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Vortons in the SO„5… model of high-temperature superconductivity

Kirk B. W. Buckley and Ariel R. Zhitnitsky
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It has been shown that superconducting vortices with antiferromagnetic cores arise within Zhang’s SO~5!
model of high-temperature supercondictivity. Similar phenomena where the symmetry is not restored in the
core of the vortex were discussed by Witten in the case of cosmic strings. It was also suggested that such
strings can form stable vortons, which are closed loops of such vortices. Motivated by this analogy, in
following we will show that loops of such vortices in the SO~5! model of high-Tc superconductivity can exist
as classically stable objects, stabilized by the presence of conserved charges trapped on the vortex core. These
objects carry an angular momentum which counteracts the effect of the string tension that causes the loops to
shrink. The existence of such quasiparticles, which are called vortons, could be interesting for the physics of
high-temperature superconductors. We also speculate that the phase transition between superconducting and
antiferromagnetic phases at zero external magnetic field when the doping parameter changes is associated with
vortons.
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I. INTRODUCTION

In the pursuit of a unified theory of high temperature s
perconductivity and antiferromagnetism, Zhang proposed
SO~5! theory of antiferromagnetism~AF! andd-wave super-
conductivity ~dSC! in the high-Tc cuprates.1 The order pa-
rameter for antiferromagnetism is the Neel vectormW which is
a vector under the action of the SO~3!, the group of 3-d
spatial rotations. On the superconducting side, the rele
order parameter is the complex superconducting order
rameterc, which describes the gap in the electron spectru
The effective Lagrangian forc is invariant under the group
U~1!. The big step that Zhang originally proposed is that
two symmetry groups can be combined within a larger sy
metry group, namely, SO~5!. This means that the three com
ponent vectormW and the complex order parameterc can be
combined to form a ‘‘superspin’’ vector nW
5(c1 ,m1 ,m2 ,m3 ,c2) which transforms under the grou
SO~5!. The presence of doping in the cuprates actua
breaks this symmetry down to SO(3)3U(1). At low doping,
the AF phase is favored, corresponding to nonzero expe
tion value forumW u, (^ucu&50 and^umW u&Þ0). As the doping
is increased eventually the dSC phase becomes energet
favorable with^ucu&Þ0 and^umW u&50. As Zhang originally
discussed in Ref. 1, the region of intermediate doping~near
the AF-dSC phase boundary! should be characterized b
conventional superconducting vortices, but possessing a
ferromagnetic cores. This suggestion was verified by vari
groups who looked for numerical solutions of the classi
equations of motion for different parameters.2–4 Further-
more, there has been recent experimental evidence that
gests this theoretical picture may be correct.5–9

Our interest in this topic arises from recent work10–13

within a completely different context, namely the theory
the strong interaction, QCD, at high baryon density14,15 ~see
Ref. 16 for a good review of high density QCD and a lo
list of references!. In Ref. 12 we have shown that simila
vortices with nontrivial core structure are present with
0163-1829/2003/67~17!/174522~11!/$20.00 67 1745
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QCD at high baryon density for physical values of the p
rameters. In this case, the symmetry breaking paramete
sponsible for the anisotropy is the difference between the
and down quark masses. The effective Lagrangian which
scribes the SO~5! theory of high-Tc superconductivity is
very similar to the one used in Ref. 12, aside from numeri
constants of course. This will prove to be useful in maki
analogies between condensed matter physics and pa
physics throughout the course of this work. We will ma
use of the results given in Refs. 12 and 13 throughout
paper.

In the present paper we will show that is it possible
have loops of dSC vortices with AF cores that are classic
stable objects. The source of this stability is the presenc
conserved charges trapped on the vortex core, leadin
nonzero angular momentum. The conservation of ang
momentum prevents the vortex loops from shrinking a
eventually disappearing. This class of quasiparticles, wh
generally possess nonzero angular momentum and charg
called vortons. The presence of the AF condensate is cru
as it is what allows the vortons to carry angular moment
and become classically stable quasiparticles.

The phenomenon where a condensate forms in the cor
a vortex, such that the vortex can form a spinning loop le
ing to classical stability, is not by any means a new pheno
enon. This idea was considered long ago in the contex
cosmology and cosmic strings.17–27 Our contribution here is
the application of the previously developed~for cosmic
strings and high density QCD! technique to the high-Tc su-
perconductors.

This paper is organized as follows. In Sec. II we w
review the work of Refs. 1–4, where dSC vortices with A
cores were originally presented. A comparison will be ma
between these vortices and other vortices with nontriv
core structure present in high density QCD.12 Although no
new results are obtained in this section, we believe that m
ing a correspondence between two very different fields
physics is quite a useful exercise. In particular, applying
topological ~and some analytical! arguments developed in
©2003 The American Physical Society22-1
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Ref. 12 we reproduce the result1–4 that there is a critical
value for the coupling constant above which the AF core
not developed. In a sense to our knowledge this is a n
explanation of the phenomenon based on analytical~rather
than numerical! calculations. Section III will contain our re
sults, where we will show that classically stable quasipa
cles called vortons are present within the SO~5! theory of
high temperature superconductivity. Section IV will end w
concluding remarks and possible experimental signature
the quasiparticles. We also formulate a conjecture that
vortons are responsible for the phase transition between
and dSC phases at zero external magnetic field, when
doping parameterm is changed.

