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Vortons in the SO(5) model of high-temperature superconductivity

Kirk B. W. Buckley and Ariel R. Zhitnitsky
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
(Received 26 November 2002; revised manuscript received 27 March 2003; published 30 May 2003

It has been shown that superconducting vortices with antiferromagnetic cores arise within Zhaff)'s SO
model of high-temperature supercondictivity. Similar phenomena where the symmetry is not restored in the
core of the vortex were discussed by Witten in the case of cosmic strings. It was also suggested that such
strings can form stable vortons, which are closed loops of such vortices. Motivated by this analogy, in
following we will show that loops of such vortices in the @Pmodel of highT; superconductivity can exist
as classically stable objects, stabilized by the presence of conserved charges trapped on the vortex core. These
objects carry an angular momentum which counteracts the effect of the string tension that causes the loops to
shrink. The existence of such quasiparticles, which are called vortons, could be interesting for the physics of
high-temperature superconductors. We also speculate that the phase transition between superconducting and
antiferromagnetic phases at zero external magnetic field when the doping parameter changes is associated with
vortons.
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I. INTRODUCTION QCD at high baryon density for physical values of the pa-
rameters. In this case, the symmetry breaking parameter re-
In the pursuit of a unified theory of high temperature su-sponsible for the anisotropy is the difference between the up
perconductivity and antiferromagnetism, Zhang proposed theand down quark masses. The effective Lagrangian which de-
SQ(5) theory of antiferromagnetisifAF) andd-wave super-  scribes the S(®) theory of highT, superconductivity is
conductivity (dSO in the highT, cuprates. The order pa- very similar to the one used in Ref. 12, aside from numerical
rameter for antiferromagnetism is the Neel vectowhichis  constants of course. This will prove to be useful in making
a vector under the action of the &%), the group of 3d analogies between condensed matter physics and particle
spatial rotations. On the superconducting side, the relevarhysics throughout the course of this work. We will make
order parameter is the complex superconducting order paise of the results given in Refs. 12 and 13 throughout this
rametery, which describes the gap in the electron spectrumpaper.
The effective Lagrangian fog is invariant under the group  In the present paper we will show that is it possible to
U(1). The big step that Zhang originally proposed is that thehave loops of dSC vortices with AF cores that are classically
two symmetry groups can be combined within a larger symstable objects. The source of this stability is the presence of
metry group, namely, S@). This means that the three com- conserved charges trapped on the vortex core, leading to
ponent vectorn and the complex order parametgrcan be nonzero angular momentum. The conservatlon_of_ angular
. . - - momentum prevents the vortex loops from shrinking and
combined to form a superspin vector n

(41, MyMy.My. ;) which transforms under the group eventually disappearing. This class of quasiparticles, which

| . enerally possess nonzero angular momentum and charge, is
SO5). The presence of doping in the cuprates actuallyg yp 9 9

. ; alled vortons. The presence of the AF condensate is crucial,
breaks this symmetry down to SO(8)J(1). At low doping, v P 1S erucl

. : as it is what allows the vortons to carry angular momentum
the AF phase is favored, corresponding to nonzero expectay 4 hecome classically stable quasiparticles.

tion value for|m[, ({|)=0 and(|m[)+0). As the doping The phenomenon where a condensate forms in the core of
is increased eventually the dSC phase becomes energeticaliyyortex, such that the vortex can form a spinning loop lead-
favorable with(|#|)#0 and(|m|)=0. As Zhang originally ing to classical stability, is not by any means a new phenom-
discussed in Ref. 1, the region of intermediate dofimgar enon. This idea was considered long ago in the context of
the AF-dSC phase boundarghould be characterized by cosmology and cosmic string4:2” Our contribution here is
conventional superconducting vortices, but possessing antihe application of the previously developdtbr cosmic
ferromagnetic cores. This suggestion was verified by varioustrings and high density QQRechnique to the high-, su-
groups who looked for numerical solutions of the classicalperconductors.

equations of motion for different parametéré. Further- This paper is organized as follows. In Sec. Il we will
more, there has been recent experimental evidence that sugview the work of Refs. 1-4, where dSC vortices with AF
gests this theoretical picture may be correct. cores were originally presented. A comparison will be made

Our interest in this topic arises from recent wiffd®  between these vortices and other vortices with nontrivial
within a completely different context, namely the theory of core structure present in high density Q&DAlthough no
the strong interaction, QCD, at high baryon denféity (see  new results are obtained in this section, we believe that mak-
Ref. 16 for a good review of high density QCD and a longing a correspondence between two very different fields of
list of references In Ref. 12 we have shown that similar physics is quite a useful exercise. In particular, applying the
vortices with nontrivial core structure are present withintopological (and some analyticalarguments developed in
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Ref. 12 we reproduce the resuit that there is a critical We will not go into specific details, only state a few of the
value for the coupling constant above which the AF core ismain features of the color superconducting phase of high
not developed. In a sense to our knowledge this is a newlensity QCD. For the number of quark flavd¥s=3 (up,
explanation of the phenomenon based on analytiggher  down, and strangeand the number of colorl.,=3, the
than numerical calculations. Section Il will contain our re- dominant parts of the diquark condensate take the following
sults, where we will show that classically stable quasipartiforms®

cles called vortons are present within the (500theory of

high temperature superconductivity. Section IV will end with <qiLaan'Lbﬁ>* ~ 6aﬁyfij Eabcxcvy

concluding remarks and possible experimental signatures of
the quasiparticles. We also formulate a conjecture that the ia jb\k ij caboyy 1)
vortons are responsible for the phase transition between AF <qR“qRﬂ> Capy€ € ¢’

and'dSC phases gt zero external magnetic field, when ﬂ]ﬁhereL andR represent left and right handed quarks, 3,
doping parameteg is changed. and y are the flavor indiced, andj are spinor indicesa, b,
andc are color indices, anX? andY? are complex color-

