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From phase- to amplitude-fluctuation-driven superconductivity in systems with precursor pairing
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The change-over from phase- to amplitude-fluctuation-driven superconductivity is examined for a composite
system of free electrons~fermions with concentrationnF) and localized electron pairs~hard-core bosons with
concentrationnB) as a function of doping—changing the total concentration of charge carriers (ntot5nF

12nB). The coupling together of these two subsystems via a charge exchange term induces electron pairing
and ultimately superconductivity in the fermionic subsystem. The difference in statistics of the two species of
charge carriers has important consequences on the doping mechanism, showing an onset temperatureT* of
incoherent electron pairing in the fermionic subsystem~manifest in form of a pseudogap!, which steadily
decreases with decreasingntot . Below T* this electron pairing leads, in the normal phase, to electron-pair
resonant states~Cooperons! with quasiparticle features which strongly depend onntot . For high concentrations,
wherenB.0.5, correlation effects between the hard-core bosons lead to itinerant Cooperons having a heavy
massmp , but are long lived. Upon reducing the concentration of charge carriers and consequentlynB , the
mass as well as the lifetime of those Cooperons is considerably reduced. As a result, for high values ofnB , a
superconducting state belowT* sets in at aTc , being controlled by the phase stiffnessDf5\2np /mp of those
Cooperons, wherenp denotes their density. Upon reducingntot , the phase stiffness steadily increases, and
eventually exceeds the pairing energykBT* . There, the Cooperons loose their well defined itinerant quasi-
particle features and superconductivity gets controlled by amplitude fluctuations. The resulting phase diagram
with doping is reminiscent of that of the phase fluctuation scenario for high-Tc superconductivity, except that
in our scenario the determinant factors are the mass and the lifetime of the Cooperons rather than their density.

DOI: 10.1103/PhysRevB.67.174521 PACS number~s!: 74.20.Mn, 74.25.2q
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I. INTRODUCTION

The features which characterize classical low-tempera
superconductors are the disappearance, above a certain
cal temperatureTc , of a gap in the density of states~DOS! of
the electrons, occurring simultaneously with the disappe
ance of the magnetic field expulsion~the Meissner effect!
and standard Fermi-liquid behavior in the normal pha
aboveTc . A further characteristic is the practical impossib
ity to change significantly the value ofTc upon changing the
concentration of charge carriers, because ofTc being largely
determined by the density of states~DOS! at the Fermi level,
which generally is not expected to change much with dopi

None of these features are observed in the hi
temperature superconductors~HTSC’s!. The opening of a
gap in the DOS occurs gradually, as a multitude of differ
experiments1 show. This gap initially emerges in form of
pseudogap—a dip in the DOS—below a certain tempera
T* , which, depending on doping, can be much aboveTc .
Upon lowering the temperature and approachingTc , this
pseudogap smoothly joins the superconducting gap, as is
dent from its angular variation near the Fermi surface. If
opening of the pseudogap and of the superconducting
represent different physical manifestations of one and
same pairing mechanism, an interplay between these m
festations of electron pairing in the two phases is to be
pected and is in fact observed in the form of remnant effe
such as the following.

~i! A remnant of magnetic field expulsion is seen in for
of a transient Meissner effect several tens of degrees ab
Tc , judging from the optical conductivity in the TH regime2
0163-1829/2003/67~17!/174521~12!/$20.00 67 1745
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This points toward long-lived diamagnetic fluctuation
which have been attributed to the presence of long-lived
fusing vortices aboveTc

3, as well as to phase uncorrelate
diamagnetic regions which act as precursors to the
Meissner state belowTc .4 Experiments, invoking Andreev
reflections to interpret the enhanced tunneling conducta
in the pseudogap phase,5,6 point toward phase uncorrelate
pairing aboveTc .

~ii ! Remnants of local electron pairing in thec-axes opti-
cal response~orthogonal to the CuO2 planes!7 in the
pseudogap phase, are seen in the superconducting p
Similarly, thec-axes component of the electronic kinetic e
ergy is getting reduced upon entering the superconduc
phase,8 provided the normal state exhibits pseudo gap f
tures. The doping dependence of thec-axis penetration
depth, being qualitatively similar to that of the basal plan
suggests that both are strongly influenced by the pseudo
features of the normal state.9 Tunneling measurements hav
indicated remnants of the pseudogap which continue to
exist with the superconducting gap in the superconduc
phase. The latter disappears atTc , while the former
remains.10

The question whether such findings favor or not a co
mon origin of pseudogap and of the superconducting ga
presently still being debated.11,12 The features in the HTSC
involving the interplay of the pseudogap phase and of
superconducting phase are highly doping dependent.T*
steadily decreases with increased hole doping, whileTc
shows an equally steady rise until the two approach e
other.Tc then bends over and follows the descent ofT* upon
further doping and approaching the optimal/overdoped
©2003 The American Physical Society21-1
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gime. Tc plotted as a function of the phase stiffness~deter-
mined by the square of the inverse penetration depth!, in-
volving the ratio of the density of superfluid carriers ov
their mass, shows a universal linear behavior.13

The main emphasis in this paper will be to analyze
doping dependence ofT* andTc within a precursor pairing
scenario. Very little about that doping dependence is kno
for such a scenario when based on single component
tems, such as the negativeU Hubbard model or the effective
BCS Hamiltonians, extended to strong coupling. In su
studies, doping is frequently introducedad hoc, by assuming
a doping dependent electron hopping or interelectron att
tion, in view of simulating a physics close to a Mott trans
tion. In the present paper we shall examine such doping
pendent effects without making any suchad hoc
assumptions. As we shall see, considering a mixture of i
erant electrons~fermions! and localized electron pairs~hard-
core bosons! coupled together via a charge exchange term
capable of reproducing the doping dependent features oT*
and Tc specified above. The essential new features in
duced in this two-component scenario are the difference
statistics of the two components and the hard core feature
the short range two-electron resonances~Cooperons! in the
itinerant electron subsystem which result as a consequen
the charge exchange coupling. The variation ofTc is dictated
by correlation effects of the Cooperons.