II. VORTICES WITH NONTRIVIAL CORE STRUCTURE-
QCD VS HIGH TEMPERATURE SUPERCONDUCTIVITY

We will begin by briefly describing the work of Ref. 1
where vortices with nontrivial core structure were describ
within the context of QCD at large baryon chemical pote
tial. This will be beneficial in order to make analogies b
tween condensed matter physics and particle physics.
should note that this is only a review section and no n
material will be presented here. However, the analogy
cussed below will prove to be useful for the analysis wh
follows. We will then continue with a review and compariso
of the vortices with nontrivial core structure which appe
within the SO~5! theory of highTc superconductivity.1–4

A. Vortices in high density QCD

There has been a large amount of interest within the p
ticle physics community on the subject of QCD, the theo
of the strong interaction, at large baryon density14,15 ~for
many more references and a nice review, see Ref. 16!. At
zero baryon density, QCD is a theory of quarks and glu
which are strongly coupled, such that confinement ta
place and the observable particles are colorless had
rather than quarks and gluons. As one increases the ba
chemical potential the new superconducting phase when
baryon symmetry is spontaneously broken occurs. To exp
this phenomenon, let us recall that, in QED, the electr
electron interaction is in general repulsive, and supercond
tivity is a very subtle effect. In non-Abelian theory, QCD
simple one gluon exchange is always attractive in the co
3̄ channel. As is well known from conventional BCS theo

of superconductivity, an arbitrarily small attractive intera
tion will lead to the formation of condensate of Cooper pa
near the Fermi surface. This is in fact what happens in Q
at large baryon density. The ground state of the high den
phase of QCD is characterized by a diquark condensate14,15

analogous to the condensate of electron Cooper pairs pre
in a conventional superconductor. This phase of QCD is
ferred to as a color superconducting phase. The typ
chemical potential where this phase is thought to occurm
;500 MeV, D.100 MeV, tempTc;0.6D, whereD is su-
perconducting gap! cannot be realized on Earth. The intere
in this region of the QCD phase diagram is motivated by
fact that such densities may be realized within the core
compact stars, such as neutron stars.28
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We will not go into specific details, only state a few of th
main features of the color superconducting phase of h
density QCD. For the number of quark flavorsNf53 ~up,
down, and strange! and the number of colorsNc53, the
dominant parts of the diquark condensate take the follow
forms:15

^qLa
ia qLb

jb &* ;eabge i j eabcXc
g ,

^qRa
ia qRb

jb &* ;eabge i j eabcYc
g , ~1!

whereL andR represent left and right handed quarks,a, b,
andg are the flavor indices,i and j are spinor indices,a, b,
and c are color indices, andXc

g and Yc
g are complex color-

flavor matrices describing the Goldstone bosons. This
quark condensate breaks the original symmetry gro
SU(3)c3SU(3)L3SU(3)R3U(1)B3U(1)A @color gauge
symmetry, left and right flavor symmetries, baryonic symm
try, and axial U(1)A symmetry# down to the diagonal sub
group SU(3)c1L(R) . This diagonal subgroup tells us tha
whenever we perform an SU~3! color rotation, we must si-
multaneously perform a left~right! handed flavor rotation.
Since color rotations are now linked with flavor rotation
this phase of high density QCD withNf5Nc53 is referred
to as the color-flavor locked phase~CFL!.15 Counting the
number of broken generators, we see that there should b
Goldstone bosons~GBs!. Of these 18 GBs, eight of them ar
eaten by the Higgs mechanism resulting in all eight gluo
acquiring a mass. This leaves ten GBs, an octet related to
breaking of SU~3! and two singlets related to U(1)B and
U(1)A . All of these bosons@except the one related t
U(1)B] are actually pseudo-Goldstone bosons due to
small explicit violation of the symmetry. In order to describ
the low energy degrees of freedom, namely the octet
Goldstone bosons, one can construct the following ga
invariant field:

Sg
b5(

c
Xc

bYg
c* 5exp~ ipala/ f p!, ~2!

with the SU~3! generatorsla normalized as Tr(lalb)
52dab and f p

2 ;m2/(2p2) being the pion decay constan
which can be calculated in the largem limit. Prior to the
work of Refs. 29–31 it was believed that the ground state
the CFL phase was given bySo5diag(1,1,1). However, it
was noticed that for a physical value of the strange qu
mass (ms@mu ,md) this may not necessarily be the case.
particular, it was argued in that forms.60 MeV along with
the diquark condensate~1! a new K0 condensation would
occur and thatSo5diag(1,1,1) as given above would n
longer represent the true ground state of the CFL phase,
rather the vacuum expectation value of the nondiagonal
ments of;^S2

1& representing theK0 GB would get a non-
zero magnitude.30 Therefore,So would be rotated in some
different direction in flavor space. In the physical case wh
the isospin symmetry is not exact~i.e., the up and down
quarks have different masses,md.mu) and we have overal
electric charge neutrality,K0 condensation occurs. The ap
2-2
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VORTONS IN THE SO~5! MODEL OF HIGH . . . PHYSICAL REVIEW B67, 174522 ~2003!
propriate expression forSo describing theK0 condensed
ground state can be parametrized as

So5S 1 0 0

0 cosuK0 sinuK0e2 if

0 2sinuK0eif cosuK0

D , ~3!

wheref describes the new Goldstone mode associated
K0 condensation along with the diquark condensate
cussed above anduK0[A2^uK0u&/ f p describes the strengt
of the kaon condensation with30

cosuK05
m0

2

meff
2

, meff5
ms

2

2m
,

m0
25amu~md1ms!, a5

3D2

p2f p
2

. ~4!

wheremu ,md , andms are the masses of the up, down, a
strange quarks, respectively,m is the chemical potential, an
D is the size of the color superconducting gap
(;100 MeV). In order for kaon condensation (uK0Þ0) to
occur, we must havem0,meff . This leads to the breaking o
the hypercharge U(1)Y symmetry. As discussed in Refs. 3
and 12, the lightest degrees of freedom in the CFL1K0

phase are theK0 and K1 mesons. The essential physics
these mesons can be captured with the following effec
Lagrangian:

L5u]0Fu22v2u] iFu22lS uFu22
h2

2 D 2

2dm2F†t3F,

~5!

whereF5(K1,K0) is a complex doublet describing theK0

and K1 mesons,t3 is the third Pauli matrix. The constan
f p and v have been calculated in the leading perturbat
approximation and are given by32,33

f p
2 5

2128 ln 2

18

m2

2p2
, v25

1

3
. ~6!

The remaining parameters in the effective Lagrangian~5!
have been obtained from a more complete description of
octet of Goldstone bosons:30,12

dm25
a

2
ms~md2mu!,

h25
meff

2 2mo
2

l
. ~7!

