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Josephson effect in superconductive SNS heterostructures with barriers
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The dc Josephson effect in a planar superconductor—normal-metal—supercof@N&qunction is studied
in the existence of @ barrier in the normal region. The Green function of the structure is obtained by solving
the Gorkov equations for the structure and then the current is calculated from the Green functions. The effect
of the strength and position of the barrier is investigated. The current shows a weak dependence on the position
of the barrier and it is seen to be maximum when the barrier is at the middle of the normal region. Also it is
found that the current shows a stronger dependence on the strength of the barrier at low temperatures. A
comparative discussion of three possible types of Josephson junctions, the SIS, SCS, and SNS contacts, is
presented.
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[. INTRODUCTION paper we investigate how these two scattering mechanisms
(the normal reflection and the Andreev or retrorefledtioo+
Josephson effect is a well-known manifestation of macro-operate. The non-Andreev reflection reduces the magnitude
scopic phase coherence, the mechanism of which is the phagé the supercurrent and changes its temperature and phase
coherent transport of electrons from one superconductor tgependence.
another, in case when superconductors are weakly coupled to In our paper, a planar SNS structure with a stepwise pair
each othet. Early studies of weak links were mainly on the potential and & barrier within the normal region is consid-
SIS-type junctions(tunneling barriers>® Another weakly ~ered as a model compromising between the Andreev and the
coupled superconductive structure is the SCS cor{acti- non-Andreev scatterings. The Green function for the junction
rect metallic connection between superconductors through a#ith a barrier inside the normal metal is calculated by solv-
orifice of diameter smaller than the coherence lenfith  ing the Gorkov equations in a quasiclassical approximéation
new era in Josephson effect started with the discovery of #ith the appropriate boundary conditions, and from the
peculiar scattering mechanism at the SN boundary known agreen functions the Josephson current is found. As the bar-
Andreev reflectior. An electron in the normal region inci- fier strength is taken to zero, the pure SNS case, and as the
dent on the SN interface is reflected back as a hole, and vic#idth of the normal region is taken to be zero, the SIS case
versa, which may be interpreted as the condensation of thié recovered.
incident electron together with another electron, correspond- Similar, but not equivalent, problems of potential scatter-
ing to the reflected hole, into a Cooper pair, or in the case ofg in Josephson junctions of the SN fact SIN) type with
an incoming hole, as the disassociation of a Cooper pair. Thi§mooth potentials have been considered by Zaitsievthe
initiated the study of the SNS-type weak links, first generaclean limit and by Golubovet al,'® Kuprianov and
tions of which were by Kulié’ Ishii® Bardeen and Lukichev'® in the dirty limit. They derived appropriate
Johnsor!, Svidzinsky et al,*® and this new type of weak boundary conditions for the Green functions to the left (
links brought a rich variety in physics and applications of <6) and to the rightx> o) of the barrier, wheré is the de
Josephson effe¢t=* In SNS structures, the dc JosephsonBroglie wavelength of the Fermi electrod~7/pg. Our
effect arises due to coherent charge transport in the norm&pse will be when the barrier is deep inside the normal metal
region, the mechanism of which is Andreev reflection, whichin the SNS contacti.e., a SNINS contagtin that case, the

may be seen as the transport of Cooper pairs from one s@ssumption of sharp potential is just the way of introducing
perconducting electrode to anoth&r? consistently the effect of electron reflection inside the normal

Most of the authors calculated current using Green funcmetal, which results in a non-Andreev reflection and in de-
tions and the main concern was the construction of Greefrease in Josephson current through the junction.
functions, which came out to be intriguing and Gorkov formulation of superconductivity introduces two
complicated?® McMillan’s method of Green-function con- Green functions in the Matsubara finite-temperature tech-
struction, though he intended to explain Tomasch oscillationsique, G,(r,r’) and FI(r.,r"), and the pair potentiah (r)
in SN contact, proved to be very useful in SNS junctibhs. satisfying the self-consistent equation, which in case of pair
In this approach, the Green functions are obtained from thgotential varying only in one dimension reédd
scattering solutions, i.e., from the solutions of the