This two-component scenario has some similarity to
single-component scenarios with attractive interparticle
teraction mentioned above, in as far as it can be viewed
two-fluid picture of existing preformed pairs and unpair
electrons.14 The electron-pair resonant states which resul
such a scenario have certain features which are reminis
of localized resonance impurity states seen in the HTSC,
which arise when Cu atoms are substituted by nonmagn
atoms such as Zn.15 Yet, the electron-pair resonant stat
which we are considering here have the essential potenti
of becoming itinerant and thus to lead to a superconduc
phase controlled by excitations of electron pairs with fin
momenta rather than pair breaking.

In Sec. II we discuss the interplay between phase
amplitude fluctuations in systems with precursor pairin
contained in the spectral properties of the Cooperon pro
gator. This permits us to make a connection with the ph
fluctuation scenarios, which have been widely discusse
the literature. In Sec. III we briefly outline the model and t
Green’s function formalism which we adopt in order to tre
the hard-core nature of the resonant electron pairs. In Sec
we present the results for the temperature variation of
density of states over a wide doping regime and analyze
doping variation ofT* . In Sec. V we explore the spectra
properties of the two-particle excitations and compare
low and high density regime of the Cooperons as far as t
quasiparticle properties are concerned. In Sec. VI we disc
the thermodynamics of the pseudogap phenomenon in te
of the specific heat and entropy for different doping regim
Finally in Sec. VII we give a summary of our findings whic
are characteristic of precursor pairing systems, involving
mionic as well as bosonic charge carriers.
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II. THE COOPERON WITHIN A PHASE FLUCTUATION
SCENARIO

Based on the different experimental results mentioned
the Introduction, which clearly indicate that the physics
those HTSC is not BCS-like~over at least a wide regime o
doping!, it is widely agreed upon that the onset of the sup
conducting state in the underdoped regime in those HT
should be controlled by phase rather than amplitu
fluctuations.16–18This supposes the existence of local sup
conducting droplets with a given phase, preexisting aboveTc
and evolving into a macroscopic phase locked state u
entering the superconducting state. Such a situation ca
realized provided that the fluctuations of the phase of
macroscopic superconducting wave function are less co
in energy than the fluctuations of the amplitude of the el
tron pairs, which describe pair breaking. To within a fir
approximation, this so-called phase fluctuation scenario
generally described within a hydrodynamic formulation o
spatially fluctuating phasef and its conjugate variabledns ,
which describes the spatial fluctuations of the superfluid p
ticle densityns . The corresponding effective Hamiltonian
given by

H5
1

2
Df~¹f!21

1

2xns
2 ~dns!

2, ~1!

where Df5\2(ns /ms) denotes the superfluid phase stif
ness,x the compressibility, andms their respective mass
The temperature which controls the phase order of suc
system is given bykBTf.Dfa, with a being either given by
the coherence lengthj for three-dimensional~3D! systems or
by the interlayer distance in layered compounds such
HTSC’s.

This phase fluctuation scenario is frequently discusse
conjunction with the so-called BCS-BEC cross-ov
phenomenon,19 where, as a function of the strength of th
interparticle attraction, one passes from a BCS state at w
attraction to a Bose Einstein condensation~BEC! of tightly
bound electron pairs in the limit of strong attraction. T
physics for that has been widely studied on the basis of
fective BCS and negativeU Hubbard Hamiltonians, aiming
to treat the single-particle and two-particle features on
same footing. The pseudogap in such a scenario arises
short range electron pairing, correlated over a finite ti
scale, comparable to the energy scale of the zero-tempera
superconducting gap. According to a general theorem~due to
Bogoliubov! and based on the singular behavior of the oc
pation number of electron pairs with small momenta wh
signal bound states, such electron pairing ought to surv
below Tc .20 A possible experimental verification for tha
might come from the socalledpeak-dip-humpfeature in
ARPES,21 which shows a spectral behavior upon entering
superconducting phase, where a sharp peak~related to super-
conducting correlations of the low energy excitation!
emerges out of the broad incoherent background, chara
ized by a broad hump and representing remnants of
pseudogap phase.
1-2
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FROM PHASE- TO AMPLITUDE-FLUCTUATION-DRIVEN . . . PHYSICAL REVIEW B67, 174521 ~2003!
An attempt to formulate the problem of local pairing as
prerequisite of superconductivity was made a long time
by generalizing the mean field BCS formalism such as
cover the regime above as well as belowTc .22 Instead of
using the order parameter, the propagator for the elec
pairs, also called Cooperons, is introduced and treated on
same level as the single electron propagator. Within suc
formalism, and on a quite general basis, the pseudogap p
of the HTSC has been examined,23 invoking the mutual feed-
back effect between the single- and the two-particle prop
ties via the introduction of some effective gap aboveTc .

A different procedure was followed by proposing a sp
cific structure of the Cooperon propagator24 of the form

C~r ,t !5Ca exp~2r /r 0!1Cf^eif(r ,t)e2f(0,0)&, ~2!

separating amplitude from phase correlations in an addi
way. The first term, representing a rather rapidly decreas
function with r, describes local pair amplitudes which a
treated in a time independent fashion. The second term
scribes the phase correlations, which, in the low-freque
limit, are approximately expressed byCf exp@2r /j(T)#,
where j(T) denotes the temperature-dependent cohere
length. Attributing that latter contribution of the Coopero
propagator to a 2D XY physics above the Kosterlitz
Thouless critical temperatureTKT , establishes a link with the
phase fluctuation scenario. The doping behavior of such
cursor systems as the HTSC is then monitored by param
izing the relative weight of the coefficientsCa ,Cf together
with the relative spatial extent of the two contributions
C(r ,t) such that it describes the following.

~i! An underdoped regime, characterized by primar
phase fluctuation controlled onset of superconductivity w
a large temperature regime for the pseudogap phase.

~ii ! An optimal/overdoped regime, characterized by
gradual disappearance, upon increased doping, of
pseudogap phase and a superconducting phase, controll
amplitude correlations.