In the case that the parameterdm2 in Eq. ~5! is zero, the
Lagrangian is invariant under the symmetry group SU(I
3U(1)Y→U(1) @broken down to U~1!#. From topological
arguments we know that such a Lagrangian does not pos
vortices since the vacuum manifold is that of a 3 sphere
therefore does not have noncontractible loops. In the c
that dm2 is relatively large, then the residual symmet
group is U(1)3U(1)→U(1) and the vacuum manifold i
17452
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that of a circle, leading to the formation of classically stab
global vortex solutions. Sincedm2.0, then it isK0 which
forms the normal global strings withuK0(r 50)u50 and
uK0(r 5`)u5h/A2, where the phase varies from 0 to 2p as
one encircles the core of the vortex. From these two limit
cases, it is clear that there should be some intermediate
gion that somehow interpolates~as a function ofdm2) be-
tween the two cases. At some finite magnitude ofdm2, an
instability arises through the condensation of theK1 field
inside the core of the vortex. As the magnitude ofmd2mu
decreases, the size of the core becomes larger and larger
nonzero values of bothK0 and K1 condensates inside th
core. Finally, atmd5mu the core of the string~with nonzero
condensatesK0 andK1) fills the entire space, in which cas
the meaning of the string is completely lost, and we are
with the situation when SU~2! symmetry is exact: no stabl
strings are possible. As discussed in Ref. 12, theK0 vortex
with a K1 condensate on the core can be approximately
scribed by the following ansatz:

K05
h

A2
f ~r !eif, ~8!

K15
s

A2
g~r !. ~9!

where f is the azimuthal angle in cylindrical coordinate
f (r ) andg(r ) are solutions to the classical equations of m
tion obeying the boundary conditionf (0)50, f (`)51,
g8(0)50, g(`)50, g(0)51, and s gives the size of the
condensate at the string core (r 50) determined by the pa
rameters of the Lagrangian. The width of the string wh
symmetry is restored in the core, is given by 1/k, where
k2;(meff

2 2mo
21dm2) ~the mass scale forK0). The width of

the K1 condensate when symmetry is not restored can
estimated as 1/b, whereb2;2dm2 is the mass difference
betweenK1 andK0 off of the vortex. From these estimate
we see that, asdm2→0, the width of the vortex core in-
creases as explained qualitatively above. In order to estim
the critical point whereK1 condensation occurs, we hav
studied the dynamics ofK1 in the background of aK0 global
vortex solution. This is done by substituting the string so
tion ~8! into the energy expression derived from Lagrang
~5! and keeping only terms which are quadratic order inK1.
The shift in the energy~per unit length! in the background of
a K0 vortex is then given in dimensionless variables
follows12:

dE5
h2v2

2 E d2r̃ g~ r̃ !@Ô1e#g~ r̃ !, ~10!

where

Ô52
1

r̃

d

dr̃
S r̃

d

dr̃
D 2~12cosuK0!@12 f 2~ r̃ !#, ~11!
2-3
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e5
a

2

ms~md2mu!

meff
2

. ~12!

The problem is reduced to the analysis of the tw
dimensional Schrodinger equation for a particle in an attr
tive potentialV( r̃ )52(12cosuK0)@12f2(r̃)# with f ( r̃ ) be-
ing the solution of the classical equation of motion forK0

with the boundary conditionsf (0)50 and f (`)51. Such a
potential is negative everywhere and approaches zero a
finity. As is known from standard course in quantu
mechanics,34 for an arbitrarily weak potential well there i
always a negative energy bound state in one and two sp
dimensions; in three dimensions a negative energy bo
state may not exist. For the two-dimensional case~the rel-
evant problem in our case! the lowest energy level of the
bound state is always negative and exponentially small
small l8. One should note that our specific potentialV( r̃ )
52(12cosuK0)@12f2(r̃)#, which enters Eq.~10! is not liter-
ally the potential well, however one can always construct
potential wellV8 such that its absolute value is smaller th
uV( r̃ )u everywhere, i.e.,uV8u,uV( r̃ )u for all r̃ . For the po-
tential wellV8 we know that the negative energy bound st
always exists; whenV8 is replaced byV it makes the energy
eigenvalue even lower. Therefore, operator~11! always has a
negative mode irrespective of the local properties of funct
f (r ). As a consequence, ife50 then string~8! is an unstable
solution of the classical equation of motion, the result
expected from the beginning from topological argumen
The instability manifests itself in the form of a negative e
ergy bound state solution of the corresponding tw
dimensional Schrodinger equation~10! irrespective of the
magnitudes of the parameters. The problem of determin
whenK1-condensation occurs is now reduced to solving
two-dimensional Schrodinger type equationÔg5Êg. From
the previous discussions we know thatÊ for the ground state
is always negative. However, to insure the instability w
respect toK1 condensation one should require a relative
large negative value, i.e.,Ê1e,0. This cannot happen fo
an arbitrary weak coupling constant;(12cosuK0) when
uK0 is small. However, it does happen for relatively lar
uK0. To calculate the minimal critical valueucrit when K1

condensation develops, one should calculate the eigenv
Ê as a function of parameteruK0 and solve the equation
Ê(ucrit)1e50. For a very small coupling constantl85(1
2cosuK0)→0 the bound state energy is negative and ex
nentially small,Ê;2e21/l8. However, for realistic param
eters ofm, D, ms , mu , md the parametere is not very small
and we expect that in the region relevant for us the bo
state energyÊ is the same order of magnitude as the pot
tial energy;l8. In this case we estimateucrit from the fol-
lowing conditions2Ê(ucrit);l8;(12cosucrit);e, with a
result which can be parametrically represented as

sin
ucrit

2
;const

D

ms
A~md2mu!

ms
, ~13!
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where we have neglected all numerical factors in order
explicitly demonstrate the dependence ofucrit on the external
parameters. The limit of exact isospin symmetry, which c
responds tomd→mu when the string becomes unstable, c
be easily understood from expression~13!. Indeed, in the
case that the critical parameterucrit→0 becomes an arbi
trarily small number theK1 instability would develop for
arbitrarily small uK0.0. The region occupied by theK1

condensate at this point is determined by the behavior
lowest energy modeg at large distances,g( r̃→`);exp
(2Êr̃) such that a typicalr̃;(md2mu)21→` as expected.

