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Formation and propagation of spin-wave envelope solitons in weakly dissipative ferrite waveguides
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The influence of dissipation on the process of formation and propagation of envelope solitons is considered
on the example of spin wave envelope solitons in yttrium iron gaiMk®) film waveguides. It is shown that
the measurements of attenuation of the peak power of a propagating nonlinear wave packet in a weakly
dissipative medium can be used to determine the soliton formation length. This length turns out to be smaller
than the characteristic dispersion length calculated for a given shape and duration of the input pulse. A simple
approximate analytic expression for the soliton formation time in a dissipative medium is introduced and
confirmed by both numerical calculations and preliminary laboratory experiments on dipolar spin waves in
YIG waveguides.
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I. INTRODUCTION properties(i.e., approximately preserves its shape in propa-
gation and in collisions with other solitonsThis interval is
Envelope solitons are stable nonlinear wave packets thdimited from below, because it takes a certain minimum
preserve their shape while propagating in a nonlinear dispepropagation length to form a soliton from an arbitrary input
sive medium, even after collisions with other envelope solipulse. It is also limited from above, because at large propa-
tons. These properties make them attractive for applicationgation distances in a dissipative medium the amplitude of a
as information carriers in communication and signal processpropagating wave packet decreasas, consequently, does
ing systems. In particular, optical envelope solitons in fiberghe influence of nonlinearijyand, finally, the dissipation and
have been studied very intensively during recent decadethe unbalanced effect of dispersion lead to the destruction of
(see Ref. 1 and references thejeifihese optical solitons a soliton. These “approximately solitonic” nonlinear wave
propagating in silica fibers with very low propagation lossespackets moving in the above described limited interval of
have a typical duration of several picoseconds, and are comropagation distances we shall call “envelope solitons” be-
sidered now as the most promising carriers of information inow. It also turns out that in some media dissipation can play
future fiber optic communication linés. a decisive role in the formation process of envelope solitons
Another important example of a physical system wherefrom initially linear wave pulses when their amplitude is
envelope solitons can be easily observed and studied experircreased, and can determine the shape of the threshold curve
mentally are spin waves propagating in thin magnetic ffims. for soliton formation.
Spin-wave envelope solitons propagating in yttrium iron gar- We have chosen magnetior spin wave envelope soli-
net (YIG) films typically have carrier frequencies in the mi- tons for this study because they are much stronger affected
crowave frequency rangg.e., several gigaherfiza group by dissipation than, e.g., optical solitons in fibers. Even the
velocity about four orders of magnitude smaller than thebest magnetic materialénonocrystalline YIG filmg have
group velocity of optical solitons and durations of 5—200 ns.relaxation parameters that are three orders of magnitude
Solitons of this type might find applications in microwave larger than the corresponding parameters in optical fibers.
signal processing systems and radar technotogy. Spin waves in magnetic films are also relatively slthaur
In all laboratory experiments where envelope solitonsorders of magnitude slower than optical waves in fipers
have been studied, they were propagating in media witlwhich leads to a much larger spatial attenuation and propa-
weak, but finite dissipation. Of course, in all the “soliton” gation losses of spin waves. Thus, the influence of dissipa-
experimentgin optical fiberst> magnetic films: on the wa- tion is critical and has to be taken into account in the case of
ter surface, and in other physical syst@mspecial care was spin-wave envelope solitons.
taken to make sure that the influence of dissipation on the The aim of this paper is to study the influence of dissipa-
profile of the propagating wave pulse is small compared tdion on the process of formation and propagation of envelope
competing influences of dispersion and nonlinearity that areolitons in nonlinear dispersive media. Using the example of
responsible for the soliton formation. However, the influencespin-wave envelope solitons, we show that the dissipation
of dissipation cannot completely be excluded, and thereforparameter in a weakly dissipative medium determines the
the experimentally observed nonlinear wave packets are n@mplitude threshold of the envelope soliton formation. It also
envelope solitons in a pure mathematical sense of thigetermines the shape and fine structure of the threshold
definition® In every medium supporting envelope solitons curve, and the optimum duration of the input wave pulses for
there is, however, an interval of propagation distances imwhich the threshold of envelope soliton formation has
which the propagating nonlinear wave packet has “solitonic”minima. We show that it is reasonable to use measurements
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TABLE |. Characteristic parameters in optical and magnetic media.

