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We study vortex matter in layered superconductors in the limit of zero Josephson coupling. The long range
of the interaction between pancake vortices in ¢hdirection allows us to employ a mean-field method: all
attractive interlayer interactions are reduced to an effective substrate potential, which pancakes experience in
addition to the same-layer pancake repulsion. We perform numerical simulations of this mean-field model
using two independent numerical implementations with different simulation methioiste Carlo sampling
and Langevin molecular dynamijcsThe substrate potential is updated self-consistently from the averaged
pancake density. Depending on temperature, this potential converges to a periodid gngsti) or vanishes
(liquid). We compute thermodynamic properties of the system, such as the melting line, the instability line of
the crystal, and the entropy jump across the melting transition. The simulation results are in good agreement
with approximate analytical calculations.
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I. INTRODUCTION teraction between two pancakes depends logarithmically on

the separation along the layers and decays exponentially with

The vortex state in type-Il superconductors is a complexhe number of layers between the pancakes. More specifi-

physical system. Within the layered high-temperature mateeally, the interaction is repulsive between pancakes in the

rials, such as Bir,CaCyOg (BSCCO or YBa,Cu;O;  same layer and attractive between pancakes in different lay-

(YBCO), vortex lines can be understood as wiggling stacksers, and the decay length of the exponential dependence is
of pancake vortice$:® The thermodynamic properties of the the London penetration depih which is typically 100 times

vortex state are determined by the interaction between pafyyger than the layer spacirgy Approximately, this system
cake vortices. There are two mechanisms of pancake intefjas  peen investigated within the density-functional

action: (i) electromagnetic interaction an@i) Josephson theory!4-16

coupling. The_ electromagnetic interaction is mediated by su- For a numerical investigation of the system, one can in
percurrents circulating around each pancake, whereas the Jg

. rinciple simul irectl k of two-dimensi
sephson coupling results from the energy cost due to a pha: ciple simulate directly a stack of two-dimensioraD)

! : . ncake systems taking into account all of the interlayer in-
shift between the superconducting order parameters in th'[eractions However, the computational challenge is that the
neighboring layers. : , p g

To understand the phase diagram of high-temperature Slir_lterlayer atiraction between pange}kes extgnds over a range
perconductors and in particular the melting line of the vortex®f 2A/$~100-150 layers. In addition, realistic simulation
lattice®” we need to gain insight into the behavior of vortex ©f the melting transition requires at least several hundred
matter under a variety of experimental conditions. In moderP0int vortices per layer. So far, direct numerical investiga-
ately anisotropic materials, such as YBCO, the short-ranglons have been performed only on small systems using
Josephson coupling is the dominant interlayer interaction@bout 10 layers and of the order of 100 vorti¢€s? This is
and the vortices are well described as elastic stffng$in not sufficient to describe realistically the vortex state in
very anisotropic materials, on the other hand, such a8SCCO. With today’s computational resources, it is not fea-
BSCCO, the Josephson coupling is weak, and the long-ranggble to perform realistic direct three-dimensiof@D) simu-
electromagnetic interaction between the pancakes should liations of this system because the necessary computational
taken into account. In this paper we consider very anisoeffort grows quadratically with the number of layers.
tropic materials in the absence of Josephson coupling and Fortunately, one can benefit from the long range of the
neglect pinning. Even after keeping only the electromagnetiinterlayer coupling. As the interlayer force on a pancake is
coupling, the problem remains challenging, due to the longhe result of a sum of a large number2\/s) of small
range of the interactions: the energy of electromagnetic ineontributions, it can be calculated by a mean-field approach.
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FIG. 1. Schematic representation of the substrate mddel. 1 r
The pancake positions,(x) in each layemn are(B) averaged over 0.5 [pancake vortex lattice | [~
the layers in order to obtain the averaged pancake depgky. . -
From the average pancake density we comg@ethe substrate 0 T
potentialVy(x), which is smeared over a length of the ordeiof 0 005 0.1 0.15 0.2 0.25
The vortex lattice spacing gy ands is the layer spacing. t= kBT /2¢,8