Bogoliubov—de Gennes equatioltsBy extending this con- io—To— "k Y+ AOET "k
struction, more recently, Furusaki and Tsukada obtained a o= T UG (xxTk) +AGOF, (xXTk,)
Landauer-type formula for the dc Josephson curtett. =8(x—x"),

In real contactsS and N metals are not identical, and
impurities and imperfections in the metal bulk as well as on N ) . ,
their interface make non-Andreev scattering possible. In this (i@ +Tx+U))F,(x,x" k) +A*(X)G,(x,x";k;)=0,
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andp=+/2mu— kf is thex component of the Fermi momen-

_ +
A*(x)= |)‘|§ Fo(X.%), (D tum. Except those points at which the derivative of the Green
function may suffer discontinuities, semiclassical for(Bs
where w=(2n+1)#T, with n=0,=1,£2,... and inserted into the Gorkov equations, upon keeping terms of

G, (x,x";k,) andF (x,x";k,) are the Fourier transforms, the first order in\g /& and ignoring higher order terms, yield
the equations for the semiclassical Green functigvih J,

1 . , =dldx andv = p/m)
G,(r,r')= zf d%k, G, (x,x";k, )elku(r=rD)
(2m) iw+iovdy A(X) o ©
o g,=0.
A*(X) iw—10ovdy
1 . ,
Fo(rr’)= (Zw)zf d?k F o (xx";k )™ (2)  equipped with the necessary boundary conditions. These

conditions will be derived in the following section. Equation

andk, is the transverse momentum. The Josephson currei) is satisfied in a region where the derivative of the Green

can be calculated from the single-particle Green functiorfunction does not suffer any discontinuities. The semiclassi-
G,(r,r') as cal Green functiong, no longer have fast oscillations as a

function of x. Elimination of fast varying terms reduces the
order of the differential Gorkov equations from 2 to 1.
In a superconducting region with a pair potentia(x)
r'—r =Ae€'? where there is no normal scattering, the solutions of
the semiclassical equatiof® consist of the superposition of

J=%E (V'=V)Gy(r.r")

~ ieT
x5 2 f A%k, (3= )Gy (XX 1K,) the two terms,
m(2m) "o , .
X=X elzp/Z
(3) gZ:a(X’) - w+ a0 o2 e(Vw2+A2/v)X+B(Xr)
Once we know the single-particle Green function we can “ITA e
calculate the Josephson current.
eigo/Z
II. QUASICLASSICAL TREATMENT OF GORKOV X w—0o) i e—(vw2+A2/v)X, (7)
EQUATIONS e’
In our a_pproach we will make use of qgasiplassicalwhereas in the normal region
Green-function formulation of superconductivity, i.e., the
condition that characteristic de Broglie wavelength of an 1 0
electron \p=27/ke~10"8 cm is much smaller than the go=a(x") 0 e 7y B(x") 1 erxlv, (8)

characteristic length at which the pair potential changes,
where the coherence length of a superconduétefive /A \wherey = \2mu—k?/m is the Fermi velocity in the direc-
which is of the order of 10°-10° cm for s-wave supercon- tion. The solutions in the different regionsx< —d/2
ductors. Since there is normal scattering of quasiparticles due o« y<x’ x’<x<d/2. d/2<x. whered is the thickness

to the barrier, the Fermi momentum is not conservedsf the normal metalis written down in the form of linear
throughout the structure. Hence quasiclassical approximatiogympinations, as shown above, and then boundary conditions
can only be implemented within the regions where there i, phe specified are imposed, allowing us to find the coeffi-
no normal scattering, with the scattering at short-length bargients, thus obtaining the full Green functions. This recipe
riers considered via appropriate boundary conditions for quagj| e specified in the following section in which the Green

siclassical Green functions. _ _ __function is obtained for an SNS structure withSaarrier.
The very essence of the semiclassical treatment is the