Type of waves [vgl |D| IN|C r T Tp Tp Tr
(cm/s  (cn¥/s) (Wts™h (sh (ng)  (us) (us) (us)

Optical waves X101° 1x10® (0.4-6)x10° 1x10* 0.01 5-50 1 100

in single-mode fiber§

Magnetostatic waves ~ %410°  3x10° 1x 10 5x10°F 20 0.2 0.2 0.2

in YIG films ® ¢

Dipole-exchange 210f  5x10° 3x 10 5x10° 200 0.2 005 02

spin waves

in YIG films ?: @

%Reference 1.
bReference 3.
‘Reference 10.
dreference 15.

of the peak power attenuation of a nonlinear wave packetnagnetostatic wave soliton experiments in YIG films and
propagating in a weakly dissipative medium to determinefor optical envelope solitons in fibers, are given in Table |.
experimentally the propagation length, within which the For a lossless mediun’=0) Eq. (1) was solved exactly
soliton is formed, and the interval of propagation distancesising the method of inverse scattering transformation
L where the propagating wave packet retains its solitoni¢IST).5° It was shown that if the Lighthill criterionND
properties. <0; see Refs. 6 and)9s fulfilled, the NSE-governed evo-
lution of a sufficiently smooth and rapidly decaying input
pulse profile ¢(z,0)=Ug(z) (whereU is a real constapnt
leads to the formation of bright envelope solitons.

Below we shall restrict our attention to the case of quasi- The IST method also allows us to find the threshold for
one-dimensional spin-wave soliton propagation in narrowthe soliton formation. In particular, it was shown in Ref. 6
strips of YIG films(YIG waveguide} having a typical width ~ that in a medium without dissipation @ectangular input
of 1-2 mm. Diffraction, self-focusing, and other two- pulse of durationl and amplitudeU splits into n envelope
dimensional effects, which manifest themselves in wider filmsolitons if the following condition is fulfilled:
samples, have been discussed in detail elsewtfFae one-
dimensional propagation of envelope solitons in a nonlinear m(2n—1)
dispersive medium with weak dissipation is usually de- Ulog|T |N/D|>T. %))
scribed by a perturbed nonlinear Sotfimger equatioh™
(NSE) (see also Refs. 9-25

II. EVOLUTION EQUATION

This condition results from the fact that the linear scat-
tering problem associated with the NSE hasdiscrete

2
i(ﬁﬂ,gﬁ) + EE_N|¢|2¢: ~il ¢, (1) eigenvalues only when the dimensionless ar&a
at 0z) 2 g7? =UJvgy| TV[N/DJ under the rectangular input pul$ehich

_ determines the initial scattering potential of the inverse scat-
where ¢(z,t) = (z,t)€'’*Y is the slowly varying dimen- tering problen is larger than a minimum value determined
sionless complex amplitude of the wave apdndo are real by Eq. (2).
functions. In the case of spin waves propagating in a mag- The condition(2) gives the threshold amplitude of an in-
netic medium the complex wave amplitugeis related with  put rectangular pulse that is required to form envelope
the amplitude of transverse magnetizatiorand saturation solitons in a medium without dissipation:
magnetization My by* #?=m?2M3. In Eq. (1) vy
=dwl K|y, is the group velocityD = °w/ 9k, is the dis- 1
persion coefficient, andl=dw/d|¢|?|,, is the nonlinearity INJUE, n=7/DI
coefficient. All coefficients are calculated at the carrier wave
numberk,. The dissipation coefficienf =yAH is propor- | s clear from Eq.(3) that the threshold power for the soli-
tional to the ferromagnetic resonance linewidtii of the  {on formation,
ferrite andy denotes the gyromagnetic ratio. The dissipation,
which is responsible for the effects of interest in the present
paper, is assumed to be a small perturbation compared to all __"th
other terms. Typical values of these coefficients, both for L)

()

(2n—1)77}2
|Ug|T

4
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(whereC is a scaling coefficient depending on the efficiency A o’ (z)
of the MSW excitation and measured in"W, is inversely
proportional to the squared duration of the input pulse. It is 1

also clear that (8—1)? times more power is required to
form n envelope solitons than to form a single one. As will
be shown later, the dissipation in the medium changes the
dependencél3) qualitatively (see also Refs. 24 and 26 0.5 L