The exact value of this force is determined by the instanta- FIG. 2. Top: Snapshot of the pancakessualized by sphergs
neous pancake densities in the large number of layers. In theaced onto the substrate potentiglsualized as a surfageat B
crystal state the instantaneous density can be decomposed, andt=1/59~0.017 just below the melting transition to dem-
into the average density, which is a periodic function of theonstrate how the substrate potential constrains the pancake motion.
in-plane coordinates, and a fluctuating contribution. In theBottom: The phase diagram we have computed using the substrate
mean-field approach to the interlayer interactions, one remethod.
places the instantaneous densities in the other layers by the
average density. This approach gives a quantitatively correégmperaturet, which is the ratio of the thermal energyT
description of the system, because due to the law of largto the prefactor 8¢, of the logarithmic pancake-pancake
numbers, the neglected force from the fluctuating densities i$teraction,
typically smaller than the average interlayer force by the fac-
tor ~\/sIAN<1. The calculation then takes the form of inde- 1
pendent layers, with the pancakes in each layer subject to an I' 2eps
effective “substrate potential?® This substrate potential is
the cumulative affect of the attraction of pancakes in all othewhere eo=<1>§/(47r,uo)\2), Mo is the vacuum permeability,
layers as illustrated in Fig. 1. Pancakes within one layer inand s is the layer spacing. This allows us to compare our
teract directly with each other, whereas the interaction withresults with outcomes from 2D one-component Coulomb
pancakes in other layers is mediated via the substrate poteptasma simulation&!~2® where frequentlyl" =1/t is used to
tial. Thus, each layer is treated individually, until a new sub-express temperatures. At low fields, the electromagnetic at-
strate potential can be computed. This process is iteratetfaction of rangex >s between pancakes in different layers
until the substrate has converged to a steady solution. In thistabilizes the 3D pancake-vortex lattice. Increasing the mag-
paper, we present numerical implementations of this subretic field decreases the relative strength of the interlayer
strate model and show results that we compare with theoupling. At high fields,B>B, , the long-range repulsive
semianalytic approximations given in Ref. 23. interaction within the layer dominates, and the 3D pancake
We summarize this work in Fig. 2. On the top, the centrallattice melts at a temperature close to the 2D melting tem-
idea is visualized: pancakes experience attractive interlayguerature.
interactions through the substrate potential that stabilizes the In Sec. Il we describe the substrate model in detail, in-
pancake crystal. On the bottom, we show the computed meltluding three different methods for the efficient computation
ing line separating a 3D pancake vortex lattice from decouef the substrate potenti@aSec. Il Q. The results, including
pled 2D liquids. We express magnetic induction in units ofthe equilibrium phase diagram, are shown in Sec. Ill before
B,=®,/\?, where®, is the magnetic flux quantum, such we conclude in Sec. IV. The Appendix gives a derivation of
that the pancake spacing in a triangular lattice aig  the correlation correction to the free energy, and shows that
=(2/\/§)1’2)\~1.O7>\ at B=B,. We use a dimensionless our mean-field approach should be accurate to ostier

: ()
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[l. MEAN-FIELD APPROACH (SUBSTRATE MODEL) Because the differenae—n’ in the last sum extends over a

very large number of layers~(\/s), a typical value of the

_ ‘ sumZU(r—r",n—n")2p(r") is larger than a typical value
The in-layer energ™ and the interlayer energy™® of  of the sum=, U(r—r',n—n’)8p, by the factor~ /s.

a system of electromagnetically interacting pancakes in &gain, the law of large numbers allows us to neglect the last

A. The mean-field interlayer coupling

layered superconductor are, respectively, term in Eq.(10), leading to the mean-field description of the
1 interlayer interactions. A more precise justification is given
gin— 2 Ein— E - 2 U(R"—R", ,0) 2) in the Appendix, where the free-energy correction due to the
R 2 %] R correlation term is shown to be smaller than the mean-field

free energy by the factas/\.

and Separating the pancake density into the average value

_ 1 , =(pn(r)) and a modulating part, we can split the total mag-
gher==> > UR)=R], ,n—n’). (3)  netic coupling energy into two parts, each with a quite dif-
n'#n j,j’ ferent meaning. The part containing the average density does

Indicesn andn’ count over layers anglandj’ over pan- Not depend on temperature and formally diverges due to the
cakes in the layersR is the (2D) position of pancakg in logarithmic term in Eq(5). This divergence exactly compen-
layern, andU(R,n) is the coupling energy for two pancakes St€S a similar divergence in the in-plane energy. Within the
separated by a vectoR(z), wherez=ns, with s being the mean-ﬂ_eld appr(_)ach _the_ part of th_e coupling energy sensitive
layer spacing. Thez axis is chosen perpendicular to the © density variations is finite only in the crystal state. In the

layers. liquid state it vanishes.
The in-layer pancake interactibis For the mean-field interlayer energy'™ we obtain from
Eqg. (10
U(r.0)=2608] | 1- = | In| =| + Sfmd SR
(r,00=2¢gs N n Tt o r r r—’ gMF:; EnMF
4
and the interlayer interactiom¢0) is :% > | d?rd%r'U(r—r’,n—n’)
n#n’
s? ns L ) )
Urm=— exp( - T) m(r) X[p(D)p(F") +2p(1") Spo(r)] v
1 2 2
Fd exd —\r'#+(ns)%/\] ) 252 d rVMF(F)P(r)+§n: drVe(r) Spa(r)
- r .
r r' (12
Using 1
=32 f d?rVye(r)p(r)
pa()=2, 8(r=R), )
. +> f d?rV ye(r)pa(r)  via Eq.(9). (13)
we rewrite "
1 The last term describes fluctuations in the fixed substrate
ginterzi 2 erer/pn(r)pn,(r/)U(r_r/'n_n/). pOtentlalVMF,
n#n’
@) vMF<r>=fd2r'{2 Ur=r'mp(r’y (149
We separate pancake density fluctuations from the layer av- n*o
erage density
= | dPrur—r)p(r') (15
p(r)=(pn(r)), tS) f
pa(r)=p(r)+6pn(r), ) =(U*p)(r), (16)
and obtain from Eq(7) where= is the convolution operator and
: 1 =
glntel‘:E Z ererIU(r_r/’n_n/) Z/{(r)_rgo U(r:n)- (17)

n#n’

, , , U(r) is the interaction potential of a pancake separated by

XLp(r)p(r')+2p(r") 8pn(r) + opn(r) Spn: (') ]. from a stack of pancakes minus the interaction of (thess-
(10 ing) pancake in the same layer and is givett by
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r layers. Using the substrate potential, we reduce the solution
u(r):2603K0<x) —U(r,0), (18 of the 3D problem to performing one 2D simulation in the
presence of the iteratively refined substrate potential.
with Kqo(x) being a modified Bessel function of the second
kind. Ignoring terms of the order of/2\, the pancake-