Considering the origin of the pseudogap as being due
pair fluctuations, also called precursor pairing~not to be con-
fused with preformed pairs!, the characteristic temperatur
T* below which the opening of the pseudogap occurs
such single-component scenarios with interparticle attr
tion, scales with the strength of that interaction.25–28 How-
ever, as far as the concentration dependence ofTc andT* is
concerned within such scenarios, it invariably shows t
both T* andTc follow the same trend29,30 upon varying the
number of charge carriers. This is clearly the opposite
what is found in the HTSC. Potential dimensionali
changes, linked to the change-over from underdoped to o
doped materials, cannot remedy this situation either, sinc
far asT* is concerned, it is determined by essentially loc
physics and thus independent on any dimensional aspect
far as Tc is concerned, even upon assuming a cross-o
with reduced doping, to a Kosterlitz-Thouless critical te
perature behavior in the underdoped regime,TKT would still
follow the same doping trend asT* . It thus seems likely tha
correlation effects are indispensable in determining the d
ing dependence ofTc versusT* in such precursor scenario
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III. THE MODEL AND THE TECHNIQUE EMPLOYED

The scenario of a mixture of itinerant fermions~band
electrons! and localized hard-core bosons~bound electron
pairs! will be described on the basis of the so-called bos
fermion model~BFM!. This model presents a paradigm fo
interacting electron systems where two-particle reson
states are expected to occur due to the interaction of
electrons with certain bosonic modes and where such t
particle resonant states act as precursor to a transition in
superconducting state. The underlying physics behind
model,31 as it was initially conceived,32 is that of electrons
strongly coupled to local phonons, which act as such boso
modes. This results in self-trapped entities, comprising
charge carriers and the surrounding clouds of bosonic e
tations, in form of resonant pair states inside a system
itinerant electrons. Such a BFM scenario is not in any w
restricted to electronic systems undergoing a supercond
ing transition but ought equally well apply to electron-ho
pairing in semiconductors,33 and low density nuclear matte
with isospin singlet pairing.34 Moreover, it was in a similar
spirit that such a boson-fermion mixture scenario has b
derived recently for~i! the Hubbard model with intermediat
repulsive coupling,35 ~ii ! the Feshbach resonance in atom
physics, controlling the strength of attraction between ato
of different hyperfine configurations by adequately tuning
magnetic field36 and ~iii ! for entangled atoms in squeeze
states in molecular Bose Einstein condensates in trap37

More generally, the BFM has been employed in attempts
bosonize an intrinsically fermionic system.38

The model Hamiltonian describing the boson fermion s
nario is given by

H05~D2m!(
is

cis
1 cis1~DB22m!(

i
S r i

z1
1

2D
1t (

iÞ j ,s
cis

1 cj s1v(
i

~r i
1ci↓ci↑1r i

2ci↑
1ci↓

1!, ~3!

where the localized hard-core bosons are represented
pseudospin-1/2 operators@r i

1 ,r i
2 ,r i

z# and the itinerant elec-
trons by@cis ,cis

1 #. v denotes the strength of the onsite h
bridization between the two types of charge carriers andt the
hopping integral for the itinerant electrons with a band h
width D. The full band width 2D will be used as the energ
unit through out this paper. The energy level of the localiz
bosons is given byDB and the chemical potentialm is cho-
sen to be common to both species, such as to ensure
charge conservationntot5nF12nB . nF and nB denote the
occupation number per site of the electrons~including up and
down spin states! and of the hard core bosons.

The opening of the pseudogap and its temperature de
dence on the basis of this model, for a fixed concentrat
and upon neglecting the hard-core nature of the bosons
been studied previously.39–41In a study based on the dynam
cal mean field approach,42 the hard-core nature of the boson
could be taken into account. But then, the itinerancy of
bosons could not be treated within such a scheme wh
restricted this study to purely amplitude fluctuations driv
superconductivity. In the present work we shall account
1-3
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J. RANNINGER AND L. TRIPODI PHYSICAL REVIEW B67, 174521 ~2003!
both, the hard-core nature of the bosons as well as t
potentiality becoming itinerant and shall study the pseudo
characteristics as a function of total carrier concentrati
The present study follows closely the previous se
consistent diagrammatic approach,39 but generalizes it such
as to take into account the hard-core nature of the bos
We adopt for that purpose the diagrammatic technique wh
had been developed for spin systems43,44 ~with their conven-
tion @r1,r2#5rz) and for which it was shown that the usu
Wick theorem had to be generalized to

^T$r1
a1~t1!•••r0

2~t!•••rn
an~tn!%&0

5K01
0 ~t2t1!^T$@r1

a1 ,r0
2#t1

r2
a2~t2!•••rn

an~tn!%&0

1K02
0 ~t2t2!^T$r1

a1~t1!@r2
a2 ,r0

2#t2
•••rn

an~tn!%&0

1••• ~4!

with

K118~t2t8!5d118K
0~t2t8!,

K0~t2t8!5
^Tr2~t!r1~t8!&0

^rz&0

5e2E0(t2t8)n~x0!u~t2t8!

1e2E0(t2t8)@11n~x0!#u~2t1t8!,

n~x0!5
1

ex021
, x052bE0 . ~5!

Recursively applying this procedure of the modified Wi
theorem, the remaining multi-spin correlation functions a
transformed step by step into a sum of products ofKi j

0 mul-
tiplied with thermal averages of the type^r i

z
•••rn

z&0 @evalu-
ated with respect to the unperturbed Hamiltonian (DB

22m)( i(r i
z1 1

2 )]. These thermal averages are expressed
terms of a set of cumulants, the first few of which are giv
by

^r1
z~t!&5b52

1

2
1nB ,

^r1
z~t!r2

z~t!&5b21b8d1,2, b21b85
1

4
,

^r1
z~t!r2

z~t!r3
z~t!&5b31bb8~d1,21d2,31d3,1!1b9d1,2d2,3,

b313bb81b95
1

4
b ~6!