B. Vortices in the SO„5… theory of high-temperature
superconductivity

We will now review the work of Refs. 1–4, where it wa
shown that vortices with nontrivial core structure similar
the ones discussed above for high density QCD are pre
within the SO~5! theory of high-Tc superconductivity. The
effective Lagrangian which describes the Neel vectormW and
dSC order parameterc in the presence of a zero extern
electromagnetic field is given by1

L5
x

2
~ u] tmW u21u] tcu2!2

r

2
~ u¹mW u21u¹mW u2!1~ g̃2a!umW u2

2aucu22
1

2
bumW u42

1

2
bucu42bumW u2ucu2, ~14!

where we neglected the electromagnetic contribution to
vortex structure. Actually, one can show that the electrom
netic field does not change the qualitative effects which
the subject of the present paper, and therefore, will be
nored in what follows. Herex is the susceptibility andr
5\2/m* is the stiffness parameter. In reality, we know th
the properties ofx andr are different in different directions
However, when we discuss the topological properties of
configuration this difference can change the quantitative
sults but cannot change the qualitative picture. The Neel v
tor has three spatial componentsmW 5(m1 ,m2 ,m3) and the
superconducting order parameter is a complex fieldc5c1
1 ic2. The parameters of the above effective Lagrangian
given by

a,0, b.0, ~15!

g̃54x~mc
22m2!. ~16!

j5A r

2uau
~17!

wherem is the chemical potential~or doping, not to be con-
fused with the chemical potential for QCD in Sec. II A!, mc
is the critical chemical potential which defines the AF-dS
phase boundary, andj is the coherence length. The aniso
ropy g̃ is included which explicitly breaks the SO~5! sym-
metry in the following fashion, SO(5)→SO(3)3U(1). If
2-4
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g̃50 then the SO~5! symmetry is restored and the ord

parametersmW andc can be organized into a superspin ord

parameternW 5(c1 ,m1 ,m2 ,m3 ,c2) which transforms in the
vector representation of SO~5!, as Zhang originally propose

in Ref. 1. In the following we will considerm.mc and g̃
,0 so that we are in the dSC phase and^ucu&5Auau/b and

^umW u&50 in the bulk. One immediately notices that the for
of the Lagrangian for the SO~5! theory is very similar to the
Lagrangian used to describeK strings in high density QCD
@Eq. ~5!# in the previous section. In particular, the key e
ment in construction of the vortices with a nonzero cond
sate in the core, the asymmetry parameter, is determine
the magnitude ofdm2 in Eq. ~5!. For the SO~5! theory it is

replaced by the parameter of anisotropyg̃ in Eq. ~16!.
A nonzero vacuum expectation value forc signals the

onset of superconductivity and the breaking of the U~1! sym-
metry. It is well known that stable vortices can form since t
topology of the vacuum manifold is that of a circle. Anal
gous to the situation for high density QCD, for a certa

range of the anisotropy parameterg̃ these vortices should

have an antiferromagnetic core (^umW (rW50)u&Þ0). This was
initially pointed out by Zhang1 when he introduced the SO~5!
model and further studied in Refs. 2–4. Similar to theK
vortex/condensate solution given by Eqs.~8! and ~9!, these
vortices are described by the following static field config
rations:

c5Auau
b

f ~r !eif, ~18!

mW 5sAuau
b

g~r !m̂, ~19!

wheref is the azimuthal angle in cylindrical coordinates,s

is the parameter obeying the relation 0<s,1, andm̂ is an
arbitrary unit vector. As before,f (r ) andg(r ) are solutions
to the classical equations of motion satisfying the bound
conditions f (0)50,f (`)51 and g8(0)50, g(`)50, and
g(0)51. The width of the vortex determined by the profi
function f is approximately given by coherence length~17!,
dc'j. The width of the condensate in the core~if it forms!

is estimated to be of order ofdm'1/Aug̃u;1/A(m22mc
2)

and becomes very large at the phase boundary.
Using what we have already learned from QCD and

results from earlier work on these vortices,2–4 we can imme-
diately summarize the main features of these objects.
merical calculations in Ref. 3 confirm that as the anisotro
parameterug̃u is decreased, the size and width of the cond
sate in the core increases. We will support these nume
calculations using some analytical arguments given belo

The free energy~per unit length! obtained from Lagrang-
ian ~14! is
17452
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5E d2r Fx2 ~ u] tmW u21u] tcu2!1
r

2
~ u¹mW u21u¹cu2!

2~ uau1g̃!umW u22uauucu21
1

2
bumW u41

1

2
bucu4

1bumW u2ucu2G . ~20!

If anisotropyg̃[0 we know from topological arguments tha
this theory does not possess any vortices since the vac
manifold is that of a 4 sphere and therefore does not ha
noncontractible loops. Ifug̃u is relatively large, then the re
sidual symmetry group has a subgroup U~1! and the vacuum
manifold is that of circle, leading to the formation of class
cally stable global vortex solution described in terms ofc
field with a typical profile function whenuc(r 50)u50 and
uc(r 5`)u5Auau/b. From these two limiting cases, as di
cussed in Sec. II A, it is clear that there should be so
intermediate region that somehow interpolates~as a function
of g̃) between the two cases. The way this interpolat
works is as follows~see Sec. II A, where the physical pictu
is quite analogous to the present case!. At some finite mag-
nitude ofg̃, an instability arises through the condensation
themW field inside the core of the vortex. As the magnitude
g̃ decreases, the size of the core becomes larger and la
with nonzero values of bothmW andc condensates inside th
core. Finally, atg̃50 the core of the string~with nonzero
condensatesmW andc) fills the entire space, in which case th
meaning of the string is completely lost, and we are left w
the situation when the SO~5! symmetry is exact: no stabl
strings are possible.

In order to estimate that critical value of the parame
g̃5g̃crit where an AF core forms inside the vortex, the sa
method can be applied as described for the QCD color
perconductor in Sec. II A. We will use the following chang
of variables in order to express the free energy in terms
dimensionless variables only:

c5Auau
b

c8, mW 5Auau
b

mW 8, rW5jrW8. ~21!