Il. VORTICES WITH NONTRIVIAL CORE STRUCTURE- flavor matrices describing the Goldstone bosons. This di-
QCD VS HIGH TEMPERATURE SUPERCONDUCTIVITY quark condensate breaks the original symmetry group

We will begin by briefly describing the work of Ref. 12 SU(3)cX SU(3). X SU(3)sxX U(1)gxU(1)s [color gauge
where vortices with nontrivial core structure were describecsymmetry, left and right flavor symmetries, baryonic symme-
within the context of QCD at large baryon chemical poten-try, and axial U(1) symmetry down to the diagonal sub-
tial. This will be beneficial in order to make analogies be-group SU(3}.(r). This diagonal subgroup tells us that
tween condensed matter physics and particle physics. \W&henever we perform an §8) color rotation, we must si-
should note that this is only a review section and no newnultaneously perform a leftright) handed flavor rotation.
material will be presented here. However, the analogy disSince color rotations are now linked with flavor rotations,
cussed below will prove to be useful for the analysis whichthis phase of high density QCD wit;=N.=3 is referred
follows. We will then continue with a review and comparison to as the color-flavor locked phas€FL)."™> Counting the
of the vortices with nontrivial core structure which appearnumber of broken generators, we see that there should be 18
within the S@5) theory of highT, superconductivity* Goldstone boson&GBs). Of these 18 GBs, eight of them are

eaten by the Higgs mechanism resulting in all eight gluons
A. Vortices in high density QCD acquiring a mass. This leaves ten GBs, an octet related to the
) o breaking of SW3) and two singlets related to U(4)and
_ There has been a I_arge amount c_>f interest within the Paly(1),. All of these bosonsexcept the one related to
ticle physics community on the subject of QCD, the theory\y(1).] are actually pseudo-Goldstone bosons due to the
of the strong interaction, at large baryon deriéity (for gl explicit violation of the symmetry. In order to describe
many more references and a nice review, see Ret. A6 he |ow energy degrees of freedom, namely the octet of

zero baryon density, QCD s a theory of quarks and gluongs;g|dstone bosons, one can construct the following gauge
which are strongly coupled, such that confinement takeg,yariant field:

place and the observable particles are colorless hadrons

rather than quarks and gluons. As one increases the baryon

chemical potential the new superconducting phase when the zﬁ;: Z Xfch* =exp(i m\3/f ), 2)
baryon symmetry is spontaneously broken occurs. To explain c

this phenomenon, let us recall that, in QED, the electron- a _ ax b
electron interaction is in general repulsive, and superconducd¥ith Ehe Su23) generatorsA® normalized as T"\")
tivity is a very subtle effect. In non-Abelian theory, QCD, =26 and f~u?/(2m?) being the pion decay constant
simple one gluon exchange is always attractive in the colo¥hich can be calculated in the large limit. Prior to the

3 channel. As is well known from conventional BCS theory Work of Refs. 29-31 it was believed that the ground state of
of superconductivity, an arbitrarily small attractive interac-the CFL phase was given by,=diag(1,1,1). However, it
tion will lead to the formation of condensate of Cooper pairswas noticed that for a physical value of the strange quark
near the Fermi surface. This is in fact what happens in QCDnass (ms>m,,my) this may not necessarily be the case. In
at large baryon density. The ground state of the high densitparticular, it was argued in that fon,>60 MeV along with
phase of QCD is characterized by a diquark condefistte the diquark condensatél) a newK® condensation would
analogous to the condensate of electron Cooper pairs presemcur and that,=diag(1,1,1) as given above would no
in a conventional superconductor. This phase of QCD is relonger represent the true ground state of the CFL phase, but
ferred to as a color superconducting phase. The typicalather the vacuum expectation value of the nondiagonal ele-
chemical potential where this phase is thought to ocgur ( ments of~(33) representing th&° GB would get a non-
~500 MeV, A=100 MeV, tempT.~0.6A, whereA is su-  zero magnitudé® Therefore,3,, would be rotated in some
perconducting ggpcannot be realized on Earth. The interestdifferent direction in flavor space. In the physical case where
in this region of the QCD phase diagram is motivated by thehe isospin symmetry is not exagte., the up and down
fact that such densities may be realized within the core ofjuarks have different massesy,>m,) and we have overall
compact stars, such as neutron sfrs. electric charge neutrality® condensation occurs. The ap-
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propriate expression foE, describing theK® condensed that of a circle, leading to the formation of classically stable
ground state can be parametrized as global vortex solutions. Sincém?>0, then it isk® which
forms the normal global strings withk°(r=0)|=0 and
1 0 0 |KO(r=)| = 5/2, where the phase varies from 0 tar 2s

S,=( 0 cosbo sinfyoe '? | | (3)  one encircles the core of the vortex. From these two limiting

cases, it is clear that there should be some intermediate re-

gion that somehow interpolatéas a function ofém?) be-
where ¢ describes the new Goldstone mode associated withween the two cases. At some finite magnitudesof?, an
K® condensation along with the diquark condensate disinstability arises through the condensation of té field
cussed above an€yo= \/§(|K°|)/f7, describes the strength inside the core of the vortex. As the magnitudengf—m,