Keeping only the first two cumulantsb andb8 gives rise
to the set of diagrams, illustrated in Fig. 1, and describe
set of self-consistent equations determining the Ferm
@Fig. 1~a!# and boson Green’s functions@Fig. 1~b!# G(k,vn)
andK(q,vm). The vertex depicted by the full square in tho
figures is made up of two contributions: one arising from
17452
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cumulantb and depicted by a full circle and one arising fro
the cumulantb8, illustrated by the second contribution t
this vertex. Both those vertex contributions have to be de
mined self-consistently. For the contribution arising from t
cumulantb it simply is b521/21nB . For the contribution
arising from the second cumulant, given byb8V(v) the self-
consistent equation corresponding to the set of diagram
lustrated in Fig. 1~d! has to be solved. To within this approx
mation of cumulants, this leads to the following set
equations:

G~k,vn!5
1

ivn2«k2S~k,vn!
,

K~q,vm!5
b1b8V~vm!

ivm2E02@b1b8V~vm!#P~q,vm!
,

G0~k,vn!5
1

ivn2«k
, K0~vm!5

b

ivm2E0
,

V~vm!5V0~vm!1K0~vm!
1

N (
q

P2~q,vm!K~q,vm!,

V0~vm!5
1

N (
q

P~q,vm!

ivm2E0
~7!

with E05DB22m and the bare electron dispersion«k
5D@12(1/Nz)(^r iÞr j &

eik„r iÀr j…#2m. The self-energies for
the Fermions and hard-core bosons are given by

S~k,vn!52
v2

bN (
q,vm

G~qÀk,vm2vn!K~q,vm!,

P~q,vm!5
v2

bN (
k,vn

G~qÀk,vm2vn!G~k,vn!. ~8!

This set of equations represents a generalization of
usual self-consistent RPA equations for this BF
problem39,40 when restricting oneself to the lowest order a
proximation involving only the cumulantb. The contribu-
tions arising from higher order cumulants bring in frequen
dependent vertex correctionsV(v). Keeping only the lowest

FIG. 1. Diagrammatic representation of the fermion~a!, boson
~b!, and the vertex correlation functions~c!,~d!.
1-4
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FROM PHASE- TO AMPLITUDE-FLUCTUATION-DRIVEN . . . PHYSICAL REVIEW B67, 174521 ~2003!
cumulant in the expression forK(q,vm) corresponds to a
boson Green’s function which is identically zero in the lim
of nB50.5. Hence, close to this limit the second order c
mulant expansion has to be used as a starting point. The
set of Eq.~8! ~including both first and second order cum
lants! was solved for a restricted set of values for tempe
tures and total particle concentrations and the results w
compared with those obtained when keeping the lowest o
cumulant only. Except for boson densities close tonB50.5,
the lowest order cumulant approximation provides the do
nant contribution to the solutions of these equations. T
results presented in this paper cover a boson density reg
between 0 and.0.35 for which this lowest order cumulan
approximation can be considered as being qualitatively c
rect. Upon approachingnB50.5 @where the full set of Eq.~8!
had to be dealt with# we encountered convergence proble
with the iterative solution algorithm employed here whi
became exceedingly more important the lower the temp
ture was.

The Green’s functions for the fermions and the hard-c
bosons are defined by

Gi , j~t,t8!52^T@cis~t!cj s
1 ~t8!#&

5
1

Nb (
k,n

eik(r iÀr j)2 ivn(t2t8)G~k,vn!,

Ki , j~t,t8!5^T@r i
2~t!r j

1~t8!#&

5
1

Nb (
q,m

eiq(r iÀr j)2 ivm(t2t8)K~q,vm!, ~9!

wherevn5p(2n11)/b andvm5p2m/b denote the Mat-
subara frequencies for fermions and bosons, respectiven
and m running over all integers from2` to 1`. The ex-
pressions for the self-energies for the fermionsS(k,vn) and
for the hard-core bosonsP(q,vm) differ from the standard
ones for ordinary bosons by a change in sign due to the W
theorem for hard-core bosons. The effect of the cumula
however, corrects this sign change in the end because o
presence of the factorb in the numerator of the bose Green
function. Fixingntot , Eqs.~7! are solved numerically on th
Matsubara axes and the resulting Green’s functions and
energy functions are then analytically continued onto the
frequency axes, via the usual Pade´ type procedure. The
Green’s functionsG andK are linked to the occupation num
bers nk

F5(2/b)(vn
e2 ivn02

G(k,vn) and nq
B

5(2/b)(vm
e2 ivm02

K(q,vm) for the fermions and bosons

respectively, withnF,B5(1/N)(knk
F,B .

As a typical example for the present study we choose
energy level of the hard-core bosons to lie in the center of
band of itinerant electrons (DB51) and assume a sma
value of the exchange coupling constant (v250.02). Requir-
ing the chemical potential to lie slightly below the boson
level (m<0.5), assures us that upon changing the total nu
ber of charge carriersntot from 2 to 1, we recover a situatio
which, as far as the density of electrons is concerned, mim
the situation encountered in HTSC over a wide doping
17452
-
ull

-
re
er

i-
e
e

r-

s

a-

e

,

k
s,
he

lf-
al

e
e

-

cs
-

gime. We shall for that reason adopt the terminology, wid
used in connection with studies on the HTSC’s, and refe
the doping regime 2>ntot>n0 as the underdoped regime an
ntot<n0 as the optimal/overdoped regime, withn0.1.1 for
our choice of parameters. We furthermore restrict the m
mentum summations over a 1D Brillouin zone with 200k
points. This is justified, since we are interested here in o
very general features of the pseudogap phenomenon. If
results, have any bearing on the physics of HTSC, th
should apply to regions in momentum space where
pseudogap phenomenon is most pronounced, i.e., nea
so-calledhot spotsaround theM points in the Brillouin zone
of the basal plane. There they could described wave sym-
metry pseudogap behavior along one of its lobes alon
direction @0,0#2@0,p# and their equivalents, traversing th
M points. Our results could thus possibly be compared w
ARPES spectra for wave vectors along such directions ik
space, as well to transport measurements along the sam
rections.

