasingu.

In Fig. 5 we plot the charge offsetDQ/DQmax as a func-
tion of the normalized parameterz for three cases. Fo
temperature-graded BaTiO3 , z is defined as z
5DT/uDTumax, where DT5T22T1 (T15RT and T2 is a
variable for positivez, vice versa for negativez!. It can be
seen from Fig. 5 that the charge offset first increases
continuous fashion with increasingz, reaching a maximum
corresponding toT25T0 , and then decreases. Further i
crease in the temperature leads to the formation o
paraelectric region within the ferroelectric bar with no spo
taneous polarization. This region expands with increas
T2 , reducing the charge offset. This very same trend
been observed experimentally in temperature-gra
Ba0.7Sr0.3TiO3 .12

A similar behavior is predicted for compositional

FIG. 5. Normalized charge offset as a function of the param
z for temperature-graded BT,z5DT/uDTumax ~TG!; compositional-
graded BST,z5CBa ~CG!; and strain-graded BT,z5u/uuumax ~SG!.
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graded BaxSr12xTiO3 and strain-graded BaTiO3 . For com-
positionally graded BaxSr12xTiO3 , z is defined as the Ba
concentration on one end of the ferroelectric~i.e., this end
has the composition of pure BaTiO3 whenz51 and has the
composition of pure SrTiO3 whenz50), and the other end
has a fixed concentration corresponding to pure BaTiO3 . z
,0 corresponds to reversed grading. For strain-gra
BaTiO3 , z is the normalized bending angleu/uuumax, where
uuumax is the maximum bending angle. For compositiona
homogeneous (z51) or unbent ferroelectric bars (z50),
there is no charge offset. A maximum charge offset is p
dicted at a criticalz in both cases, corresponding to the em
gence of a paraelectric region. However, a steady increas
the charge offset is theoretically expected for relative
larger bending angles in strain-graded BaTiO3 due to the
saturation of the expansion of the paraelectric region in t
sile strain regime and a continuously increasing polarizat
gradient in the compressive strain regime. An important f
ture predicted by the model is that the sign of the cha
offset is reversed if that of the temperature, composition
strain grading is reversed, as shown in the negative-z regions
in Fig. 5 justifiable with the same kind of reasoning as d
cussed for positivez.

IV. DISCUSSION AND CONCLUSIONS

Although hysteresis offsets have been observed fr
temperature- or strain-graded ferroelectric systems, the
jority of the research on graded ferroelectrics has conc
trated on compositionally graded ferroelectrics. The theo
ical modeling for many compositionally graded system
depends on the availability of thermodynamic data a
physical properties of single crystals of not just the end co
ponents, but in between solid solutions as well. Furthermo
there are additional factors that have to be taken into acco
when polycrystalline materials, polycrystalline thin film
and epitaxial thin films are considered. For thin film
~whether they are polycrystalline, textured, or epitaxial! the
clamping effect of the substrate, which is usually mu
thicker than the film, has to be considered.23,27 In addition,
the coupling of the internal stresses with the self-strain of
phase transformation and thus with the polarization throu
the electrostrictive effect should also be taken in
account.23,27 There are several sources of internal stresse
thin films: the structural phase transformation at the Cu
temperature, the difference in the thermal expansion coe
cients of the film and the substrate, and lattice misma
between the layers in the case of epitaxial films. It is e
pected that the combination of the nonuniform intern
stresses in graded thin films withFel

i should complicate the
analysis in computing the magnitude of the hystere
offset.8,13

While the analysis presented in this report explored
properties of graded ferroelectrics, the findings are quite g
eral and apply equally well to other ferroic material syste
such as ferromagnets and ferroelastics with proper modifi
tions of the free-energy function. Indeed, substitution of a
other equally acceptable order parameter into Eq.~1! will
yield a spatially dependent free energy and attendant inte

r

4-5
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potential. For example, the ferromagnetic state can be
scribed via the Landau potential, taking into account the
change energy, magnetic anisotropy, magnetostriction,
magnetization energy, and magnetostatic energy. Either
magnetization or self-strain of the transformation can be c
sen as the order parameter. For pure ferroelastic transfo
tions, the potential is seemingly simpler due to the abse
of the coupling of the polarization or magnetization with t
self-strain, which is the order parameter. However, the dir
effect of internal strains as described via Eq.~8! in compo-
sitionally graded and temperature-graded systems as we
the strains resulting from the bending in strain-graded s
tems on the self-strain has to be taken into account. A s
tematic variation in the magnetization or the self-strain
predicted in our model should result in a nonuniform ma
netic dipole moment density or a nonuniform displacem
~resulting in, for example, external bending18! in ferroelastic
materials constituting the basis of the offset of the hyster
with respect to the stimulus. Unlike passive and homo
neous ferroics, transpacitors, transductors, translastics,
nd

d,

-

J.

pl

n,

li,
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other transponent devices~formed from nonhomogeneou
ferroics! are active devices with potential applications in
multitude of high-sensitivity, high-energy-applications: se
sors, actuators, and other energy storage and metering
vices. Until this present work, there has not been any atte
to undertake a general analysis of nonhomogeneous ferr
This work provides the basic fundamentals related to th
active structures, thereby enabling predictive capabilities
new transponent configurations.
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