Ill. CHARACTERISTIC LENGTHS AND TIMES: L
INFLUENCE OF THE SHAPE OF THE INPUT PULSE / \

Formation and propagation of solitons in the framework
of the NSE (1) where dissipation is neglected’ €0) are -L2 0 L/2
usually discussed in terms of the characteristic dispersion
and nonlinear length&p and Ly, (or times Tp=Lp/|vg|
and Ty, =Ly /|vgl), which are defined as propagation dis-
tances(or time interval$ at which dispersion and nonlinear-
ity in the medium significantl(in some sengeaffect the
profile of the input wave packdsee, e.g., Refs. 1, 10 and

NS: <

FIG. 1. Intensity profile of the input pulse from which envelope
solitons are formedL is the characteristic width of the pulse de-
fined by Eqs(12)—(14), while L gyum is the full width of the pulse
at half its maximum of intensity.

S
—>, ®

w

11), and usually it is considered that the dispersion length is

a good estimate of a propagation distance at which a soliton

is formed. For example, in optics these lengths are defined ¥here(- - -) again denotes an integer part of the argument,
(see Ref. 1, p. 61

UL
|Ug|3T(2) S:F |N/D| (9)
LD:|Ug|TD:Wa ® . . .
is the dimensionless area under the input pulse,|vg|T
and T are the spatial size and the temporal duration of the
vl input pulse, correspondingly, while the dimensionless shape

LNL=|Ug|TNL=W1 (6)  factor 8 is defined by

+oo
whereT, is a parameter characterizing the time duration of ,8_1=%f g(z)dz, (10
the input wave packet. The characteristic lengths in Egjs. -
and(6) are defined in such a way that the integer part of theyhere the functiory?(z) describing théntensity(or powe)
square root of their ratio is equal to the order of the solitonprofile of the input pulse is shown in Fig. 1. Conditi¢8) is
solution of the NSE(1) (or “soliton order”) Ng (see pp. a direct generalization of Eq2) for the case of an arbitrary

142-146 in Ref. smooth shape of the input pul&e'®
Direct comparison between Eq®) and(8) allows us to
Ng=(VLp/Ln. ), (7)  find a simple relation between the “order of soliton solution”

of Eqg. (1) and the “effective number of solitonsi,
where(- - -) denotes an integer part of the argument. These

definitions in optics are used for input pulses of arbitrary but Neg=Ng+ =,
smooth shapé. 2

It is, however, intuitively obvious that the input pulses of |, hi-h means that for a fundamentaingle soliton solution
different shape will be affected differently by the same dis-¢ 1o orderNs=1 the effective value ofi is ng;=3/2. In
e .

persion, and, therefore, the characteristic dispersion leng her words, the fundament&ingle soliton solution of the

Lp should depend on the input pulse shape. Also, the paramjern =1 exists when the dimensionless area of the input

eter T, characterizing the time duration of the input wave ulse lies between the limits defined b forn=1 and
packet should be explicitly defined for input pulses of differ- 2: 2 y E2)

(11

ent shapes.
Using the formalism of the inverse scattering T 37
problenf12131%ye extend the definitiofb) of the dispersion >>5=—

lengthLp to account for the shape of the input pulse. If we

assume that the envelope of the input pule=0) is posi- and the exact single-soliton regime is achieved in the middle
tive and smoothg(z,0)=Ug(z)>0 [0<g(z)<1], the or- of the interval wherS= = andn.=3/2. This is illustrated
der Ng of the soliton solution of Eq(l) that develops from by Fig. 2 where we plot the amplitudé of the input pulse as