elimination of fast varying terms at the Fermi wavelength in

. . . .- . Il. SNS STRUCTURE WITH A é BARRIER
comparison with superconductive quantities that vary at dis-

tances of the order of the coherence Ienl@tm the context In this section we are going to consider an SNS structure
of semiclassical treatment, the Green functions are deconwith a & barrier within the normal region, and a stepwise pair
posed into two parts, potential A(x) (see Fig. 1, i.e.,
. Ae 2 at x<—d/2
Go(X, X"k )= 2, gg(x,x"k, )e' 7P, (4)

o== A(x)=4 0 at —d/2<x<d/2 (9)

where Ae'¢?  at x>d/2
G g where the barrier potential
gw:(Ff), gw:(fw) 5 .
P © U(X)=Vé(x—a) with —d/2<a<d/2. (10
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x=a+0

=0,

U(x)=Vd(x-a)

Gx,x")[}2273=0-2 €Pg7(x,x")
i@ ig2 7 =a-0
AC_IW“ AC‘P/ (16)

whereas the derivative of the Green functions has a jump due
to the & barrier,

-dr2 0 a d2

0xGo (XX )| X230=2mVG, (a,x")

FIG. 1. SNINS structure modeled by a stepwise pair potential of
phase differencep with a delta barrietU(x)=Vé(x—a) in the _>Z eiUDX(ia-p+ 3,)9%(x,x")
normal region. - ©

x=a+0

x=a—0
The derivative of the Green function has jumps at points =2mVg,(a,x’)
=a and atx=x’, whereas at any otherthe Green function
and its derivative are continuous. The boundary conditions at —>Z {ei 7PXgg?(X,X") §jgf8
the SN interface are 4
1 lopa~N0T ! j—
Gul(X-+0X') =G (X~ 0X") - =, taizeThguaxy=0. {17
whereZ=V/v is the dimensionless barrier strength.
05G o (XX ) x= - a2+ 0= 0xG (XoX ) x= v aro—0- (1) Now we are going to write down the solutions in the five

- . . L _.__regions and then implement the boundary conditions. Given
Within the semiclassical approximation, these two conditions_ j v’ 4 the solutions are written as follows

are equivalent and reduce to

e*i(p/4
gw(x+orx ):gw(x_orx )|X=id/2' (12) At X<_d/2, QZ:AU(X,) ) w+agQ ol e(Q/U)X
At x=x’, the Green functions are continuous, A €
40 x=x'+0 Bo(xr)efzr(wlv)x
12 X=X _ 'O' o ’ _ _ ! g __
G,(X,x )|x=x’70_0—>; e'PXg7(x,x") =0, At —d2<x<x’, g,= C[,(X')eg(wlv)x
x=x'"—0
(13

DO.(X/)e_U(w/V)X
where the vertical bar introduces the difference between the At x'<x<a, QZ:( F,(x)er@x ) (18)
values atx=x'+0 andx=x’'—0, whereas the derivative of 7

the single-particle Green function has a jump, GU(Xr)ea(w/V)X)

At a<X<d/2, g;r,:( H (Xr)eo(w/V)X

(?XGw(x,x’)|X=X'+°= 2m— >, ePXigp+d,)

x=x"—0

At di2<x, go=J,(x")
x=x"+0 ei‘P"‘
—i[(@—oQ)/A]e” ¥

x=x"+0 whereQ = Jw?+ AZ. All 16 coefficientsA,, B,, C,, D,
Fsr Gy, Hyy I, (0==) are functions ofk’.

x=x'—-0 Now the boundary conditions have to be imposedxAt

— 2i/p. (14) = —d/2, boundary condition§l2) yield

Xgo(x,x")

)e(ﬂlv)x

x=x"—0

=2m— Y, €ag?(x,x")

) ] ] ) (w/v)di2_ —(QUv)di2—igla_
Here the semiclassical forms are substituted according to Eq. B.e Ase 0,