Expanding the expression for the change in free energy~20!
in the background of ac vortex solution given by Eq.~18!

and keeping only quadratic terms inmW , we have

dF
l

5s2
ruau
2b E d2r 8g~r 8!@Ĥ1e#g~r 8!, ~22!

where

Ĥ52
1

r 8

d

dr8
S r 8

d

dr8
D 2@12 f 2~r 8!#, ~23!

e5
ug̃u
uau

54
x~m22mc

2!

uau
. ~24!
2-5
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Since we are working in the dSC phaseg̃,0 the perturba-
tion e.0. We have now cast the change in the free energ
the exact same form as we did for the QCD vortices in S
II A. The problem is now reduced to the analysis of the tw
dimensional Schrodinger equation for a particle in an attr
tive potentialV(r 8)52@12 f 2(r 8)#. As before, this poten-
tial is negative everywhere and approaches zero at infin
This means that the ground state eigenfunctionĤg05Êg0

has a negative eigenvalueÊ. The instability with respect to
the formation of the AF condensate in the core occurs not
an arbitrarily small negative eigenvalueÊ, but when the ab-
solute value ofuÊu is large enough to overcome the positi
contribution due toe. Therefore, we immediately see that a
AF core forms ifÊ1e<0. If ug̃u is greater than some critica
value g̃crit then it is not energetically favorable for an an
ferromagnetic core to form, and dSC vortices will posses
normal core where the symmetry is restored. Following
same procedure as in the QCD case, we have

ug̃crit u
uau

54
x~m22mc

2!

uau
.0.2. ~25!

where for numerical estimates we used the variational
proach developed in Ref. 19.

Above we have reviewed the basic properties of sup
conducting vortices with an antiferromagnetic core with
the SO~5! theory of superconductivity. We should emphas
once more that all results presented above are not new
have been discussed previously from a different perspec
Let us repeat the main results of this section once again
g̃50 then the dSC vortices are unstable. If 0,ug̃u,g̃crit then
an AF core will form inside the dSC vortices. The width
the AF core in this case becomes larger and larger when
approach the phase transition line, i.e.,g̃→0. Finally, if ug̃u
.g̃crit then the dSC vortices will have a normal core wh
symmetry is restored andumW u(r 50)5ucu(r 50)50. In
what follows we will always be working in the region of th
phase diagram where 0,ug̃u,g̃crit and dSC vortices have a
AF core~which will be referred to as dSC/AF vortices!. Now
we will proceed to Sec. III and introduce vortons, loops
dSC/AF vortices which are stabilized by angular momentu

III. VORTONS IN HIGH-TEMPERATURE
SUPERCONDUCTIVITY

We will now consider the interesting possibility that loo
of the dSC/AF vortices can exist as classically stable obje
~and at least metastable quantum mechanically!. This stabil-
ity arises through a mechanism where topological and N
her charges can be trapped on the core of the vortex. S
objects, called vortons, have been studied extensively in
context of cosmology where cosmic strings have a nontri
core structure.17–24Such vortons are also present within hig
density QCD where vortices with a condensate trapped
the core are realized.13

As Davis and Shellard originally pointed out in Ref
20,22, and 23, if one has a theory which contains vorti
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with a condensate trapped on the core then loops of s
vortices can form which are stabilized by angular moment
alone. We will consider a large loop of string of radiusR
@d, whered is the vortex thickness, so that curvature effe
can be neglected. Thez axis is defined along the length of th
string, varying from 0 toL52pR as one goes around th
loop. Although we are considering a circular loop for sim
plicity at the moment, we realize that this is probably not t
relevant physical case. The results we will discuss in t
section should not depend on the geometry of the loop;
important point is the presence of conserved charges w
are trapped on the vortex leading to stability. In reality, t
final stable configuration of these vortex loops is probabl
more complicated shape because of the quasi-t
dimensional nature of the high temperature superconduc
In particular, we have neglected the difference between
transverse and tangential spatial directions in our treatm
of the problem. The appropriate calculations would inclu
this difference and lead to a nonsymmetric shape. Howe
we neglect these complications at this stage.

In order to make an analogy with the QCD case where
condensate on the core is described by a complex field,
are free to represent two degrees of freedom represented
unit Neel vectorm̂, m̂251 defined by Eq.~19! in terms of a
single complex fieldF as

m̂5S F1F*

11uFu2
,

F2F*

i ~11uFu2!
,
12uFu2

11uFu2D , ~26!

whereF5uFueia ~this is simply the projection of the uni
sphere onto the complex plane!. At this point we are free to
pick the direction of the Neel vector. For a background cl
sical field describing a vortex defined along thez direction,
we will pick mW to lie in the xy plane, so thatmz50. We
should note that all calculations and results which follow
not depend on the particular choice ofmW that we have made
above. However, we do expect that this will turn out to
the lowest energy configuration when higher order derivat
terms are included in the free energy~see below!. We neglect
fluctuations of the absolute valueuFu for description of the
classical background and consider variation of its phasea.
In this case, we haveuFu51 for the classical backgroun
field as it follows from transformation~26!, andmW simplifies
to

m̂5
1

2
@F1F* ,i ~F* 2F!,0#. ~27!

with uFu51 to be fixed. The condensateuFuÞ0 can carry
currents and charges along the string so we will represe
by the following ansatz which describes the dependence
these excitations onz and t:

F5uFueia(z,t)5uFuei (kz2vt). ~28!