0 —sinfkoe'®  cosbxo

of the kaon condensation w decreases, the size of the core becomes larger and larger with
nonzero values of botk® and K* condensates inside the
m3 m? core. Finally, atmy=m,, the core of the stringwith nonzero
Ccostyo= M_fo Heff=5 condensatek? andK ™) fills the entire space, in which case
€

the meaning of the string is completely lost, and we are left

3A2 with the situation when S(2) symmetry is exact: no stable

= _ (4) ~ strings are possible. As discussed in Ref. 12, Kfevortex
Trsz, with aK* condensate on the core can be approximately de-

scribed by the following ansatz:

mi=amy(mg+mg), a

wherem,,my, andmg are the masses of the up, down, and
strange quarks, respectively,is the chemical potential, and
A is the size of the color superconducting gap KO— i ‘ » 8
(~100 MeV). In order for kaon condensatiod o+ 0) to _E (re, ©®
occur, we must havey< u. This leads to the breaking of

the hypercharge U(1)symmetry. As discussed in Refs. 30

and 12, the lightest degrees of freedom in the &P

g
phase are th&® andK™ mesons. The essential physics of K+:Eg(r)- ©)
these mesons can be captured with the following effective
Lagrangian:

where ¢ is the azimuthal angle in cylindrical coordinates,
7%\ 2 f(r) andg(r) are solutions to the classical equations of mo-
7) —om?d T, 0, tion obeying the boundary conditioi(0)=0, f(«)=1,
(5) g'(0)=0, g(»)=0,9(0)=1, ando gives the size of the
condensate at the string core0) determined by the pa-
whered = (K*,K°) is a complex doublet describing the”  rameters of the Lagrangian. The width of the string when
andK™ mesons,r; is the third Pauli matrix. The constants symmetry is restored in the core, is given by 1Mhere
f- andv have been calculated in the leading perturbative,2—(,2.—m2+ 5m?) (the mass scale fd¢°). The width of

c=|aoq>|2—v2|aiq>|2—x(|<1>|2—

approximation and are given &y’ the K* condensate when symmetry is not restored can be
) estimated as B, where 82~26m? is the mass difference
£2 :21_8 N2 u” v2=3 ©6) betweenK * andK° off of the vortex. From these estimates
g 18 272’ 3 we see that, am?—0, the width of the vortex core in-

o ] ) creases as explained qualitatively above. In order to estimate
The remaining parameters in the effective Lagrandi@n he critical point whereK* condensation occurs, we have

have been obtained from a more complete description of thg,qied the dynamics &€ in the background of &° global

12 . 7 - i
octet of Goldstone bosorit: vortex solution. This is done by substituting the string solu-
tion (8) into the energy expression derived from Lagrangian

5m2:§ms(md_ my), (5) and keeping only terms which are quadratic ordeKin
2 The shift in the energyper unit length in the background of
) ) a K° vortex is then given in dimensionless variables as
—m 12.
2_ Heff o @) follows™:
—
2.2
In the case that the parametém? in Eq. (5) is zero, the _nv f Za(FIO+ ~
Lagrangian is invariant under the symmetry group SY(2) oF 2 drg(nLo+elg(r), (10

XU(1)y—U(1) [broken down to W)]. From topological
arguments we know that such a Lagrangian does not posseatere
vortices since the vacuum manifold is that of a 3 sphere and
therefore does not have noncontractible loops. In the case 1d/_d
that sm? is relatively large, then the residual symmetry ©=—:—~(?—~)—(1—c050Ko)[1—f2(7)] (12)
group is U(1)xXU(1)—U(1) and the vacuum manifold is r ’
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where we have neglected all numerical factors in order to
> . (12 explicitly demonstrate the dependencedgf; on the external
Mt parameters. The limit of exact isospin symmetry, which cor-
responds tanyg— m, when the string becomes unstable, can
The problem is reduced to the analysis of the two-pe easily understood from expressitiB). Indeed, in the
dimensional Schrodinger equation for a particle in an attraccase that the critical parameté,,—0 becomes an arbi-
tive potentialV(r)= — (1— coséo)[1—f3(r)] with f(r) be- trarily small number the<* instability would develop for
ing the solution of the classical equation of motion #f  arbitrarily small 60>0. The region occupied by thi™
with the boundary condition§(0)=0 andf(«)=1. Such a condensate at this point is determined by the behavior of
potential is negative everywhere and approaches zero at ifgwest energy modey at large distancesg(r — )~exp

finity. As is known from standard course in quantum , g et -1
) o . - (—FEr) such that a typicat ~(mg—m © as expected.
mechanics? for an arbitrarily weak potential well there is (=En yp (Mg=m) "= P

always a negative energy bound state in one and two spatial o )
dimensions; in three dimensions a negative energy bound B Vortices in the SQS) theory of high-temperature
state may not exist. For the two-dimensional cébe rel- superconductivity

evant problem in our cagdhe lowest energy level of the  we will now review the work of Refs. 1-4, where it was
bound state is always negative and exponentially small foshown that vortices with nontrivial core structure similar to
small \'. One should note that our specific potentlr) the ones discussed above for high density QCD are present
= — (1— coséyo)[1—f(r)], which enters Eq(10) is not liter- ~ Within the Sa5) theory of highT, superconductivity. The
ally the potential well, however one can always construct theeffective Lagrangian which describes the Neel veatoand
potential wellV’ such that its absolute value is smaller thandSC order parametey in the presence of a zero external
IV(T)| everywhere, i.e.]V'|<|V(F)| for all . For the po- €lectromagnetic field is given by

tential wellV' we know that the negative energy bound state
always exists; whel' is replaced by it makes the energy
eigenvalue even lower. Therefore, operdtt) always has a
negative mode irrespective of the local properties of function
f(r). As a consequence, é= 0 then string(8) is an unstable
solution of the classical equation of motion, the result we
expected from the beginning from topological arguments.
The instability manifests itself in the form of a negative en-where we neglected the electromagnetic contribution to the
ergy bound state solution of the corresponding two-vortex structure. Actually, one can show that the electromag-
dimensional Schrodinger equatida0) irrespective of the netic field does not change the qualitative effects which are
magnitudes of the parameters. The problem of determininghe subject of the present paper, and therefore, will be ig-
whenK *-condensation occurs is now reduced to solving thewored in what follows. Herey is the susceptibility ang
two-dimensional Schrodinger type equati@g= Eg. From =#2/m* is the stiffness parameter. In reality, we know that

the previous discussions we know thafor the ground state the properties of andp are different in different directions.