. . - C. Numerical implementation
pancake repulsiofd) simplifies to

We exploit the convolution theorem and compute the sub-

L strate potential in Fourier space
U(r,0)=2¢€ps In 7 (19
_ - _ V()= p)(r)  via Eq. (16) (25
In our calculations we find it useful to use the form in Fou-
rier space’ d2q
= f JU(@)p(a)explig-T) (26)
1 (27)
Uq)=41meps NI (20 _ . . . _
AT q using the analytical Fourier transfort¥{(q) as given in Eq.
, (21), and the numerically computed
N
=—4mesS—H——F5. (21
PO a?) p<q>=J drp(r)exp(~iq-r). (27)

B. Algorithm This has two advantages: First, we do not cut off the inter-
follows: case in the real-space convolution. Second, this is numeri-
(1) Assume initial pancake densitips(r), for example, a  cally more efficient than performing the convoluti¢hs)
hexagonal lattice in each layer directly. We have used three different methods for computing

(2) Average the pancake densipy(r) over all layers to  Vwr(r) numerically.
obtainp(r), Eq. (8).

(3) Compute the substrate potential=(r), Eq. (16), by 1. The full method
convoluting the substrate interaction kerdk), Eq. (18), The “full method” computes the substrate potentig),-
with the average pancake densitfr): using the full spectrunp(q) of Fourier components of the
average pancake densip(r) as shown in Eq(26). In our
Vr(r) = (U p)(r). (22 simulations we use a resolution f100” grid cells per pan-

cake in order to compute(r) as an average over time steps
or sweeps. This results in reciprocal lattice vectors up to
magnitudes of~100Q,, where Q0=47r/(\/§a0), because
|Qmad/Qo=~2m/(AXxQy) ~a0/Ax~100. The necessary dis-
crete Fourier transform gi(r) and the inverse transform of

(4) For each layem compute the pancake distribution
pn(r) using Monte Carlo or Langevin dynamics simulations.
The total energy for layen contains the direct pancake-
pancake interaction within the laygEqg. (2)]

1 Vue(q)=U(q)p(q) can be done efficiently using an imple-
En=> > UR'-R},,0), (23)  mentation of the fast Fourier transforh.
I"# We precompute the substrate potentigi=(r) on a mesh
and the relevant interaction with pancakes in other layers viand interpolate subsequently for intermediate pancake posi-
the substrate potenti@l3) tions while performing Langevin dynamics in the fixed sub-

strate. We compute a new substrate every 200 000 time steps.
1 It is important to average over so many time steps to reduce
By =— Ef d2rVMF(r)p(r)+f drVe(r)pn(r) density fluctuationgdue to poor statistigsin the pancake
histogram, which would result in a deformed substrate po-
tential. Note thatp(r) and p(q) are discretized out of nu-
merical necessity to compute a histogram but not for concep-
tual reasons.

= —E°P+ > Vye(Rl)  viaEg. (6). (24)
J

ECUP=1d2rVe(r)p(r) is constant for a givem(r) and

can therefore be ignored within the Monte Carlo and 2 The Fourier-filtered method
Langevin simulation as it only shifts the energy scale. . o ,
(5) Go t0(2), until Ve (or p) has converged. The average density(r) should be a periodic function,

Since the substrate potentid),r in step(4) is the same which can be represented by a discrete set of Fourier com-
for all layers, we can computg,(r) for many Langevin- ponents. Therefore, the second method uses only a sQhset
dynamics time stepgor Monte Carlo sweepsrather than ©f the Fourier components to represenp(q),
many layers. Therefore, in order to obtain the averaged pan-

cake density(r) in _step(2), we average over time st_epsr PR =(2m)2> po 52(q—Q,L), (28)
sweep$ computed in one layer rather than averaging over m s
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which we determine from the maxima of the structure factor L L L L L L L L
and 3r L4 7
of 0%e%e ]
1 - -1 %2e%e®e?® ]
PQ= TE exp(—iRj-Q)) (29 C ol 2%0%e® -
x=y ol c g .r ©_©_ e _0 -
1T 0%26%e®e -
with L,L, being the area of the simulation cell. We average 2- & _ @& _ ®
over a set of configurationsof pancake positionRjc (either 3k ® @ ® -
sweeps or time stepso computepg . N P I P P P

Using p™(r)=(27) ?fd?qp"(q)explqg - r) to present 2 '1Q ‘/)01 23

X 0

p(r), we Fourier-filter(FF) p(r), and keep only the relevant
components for the computation of the periodic substrate. F|G. 3. Set ofQ,, vectors up to third ordefi.e., three “shells”

We can write around the originin reciprocal space used in the small-harmonics
) Fourier-filtered method to compuﬁb#. Due to the reality ofp(r)
d q ey . -
FE /oy FF, . ; we havep(q)=p(—q), and it is therefore sufficient to compute
V(1) f (ZW)ZM(Q)P (a)expliq-r) via Eq.(26) only half of the 36 coefficient;aQ#.
(30

p(Q,) with |QM|>Q’. For all but the smallest fields, we
find close to the melting transitiofu?)/a3~0.02— 0.03(see
Sec. Il B, and it is sufficient to include vectors up to third
(31)  orderQ, in the summation in E(32) as shown in Fig. 3.
For the small-harmonics Fourier-filtered method it is more