With this redefinition of the fields, the kinetic term esquir
two additional terms due to the (z,t) dependence of the
phase in the core:
2-6
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VORTONS IN THE SO~5! MODEL OF HIGH . . . PHYSICAL REVIEW B67, 174522 ~2003!
x

2
@ u]0mW u22vs

2u]zmW u2#→ x

2
m2~r !$@]0a~z,t !#2

2vs
2~]za~z,t !!2%, ~29!

wherevs
2[r/x. The key point of the time dependent ansa

~28! is as follows. Naively, one could think that the tim
dependence in a classical solution brings an additional
ergy into the system which usually does not help to stabi
the configuration. However, as Witten noticed in Ref. 17
there is a conserved charge in the system the configura
could be stable due to the conservation of the correspon
charge. In a sense, the time-dependent configuration
comes the lowest energy state in the sector with a gi
nonzero charge. A similar time-dependent ansatz for a dif
ent problem was also discussed by Coleman in Ref.
where he introduced so-called Q balls, macroscopically la
stable objects with a time dependent wave function. We
low Ref. 17 and define a chargeN which is topologically
conserved:

N5 R
C

dz

2p S da

dzD5kR, ~30!

where the pathC is defined along the vortex loop and w
assume thatv andk are some constants along the loop. Sin
a can change by multiple of 2p in circling the vortex loop,
N must be an integer. This is required in order for the co
densatem to remain single valued.

In addition to the topologically conserved winding num
berN, there also exist the standard Noether charges and
rents which can be trapped on the vortex core associated
the parameterv,k included in the phasea above. In our
case, the relevant symmetry, SO~3!, implies a conservation
of three Noether charges:

Qk5E d3r j k
05 ixE d3r @~]0ma!~Sk!abmb#, ~31!

while the corresponding three currents are

Jk
z5E d3r j k

z ,52 irE d3r @~]zma!~Sk!abmb#, ~32!

whereSk are the three generators of SO~3!.
A vortex loop with nonzero Noether chargesQk and to-

pological chargeN trapped on the core is described by
ansatz of the following form which depends on the posit
rW5(r ,f,z) and time t as @using Eqs.~18!, ~19!, ~26!, and
~28!#:

c5Auau
b

f ~r !eif, ~33!

mW 5sAuau
b

g~r !@cos~kz2vt !, sin~kz2vt !, 0#,

~34!

where as in Sec. IIf (r ),g(r ) are solutions to the classica
equations of motion obeying the appropriate boundary c
ditions.
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For the solution given by Eq.~34! we have a nonzero
Noether chargeQz which is trapped on the vortex core:

Qz5xLvS, ~35!

whereS is defined as as the integral ofumW u2 over the vortex
cross section:

S5E
3

d2r umW u2. ~36!

We should note that for a different choice of the direction
Neel vectorm̂. the conserved charge which is nonzero wou
be different. The important point is that a nonzero cha
will always be present independent of the of the Neel dir
tion m̂.

As we mentioned at the beginning of this section, the
vortons are spinning and carry a nonzero angular mom
tum. The vortons are stable against shrinking due to the c
servation of the angular momentum. To calculate the ang
momentum of a vorton with nonzero chargesN and Qz
trapped on the core, we use the standard formula for
angular momentum expressed in terms of the ener
momentum tensor:

Mi j 5E d3r ~T0ixj2T0 j xi !, ~37!

which can be approximated for a large vorton in the plane

M.2pxR2s2
uau
b E d2rg~r !2vk52pxR2vkS. ~38!

The angular momentum points in the direction normal to
surface formed by the vorton. We now see that the reason
would expect such configurations to be classically stable
simple; it is just because these vortons are spinning and
gular momentum is conserved. One can say that the vorto
stable because it is the lowest energy configuration in
given sector with nonzero conserved chargesN,Qz . Angular
momentumM @Eq. ~38!#, which is essentially the product o
two chargesN andQz , is also nonzero when both chargesN
andQz are nonzero. In the discussion above we neglected
higher order derivative terms. In particular, there will b
some correlation between the chargeQi @Eq. ~31!# and the
momentum along the vortonPi5T0i in the expression for
the free energy (;T0iQi). Such a correlation implies tha
ansatz~27! will represent the lowest energy configuration
the angular momentumMW @Eq. ~38!# points in the direction
normal to the surface formed by the vorton.

We will assume that we now have a vorton configurati
with nonzero values ofN andQz . In order to assign specific
numbers for these quantities one must look at the mechan
of formation. We will not address such complex issues in t
paper and simply assume that there is some nonzero p
ability for a vorton to form. For recent work on the issue
vorton formation we refer the reader to Ref. 36. The fr
energy of a vorton can be obtained by substituting Eqs.~33!
and ~34! into Eqs.~20!:
2-7
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F5E d3r Fx2 @~v21vs
2n2!m21vs

2~¹rm!21vs
2u¹cu2!G

2~ uau1g̃!m22uauucu21
1

2
b~m41ucu412m2ucu2!,

~39!

where m5sAuau/bg(r ). We can simplify this expression
further by using the fact thatm is a solution to the equation
of motion and represent the free energy in the following w

F5LS rp
uau
b

ln~L/j!2
b

2
S41xv2S D , ~40!

where we have defined the quantityS4 for brevity:

S45E
3

d2r umW u4. ~41!

The first term in Eq.~40! is simply the energy from the dSC
vortex with no condensate present in the core~to a logarith-
mic accuracy!. HereL is the long distance cutoff which mus
be included to regulate the logarithmic divergence of
normal global string. The long distance cutoff is typically t
distance between vortices, so in our case we will takeL
5L whereL is the length the vortex loop. The second term
negative, reflecting the fact that it is energetically favora
to have an AF core. And the third term is the addition
contribution to the energy due to nonzeroQz(N).

There are various cases which must be considered,vsk
.v,vsk,v, andvsk5v. Notice that the effect of adding
havingk,v nonzero is the addition of a masslike term formW
to the Lagrangian:

dL5
x

2
~v22vs

2k2!m2. ~42!

If vsk.v then the effect of a nonzerovsk,v is to add a
positive mass term forumu to the Lagrangian. This counte
acts the effects of the negative mass term in the orig
Lagrangian@Eq. ~14!#. Sincek;1/L quenching occurs and
the size of the condensateS decreases as the vortex loop ge
smaller. Conversely, ifv.vsk one has the opposite situatio
and anti-quenching occurs. As the vortex loop shrinks,
size of the condensateS gets larger as one would expec
The different cases have been examined using numerical
culations in Refs. 20 and 22. Recall Eq.~35!, wherev is
given as

v5
Qz

xL
S21. ~43!