IV. THE DOPING AND TEMPERATURE DEPENDENCE
OF THE PSEUDOGAP

We present in the following the results of the solution
the set of self-consistent equations~7!, ~8!, together with a
self-consistent determination of the lowest cumulantb, Eq.
~6!. This permits us to determine the electronic DOS a
function of temperature for different ‘‘doping rates,’’ give
by ntot , or alternatively, by the depletion of the Fermi s
away from half filling, given by (12nF). In this BFM sce-
nario, doping influences both the number of itinerant el
tronsnF as well as the number of bound electron pairsnB .
This is not an unrealistic premise as far as the HTSC
concerned, since it has been experimentally established
doping does not occur exclusively in the CuO2 planes but
involves also the dielectric layers between them. This is b
out by XPS studies which permit to determine the relat
change with doping of the population of Cu1 versus Cu11

ions.45 Further indications that doping occurs in a multicom
ponent system comes from measurements of the size o
Fermi surface volume46 which show that the universal curv
for Tc as a function of doping is shifted downwards in do
ing as compared to its dependence on the chemical do
rate. And finally, site dependent XAFS studies47 show that in
order for the superconducting phase to materialize, dop
must necessarily involve holes located outside the meta
CuO2 planes. Further evidence for the existence of two s
cies of different charge carriers, itinerant ones~giving rise to
a Drude peak! and localized ones~giving rise to a peak in the
far infrared regime!, comes from reflectivity
measurements.48

Given our choice of the boson level falling in the midd
of the band of itinerant electrons, fixes the Fermi level su
that we have the situation of a half-filled band forntot52.
Upon hole doping we move the chemical potential dow
wards from its value atD, which introduces holes in the
electronic subsystem and at the same time diminishesnB .
This variation ofnB as function ofm is illustrated in Fig. 2
for different temperatures. The bound electron pairs, be
1-5
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hard-core bosons, lead to a fully symmetric situation for p
ticle and hole doping for this choice of parameters. We a
illustrate in this figure the variation ofnB with m for ordinary
bosons, which significantly differs from that of hard-co
bosons.

In order to study the evolution of the pseudogap a
function of temperature and doping, we evaluate the spec
function of the single-particle fermionic Green’s functio
AF(k,v)52 ImG(k,ivn→v1 id) which, after integrating
over all wave vectors in the Brillouin zone gives us the DO
r(v). In Fig. 3 we plot the evolution of the pseudogap ne
the chemical potential~corresponding tov50) as a function
of temperature and for several doping concentrationsntot
.1.66, 1.20, and 0.97. In order to determineT* as a func-
tion of nB and ntot , respectively, we illustrate in Fig. 4 th
minimum of the dip in the DOS given byrmin(T), as a
function of nB for different temperatures. We then consid
the relative values of this depletion of the DOS, determin
by rmin(T)/rmin(`) and cut these functions by horizont
lines, lying 4% below the saturation values ofrmin(`).
@Within the lowest order cumulant approximation—puttin
b850—we would have obtained armin(nB) which as a func-
tion of nB would have show an upturn upon approachi
nB50.5.# The crossing points determine the values ofT* for
any particularntot and its corresponding value ofnB . T* ,
representing a cross-over rather than a phase transition,

FIG. 2. Comparison of the variation of the number of normal
hard-core bosons as a function of the chemical potential for sev
temperatures.

FIG. 3. Evolution of the pseudogap near the chemical poten
as a function of temperature forDB51 and different doping con-
centrationsntot .
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corresponds to that temperature where the deviation from
high temperature saturated DOS close to the Fermi energ
reduced by an arbitrary but small amount, chosen here
4%. In Fig. 5 we illustrate the variation ofT* as a function
of ntot as well as of (12nF); the latter being a measure o
the deviation of the Fermion occupation from the half-fille
band situation and thus of hole doping.

It is illustrative to compare this doping dependence ofT* ,
derived from the dip in the DOS in the normal state, with t
doping dependence of the mean field critical temperat
Tc

MF for amplitude fluctuation controlled superconductivit
That latter is characterized by the order parameters

x5
1

N(
i

^ci↑
1ci↓

1&, r5
1

N (
i

^r i
11r i

2& ~10!

which refer to the off diagonal elements of the charge ope
tors of the electron pairs and hard-core bosons, respectiv
Solving this mean field equation problem~for details for
such an analysis the reader is referred to an earlier pap49!
gives rise to aTc

MF which exhibits a doping dependenc
which is quite similar to that ofT* ~see Fig. 5!, with an onset
of amplitude fluctuation controlled superconductivity slight
below that temperature where electron-pair fluctuations
in. Tc

MF does not, of course, have the meaning of a transit
temperature for the onset of superconductivity, which, as

ral

al

FIG. 4. Dependence of the minimum in the DOS on the conc
tration of hard-core bosonsnB for different temperatures andDB

51.

FIG. 5. Doping dependence ofT* , compared with the mean
field critical temperatureTc

MF , and the ‘‘phase fluctuation’’ tem-
peraturesTf . For comparison we also illustrate this doping depe
dence byTNB* andTf

NB when treating the bosons as normal boso
1-6
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shall see in the next section, is induced by phase rather
amplitude fluctuations, except for the limit of low boson co
centrations whereTc

MF andT* smoothly join.
It is an interesting question to ask how this doping dep

dence ofT* changes when instead of hard-core bosons
considers normal bosons. We plot in Fig. 5 the tempera
TNB* , signalling the opening of the pseudogap in that case
shows a monotonocally decreasing behavior with decrea
ntot , similar to that found for hard-core bosons but does
saturate, as is the case for those latter, when approachin
fully symmetric limit ntot52.