=2 UQ,)pg, eXNiQ, ) via Eq.(28)
o

po expiQ, 1) efficient to evaluate Eq32) for each pancake position oc-
= _4776052 2—22 via Eq.(21). curring in the Langevin—Monte Carlo simulation rather than
ro Qu(1+AQy) pre-computingVye on a mesh. We demonstrate the equiva-

(32 lence of the full and the Fourier-filtered method for the de-
This is equivalent to using the full method, but Settmgtermmapon of the instability Ime in Se_c. III. A, and we com-
-0 if pare with the small-harmonics Fourier-filtered method in
p(Q)=0if Q& {Q,}. o _ e
The advantage of the Fourier-filtered method is that we>eC- .
need to average over less iterations before we can compute a _ S _
new pancake density and subsequently a new substrate, be- D. Monte Carlo and Langevin dynamics simulations
cause the substrate is periodic per construction. Using the \ye have two independent implementations of the small-
Fourier-filtered method we use 500 time steps or sweeps f{armonics Fourier-filtered method: One of (&E.K.) has
each substrate iteration. written a Monte Carlo simulation that is based on energy
Ittu_rns out that itis not necessary to tak_e _the avel(agh_ evaluations, and anothéd.F.) has implemented a Langevin
over different configurations, but it is sufficient to use justgynamics simulation based on force calculations. The results

one configuratiorti.e., one time step or swegp of both implementations agree perfectly.
1 We  follow  standard vortex-state  simulation
PQ=T E exp —iR;- Q). (33) techplque§, " including periodic boundary conditions for
xby ] the in-plane interactions. We use a smooth cutoff for the

P/ortex in-plane interactiors:3! For the Langevin dynamics
imulations, we compute the substrate forces numerically
rom the precomputed megBec. Il C 1 for the full method
and the Fourier-filtered method. For the small-harmonics
Fourier-filtered method we use the analytical derivative of
Eq. (32). The Monte Carlo simulations were only imple-
mented with the small-harmonics method. If not stated oth-
In addition to Fourier-filteringo(r) we can speed up the erwise we use a system with 1020 pancakes. The Monte
computation further because close to the melting temperaczarlo method is more efficient in converging to a steady
ture, pq  decays quickly for higher-orde®, due to the  solution, whereas the Langevin method allows a generaliza-
Debye-Waller factor. We can estimate the reductiorpgf tion of the model to study dynamic properties.
due to the Debye-Waller factor

Nevertheless, we run a simulation for 500 time steps o
sweeps with the same fixed substrate potential to reduce r
computation ofpg, and to give the pancakes some time to
experience the system with a new substrate potential.

3. The small-harmonics (Fourier-filtered) approximation

Il. RESULTS
(u)Q? 1 (u?) 167°Q? _ .
exp — 7 =exp — 12 — 1, (39 A. Time convergence of the substrate potential
ao 0

As described in Sec. Il B, we start each run with a hex-
where Q,=4/(+/3a,) and(u?) is the mean-squared fluc- agonal pancake distribution corresponding to zero tempera-
tuation displacement. Depending ¢n?) we can ignore all ture. Figure 4 shows results for the Fourier-filtered method at
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FIG. 6. Finite-size investigation of instability temperatureBat
= 04B}\ .

FIG. 4. Convergence to pancake latticeBat B, andt=1/59
~0.017. Top: pancake histogramx,y,) taken alongy=y,. Bot-
tom: substrate potentiaVye(X,yo). For each iteration, 200 000
Langevin time steps were used to compute the new pancake hist
gram and subsequently the new substrate potential.

B=B, and at a temperature=1/59~0.017. The top plot
shows a one-dimensional slice of the 2D pancake histogra
n(x,yo) taken alongk aty=yq. The histogram relates to the
pancake density via(X,y)=p(X,y)AxAy, where Ax and
Ay are the spacings of the grid used to create the histogram.
For the zeroth substrate iteration we set the histogram t
have narrow and high peaks at the pancake equilibrium po-
sitions corresponding té peaks in a zero-temperature pan-
cake densityp(r). Based on this initial pancake distribution,
we compute the substrate potenth,=(r), for the first sub-
strate iteration, of which a one-dimensional sliceyaty is
shown in the lower part of Fig. 4. Using this substrate po
tential, we run the Langevin dynamics simulation for
200000 steps. We compute the pancake histogram for iter
tion 1 (see upper plot of Fig.)4dbased on the pancake posi-
tions in these 200000 Langevin time steps. From the pan=
cake histogram of iteration 1, we compute the substrat
potential for iteration 2. This cycle of calculating a new pan-
cake histogram in the presence of a substrate potential, al

substrate potential has reached a steady sadiier typically

less than 10 of these substrate iteratjosgure 4 demon-
strates that the system converges quickly to a pancake solid
at this temperature below melting.