As Davis and Shellard point out in Ref. 22, ifv starts out
less thanvsk quenching occurs and forcesv increase faster
thanQz /L. In the opposite case wherev.vsk antiquench-
ing occurs and thereforev increases more slowly tha
Qz /L. The important conclusion that was drawn from th
analysis is thatv/(vsk)→1 is an attractor.22 As a loop
shrinks v/(vsk) approaches 1 and the quenching~or anti-
quenching! slows and the eventually stops leaving a clas
17452
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cally stable vorton behind. Therefore, for simplicity we w
focus on the so called chiral case whenv5vsk which is the
most stable configuration. Realistically, we know that t
periodic structure of the material of the superconduc
breaks the rotational symmetry, leading to non-conserva
of angular momentum~it can be transferred to the material!.
However, the topological chargeN is still a conserved quan
tity. Therefore, for the chiral vortons,Q;N is also con-
served due to relations~30! and ~35!. For such configura-
tions, stability is ensured. WhenvÞvsk, the transfer of
angular momentum to the lattice is possible, eventually s
tling to the chiral case withv5vsk.

In the chiral case the size of the condensateS is indepen-
dent ofN,Qz ,L and the free energy@Eq. ~40!# can be written
as

F5Las1~2p!2r
N2S

L
,

as5rp
uau
b

ln~L/j!2
b

2
S4 , ~44!

where as is the string tension of the bare dSC/AF vorte
with Qz5N50 andk is expressed in terms of the conserv
winding numberN according to Eq.~30!. Written in this
form, it is immediately obvious that for a given nonze
value ofN the free energy has a minimum atL5L0:

N

L0
5

1

2p
Aas

rS
. ~45!

We can give a crude estimate of the winding number dens
n0[N/L0, of a stable vorton configuration,

S;s2
uau
b

dm
2 , ~46!

as;r
uau
b

, ~47!

wheredm is the width of the condensate. This gives us

n0[
N

L0
;

1

dm
;Aug̃u;A4x~m22mc

2!, ~48!

which is approximately the inverse width of the condensa
As expected, the winding number densityn0 does not depend
on the large numberN, but depends only on the interna
structure of the vorton, i.e. on the width of AF condensate
dSC vortex core. Equation~48! tells us that as one goe
around a vorton the direction of the Neel vectorm̂ varies
over a distance scale;dm , the width of the condensate. A
the doping is decreased and the AF-dSC phase bounda
approached from above the width of the condensate
creases. For a given value ofN(Qz) ~determined at the time
of formation! the size of a stable vorton increases as o
approaches the AF-dSC phase boundary.

The discussion above has shown that vortons are ind
classically stable. This would imply that on the quantum m
chanical level such quasiparticles are at least metastable.
2-8
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VORTONS IN THE SO~5! MODEL OF HIGH . . . PHYSICAL REVIEW B67, 174522 ~2003!
issue of quantum stability of vortons was addressed in a
cent paper.37 In this paper they calculated the lifetime of
vorton with Q50,NÞ0 ~pure current case!. The mechanism
of decay is some quantum mechanical tunneling proc
where the condensate instantaneously goes to zero on
core, allowing the winding number to decrease by one u
from N to N21.

IV. CONCLUSION AND FURTHER SPECULATIONS

In this paper we have reviewed the dSC vortices wh
have an antiferromagnetic core within the SO~5! theory of
high temperature superconductivity.1–4 We have compared
these dSC/AF vortices with similar vortices which arise in
completely different context, high density QCD.10–12

The main point that was presented in this paper is t
loops of dSC/AF vortices called vortons can exist as cla
cally stable objects in the presence of a zero external m
netic field. The source of the stability of these vortons is
conservation of angular momentum that counteracts
string tension, which ‘‘prefers’’ to minimize the length of th
vortex loop. The fact that there is a condensate trapped
the vortex core is crucial for the stability of vortons. It is th
condensate which allows nonzero charges to be trappe
the core, leading to the presence of nonzero angular mom
tum. It remains to be seen if such quasiparticles will be i
portant for the physics of the high-Tc superconductivity. In
what follows, we provide arguments supporting the idea t
the vortons can play a key role in AF-dSC phase transiti
At this point we consider the vorton mechanism driving A
dSC phase transition as a conjecture.

The first argument goes as follows. As we have sho
above, for a given value ofN there exists classically stabl
vorton configurations with sizeL and fixed ratio N/L0
;1/dm , where dm is the width of the condensate that
trapped on the vortex core. As one decreases the doping
rameter and approaches the AF-dSC phase boundary
width of the condensatedm increases. This is the direct con
sequence of the fact that the asymmetry parameterug̃u be-
comes smaller and smaller when the phase boundary is
proached. From the relationL0 /N;dm given above, this
would imply thatL0, the length of a classically stable vorto
must increase. Decreasing the asymmetry parameterug̃u
;4x(m22mc

2) further would result in a large vorton with
large core size. The volume of the regions filled with the A
state behaves likeL0dm

2 ;ug̃u23/2. When the phase transitio
line is approached, the regions with the AF state fill the
tire space. At this point the AF-dSC phase transition occ
Although our approximations are no longer valid at th
point, because our description assumes that the vorton
size is much smaller thanL and the interaction betwee
strings can be neglected~plus many other assumptions not
be mentioned!. These assumptions certainly fail in the vici
ity of the phase transition. Nevertheless, the fact that the
of the AF regions inside of the dSC phase increases rap
when the AF-dSC phase transition is approached should
considered as a strong argument in favor of the vor
mechanism driving the AF-dSC phase transition.
17452
e-

ss
the
it

h

t
i-
g-
e
e

on

on
n-
-

t
.

n

a-
the

p-

-
s.

re

ze
ly
be
n

We would also like to make the observation that on t
other side of the phase transition boundary, in the AF st
there are quasiparticles whose cores are in dSC pha38

Therefore, one can imagine a situation when one type
quasiparticles~dSC vortices with an AF core! becomes a
different type of quasiparticles~AF skyrmions with a dSC
core! when the doping parameter decreases and the p
transition line is crossed.