(5), and the semiclassical approximation is applied such that C.e (W2 A+ (amd2tish_

the 9,g,, term is discarded in comparison with the term con- N * ’
tainingiop. At the same time the derivative of the Gorkov B_e (@/md2_p g (Qndi2-ieldi_q

Green function remains continuousxat x’,

C,e(“”V)dlz—A, ’)/767 (Qv)dl2+ield__ 0, (19)
x=x"+0
aXF+(x,x’)|XfX:+O=O—>Z e P (x,x") =0, where y*=—i(w+Q)/A. At x=x', boundary conditions
@ X=x'-0 v @ o (13)—(15) are
(15)

(D —B,)elP=e/MX 4 (D_—B_)el-Pre/mx'—q,
and again the semiclassical forms are substituted. The Green
functions are continuous at the barrier locatigg; a, (D, —B,)elP—emx' _(p_ —B_)el-ipte/x' — i,
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(F+_C+)e(ip+wlv)x'+(|:7_Ci)e(—ip—wlv)x'zoy J+7_e_(Q/V)d/2_i¢/4_ H+e(w/")d/2: 0,

(F+_C+)e(ip+w/v)x'_(Fi_Ci)e(—ip—wlv)X':o Jie—((llv)d/2+i<p/4_Gie(wlv)d/ZZ 0,

(20
At x=a, boundary condition$16) and (17) apply, J_yte (@madzrivh_p e-(wmd=q, (22
(G,.—D,)elP-ema (G_—p_)el~Pre/ma=q, which make in totality the 16 equations needed for 16 un-
knowns.
[G,—(1-2iZ)D, JeliP~«/Ma We do not need to know all the coefficients when we wish
o (—ip+wiv)a_ to find the Josephson current. According to the current ex-
—[G-—(1+2iZ)D_]e =0, pression, Eq.3), we only need the single-particle Green
i Cip— function for x and x” in the same region, which will be
_ (ipt+wlv)a _ (—ip—w/v)a_ )
(Hy=Fye +(H_—F_)e 0, chosen to bea>x>x’'>—d. In this region, only theD,
[H, —(1-2i2)F,]elir*ema coefficients are needed for the Green function,
+ +

—[H_—(1+2iZ)F_]e("iP-eMa=q  (21)

and finally, atx=d/2 boundary condition§12) and(13) re-
sult in the identities

Gw(X,X’;kL):E Do_eio(p—w/v)x. (23)

_ Solving the equations for the boundaries thus obtaining the
J, e (@maztieh G e-(e/md2=qg coefficientsD , ,D _, the Green function is written as

i . . . . .
Gw:;{(1+ ZZ)( ,y+ e(w/v)d—lcp/Z_ ,y— e—(w/y)d+lzp/2)( 7+ e(u)/v)d+l<p/2_ ,y— e—(w/v)d—lqo/Z) +ZZ(eI @l2+2(wlv)a
_ e*i(p*Z(w/V)a)(ei @l2—2(wlv)a_ e*i¢/2+2(wlv)a)}fl{[ _ (1+ ZZ) ,y+ei <p/2+(w/v)d( ,y+ e(w/v)dfkp/Z_ ,y*e*(wll/)d‘Fi(p/Z)
_ ZZei <p/2+2(a)/11)a(ei @l2—2(wlv)a__ e—i<p/2+2(m/v)a)]e(ip—(a)/V))(X—X') + [ _ ,y—(1+ ZZ)ei <p/2—(w/v)d( ,y+ ei @l2+ (w/v)d
_ ,yfefi(p/27(wlv)d)+22ei (p/272(wlv)a(ei(p/2+2(wlv)a_e*i(p/272(w/V)a)]ef(ipf(w/V))(Xfx’)}_F f(X+X’). (24)

There is an extra ternfi(x+x") that does not contribute to the current since it is a functiox-6k’ that vanishes upon
substitution into Eq(3). The Green function can be decomposed into two parts:

G, (x,x";k )=G%(x,x";k ) +GL(x,x";k,), (25)

where Gg(x,x’;ki) is the Green function of a normal metal with&abarrier V&(x—a) located atx=a, and Gi, is the
contribution arising due to onset of steplike gap poter®al In the intervala>x>x’, the normal-metal Green function is

i ) 1 Z .
0 ’- - _ (ipsgrw—|ollv)(x—x"y_ = =  (—ipsgro+|o|/lv)(x+x’ —2a)
G, (x,x";k,) Usgrme v 1+1Zsg e . (26)

Componeantlu(x,x’;kl) ata>x>x'>—d/2, making a first-order contribution to the current in powers.pf¢, is

i . . . . .
Gi(X,X/ : kJ_) — ;[(1+ ZZ)( ,y+ el @2+ (w/v)d _ ,y— e—l<p/2—(w/v)d)( ,y+ e—lgo/2+ (w/v)d _ ,y— el <p/2—(w/v)d) +22(el @l2+2(wlv)a
_ e*i(p/272(wlv)a)(ei @l2—2(wlv)a__ e*itp/2+ Z(wlv)a)] 71{[ _ ,yfsgnw( 1+ 22)( ,y+efi¢/2+(wlv)d

_ ,y—ei (p/Z—(w/v)d)e—(iqo/2+(w/v)d)sgrw+ ZZ(e—i<pSgrh)_ e—4(w/v)asgm))sgm]e(ip—(w/v))(X—X')

+[_ ,y—sngU(l+ZZ)(,y+ei(p/2+(w/v)d_ ,y—e—iqo/2—(w/v)d)e(i(p/2—(w/V)d)Sgr‘!u
+ ZZ(ei @Sgnw __ e74(w/v)asgl‘w)sgm]ef(ipf(w/v))(xfx’)} + g(X+ XI) (27)
where the last terng(x+x') does not contribute to the current as discussed before.
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IV. JOSEPHSON CURRENT IN A SNINS STRUCTURE
Josephson current in an SNS structure with bafi$NINS contactis found from expressio(3),
ieT
J= 5
m(2)

When the Green functio(27) is substituted into Eq28), the Josephson current comes out as follows:

> fdsz(ﬁxr—ﬂx)Gi(X,X'ikqux- (28)

8en’TA? v sin
S ‘

vdo (29
0 (1+ 29[ (w+ Q)% (»— )2 2@+ 2A7[ cosp+ Z?cosi4walv) ]

2m >0

with Q=w?+AZ? and Z=V/v. This expression can be put in a simpler form by using the dimensionless varigbles,
=velv, a=al¢, d=d/&, o= w/A, barrier strengttZo=V/vg (§=%ve/A is the coherence lengthas

J=4n) T > “dy sing (30)
= 4a1T, - - ~ py ~ — ~ ~ y
OA 0 )1y (1+ 22y [ (0+ D) 22+ (m—0)2e 29Y9] 4 2 cose + Z2y2costi2aya) |
where
\]O:el)FNFA,
NF:me/'TTZ, (31)

Ng is the density of states at the Fermi level per unit volume.
At T=0, the current becomes

© . (=dy sine
J=2J f d f — —= —= —. 32
°Jo ") y3 (1+ 23y (0+0)%e?Y 9+ (w— )% 29V + 2(cose + Z3y?cosh2wya) ] (32

In the absence of a barrier, Green funct'@ﬂ](x,x’;kL) in Eq. (27) for —d<x’<x<0 reduces to the following form:

L i e(ipfwlu)|xfx'| e*(ipfw/v)|xfx'|
G“’(X’X ’kL): ;ng 1+ 77(w)e[i<,p+2w/vd]sgnw + 1+ 77(w)e[fi<,er2cu/Vd]Sgnw (33)
where 7(w)=(Q+|w|)/(Q—]|w|), yielding the Josephson current
8en’T (v - Vo?+A%-0\"
J= f b S S (-1l —) e 2ondvginng. (34)
27 Jo ©>0n=1 0w+ A w
|
J(¢) reduces to a saw-tooth function a0 when all the Jom
harmonics contribute, Joo=5g " (37)
2
J= o §+o L o, —m<o<m (35)  The dependence reduces to a saw-tooth functiof=a0,
6\d d? and converges to a sinusoidal form as the temperature is
o _ increased.
wh|ch is inversely proportional td/¢ for d>¢, and can be At Zy=0 andd> & (ér=huve/#T) only the lowest har-
written in a more transparent form monic survives, thus the current converges to a sinusoidal
form
J=nevq, (36)
wherev = (A/2m)(¢/d) is the superfluid velocity and is Ve NTPT?+ A2 — 7T ” 38
i J=2evgNg— e “Y*Tsing. (38
the normal electron density. FNFg ST A+ T (2

In the absence of a barrieZ¢=0), Egs.(30) and (32
yield the current-phase relationships shown in Fig. 2, where
Jeo Is the critical current for the parameteds- 10, Z=0, At low temperatures, wheh>T, this expression further
andT=0 [see Eq(35)], simplifies to
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FIG. 2. Current-phase relationship &t 10¢, Z=0, and vari- FIG. 4. Current-phase relationship®Bt0, d=10¢, a=0, and
ous temperaturegl) T=0; (2) T=0.001A; (3) T=0.00%; (4)  various transparencieél) 1/Z5=1¢; (2) 1/Z5=200; (3) 1/Z5=10;
T=0.01A; (5 T=0.024; (6) T=0.04A. J is given by Eq.(37). (4) 1/23=2. I, is given by Eq.(37).

U o0
J=2evFN,:FFe_2d/§TSin(p. (39) 347 dy

AZ% w>0 J1 E

We can trace this behavior in Fig. 3; however one should be sing
cautious that Eq(39) breaks down a3 —0. K== Tova o 2. 20y ==

In Fig. 4 we see that the shape of current-phase relation- (0+0)%e™+(0—-0)% +2coshi2wya)
ship is quite sensitive to non-Andreev scattering as well as to (40)
temperature. Even af=0, the existence of non-Andreev hich fer that the t wre d q has th
scattering wipes away the higher harmonics, thus resulting if® mvx; Ic wte Ilnze;lal ti etmperzlzl urel e&en>1enced ‘is e
a perfect sinusoidal current-phase relationshigg 1 [see ~ S2Me€ 1orm at al¥o n the tunneling fimilzo=>1 and a

Eq. (30)], d_>§T y.F/WT, the current becomes independent of the bar-
rier position,

1 v
J=2eveNe— e 2érsing, (41)
z3 d

which differs from that of a pure SNS junction by the trans-
parency factor 75 [Eq. (39)]. On the other hand, the situa-
tion is quite different for smalZ, values; the critical current
becomes immune to temperature changegg@sicreases, at
low temperaturegsee Fig. 5. Also in Fig. 6, in the tunneling
regimeZy,>1, the linear dependence of critical current on
the barrier transparency is observed.

W,

A crucial observation is the very weak dependence of Jo-
\ : sephson current on the position of the barrier, however, the
Sse current still has a maximum when the barrier is at the middle
T~ of the normal regior(Fig. 7), and further the barrier is less
S~ T sensitive to the position of the barrier at higher temperatures.
-\\\OR \ofog\ When the width of the normal region is taken to be zero,

T/A i.e., ford=0, the SIS case is recovered. The Josephson cur-

rent (29) for d=0 reduces to a form interpolating between
FIG. 3. Temperature dependence of the critical currenZ@at  the tunneling reginfeand the constriction-type barriére
=0, a=0 (a is the distance of the barrier from the center of the
normal region, see Fig.)land various thicknesses of the normal

2 .
region.(1) d=5¢; (2) d=10¢; (3) d=15¢. J,, is the value of the esz 2 A’sing .
critical current for the corresponding valued#{5,10,15 [see Eq. T >0 wz( 1+27?)+ A%(coSel2+72)
(35)], with respect to which each of the graphs is normalized. (42
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FIG. 5. Temperature dependence of critical current at low tem-

peratures for a normal region of thickneds-5¢ with a barrier
positioned aa=0, at various barrier strength€l) Z,=0; (2) Z,

=0.5; (3) Zo=1.