The dotted line in the lower part of Fig. 4 shows a com-
parison substrate potential for iteration 10 computed using
the full method. While the amplitude and width of the wells
(and thus the resulting fortere virtually identical to the
Fourier-filtered data, the magnitude of the substrate from the

Il method varies slightly. This is due ttong-wavelength

ensity fluctuations in the histogram data and reduces further
if one uses more time steps for each substrate iteration.
Figure 5 shows data fd8=B, and a higher temperature
=1/50=0.02 that is above the melting temperature. Here,
the pancake distribution broadens and consequently the sub-
strate potential flattens quickly within the first few substrate
iterations. Eventually, the system has become a disordered
liquid with a local pancake density that is approximately
constant and the substrate is virtually flat, as shown for itera-
‘tion 10. We conclude that for this temperature and magnetic
field the pancake lattice is unstable against melting into a
g_ancake liquid.

For Figs. 4 and 5 we have used 200000 Langevin time
steps for each substrate iteration in order to be able to com-
pare the full and the Fourier-filtered methods, but it would be
Sufficient to use much less time steps per substrate iteration
rqar the Fourier-filtered methods. For production purposes, we

e the small-harmonics Fourier-filtered method and update

subsequently computing a new substrate, is repeated until t e substrate every 500 time stefBec. Il C 3. Although

more substrate iterations than with the full method are re-

0.002
0.0015
0.001

n(x,y,)

0.0005

quired before the system reaches a steady state, the small-
harmonics Fourier-filtered approach is more efficient. The
full method and both Fourier-filtered methods find thaBat
=B, the pancake lattice becomes unstable for 007
=0.018.

Figure 6 shows how the instability temperature varies as a

0
0.01

function of system size. For small numbers of vortidds,

0
-0.01
5 -0.02
-0.08

Yo) / 2€4S

Ve

the temperature oscillates slightly and for larger systems it
becomes constant. Most importantly, there is no general

—— iteration O
o—o jteration 1 |
o— iteration 3
— iteration 10 [+

-0.04

2

FIG. 5. Convergence to pancake liquid. As in Fig. 4 but at

1 2

=1/50=0.02 above the melting temperatureBat B,, .

trend visible although the data range frafy=90 to N,
=1512. This insensitivity to the system size demonstrates
the local nature of the melting transition at this field.

B. Hysteresis loop

Rather than starting from a hexagonal crystal for every
temperature, a better approach to determine the instability
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FIG. 7. Example of a hysteresis loop obtained by heating a crictales and cooling a liquidsquaresfor B=0.4B, . Each point was
equilibrated for %< 10° Monte Carlo steps. The crystal meltstat0.027, while the liquid freezes &t=0.0247. Rhombs represent results
obtained by simulations starting from the same intermediate defective configurationjitt0.2. This configuration melts at=0.0262,
which we take as an estimate for the thermodynamic melting temperature. The insets show dependencies of the defect concentration on the
Monte Carlo step at the temperatures where the intermediate configuration melts and the liquid configuration freezes. See also Ref. 32.

temperature is to subsequently increasentil the system harmonics Fourier-filtered method wit@, vectors up to
melts. We also find that by starting from a liquid configura- 20th order. For low temperatures the data nearly coincide
tion and lowering, the system jumps into the crystal state atwith the SCHA-solution. Close to melting the SCH#A is
a certain freezing temperature. We expect the true meltingarger than the numerical result. Therefore the simulations
temperature to lie within the instability and the freezing tem-give a softer substrate and the lattice has larger thermal dis-
perature. Such a hysteretic run is shown in Fig. 7. placements. This difference could be due to the inadequacies
In order to estimate the thermodynamic melting temperaof the SCHA, which does not include the thermal softening
ture at which the free energy of the solid and the liquid phas@f the 2D lattice. The more complex two-vertex self-
cross, we proceed as follows. First, we store a vortex conconsistent harmonic approximatié2VSCHA) does include
figuration taken from 2D melting-transition simulations. We these effectd® The circles in Fig. 8 show results using,
chose a configuration from a time-step or sweep where th@ectors up to third order, as shown in Fig. 3. Close to the

system was previously a solid but just starts melting, i.e., theransition from solid to liquid around~0.0175 these data
defect density starts increasing up and the structure factor

peaks start decaying. This vortex configuration is “interme- 3.00
diate” between a solid and a liquid. Second, we start the
computation from this intermediate configurati®d@) for ev- N: 2.50

ery temperature. The results for the IC simulations are shown > 2001

—— self-consistent (SCHA)
O 3%orderQ
+ 20" order Q
[0 infinite lattice summation (S'dorder Q)

in Fig. 7 (rhombg. We use the temperature at which the IC o 1.50%-0 g .
melts as a best approximation to the melting temperature of & ook ]
the physical 3D pancake-vortex lattice. ;m ’
0.50
C. Temperature dependence of substrate curvature and N 8-83
pancake fluctuation width o
~ 0.02

We can quantify the strength of the substrate potential Ng
with > o001
0

, 0 0.005 ) o_i_O} R 0.015 0.02
1 d t= €S
as=1 2 —5 Vur(R;—R)). (35) B

p i dX FIG. 8. Top: The substrate curvatutgatB=B, . Shown is our
gumerical solution of the Fourier-filtered method usiQgvectors
up to 20th order(starg, and using up to third ordefcircles. We
- o have also shown results f@,,,,—=3Qo using an infinite lattice
aged over pancake positioRs . The second derivative can g, mmation for the in-layer interactidsquares Bottom: The pan-
be taken analytically from E|32). , . cake fluctuation widtu?) (star$. For comparison, we also show