an input wave packet of the normalized afean be found a function of its inverse width L/ for the simplest case of a
from the expressidi*? rectangular input profile #=1). The solid straight lines,
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U g(z)=sechi2z/L], (15)
we haveB=2/m, and the spatial size of the input pulke
=|vg|T is related to the width byt pyu=[In(1+ J2)]L
=0.84.. The intensity profile of the initial pulsg?(z) and
its parameterd andL gy are shown in Fig. 1.
From the comparison of Eq¢5) and (12) it is clear that
the conventional definiticnof L, Eq.(5), is only exact for
the hyperbolic-secant input pulse if we assume that the pa-
rameterT, in Eg. (5) is half the duration of the input pulse
To=T/2=(L/2)|vg|. It is also clear from Eq(12) that the
characteristic dispersion time for a rectangular input pulse is
considerably[ (7/2)? timeg] shorter than for a hyperbolic-
0 1L secant pulse of the same duratibnin experiments on opti-
cal fiber solitons, where the input pulse duration is relatively
FIG. 2. Regions of existence ofsoliton solutions of the non-  short (several picosecongisand the pulse shape is usually
linear Schrdinger equation(1) on the plane “amplitude-inverse close to either hyperbolic-secant or Gaussian shape, the
length” of the rectangular input pulse. traditional definitions, Eqs(5)—(7) work reasonably well
when Ty=T/2. In contrast, in spin-wave soliton
calculated from Eq(2), show the boundaries between soliton experiment$'®'°~8he input pulses are relatively lorig0—
solutions of different orderdlg, while the inclined broken 1000 n$ and almost rectangul@B=1). This fact should be
lines in between, calculated from E@), correspond to the taken into account when calculating the characteristic lengths
exact conditions of existence of these solutions. It is cleafor spin wave envelope soliton formation, and the definition,
from Fig. 2 that for any given width. of the input pulse Eq. (12), for Lp should be used, especially when the ex-
there is a range of amplitudéisetween the solid lines corre- pected “soliton order’Ns is evaluated from these calcula-
sponding ton=1 andn=2) where a singldfundamental  tjons (see, e.g., Ref. 11
solitonNg=1 can exist in the case without dissipation. Equation(7) can be rewritten as a threshold condition for
The horizontal broken line in Fig. 2 corresponds to thethe amplitudeU of the input pulse of an arbitrary smooth
minimum dissipation-dependent threshold of the soliton forshape having a duratiof that is necessary to form enve-

(T/IND'72

mation and will be discussed beldsee Eqs(23) and(25)].  lope solitons in a medium without dissipation,

It has been shown in Ref. 24 that the presence of dissipation

in the medium will restrict from below the interval of input 5 1 Bm(2n—1)]? 1 )
amplitudes in which the formation of a singleindamental INJUR, n:Z| | W :Z|D|Kn’ (16)

soliton is possible.
Equation(8) can easily be rewritten in a form similar to where «, is a quantity that has the dimension of inverse

Eq. (7) if we retain the definitior(6) for the nonlinear length  length and can be interpreted as a characteristic wave num-

L. and introduce the following definition for the dispersion ber of the envelope of the input pulse and which depends on

length the numbem of formed solitons:
m(2n—1
Lo=lvd|To= loglL? _ logl*T? 1 Kn:,B |(v L )' n12a. an
» TP ginfp| gEa?Dl ?
where the shape fact@ can be calculated for different input IV. INFLUENCE OF DISSIPATION ON THE
pulse profiles from Eq(10). In particular, for a rectangular PROPAGATION OF A SINGLE (FUNDAMENTAL )
input pulse defined by ENVELOPE SOLITON
1, if |=L/2 When finite but small dissipation is taken into account in
g(z)=rec(2z/L)= b (13)  Ed. (1), the fundamental “single-soliton”Ns=1) solution
0, if [z>L/2 of this equation can be found using the perturbation theory,

where the dissipative term in the right-hand part of the equa-
tion is treated as a small perturbatith.

The modulus of a single-soliton solution of Ed.) ob-
tained for the initial condition

which is widely used in experiments in optical fibers, we ¢(2,0)=Ug(2)expli72) (18
have 8= 2/7, and the spatial size of the input pulsdis  containing a spatial modulation of the initial profile with
related to the traditionally used “full width at half maximum wave numbery has the form

intenSity" LFWHM by LFWHM: \/mL20833_ For a

hyperbolic-secant input pulse, |p(z,t)|=Ue 'sectiUe 2''\|N/D|(z—v4t)], (19

the calculation is trivial and yieldg=1. For a Gaussian
input pulse

g(z)=exd —2(z/L)?], (14)
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where the soliton velocity iss=v4+ 7|D]|. Itis clear from V. INFLUENCE OF DISSIPATION ON THE THRESHOLD
Eq. (19) that a small dissipative perturbation does not quali- AND CHARACTERISTIC TIME OF SOLITON
tatively change the single-soliton solution of the NSE with- FORMATION