V. CONCLUSION

The Josephson effect in the SNS structure withtzarrier
in an arbitrary position within the barrier is investigated. The

FIG. 7. The dependence of current on the position of the barrier
for d=10¢ and barrier locatiora=0, at various barrier strengths
and temperaturegl) Z=100, T=0; (2) Z=100, T=0.1A,; (3)
Z=1,T=0; (4 Z=1, T=0.1A,. J,, is the critical current af’
=0 anda=0, for the corresponding value &, with respect to
which each graph is normalizédee Eq.(32)].

Green functions are calculated by solving the Gorkov equa- At zero temperature, in a pure SNS structure whené
tions, while the algebra is greatly simplified by quasiclassicathe current is proportional to the gradient of the phase across
approximations. However, unlike in a pure SNS junction, thethe normal region, i.e/d [Eq. (34)], which is proportional
whole system cannot be handled in a quasiclassical sense the superfluid velocity. In fact an effective gap of order of
since the Fermi momentum is not conserved throughout thgy - /d develops which sets new length and energy scales
system, due to normal scattering. Andreev scattering is psee Eqs(35) and (39)]. In this case the Cooper pairs are
momentum conserving process, so the quasiclassical agansported via multiple Andreev reflections, as a result of
proximation works only at the regions in which there is nowhich all the reflective harmonics contribuigg. (34)], re-
normal scattering. On the other hand, in a pure SNS junctioryiting in a saw-tooth phase dependence of the current. How-
electrons and holes with positive and negative momenta dgyer, the introduction of normal scattering simulates a tun-
not get mixed up, so the entire system may be treated quasijing junction behavior, and this time the prominent

classically.
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oots -  / -

L

1/2°

10

mechanism of supercurrent becomes that of the tunneling of
Cooper pairs, hence the phase dependence of the current be-
comes sinusoidal, even at=0. At T=0 case, the Cooper
pair amplitude in the normal region in an SN proximity junc-
tion decays on a power law on thickness of normal region,
1/d, while atd>&;=v/T andT<T,. the amplitude decays
exponentially as expfd/&;),%* which point out to the fact

that the critical current in the SNS structure is proportional to
the Cooper pair amplitude. In a real junction, superconduc-
tive and the normal regions are those of different metals
hence inevitably there is normal scattering at the SN inter-
face, and further there may be a normal scattering due to
impurities and imperfections in the bulk ®f electrode as

well as on the SN interfaces. However, a general behavior
may be expected when the barrier is strodgs>1, where
Zy=V/vg is the effective strength of the barrier. In this case,
the current acquires sinusoidal phase dependence since tun-
neling becomes the dominant transport mechanism. However

FIG. 6. The dependence of critical current on the barrier transwhen the barriers are weak, the existence of multiple barriers

may lead to complex behaviors. Further the position of the
barrier does not lead to significant change in the behavior of

parency, 122, atT=0. (1) d=5¢; (2) d=10¢. The barrier is taken
to be at the middle of the normal region.
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the junction(see Fig. 7, i.e., the conclusive effect of the potential, etc., which are unavoidable in real superconductive
barrier arises from its strength. Josephson structures. In our model, these factors are incor-

The potential barrier inserted in the normal metal makedg?orated through the additional parameters of the confagt,

the non-Andreev scattering of quasiparticles in the SNSVDich was firstintroduced by Blonder et al. in their theory of
dllffuswe SNS junctiong

structure possible, and represents a model for more genera In our formulation. the usual SNS. SIS and SCS cases
situations when such scattering becomes effective, e.g., dignose of the normal-metal barrier, the tunneling barrier, and
similarity betweerSandN electrodes due to the difference in the constriction-type barrier are recovered in the correspond-
their densities of normal states, the values of chemicaing limiting cases.
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