Figure 8 shows in the upper plot haw varies with tem- e results of a simple SCHA calculatiéRef. 23 (solid line) of the

perature. The solid line is an analytical prediction from treat-softening of the substrate potentiabt including thermal softening
ing the substrate softening due to thermal fluctuations withireffects of the 2D lattice The results are close to our numerical data
the self-consistent harmonic approximatié®®CHA).?* All at low temperatures, but as the melting point is approached there are
other data are simulation results from the Fourier-filteredextra (anharmonig fluctuations in the simulation data féu?), re-
method. The stars showts computed using the small- sulting in an even softer substrate potentigl

This is the curvature of the potential evaluated at deviation
R;—R? from the equilibrium lattice positionR] and aver-
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agree perfectly with the higher-order data. At lower tempera-

T T T T T T T T T T A

T
tures the third-order results deviate from the 20th order be- 5 * semi-analytic melting line | 7|
cause(u?) becomes smaller in the Debye-Waller factd4). H e USCHR Al i
However, as long as we are interested in temperatures close & G - £
to the transition, the third-order approach is sufficient. L x g (simulation melting line)| |
The square boxes are computed using the third-order ap- o L T 7]
proach, but instead of smoothly reducing the pancake = L (pancake 1
interactiort* at a distance of7a,, we use an infinite lattice 2r \ Qs b
summation technique for the logarithmic interactfdthis 1'_ o ]
demonstrates that it is sufficient to usésaooth cutoff for P\
the in-layer pancake interactions. . @ex 'a"i°|>e e
We compute the average pancake fluctuation width 0 001 002 003 004 005 006
by fitting to a distribution where each pancake is normally 1=l 25

smeared around its equilibrium pOSItItR’?: FIG. 9. Phase diagram of the electromagnetically coupled 3D

pancake system. Numerically computed instability liffldack
1 r— J-0|2 circles on dashed lingn comparison with the instability line from
p(r)= o o? Z exp — > (36)  the 2VSCHA (dash-dotted line Also shown is an semianalytical
o ] g

estimate for the melting line from Ref. 23, to be compared with our

h . f . numerical estimaté,c (crosses We have shaded the solid phase
The Fourier transform op(r) is underneath the melting in gray. The melting temperattﬁﬂe
- =0.007 of a 2D system is shown by a dotted line.
— .
p(q)—exp( 5 )E exp(—iq-R)
i

Our numerical estimates for the melting points at certain
) —o?g? ) fields(see Sec. lll Bare shown as the crosses in Fig. 9. Also
=(2m)"noexp — % 5°(a=Qy)- shown as the solid line is the melting line calculated semi-
analytically in Ref. 23. In this work the melting temperature
The Fourier componenis(Q,) have the Debye-Waller fac- Was estimated by comparing approximate free energies
tor as an envelope, and by fitting a Gaussian to it, we carr U — TS for the solid and liquid phases. The solid free en-
determine(u?) =202 ergy was calculated from the SCHA, which gives a varia-
The lower part of Fig. 8 shows computed values(iof).  tional upper bound on the free energy. The liquid free energy
We expres£u?) in units ofa2 and it increases from 0 at zero Was taken from earlier simulations of a single la§reie., it
temperature towards 0.028 close to the transition, which cotV@s assumed that the layers are completely uncoupled in the
responds to a Lindemann number-e0.168 atB=B, . In I!qU|d state. Remarkably, our mgltmg points from simula-
agreement with an overestimation @f by the SCHA,(u?) tions lie on top of the semianalytic lingo within our error
is underestimated in comparison with numerical results cIosQars)' . N
to the melting transition. For increasing fleld_s, the substrate becomes Weak_er _and
weaker and the melting temperature drops. In the limit of
B— we recover a 2D system with logarithmic interactions
for which melting has been estimaféa® to occur at'2
As demonstrated in Sec. Ill A, we can determine for each~ 140+ 10&t29~0.007, which is consistent with our results.
parameter pairB,T) whether the pancake system remains a At low fields the pancake stacks are widely separated and
3D pancake lattice, or whether it is unstable towards thenteract only weakly with each other. In this limit the system
liguid phase that consists of decoupled 2D liquigEhis is  melts below the evaporation transition of an isolated stack of
sometimes called a pancake gas, even though there are spthincake$® at '=4<t=0.25. In agreement with this, we
very strong in-plane correlations in the decoupled layers. Irfind that the instability line approachds=0.25 for B—0
the absence of Josephson coupling, a linelike liquid regime i¢see Fig. 2
expected only at extremely small magnetic field)s.
We probe parameter space in tBeT plane as described
in Sec. lll A and compute an instability line for the phase .
diagram of the system, which is shown in Fig(d@rcles on . Wwe compute the latent heat per pancalgg,py taking th? .
dashed ling We also show an estimate of the instability line difference of '”‘e”?a' energy between the solid and the liquid
that has been computed using the two-vertex self—consisterli’f1ase at the melting temperaturg,
harmonic approximatiof2VSCHA, dash-dotted lineor the

D. Phase diagram

E. Latent heat and jump in entropy

substrate modéf® Since in this work we explicitly com- Lp:i(unquid—usond) (37)
pute the pancake positions without using approximations Np

(within the substrate modelwe expect our result to be more 1

accurate than the 2VSCHA. It can be seen that the 2VSCHA =—[Ei-” S ( in Ecoun) ], (39)
slightly overestimates the temperature for the instability line. N, - auid 2 solid
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o 004
wO
N 0,02 —\\¥ .
o