. ; . ; - ... However, when we discuss the topological properties of the
is always negative. However, to insure the instability with fi . his diff h h o
respect toK © condensation one should require a relativelyCon lguration this difference can change the quantitative re-

) A _ sults but cannot change the qualitative picture. The Neel vec-
large negative value, i.eE+ €<<0. This cannot happen for

an arbitrary weak coupling constant(1—cosé) when tor has three spatial components=(my, m,, ms) and the
Oxo IS sma)lll However pit c?oes happen for relg'iivel lar esuperconducting order parameter is a complex figtdy,

KO ' . 1app y n 9 +i,. The parameters of the above effective Lagrangian are
Oyo. To calculate the minimal critical valué.; whenK :

. . iven by

condensation develops, one should calculate the e|genvaIL9e
E as a function of parametefico and solve the equation
E(6,) +€=0. For a very small coupling constant = (1
—C0SHko0)—0 the bound state energy is negative and expo-
nentially small,E~—e~ ™. However, for realistic param-
eters ofu, A, mg, m,, my the parametee is not very small
and we expect that in the region relevant for us the bound £= [P 17
state energy is the same order of magnitude as the poten- 2|a
tial energy~\'. In this case we estimat.; from the fol-
lowing conditions— E(Gcrit)~x’~(1—cos€cm)~e, with a
result which can be parametrically represented as

. E ms(Mg—m,)
S 2

€

X, .- T T
L= S+ |agl?) — S (Vi + |Vif?) + (G- a) |

1 . 1 -
—alyl?= S bl 5|yl bl g2 14

a<0, b>0, (15

9=4x(pi—p?). (16)

whereu is the chemical potentidbr doping, not to be con-
fused with the chemical potential for QCD in Sec. I, A,
is the critical chemical potential which defines the AF-dSC
phase boundary, anél is the coherence length. The anisot-
sin@~const£ M (13 ropy g is included which explicitly breaks the $8 sym-

2 Mg Mg metry in the following fashion, SO(5)SO(3)xXU(1). If
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g=0 then the SCb) symmetry is restored and the order
parameterssﬁ and ¢ can be organized into a superspin order

parameteﬁ=(wl,ml,mz,mg,l//z) which transforms in the
vector representation of §8), as Zhang originally proposed

in Ref. 1. In the following we will considef> u, andg
<0 so that we are in the dSC phase &hdl|)=/|al/b and

(|m[y=0 in the bulk. One immediately notices that the form
of the Lagrangian for the S6) theory is very similar to the
Lagrangian used to descrilestrings in high density QCD
[Eqg. (5)] in the previous section. In particular, the key ele-
ment in construction of the vortices with a nonzero conden

PHYSICAL REVIEW B67, 174522 (2003

F X - p -
T f dzr[§<|atm|2+lat¢|2>+ SUVmZ+ V%)

-~ - 1 . 1
~ ([a] +3)| 2 [al| 4|2+ 5 b||*+ 5 b y|*

+b|m?|y|? (20
If anisotropyg=0 we know from topological arguments that

this theory does not possess any vortices since the vacuum
manifold is that & a 4 sphere and therefore does not have

sate in the core, the asymmetry parameter, is determined BjPncontractible loops. Ifg| is relatively large, then the re-

the magnitude obm? in Eq. (5). For the S@5) theory it is
replaced by the parameter of anisotrapyn Eq. (16).

A nonzero vacuum expectation value fgr signals the
onset of superconductivity and the breaking of tH&)lsym-

metry. It is well known that stable vortices can form since the

topology of the vacuum manifold is that of a circle. Analo-
gous to the situation for high density QCD, for a certain

range of the anisotropy parametgrthese vortices should

have an antiferromagnetic cordfi(r=0)|)#0). This was
initially pointed out by Zhanfwhen he introduced the $6)
model and further studied in Refs. 2—4. Similar to tke
vortex/condensate solution given by E@8) and (9), these
vortices are described by the following static field configu-

rations:
Y= \/@f(r)e“‘5
b 1
\/@ rym
b g( 1

where ¢ is the azimuthal angle in cylindrical coordinates,

is the parameter obeying the relatioss0-<<1, andm is an
arbitrary unit vector. As beford,(r) andg(r) are solutions

(18)

-

m=o (19

to the classical equations of motion satisfying the boundary

conditions f(0)=0,f(«)=1 and g'(0)=0, g(«)=0, and
g(0)=1. The width of the vortex determined by the profile
function f is approximately given by coherence lengily),
d,~¢. The width of the condensate in the cditit forms)

is estimated to be of order of,,~ 1/\/@~ 1/\/(,&2—/.1,02)
and becomes very large at the phase boundary.

sidual symmetry group has a subgroufl}Jand the vacuum
manifold is that of circle, leading to the formation of classi-
cally stable global vortex solution described in termsyof
field with a typical profile function whey(r =0)|=0 and
|(r=)|=+/|al/b. From these two limiting cases, as dis-
cussed in Sec. IIA, it is clear that there should be some
intermediate region that somehow interpolats a function

of g) between the two cases. The way this interpolation
works is as followgsee Sec. Il A, where the physical picture
is quite analogous to the present gagé some finite mag-

nitude ofg, an instability arises through the condensation of
them field inside the core of the vortex. As the magnitude of

g decreases, the size of the core becomes larger and larger
with nonzero values of bott and s condensates inside the
core. Finally, atg=0 the core of the stringwith nonzero

condensates and ) fills the entire space, in which case the
meaning of the string is completely lost, and we are left with
the situation when the §6) symmetry is exact: no stable
strings are possible.