The next natural question to ask is as follows: let us
sume that vortons are indeed the relevant quasiparti
which drive AF-dSC phase transition at small temperatur
Can the same vortons be an essential part of the dyna
when the temperature~rather than the chemical potentialm)
crosses the superconducting phase transition atTc? If the
answer is positive, we would have a nice unified picture
two different phase transitions on the (T,m) plane. We be-
lieve the answer, indeed, could be positive~see the argu-
ments below!.

We start by reminding the reader that the pseudogap ph
is characterized by the temperatureTc,T,T* , when the
Cooper pairs are already formed but the long-range ph
coherence sets in only at the much lower temperatureTc
!T* . It is believed that in this regime the phase order
destroyed by fluctuating vortices of the Cooper pair fieldc
aboveTc .39 It is quite natural toidentify our vortons~loops
of vortices! sliced by a two dimensional plane with vortex
antivortex pairs with distinct experimental signatures fro
Ref. 39. In this case, since underdoped cuprates are e
tively two dimensional, at finite temperature the loss
phase order may be expected to proceed via the Berezin
Kosterlitz-Thouless phase transition. In this case, the vort
discussed in the present paper, being sliced by the t
dimensional plane, become the vortex-antivortex pairs a
lyzed in Ref. 39 and could be responsible for the phase tr
sition at Tc . However, the picture of the phase transitio
here is quite different from what we previously discuss
regarding the AF-dSC separating line. In the present c
when T crossesTc the transition happens because of t
vortex-antivortex interaction which is proportional t
rp(uau/b)ln(x12x2) and not because the seeds of a n
phase~the vorton cores! fill the entire space. This is the
typical two dimensional form due to the global nature of t
vortices~local strings do not possess this feature!. The vol-
ume occupied by the vortex cores at this point is still mu
smaller than the volume of the system. It is well known th
such a logarithmic interaction is a key element for und
standing the Berezinsky-Kosterlitz-Thouless phase tra
tion.

Encouraged by the argument given above, we extend
conjecture and assume that the same quasiparticles, vor
are responsible not only for the AF-dSC phase transition
also for the phase transition separating the pseudogap
dSC phases at temperatureTc when m.mc . The natural
question to ask is: how does the critical temperatureTc(m)
depend on the chemical potentialm within this conjecture?
To answer this question we recall that the critical tempe
ture Tc for the Berezinsky-Kosterlitz-Thouless phase tran
tion is proportional to the strength of the logarithmic inte
action mentioned above. In our case it is nothing but
2-9
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KIRK B. W. BUCKLEY AND ARIEL R. ZHITNITSKY PHYSICAL REVIEW B 67, 174522 ~2003!
string tension determined~mainly! by the vacuum expecta
tion value ofc field, @Eq. ~44!#, i.e., Tc;as . Whenm5mc
the asymmetry parameter is zero and^c2&5uau/b is deter-
mined by the unperturbed coefficientsa,b. The simplest way
to determine how the expectation value of the fieldc varies
whenm increases is to introduce the asymmetry paramete
the ‘‘symmetric’’ manner.40 Fasym52g̃(mW 22ucu2) such that
negativeg̃ corresponds to the condensation of theucu2 field,
and positiveg̃ corresponds to the condensation of theumW u2
field. This asymmetry parameter enters the string tensio
dSC phase as follows,as;(uau2g̃)/b, g̃,0. From this ex-
pression one can immediately deduce thatas ~and therefore,
Tc) will increase withm when g̃, being negative, become
larger and larger in magnitude. It is interesting to note t
the very same conclusion has been reached in the orig
paper,1 where the increase ofTc with chemical potential was
explained as a result of mass increase of thep triplet ~see
Ref. 1 for details!.

Having presented our arguments supporting the con
ture that vortons might be the relevant degrees of freedom
the dSC phase at zero external magnetic field, we now c
clude with a few remarks on how this picture can be exp
mentally tested. First, the possible experimetal meth
~such asmSR and inelastic neutron scattering! for observing
AF vortex cores were discussed in Ref. 2 and we shall
repeat their analysis. However, we should mention that
fact that the AF cores do appear in the vortices5–9 suggests
that the SO~5! model of high-Tc superconductivity may be
correct. Our original remark here is that the AF vortex co
size is on the order of dSC coherence length far away fr
the point g̃50, and becomes larger when the chemical p
tential approachesmc at zero external magnetic field. W
expect that the average size^L& of vortons grows with tem-
perature, and therefore, correlations between AF cores
grow with temperature as well. Similar behavior is expec
to occur whenm approachesmc at a fixed temperature. In
this case the effect is expected to be even more pronou
because the volume occupied by the AF cores grows
ug̃u23/2, as discussed above, and therefore the correlation
well as the magnitude of the local electron magnetic fie
should scale accordingly. This picture suggests that the
ev
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correlation length is propotional toL and could be very large
much larger than any other scale of the problem. Apparen
such large AF correlation lengths have already been obse
in Ref. 6, and we would like to argue that this correlation
related to our vortons. One should remark here that suc
large correlation length cannot be simply explained by
interaction between vortices~which have sizej;20 Å) be-
cause it would lead to a strong dependence on the Neel
perature as a function of the intervortex spacing control
by the external magnetic field, while observations sugg
that the Neel temperature is field independent6.

All the effects previously mentioned require the existen
of the AF core in the vortex and they are not specifica
sensitive to the existence of vortons, which is the subjec
this work. The main feature of the vortons is that they c
carry angular momentum@see Eq.~38!# and provide large AF
correlation lengths~see discussion above!. Therefore, these
excitations should be present if a dSC sample is rotated w
nonzero angular momentum. The situation is very similar
the 3He and 4He systems where superfluid vortices can
studied by rotating liquid helium in a can. In many respe
our vortons are similar to rotons, and presumably can
studied in a similar way using the technique developed
these systems.

Finally, if vortons are indeed the relevant degrees of fr
dom in the high-Tc superconductors, it provides a uniqu
opportunity to study cosmology and astrophysics by do
laboratory experiments in condensed matter physics. O
the last few years several experiments have been done to
ideas drawn from cosmology~see Refs. 41 and 42 for furthe
details!.
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