V. SPECTRAL PROPERTIES OF THE COOPERON
PROPAGATOR

Let us now examine the features of the normal state wh
act as a precursor of the superconducting phase. As p
ously shown,40 the intrinsically localized bound electro
pairs ~bosons!, gradually acquire itinerancy as the tempe
ture is lowered belowT* . We shall explore this behavio
here as a function of doping and focus on the effect of
hard-core nature of those bosons, which has been negle
in such previous studies. The resonant electron-pair state
the fermionic subsystem, induced by the exchange with
bound electron pairs of the bosonic subsystem, are descr
by the spectral properties of the Cooperon propagator

C~q,t!5
1

N2 (
k,k8

!cqÀk↑
1 ~t!ck↓

1 ~t!;ck8↓~0!cqÀk8↑~0!@,

~11!

which are intimately linked to the spectral properties of t
single-particle bose Green’s functionK(q,vm) via the rela-
tion

C~q,vm!5
1

v2
P~q,vm!1

1

v2
P2~q,vm!K~q,vm!.

~12!

The thermodynamic and transport properties of our sys
are given by the low lying excitation spectrum of those re
nant electron pairs. Their spectral properties are determ
by spectral functions of the hard-core bosons, given by
second term in Eq.~12!. In Figs. 6–8 we illustrate thos

FIG. 6. Temperature evolution of the boson spectral function
the low wave vectors for the underdoped regime withntot51.65.
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spectral functions for the long wavelength regime toget
with their evolution with temperature for three representat
concentrations, which cover the entire doping regime fr
underdoped (ntot.1.65) with a high concentration of boson
to the optimal overdoped (ntot.0.97) with a low concentra-
tion of bosons. We find that in the underdoped regime
Cooperons are well defined propagating modes with a n
row width of the spectral function which, moreover, strong
decreases with decreasing temperature~see Figs. 6, 7!. In the
optimally/overdoped regime, on the contrary, the spec
functions show overdamped mode behavior~see Fig. 8!.
Tracing the peak position of the boson spectral function a
function of wave vectorq permits us to determine the mas
mp of those Cooperons. As we approach the dense limi
bosons,mp increases sensibly, when we compare this m
for different values of doping (ntot) at a fixed given tempera
ture ~see Table I!. For the low doping regime where th
bosons are well defined quasiparticles, their DOS shows
evolution with temperature in which the low energy part g
more and more peaked as the temperature is lowered an
peak position approaches the valueE01bP(0,0), ~see Figs.
9, 10!, as it should according to the Hugenholtz Pin
theorem.50

r

FIG. 7. Temperature evolution of the boson spectral function
the low wave vectors for the underdoped regime withntot51.20.

FIG. 8. Temperature evolution of the boson spectral function
the low wave vectors for the optimally overdoped regime w
ntot50.97.
1-7
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J. RANNINGER AND L. TRIPODI PHYSICAL REVIEW B67, 174521 ~2003!
We next turn to the evaluation of the concentration
Cooperons, which, together with their mass will enable us
estimate the phase stiffness in that system and thus the o
temperature of superconductivity due to phase fluctuati
Tf . The density of Cooperons, acting as superfluid cha
carriers, is contained in the combination ofnp /mp entering
the expression for the penetration depth. Alternatively, an
an approximative fashion, it describes the density of itiner
quasiparticles in the normal state, derivable from the Dru
weight in the optical conductivity.51 For the BFM scenario
investigated here, such a Drude component arises from
Aslamazov-Larkin term in the conductivity of the itinera
electrons,40 involving the Cooperons and is contained in t
second term of the Cooperon propagator, Equation~12!. In
order to estimate the densitynp of those Cooperons which
give rise to such a Drude component, we have to attribu
to just that contribution of the Cooperon propagator, i.e.,

np5
1

Nb (
q,vm

1

v2
P2~q,vm!K~q,vm!, ~13!

where the uncorrelated part (1/v2)(q,vm
P(q,vm) has been

subtracted out of the thermal average of the doubly occup
sites, given bŷ c↑

1c↓
1c↓c↑&. In Table II we present the mas

and and concentration of Cooperons for different tempe
tures and doping rates corresponding to the well underdo

TABLE I. Variation with dopingntot of mp ~in units of 1/D) and
np for a fixed temperatureT50.00667 and the estimated resultin
Tf . We present in parenthesis the corresponding values when
bosons are treated as normal instead of hard-core bosons.

ntot mp np103 Tf

1.651 2.27~1.29! 9.60 ~14.9! 0.0042~0.0116!
1.614 2.14~1.24! 9.49 ~14.5! 0.0044~0.0117!
1.495 1.56~1.06! 9.04 ~12.9! 0.0058~0.0112!
1.376 1.14~0.88! 8.44 ~11.2! 0.0074~0.0127!
1.204 0.71~0.62! 7.30 ~8.71! 0.0102~0.0140!
1.156 0.63~0.55! 6.91 ~7.98! 0.0111~0.0145!
1.105 0.45~0.49! 5.88 ~7.10! 0.0124~0.0145!

FIG. 9. Temperature evolution of the bosonic DOS for the u
derdoped regime withntot51.65. The inset presents the low-ener
part of this DOS.
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(ntot.1.65) and the less well underdoped (ntot.1.20) re-
gime, for which the bosons have well defined propagat
quasiparticle features.

In order to highlight the effect of the hard-core nature
the bosons we have repeated this study for the Cooperon
the case of normal bosons rather than hard-core bosons
present the corresponding values for the Cooperon mass
concentration by the numerical values, given in Table I,
the parenthesis.

The above assessment of the mass and concentratio
the cooperons, contributing to the Drude peak in the norm
state and ultimately to the superfluid current, shows that
hard-core bosons their concentration depends little on d
ing, while their mass depends on it sensibly. The latter r
idly increases, as, upon reducing the hole doping, we e
the regime of high boson concentration where correlat
effects become increasingly important. As compared to
case of hard-core bosons, for normal bosons the varia
with doping of the concentration of Cooperons turns out
be much more important, while for the mass it is less imp
tant. This leads, as we shall see below, to significant qua
tive differences in the respective temperatures determin
the onset of phase correlation driven superconductivity.

On the basis of these findings, we now attempt to estim
the critical temperature for phase fluctuation controlled
perconductivity. For that we putkBTf.\2(np /mp)a, where
np andmp are our estimates for the densityns and massms
of the superfluid charge carriers.a denotes a length scal

FIG. 10. Temperature evolution of the bosonic DOS for t
underdoped regime withntot51.20. The inset presents the low
energy part of this DOS.