In order to estimate that critical value of the parameter

9=0. Where an AF core forms inside the vortex, the same
method can be applied as described for the QCD color su-
perconductor in Sec. Il A. We will use the following change
of variables in order to express the free energy in terms of
dimensionless variables only:

lal |

b

lal -,

b

= m= r=é'. (2D

3

Expanding the expression for the change in free en&g@y
in the background of @ vortex solution given by Eq(18)

and keeping only quadratic terms i, we have

Using what we have already learned from QCD and the

results from earlier work on these vortice$,we can imme-

diately summarize the main features of these objects. Nu-

merical calculations in Ref. 3 confirm that as the anisotropy

parametefg| is decreased, the size and width of the conden

sate in the core increases. We will support these numerical

calculations using some analytical arguments given below.
The free energyper unit length obtained from Lagrang-
ian (14) is

17452

OF a “
T:‘TZ% d>r'g(r)[H+elgr), (22
where
N 1d
i H=———(r'— —[1-f2(r)], (29
r’ dr’ dr’
-~ 2_ .2
62@24)((# :U«c)' (24
|al |al
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Since we are working in the dSC phage0 the perturba- With a condensate trapped on the core then loops of such
tion e>0. We have now cast the Change in the free energy iNOI’tlceS can f'orm Wh|Ch are stabilized by angular mom.entum
the exact same form as we did for the QCD vortices in Secalone. We will consider a large loop of string of radis

Il A. The problem is now reduced to the analysis of the two-> 9, Whered is the vortex thickness, so that curvature effects
dimensional Schrodinger equation for a particle in an attraccan be neglected. Theaxis is defined along the length of the
tive potentialV(r')=—[1—f(r')]. As before, this poten- String, varying from 0 toL=27R as one goes around the
tial is negative everywhere and approaches zero at infinityoop. Although we are considering a circular loop for sim-
This means that the ground state eigenfuncﬁ@bzégo plicity at the moment, we realize that this is probably not the

h . . e The i bil ith relevant physical case. The results we will discuss in this
as a negative eigernval e Instability with respect 1o ge04ign should not depend on the geometry of the loop; the

the formation of the AF condensate |nAthe core occurs not formportant point is the presence of conserved charges which
an arbitrarily small negative eigenvalée but when the ab-  are trapped on the vortex leading to stability. In reality, the
solute value ofE| is large enough to overcome the positive final stable configuration of these vortex loops is probably a
contribution due tce. Therefore, we immediately see that an more complicated shape because of the quasi-two-
AF core forms ifE+ e<0. If [g| is greater than some critical dimensional nature of the high temperature superconductors.
value g, then it is not energetically favorable for an anti- In particular, we have neglecte_d th_e dlf_feren_ce between the
ferromagnetic core to form, and dSC vortices will possess fransverse and tangential sp_atlal dlrectlo_ns In our treatment
normal core where the symmetry is restored. Following theOf. thg problem. The appropriate calculatl_ons would include
same procedure as in the QCD case, we have this difference and lead to a nonsymmetric shape. However,
we neglect these complications at this stage.
Geri] Y(u2— u?) In order to make an an_alogy Wi_'[h the QCD case Wh_ere the
entl _ ¢ ~0.2. (25)  condensate on the core is described by a complex field, we

|a |a are free to represent two degrees of freedom represented by a

where for numerical estimates we used the variational apunit Neel vectom, m?=1 defined by Eq(19) in terms of a
proach developed in Ref. 19. single complex fieldb as

Above we have reviewed the basic properties of super-
conducting vortices with an antiferromagnetic core within - [ D+D* D—D* 1-|D|?
the SA@5) theory of superconductivity. We should emphasize m= 50 PN K (26)

14+[®|2i(1+]|P|%) 1+|P|

once more that all results presented above are not new and
have been discussed previously from a different perspectiveyhere d = |®|ei® (this is simply the projection of the unit
Let us repeat the main results of this section once again: i§phere onto the complex plandt this point we are free to
g=0 then the dSC vortices are unstable. # [@| <g.q then  pick the direction of the Neel vector. For a background clas-
an AF core will form inside the dSC vortices. The width of sjcal field describing a vortex defined along theirection,
the AF core in this case becomes Iar~ger and larger wben We will pick m to lie in the xy plane, so thatn,=0. We
approach the phase transition line, ig¢~0. Finally, if ||  should note that all calculations and results which follow do

>Qei then the dSC vortices will have a normal core whennot depend on the particular choicerafthat we have made
symmetry is restored andm|(r=0)=|y|(r=0)=0. In  above. However, we do expect that this will turn out to be
what follows we will always be working in the region of the the Iowest_energy c_onfiguration when higher order derivative
phase diagram where<0{g|<g.,; and dSC vortices have an t€rms are included in the free ener@ge below. We neglect

AF core(which will be referred to as dSC/AF vorticedlow  fluctuations of the absolute valye| for description of the
we will proceed to Sec. Ill and introduce vortons, loops ofclassical background and consider variation of its phase

dSC/AF vortices which are stabilized by angular momentum!n this case, we haveP|=1 for the classical background
field as it follows from transformatiof26), andm simplifies

Ill. VORTONS IN HIGH-TEMPERATURE to
SUPERCONDUCTIVITY L
We will now consider the interesting possibility that loops m= S [P+O%,i(®* —@),0]. (27)
of the dSC/AF vortices can exist as classically stable objects
(and at least metastable quantum mechanigallgis stabil-  with |®|=1 to be fixed. The condensat®|+0 can carry

ity arises through a mechanism where topological and Noeteurrents and charges along the string so we will represent it
her charges can be trapped on the core of the vortex. Sudly the following ansatz which describes the dependence of
objects, called vortons, have been studied extensively in thghese excitations omandt:

context of cosmology where cosmic strings have a nontrivial

core structuré/~?*Such vortons are also present within high D =|d|el*@)=|Pp|gikze), (28)
density QCD where vortices with a condensate trapped on
the core are realized. With this redefinition of the fields, the kinetic term esquires

As Davis and Shellard originally pointed out in Refs. two additional terms due to thezt) dependence of the
20,22, and 23, if one has a theory which contains vorticephase in the core:
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X D 5 For the solution given by Eq34) we have a nonzero
5 Laom|*=vg]azm[*]— Sm*(r){[doe(z,1)] Noether charg&®, which is trapped on the vortex core:

—v2(9,a(z,1))?%}, (29 Q,=xLw%x, (35

wherevZ=p/x. The key point of the time dependent ansatzwhere3, is defined as as the integral joh|? over the vortex
(28) is as follows. Naively, one could think that the time cross section;

dependence in a classical solution brings an additional en-

ergy into the system which usually does not help to stabilize o 1212

the configuration. However, as Witten noticed in Ref. 17, if 3= de rimf=. (36)
there is a conserved charge in the system the configuration

could be stable due to the conservation of the corresponding/e should note that for a different choice of the direction of

charge. In a sense, the time-dependent configuration bgjeel vectorm. the conserved charge which is nonzero would
comes the lowest energy state in the sector with a givepe ifferent. The important point is that a nonzero charge

nonzero charge. A similar time-dependent ansatz for a differg| always be present independent of the of the Neel direc-
ent problem was also discussed by Coleman in Ref. 3 -

where he_mtrodqced s_o-called Q balls, macrosco_plcally large As we mentioned at the beginning of this section, these
stable objects with a time dependent wave function. We fol-

' A . vortons are spinning and carry a nonzero angular momen-
fxsifjéj? and define a chargé which is topologically tum. The vortons are stable against shrinking due to the con-

servation of the angular momentum. To calculate the angular
dz /da momentum of a vorton with nonzero chargiisand Q,
= f 2_<E>:k , (300  trapped on the core, we use the standard formula for the
cem angular momentum expressed in terms of the energy-
where the patlC is defined along the vortex loop and we momentum tensor:
assume thab andk are some constants along the loop. Since
a can change by multiple of 2 in circling the vortex loop,
N must be an integer. This is required in order for the con-
densatem to remain single valued.
In addition to the topologically conserved winding num-
berN, there also exist the standard Noether charges and cur-
rents which can be_trapped on the vortex core associated with M =2 yR202 HJ d2rg(r)2wk=2myR2wkS. (38)
the parametew,k included in the phasex above. In our b
case, the relevant symmetry, &) implies a conservation
of three Noether charges:

Mij:f d3r (ToiX;— TojXi), (37)

which can be approximated for a large vorton in the plane as

The angular momentum points in the direction normal to the
surface formed by the vorton. We now see that the reason we
would expect such configurations to be classically stable is
kaf d?’ij:in d*r[(doma)(SdabMp]l, (31 simple; it is just because these vortons are spinning and an-
gular momentum is conserved. One can say that the vorton is
while the corresponding three currents are stable because it is the lowest energy configuration in the
given sector with nonzero conserved charlye®,. Angular
Jz:f d3rjz,=—i j d3rf(o.m me], (32 momentumM [Eq. (38)], which is essentially the product of
“ Jk P [(52Ma) (SdapMo]. (32 two chargeN andQ,, is also nonzero when both chargés
whereS, are the three generators of &D andQ, are nonzero. In the discussion above we neglected the
A vortex loop with nonzero Noether charg€ and to-  higher order derivative terms. In particular, there will be
pological chargeN trapped on the core is described by ansome correlation between the chai@e[Eq. (31)] and the
ansatz of the following form which depends on the positionmomentum along the vortoR;=Ty; in the expression for
F=(r,¢,z) and timet as [using Egs.(18), (19), (26), and the free energy £ ToiQi). Such a correlation |m_pl|es _that_
29)]: ansatz(27) will represerlt the lowest energy configuration if
the angular momenturivl [Eq. (38)] points in the direction
/|a| o normal to the surface formed by the vorton.
= Ff(r)e ' (33 We will assume that we now have a vorton configuration
with nonzero values dl andQ,. In order to assign specific
. EY numbers for these quantities one must look at the mechanism
m=o Fg(r)[cos{kz— wt), sinkz—wt), 0], of formation. We will not address such complex issues in this
(34) paper and simply assume that there is some nonzero prob-
ability for a vorton to form. For recent work on the issue of
where as in Sec. If(r),g(r) are solutions to the classical vorton formation we refer the reader to Ref. 36. The free
equations of motion obeying the appropriate boundary conenergy of a vorton can be obtained by substituting E8g).
ditions. and(34) into Egs.(20):
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s X 5 s o . 5 cally stable vorton behind. Therefore, for simplicity we will
]'":f d*r| S[(@*+ogn*)m*+ o (Vim)*+vg| V%) focus on the so called chiral case whers v k which is the
most stable configuration. Realistically, we know that the
~ 1 periodic structure of the material of the superconductor
—(lal+g)ym?—al[|*+ Eb(m4+|¢|4+ 2m?[y)?), breaks the rotational symmetry, leading to non-conservation
of angular momentuniit can be transferred to the matejial
(39 However, the topological chardéis still a conserved quan-
where m=o\[a]/bg(r). We can simplify this expression Uty- Therefore, for the chiral vortonQ~N is also con-
further by using the fact thah is a solution to the equation Served due to relatione30) and (35). For such configura-

of motion and represent the free energy in the following way{ions, stability is ensured. Whem#vk, the transfer of
angular momentum to the lattice is possible, eventually set-

|a b 5 tling to the chiral case witlw = k.
F=L PWF"‘(A/@_ §E4+X“’ X, (40) In the chiral case the size of the condensgatis indepen-
dent ofN,Q,,L and the free enerdyeq. (40)] can be written
where we have defined the quantBy, for brevity: as
- NZ3
4= fxd2r|m|4, (41) -7::LCY5+(27T)2p .
The first term in Eq(40) is simply the energy from the dSC lal b
vortex with no condensate present in the c@eea logarith- as:pWFm(A/g)— 524, (44)

mic accuracy. HereA is the long distance cutoff which must

be included to regulate the logarithmic divergence of th&yhere o, is the string tension of the bare dSC/AF vortex
normal global string. The long distance cutoff is typically the yith Q,=N=0 andk is expressed in terms of the conserved
distance between vortices, so in our case we will take \inding numberN according to Eq.(30). Written in this