)

—

FIG. 10. Top: Latent heal, per pancake across the melting
transition as a function of field. The inset shows the same data ona FIG. 11. Entropy jump\S, per pancake as a function of fiefd
reduced scale. Bottom: Jump in interlayer coupling energyinset: Pancake fluctuation widtu?) normalized taa3 at the melt-
AUCP=EP normalized by latent heat. ing point (the Lindemann number squajed

a first-order phase transitidri*?°However, it is known that
to resolve a continuous melting transition in two dimensions,
very large systems are requir¢see, e.g., Ref. 39 There-
fore, the nature of the melting transition of 2D particles with
logarithmic interactions is an open issue. Resolving this issue
is beyond the scope of this paper.
At low fields the entropy weakly diverges f&—0. We
understand this as follows: the possible configurations scale
ECUP=3 deFVMF(F)[P(f) pl. B9 45— ~Al €%, whereé? is the size of a pancake, ardis the
space it can occupy. For the solid state close to the transition
wherep &, /B is the mean density. For the Fourier-filtered the reduced configuration space 45<u2>/§2 because the

The internal energy of one layer in the solid phase consists
of the in-plane energ¥" [Eq. (23)] and the interlayer cou-
pling energyE®"P, whereasE®"P=0 in the liquid phase in
our model. In order to compute®*? for the solid phase, we
use Eq.(12), where the second sum vanishes due to the defi;
nition of ép,,:

methods, pancake is confined to an aréa-(u?). In the liquid the
1 reduced configuration space growsmé/gz, wherea, is
E°°“p=§fd2r2 UQ,)pg expiQ, r)p(r) the average spacing betweenzpancakes \éVe thus get an en-
u#0 ® tropy differenceA S,~ In(a3/(u?)). Since(u?) approaches

at low fields a finite field-independent value of the order of
A2, this explains the observed divergenceAd$, at B—0.
1 For a precise comparison with the experimentally extracted
= 5L,y > UQ,)\pg |2 via Eq.(27). latent heat of vortex-lattice meltiigne should be careful to
2 n#0 . include the temperature dependence\ pfvhich was shown
(40 in Ref. 40 to give extra terms in the observable entropy

For the full method, we havp(r) as a histogram, and we jump.
can integrate Eq39) numerically.

The top plot of Fig. 10 shows how the latent heat varies as
a function of field. We have shown the jump in interlayer
coupling energy normalized by the latent heat in the bottom In this work we have applied a numerical simulation to
part to demonstrate the contribution of the interlayer couthe suggestion of Ref. 23 to treat the 3D layered pancake
pling to the latent heat. This plot shows that the substratgystem with a mean-field approach for the interlayer interac-
contribution to the latent heat dominates at low fields andions, turning the problem into a 2D system in the presence
becomes less and less important towards high fields. of a self-consistent substrate potential. In Ref. 23 this sub-

Figure 11 shows the entropy jump across the transitionstrate model was studied with semianalytic methods. The
AS,=L,/Ty, as a function of field. We find tha&tS, mono-  two-vertex self-consistent harmonic approximation was used
tonically decreases with increasing field as the system apo estimate the instability line of the pancake lattice. Also the
proaches the 2D regime. An important issue is the crossovenelting line was estimated by comparing the elastic free en-
to the 2D melting regime at very largg Two melting sce- ergy of the lattice within the substrate model to the free
narios are possible in two dimensions: a usual first-ordeenergy of independent 2D liquids, taken from numerical
melting and continuous dislocation-mediated melting via thesimulations.
intermediate hexatic pha8é® In the first caseA S, has to Here we have presented results from full numerical simu-
approach a finite value &—« and in the second case it lations of the substrate model. We have directly calculated
should vanish. Early simulations for a relatively small num-both the instability and melting lines. Our result for the in-
ber (=500) of logarithmically interacting particles suggestedstability line has a very similar field dependence to that of

via Eq.(31)

IV. CONCLUSIONS
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the 2VSCHA, which we find to slightly overestimate the son coupling such as in BSCCO gives a large upward shift to

instability temperature. The melting line from the semiana-the melting field because the extra coupling increases the

lytic approach agrees within error bars to our simulation re-stability of the 3D pancake lattice. For example, the melting

sults for the melting of an intermediate configuration. Wefield in the optimally doped BSCCO &t=50 K is found to

have computed the pancake fluctuation widih?) and  be around 300 Gsee, e.g., Ref.)6 If we assume\(50 K)

showed how it varies as a function of temperature: the varia=~210 nm, then our calculations suggest that the melting

tion is significantly nonlinear below the melting transition, asfield without Josephson coupling would be at this tempera-

predicted in Ref. 23. We also calculate the entropy jumplure gro_und 95 G, i.e., about three_umes smaller. Iq addition,

across the melting transition, which diverges weakly toward$he liquid phase may have considerable correlations from

small fields and large melting temperatures. layer to layer that are not presentin the gbsence of Josephson
With such good agreement between the melting line foun@§0uPling. We also note that it is possible to suppress the

here and that calculated with the semianalytic method in Reféffective Josephson coupling by applying a strong in-plane