TABLE II. Variation of np , mp , andnF with temperatureT for
ntot51.64 ~top! andntot51.20 ~bottom!.

T np103 mp nF

0.006 67 9.59 2.23 0.995
0.010 00 7.86 2.63 0.994
0.020 00 6.46 5.81 0.990

0.006 67 7.30 0.71 0.988
0.010 00 6.42 1.00 0.984
0.020 00 5.56 2.91 0.971
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-
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which is of the order of the coherence length or, alter
tively, the interplane distance, depending on the degree
anisotropy of the system.

Assuminga in the expression forTf to be given by the
lattice constant, corresponding to a layer compound sys
such as the HTSC, we trace this critical temperature a
function of doping (ntot and 12nF) in Fig. 5. We notice a
crossing of the energy scales related to the phase stiff
and to the electron pairing, as we approach the high dop
limit, where the density of bosons is small and Coopero
are no longer well defined quasiparticles. This phase
gram, Fig. 5, corresponds to that proposed on the basis o
phase fluctuation scenario,16 but with the difference tha
there the doping dependent quantity of the phase stiffn
was supposed to be related to the density of superfluid
riers, while, according to our present findings, based on
BFM scenario, it should be primarily related to the mass
the superfluid carriers—estimated as the mass of the C
erons in our case. Upon approaching the optimally ov
doped regime, whereTf crossesT* , the Cooperons loose
their good quasiparticle features, and the onset of super
ductivity is becoming controlled by amplitude fluctuation
as in a BCS system. The opposite trend with doping ofTf
andT* , observed up to this level of doping, ceases acco
ingly and Tc is constraint to decreases, since being limit
from above by the decreasing behavior ofT* which controls
pair formation.

These features have been recently confirmed by an e
diagonalization study52 where for finite clusters the stati
correlation function̂ rq50

1 (t)rq50
2 (t)& has been studied fo

different boson concentrationsnB . It shows a characteristic
temperature—strongly dependending onnB—where this cor-
relation function shows a significant drop. This temperat
can be used as an indication for the onset of long range p
pair correlations and hence can be compared with theTF in
this paper. It shows a rapid increase with decreasingnB and,
upon approachingT* , it smoothly follows that latter and
decreases with further decreasingnB .

In comparison to these features, derived by conside
hard-core bosons, we find a noticeably different doping
pendence of the phase fluctuation temperature when t
hard-core effects are absent and the bosons are treate
normal bosons. See the corresponding values forTf

NB in
Table I and its graphical representation in Fig. 5.Tf

NB de-
creases much more moderately upon approaching the
doping regime, but both,Tf

NB as well asTf converge to a
finite value atnB50.5. This is moreover again confirmed b
this exact diagonalization study,52 showing a decrease an
saturation of the static long wavelength phase correla
function upon increasingnB and approaching its value 0.5

In order to illustrate the combined effect of local electr
pairing and phase correlations of those resonant pair st
we now examine the Cooperon propagator~12! in the low-
frequency limit and interpret it in terms of its physical
intuitive form, given in Eq.~2! in Sec. II. Let us for that
purpose illustrate this Cooperon propagator in Fig. 11 a
function of temperature for two cases, representing a w
underdoped and a less well underdoped situations, show
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the tendency with increased hole doping. Fitting the spa
dependence of the Cooperon propagator to this phenom
logical form, permits us to determine the various parame
which characterize it and which we enumerate in Table
We notice that upon increasing the temperature, the co
cientsCa , weighting the short-range phase-uncorrelated
cal electron pairing, tend to rapidly decrease as we appro
T* in the entire doping regime. In the underdoped regim
upon decreasing the temperature and approachingTf , the
coefficients Cf , weighting the phase correlated electro
pairs, increase rapidly together with the coherence lengthj,
which is typically an order of magnitude bigger than t
short-range electron-pair correlation lengthr 0. In the opti-
mally overdoped regime, on the contrary,Cf hardly changes
with temperature, while the coherence length follows t
similar temperature dependence as in the underdoped
gime. A systematic change is observed in the relative we
of the long-range to short-range contribution of the Coo
eron correlation functionCf /Ca , which, with increased hole
doping, shows a decreasing behavior when evaluated
some characteristic doping dependent temperatures suc
T* . In particular, we findCf /Ca50.71, 0.45, 0.31 forntot
51.65, 1.20, 1.02 and corresponding values ofT* .0.016,

FIG. 11. Temperature evolution of the low-frequency limit
the Cooperon propagator in the underdoped regime withntot

51.65 andntot51.20 ~inset! and its spatial Fourier transform fo
ntot51.65.

TABLE III. Characteristic parameters of the Cooperon propa
tor ~2! as a function of temperatureT and for three doping rates
ntot51.64~top!, andntot51.20~middle!, andntot51.02~bottom!. j
and r 0 are in units of the lattice constanta.

T Ca Cf r 0 j(T)

0.006 67 1.31 1.06 0.91 13.75
0.010 00 1.13 0.61 0.72 7.59
0.020 00 0.88 0.42 0.53 3.58
0.006 67

1.23 0.66 0.83 11.76
0.010 00 1.06 0.45 0.67 6.90
0.020 00 0.86 0.37 0.52 3.51

0.006 67 1.08 0.33 0.71 9.07
0.010 00 0.98 0.32 0.62 6.18
0.020 00 0.83 0.32 0.51 3.45
1-9
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0.0142, 0.005 andTf50.004, 0.010, 0.014. It is this relativ
weight increase of amplitude versus phase contributions
we go from the underdoped to the optimally overdoped
gime, which indicates the change over from phase corr
tion driven superconductivity toward amplitude correlati
driven superconductivity. A remarkable result is that neith
the short nor the long-range scale depend sensitively on
ing. We have some experimental indications53,54from studies
in the HTSC that, at least as far asj is concerned, its doping
dependence is very weak.