=L whereL is the length the vortex loop. The second term isform, it is immediately obvious that for a given nonzero

negative, reflecting the fact that it is energetically favorable,gjye ofN the free energy has a minimum latL:
to have an AF core. And the third term is the additional

contribution to the energy due to nonzepg(N). N 1 as

There are various cases which must be considargd, L_OZ o p_E (45)
>w,vk<w, andv k= w. Notice that the effect of adding a
havingk, » nonzero is the addition of a masslike term for We can give a crude estimate of the winding number density,

to the Lagrangian: no=N/L,, of a stable vorton configuration,
X 2 212 2 E~02H52 (46)
5£=§(w —vgk?)m=. (42 p °m
If vsk>w then the effect of a nonzerok,w is to add a El
positive mass term foym| to the Lagrangian. This counter- AP (47)

acts the effects of the negative mass term in the original

Lagrangian[Eq. (14)]. Sincek~1/L quenching occurs and wheredy, is the width of the condensate. This gives us
the size of the condensatedecreases as the vortex loop gets N1

smaller. Conversely, if»>v k one has the opposite situation IR (T \/ﬁ

and anti-quenching occurs. As the vortex loop shrinks, the Mo Lo Jm \/E A o), (48
size of the condensafe gets larger as one would expect.
The different cases have been examined using numerical ¢
culations in Refs. 20 and 22. Recall E®5), wherew is
given as

hich is approximately the inverse width of the condensate.

\s expected, the winding number densitydoes not depend
on the large numbeN, but depends only on the internal
structure of the vorton, i.e. on the width of AF condensate in
dSC vortex core. Equatiofd8) tells us that as one goes

Qg o S
w= X_LE . (43 around a vorton the direction of the Neel vectorvaries

over a distance scale é,,, the width of the condensate. As

As Davis and Shellard point out in Ref. 22, df starts out the doping is decreased and the AF-dSC phase boundary is

less tharv k quenching occurs and forcesincrease faster approached from above the width of the condensate in-

thanQ,/L. In the opposite case whete>vk antiquench-  creases. For a given value B{Q,) (determined at the time

ing occurs and therefore increases more slowly than of formation the size of a stable vorton increases as one

Q,/L. The important conclusion that was drawn from thisapproaches the AF-dSC phase boundary.

analysis is thatw/(vsk)—1 is an attractof’ As a loop The discussion above has shown that vortons are indeed

shrinks w/(v¢k) approaches 1 and the quenchifay anti-  classically stable. This would imply that on the quantum me-

quenching slows and the eventually stops leaving a classi-chanical level such quasiparticles are at least metastable. The

174522-8



VORTONS IN THE S@5) MODEL OF HIGH . .. PHYSICAL REVIEW B67, 174522 (2003

issue of quantum stability of vortons was addressed in a re- We would also like to make the observation that on the
cent papet’ In this paper they calculated the lifetime of a other side of the phase transition boundary, in the AF state,
vorton withQ=0,N#0 (pure current cageThe mechanism there are quasiparticles whose cores are in dSC pHase.
of decay is some quantum mechanical tunneling processherefore, one can imagine a situation when one type of
where the condensate instantaneously goes to zero on ti@asiparticles(dSC vortices with an AF colebecomes a
core, allowing the winding number to decrease by one unitiifferent type of quasiparticle6AF skyrmions with a dSC
fromNto N—1. core when the doping parameter decreases and the phase
transition line is crossed.
The next natural question to ask is as follows: let us as-
IV. CONCLUSION AND FURTHER SPECULATIONS sume that vortons are indeed the relevant quasiparticles

In this paper we have reviewed the dSC vortices whichWhiCh drive AF-dSC phase transition at small temperatures.
have an antiferromagnetic core within the (SDtheory of Can the same vortons be an essential part of the dynamics

high temperature superconductivit We have compared when the temperatur@gather than the chemical potentja)

these dSC/AF vortices with similar vortices which arise in acf0Sses the superconducting phase transitiof atIf the
completely different context, high density QGB12 answer is positive, we would have a nice unified picture for

The main point that was presented in this paper is thafW0 different phase transitions on th&, () plane. We be-

loops of dSC/AF vortices called vortons can exist as classil€V€ the answer, indeed, could be positisee the argu-

cally stable objects in the presence of a zero external magnents below. e
netic field. The source of the stability of these vortons is the e start by reminding the reader that the pseudogap phase

conservation of angular momentum that counteracts thi$ characterized by the temperatufe<T<T*, when the
string tension, which “prefers” to minimize the length of the COOPer pairs are already formed but the long-range phase
vortex loop. The fact that there is a condensate trapped ofPherence sets in only at the much lower temperafiye
the vortex core is crucial for the stability of vortons. It is the <T - It is believed that in this regime the phase order is
condensate which allows nonzero charges to be trapped d}gstroyedsgby fluctuating vortices of the Cooper pair figid
the core, leading to the presence of nonzero angular momeAbPoveT¢.™ It is quite natural tadentify our vortons(loops
tum. It remains to be seen if such quasiparticles will be im-Of vortices sliced by a two dimensional plane with vortex-
portant for the physics of the highs superconductivity. In ~ antivortex pairs with d|§t|nct experimental signatures from
what follows, we provide arguments supporting the idea thafRef- 39. In this case, since underdoped cuprates are effec-
the vortons can play a key role in AF-dSC phase transitiontively two dimensional, at finite temperature the loss of
At this point we consider the vorton mechanism driving AF- Phase order may be expected to proceed via the Berezinsky-
dSC phase transition as a conjecture. K_osterhtz-T_houIess phase transition. I_n th|s_case, the vortons
The first argument goes as follows. As we have showrfliscussed in the present paper, being sliced by the two-
above, for a given value dfl there exists classically stable d|men.S|onaI plane, become the vortex-antlvortex pairs ana-
vorton configurations with size. and fixed ratio N/L, Iyz_ed in Ref. 39 and could be_ responsible for the phase_ '_[ran-
~1/8,,, where &, is the width of the condensate that is sition at Tc_. quever, the picture of the |_ohase transition
trapped on the vortex core. As one decreases the doping pa€e is quite different from what we previously discussed
rameter and approaches the AF-dSC phase boundary, thggarding the AF-dSC separating line. In the present case,
width of the condensaté,, increases. This is the direct con- When T crossesT, the transition happens because of the

sequence of the fact that the asymmetry para rﬂéﬂebe- vortex-antivortex interaction which is proportional to

comes smaller and smaller when the phase boundary is a m(|al/b)in(—x;) and not because the seeds of a new

proached. From the relatiohy/N~ 6, given above, this ha_lse(the vprton _corebflll the entire space. This is the
. ; typical two dimensional form due to the global nature of the
would imply thatlL 4, the length of a classically stable vorton,