23, it is worth pointing out the value of the simulations we field, as was done in Ref. 45,.br|ng|ng the meltlng line closer

have presented. In the semianalytic method, the estimate fé¢ the “Josephson-free” location. By extending the model to

the melting temperature was based on a comparison of tH¢S€ several layers, it is possible to include Josephson cou-

free energies of the liquid and crystal. Both free energie®!ing between them, which would realistically describe an

were approximate and the accuracy of each approximatiognisotropic layered high-temperature superconductor.

was not strictly checked. The free energy of the crystal was

calculated using only the first fluctuation correction in which ACKNOWLEDGMENTS

the magnetic tilt stiffness was evaluated self-consistently. ) ) )

The liquid free energy was obtained by integration of the H.F. thanks Jac_ek Generowicz for helpfu_l discussions and
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perature at which an analytical result is knottie accuracy ported by the U.S. DOE, Office of Science, under Contract

therefore relies on a small error in the numerically calculatedV0: W-31-109-ENG-38. M.J.W.D. was supported by the

energy compared to the strength of its temperature deperrr SRC: Grant No. AF/99/0725.

dence. The fact that we find good agreement in the melting

line between semianalytic results and simulations suggests APPENDIX: CORRELATION CORRECTION TO FREE

that both free-energy approximations in Ref. 23 do not have ENERGY

large inaccuracies, which was not obvious by itself. Finally, The correlation correction to the pancake ener ne-

we note that even though there is agreement in position ofI ted within th field hp o b 9y

the melting line, simulations suggest that the analytical ap9 ected within the mean-field approach, 1S given by

proach for the crystal always underestimates the strength of

fluctuations at the melting poirisee Fig. & == >, | d&rdZr'U(r—r',n—n")dp,(r)dpn(r').
While we have found a satisfying agreement between our 2 v
results here and the earlier approximate work of Ref. 23, the (A1)

true motivati.on of this project is the pqs_sible extensions thatl’he correction to the free energy due to this term is given up
can be studied. There is now the exciting prospect to studi/0 second order by

this pancake vortex system in the presence of pinning disor-
der. This has been a controversial topic in recent y&atto
which our method should bring some clarity. The effect of SF~(5E)o—
random pointlike pinning can be simulated by add{atpng

with the substrate potentjah random pinning potential to o ) ) _
the simulation. If the Fourier-filtered method is used to com-Were(: - -)o implies mean-field averaging. Substituting Eg.
pute the substrate potential, then the substrate will refledf™L) in the last equation and noting thai€)o=0, we derive
disorder-induced random vortex displacements, whicHor ) the free-energy ~correction per pancakest
weaken it while still being periodic. This should adequately=2 SFI(LyLyN),

represent uncorrelated random pinning in a many-layer sys-

(8E2)0—(5E)3
Y

2
tem because, due to the long-range nature of magnetic cou- ¢ a 2,42 ,j 2, 42,1 o
pling, the disorder-induced layer-to-layer density variations 4TL,L, ,;o drd"r” | dorydryU(r=r,n)
will average out in the magnetic interaction. Note that it is ) ) )
the same averaging that we take advantage of for thermal XU(ry=r1,n(8p(r)dp(r))o(dp(r')dp(ri))o,

density fluctuations in the present work.

Our results cannot be directly compared with experiment
in available layered superconductors because even in t
most anisotropic BSCCO the Josephson coupling energy i
not negligible. However, the position of the melting line
without the Josephson coupling provides a convenient refer-
ence, allowing one to understand the role of the Josephson W(r,r,)= 2 U(r,mU(ry,n),
energy. In particular, it seems that even a very small Joseph- n£0

gvhereN is the total number of layers,L  is the layer area,
d(Sp(r)Sp(rq))o={(8pn(r)Spn(ri))q is the density corre-
tion function inside one layer. In the next step we introduce
notation for the sum
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for which, using the mixed representation for the interlayerwhere
magnetic interaction,

2mws%eq expl—Nnsy\2+k?)
\2K2 VA2 +K2

we obtain the formula

a 2sgg
gx! T

—r’ r—r’
fdzrdzr d?r,d?r 1W( 1)

LyL,a® A A

U(kj_!n):_ f

xh(rla,r{/a)h(r'/a,r;/a) (A3)

is a dimensionless function of the order unity. The mean-field

W(r,ry) free energy per pancakéye, has the scaling property
21 42 a 2580
expik-r+ik;-ry) Therefore the free-energy correction due to interlayer corre-

lations(A2) is smaller than the main term by the facsi.

X
21,2 2,2 21,2 21,2 21,2\’
k kl\/1+7‘ K*V1+) kl(\/1+7‘ Ko+ V1+) k) In particular, the correlation correction shifts the melting

allowing us to represend/(r,r,) in a scaling form temperature up as

3c2 Ofjig— of

S'eg _ g cr

W(r.ry)=——=w(r/A,ra/\). Tm=""xg (A4)

By also using a scaling representation for the in-planewvhere 6ty (6fc,) is the correlation correction to the liquid
density correlation function,  (Sp(r)p(ri))o (crysta) free energy at the melting point ardS is the melt-
=(1/a*)h(r/a,r,/a), we derive the scaling representation ing entropy jump. In principle, the mean-field simulations
for the free-energy correction allow us to compute the correlation correction and the corre-

sponding shift of the melting temperature. However, this
(A2) computation includes the numerical evaluation of a quite
cumbersome integral in EGA3).

Seg S |a 2sgg

of==seogm 9T
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