VI. EVIDENCE FOR PAIRING CORRELATIONS IN THE
SPECIFIC HEAT

The onset of the pseudogap, as seen in numerous ex
mental studies such as ARPES and single particle tunne
indicate a loss of low energy single particle spectral weig
This loss of single particle spectral weight ought to be
companied by a compensating increase of spectral we
coming from collective excitations, which, for the prese
precursor scenario, should predominantly come from p
fluctuations. Without having to go to elaborate spectrosco
techniques, indications for such many body effects are
ready seen in basic thermodynamic quantities such as
specific heatCV(T) and entropyS(T), where a hump in
CV /T and a change in slope inS(T) is observed at tempera
tures aroundT* .55 A recent theoretical approach56 on the
basis of a classical pair fluctuation scenario57 attributed this
hump feature very clearly to the contributions coming fro
pairing correlations, sitting on top of the single particle co
tributions.

We shall in this section present a similar investigation
the basis of the two-component precursor scenario ado
here. We evaluate for that purpose the inner energy, give

U~T!5Ekin
F ~T!1Ekin

B ~T!1Eint
BF~T!

Ekin
F ~T!5

1

N (
k

~«k1m!nk
F~T!

Ekin
B ~T!5DBnB~T!

Eint
BF~T!5v(

i
^~r i

1ci↓ci↑1r i
2ci↑

1ci↓
1!&T

52
2

Nb (
q,vm

P~q,vm!K~q,vm! ~14!

and subsequently determineCV(T)5(d/dT)U(T) and
S(T)5*0

TdT8CV(T8)/T8. The fermion distribution function
nk

F(T), the number of bosonsnB(T) and the expectation val
ues of the interaction energy have to be calculated with
spect to the full Hamiltonian. We illustrate in Fig. 12 th
temperature variation ofCV(T) andS(T) for different total
doping ratesntot , corresponding to the underdoped situati
and compare it with the noninteracting case (v50) for the
case of very small concentrations of bosons. The pseudo
is manifest in the diplike feature ofCV(T) which occurs at
T* , together with a subsequent upturn ofCV(T) upon low-
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ering the temperature which indicates the broad hump
structure aboveTc . As we decreasentot upon going from the
underdoped to the optimally overdoped regime, the
moves to lower temperatures in agreement with a decrea
T* and eventually disappears upon reaching a doping c
centration where the number of bosons tends to zero~given
approximately by the noninteracting BFM withv50). At
the same time the linear slope ofCV(T) at high temperatures
increases in correspondence with an increase of the DO
the Fermi energy and saturating at the value characteri
the low boson concentration limit. Concerning the entro
we are able to evaluate its increaseDS(T) starting form a
fixed lowest temperature and going up to the highest te
perature we have been considering. The rapid rise inDS(T)
belowT* , changing into a rather slow rise aboveT* signals
the existence of local order belowT* which gradually dis-
appears when going beyondT* to higher temperatures.

VII. SUMMARY

A doping induced change over from phase- to amplitu
fluctuation-driven superconductivity is shown to result in
system with precursor pairing within a two-component s
nario, involving charge carriers with different statistics: fe
mions and bosons, coupled together via a charge excha
term. The fermions describe free electrons while the bos
~more precisely hard-core bosons! describe localized self-
trapped electron pairs having spin-1

2 statistics which give rise
to correlation effects in such a system. The opposite varia
with doping of T* and Tc is obtained, where the critica
temperature is given by the phase stiffness of the syst
With decreasing the concentration of the localized elect
pairs, the energy associated with this phase stiffness cro
the pairing energykBT* in the itinerant electrons subsyste
at a certain characteristic doping level. There, phase fluc
tion controlled superconductivity changes over into amp
tude fluctuation controlled superconductivity, giving rise to
phase diagram, which, qualitatively, is reminiscent of th
proposed for the HTSC within the so-called phase fluctuat

FIG. 12. Temperature evolution of the specific heat and entr
in the underdoped regime withntot51.44, 1.20 and compared with
the optimally overdoped regimentot51.02.
1-10



n
e
s
c
in

tio
es
n

lo-

o-

n
on

in
2
b
le
p

ole
ar
all
ril-

the

ch
and
his

eal
sent
us
ua-

ty,
is-
the
sis-

FROM PHASE- TO AMPLITUDE-FLUCTUATION-DRIVEN . . . PHYSICAL REVIEW B67, 174521 ~2003!
scenario. The doping dependent length scales for short-ra
local electron-pair correlations and long-range phase corr
tions are discussed on the basis of the spectral propertie
the Cooperon propagator, describing the exchange indu
pairing in the electron subsystem. In the precursor pair
scenario studied here, it turns out that it is the degree
itinerancy of the Cooperons rather than their concentra
which controls the doping dependence of the phase stiffn
This degree of itinerancy varies from well defined itinera
electron-pair states in the limit of high concentration of
calized bound electron pairs~low hole doping! to over-
damped excitations in the limit of low concentration of l
calized bound electron pairs~high hole doping!.

The phase diagram, Fig. 5, represented as a functio
doping, involves changes in the concentration of electr
away from half filling ~hole doping! for given changes in
total concentration of charge carriersntot . The variation of
the hole doping@changes in (12nF) of the order of 2%# in
this phase diagram is small compared to changes inntot ,
which is due to the 1D situation we have been consider
here. This result is less surprising when we consider a
system with an anisotropic charge exchange coupling
tween the bound electron pairs and the bare itinerant e
trons. One would then obtain a corresponding anisotro
zo

y,

sk

. W

e-

ys

rty
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pseudogap, similar to what is observed in the HTSC. H
doping would now affect roughly equally all the regions ne
the 2D Fermi surface, and thus attributing only a very sm
fraction of the doped holes to the actual regions in the B
louin zone where the pseudogaps are formed, i.e., around
M points and along lines parallel to@0,0#2@0,p# and
equivalents.

One of the outstanding problems to be solved within su
a precursor scenario for superconductivity is to underst
how the transition to the superconducting state occurs. T
involves a competition between Cooper pairing and r
space pairing and necessitates a generalization of the pre
system of Green’s functions by including the anomalo
Green’s functions in order to treat superconducting fluct
tions. This problem will be the issue of future studies.
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