) ) ~ vortices (local strings do not possess this feajuehe vol-
must increase. Decreasing the asymmetry paramfer me occupied by the vortex cores at this point is still much

~4x(u®— pg) further would result in a large vorton with smaller than the volume of the system. It is well known that
Iarge core size. The volume of the regions filled with the AFsuch a |Ogarithmic interaction is a key element for under-
state behaves likeo52,~|g| %2 When the phase transition standing the Berezinsky-Kosterlitz-Thouless phase transi-
line is approached, the regions with the AF state fill the ention.

tire space. At this point the AF-dSC phase transition occurs. Encouraged by the argument given above, we extend our
Although our approximations are no longer valid at thisconjecture and assume that the same quasiparticles, vortons,
point, because our description assumes that the vorton cosge responsible not only for the AF-dSC phase transition but
size is much smaller thah and the interaction between also for the phase transition separating the pseudogap and
strings can be neglectédlus many other assumptions not to dSC phases at temperatufe when u>pu.. The natural

be mentionef These assumptions certainly fail in the vicin- question to ask is: how does the critical temperailygu)

ity of the phase transition. Nevertheless, the fact that the sizdepend on the chemical potentjal within this conjecture?

of the AF regions inside of the dSC phase increases rapidljfo answer this question we recall that the critical tempera-
when the AF-dSC phase transition is approached should b&ire T, for the Berezinsky-Kosterlitz-Thouless phase transi-
considered as a strong argument in favor of the vortortion is proportional to the strength of the logarithmic inter-
mechanism driving the AF-dSC phase transition. action mentioned above. In our case it is nothing but the
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string tension determine@nainly) by the vacuum expecta- correlation length is propotional toand could be very large,
tion value of field, [Eq. (44)], i.e., Tc~as. Whenu= u, much larger than any other scale of the problem. Apparently,
the asymmetry parameter is zero apf)=|al/b is deter- such large AF correlation lengths have already been observed
mined by the unperturbed coefficies. The simplest way in Ref. 6, and we would like to argue that this correlation is
to determine how the expectation value of the figldaries related to our vortons. One should remark here that such a
whenu increases is to introduce the asymmetry parameter ifarge correlation length cannot be simply explained by the

the “symmetric” mannef© Fasyn= —a(fﬁz—|¢| 2) such that interaction between vorticesvhich have siz&€~20 A) be-

Lo~ : : cause it would lead to a strong dependence on the Neel tem-
negativeg corresponds to the condensation of [k field, perature as a function of the intervortex spacing controlled

and positiveg corresponds to the condensation of th&” b 'the external magnetic field, while observations suggest
field. This asymmetry parametgr entgrs the string tension ifhat the Neel temperature is field indepenfent
dSC phase as followsys~(|a| —g)/b, g<<0. From this ex- All the effects previously mentioned require the existence
pression one can immediately deduce thatand therefore, of the AF core in the vortex and they are not specifically
T.) will increase withu wheng, being negative, becomes sensitive to the existence of vortons, which is the subject of
larger and larger in magnitude. It is interesting to note thathis work. The main feature of the vortons is that they can
the very same conclusion has been reached in the origingarry angular momentufisee Eq(38)] and provide large AF
papeﬁ where the increase df, with chemical potential was correlation lengthgsee discussion abokeTherefore, these
explained as a result of mass increase of theriplet (see  excitations should be present if a dSC sample is rotated with
Ref. 1 for details. nonzero angular momentum. The situation is very similar to
Having presented our arguments supporting the conjedhe *He and “He systems where superfluid vortices can be
ture that vortons might be the relevant degrees of freedom iftudied by rotating liquid helium in a can. In many respects
the dSC phase at zero external magnetic field, we now corpur vortons are similar to rotons, and presumably can be
clude with a few remarks on how this picture can be experistudied in a similar way using the technique developed for
mentally tested. First, the possible experimetal method#hese systems.
(such asuSR and inelastic neutron scatterjrfgr observing Finally, if vortons are indeed the relevant degrees of free-
AF vortex cores were discussed in Ref. 2 and we shall nodom in the hight. superconductors, it provides a unique
repeat their analysis. However, we should mention that th@pportunity to study cosmology and astrophysics by doing
fact that the AF cores do appear in the vorticdsuggests laboratory experiments in condensed matter physics. Over
that the S@) model of highT, superconductivity may be the last few years several experiments have been done to test
correct. Our original remark here is that the AF vortex coreideas drawn from cosmologgee Refs. 41 and 42 for further
size is on the order of dSC coherence length far away frongletails.

the pointg=0, and becomes larger when the chemical po-
tential approacheg.. at zero external magnetic field. We
expect that the average size) of vortons grows with tem-
perature, and therefore, correlations between AF cores will e are thankful to S. C. Zhang and John Berlinsky for the
grow with temperature as well. Similar behavior is expectedhjce lectures on the S6) Model of High-T, Superconduc-

to occur whenu approachesu at a fixed temperature. In tjvity given at UBC, which motivated the present study. We
this case the effect is expected to be even more pronouncegle grateful to Igor Herbut and Dan Sheehy for fruitful con-
because the volume occupied by the AF cores grows agersations. This work was supported in part by the Natural
|§|*3’2, as discussed above, and therefore the correlations &ciences and Engineering Research Council of Canada and
well as the magnitude of the local electron magnetic fielddy the European Science Foundation Program “Cosmology
should scale accordingly. This picture suggests that the Ak the Laboratory.”
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