out dissipationI'=0). A fully formed envelope soliton sim- . . . L
ply broadens due to dissipation, and its amplitude decreases;nEXpe”m.ents performe_d on _optu_:al soll_tons in fibbfs,
with propagation time twice as fast as the amplitude of here the influence of dlsglpatlon is relatively small, have
linear sinusoidal signal in the same medium. NumericaidemOnStratecl that the soliton threshold formulas, Egs.

calculationd® show that the perturbation solution, E3.9), ngérlir?ér?tgtalzﬁg wetlreTlr?sséiiZtiC:r?E;;s) dr?c?vig\ti(eartheuite
works well up to the time$<0.7' ~*. Beyond this value the P q . y  d

) . . ifferent in the case of dipolar spin wavidsmckward volume
broadening of the propagating soliton changes over to that oSnagnetostatic waveBVMSW)] in YIG films where the in-

a linear pulse and becomes much slower than predicted bﬁluence of dissipation is relatively stroAg.Although the
the solution, Eq(19). . ; . )
ORI . . . . threshold curve measured in Ref. 23 had linear regions with
In a dissipative medium it is convenient to introduce twoSIO es well described by Eq@) for n=1,2, it also had a
more characteristic times for soliton propagation. First of all’;. P >0 by = .
. - . . . distinct structure with two well-pronounced minima that
we shall introduce the characteristic relaxation time in the : .
medium were not descr_|bed by the classical thgory,_B}. The ex-
planation for this threshold curve was given in Ref. 24 where
Tr=I"1 (20)  dissipation was taken into account in the process of envelope

. o ) soliton formation.
Another important characteristic time for the soliton forma-  The threshold formula derived in Ref. 24 using

tion is the propagation time in the mediump, which is  formalisn?® has the form

equal to the ratio of the propagation distaricand group

velocity vy I'2+iD?%«;
|N|Ut2h n—

— (23
Te=1/|vg|. (21) |D|«?

In order to observe the formation of envelope solitéag., wherex, is defined by Eq(17). The right-hand-side part of

fundamentalNs=1 envelope solitonsin real experiments the threshold condition, Eq23), defines a series of thresh-

the characteristic times our system have to fulfill the follow-old curves corresponding to the formation m&1,2,3...

ing relations®® envelope solitons. These curves have minimaTatT,
which are given by the expression

TD<T]", TN<T|", TD:TN! TN<TP<T]". (22)

. . 7p(2n-1) (D]

Typical values of some important parameters and charac- Tpo=——\/ 5

teristics times for optical waves in fibers, magnetostatic |vg| 2r

waves (or dipolar spin waves and dipole-exchange spin Thus, in a weakly dissipative medium there is an optimum

waves in ferrite films are presented in Table I. It is evidentduration of an input puls@ =T, which corresponds to a

from these values that the influence of dissipation on theninimum threshold of the formation of envelope solitons

process of soliton formation and propagation is much strondefined by the expression

ger for magnetic solitons than for solitons in optical fibers.

Solitons of dipole-dominated spin wavésr magnetostatic INJUZ =T . (25)

waveg are actually formed in a regime, where the influence

of dissipation and dispersion on the profile of the input puIseThe threshold curv_es calcula_ted from E23) for the r(_actan-

are comparableTp=Tr=Tp, and one may doubt whether gular input puls¢s=1) andn=1,2,3 are shown in Fig. 3 of

nonlinear spin wave packets formed in this regime have soIiRef' 24. Note that by means Of. Ecq§3)—(25_) th_e expression

tonic properties. Several recent experim&td have for the relative thre_shold_ of soht_on formation ina dissipative

shown, however, that nonlinear wave packets formed in thiénedlum can be written in the simple normalized form

strongly dissipative regime approximately preserve their 2 4

shapes during propagation and after collisions with other Uth n _ 1+(Ty/T) (26)

packets, and, therefore, can be called solitons. Ui in 2(TaIT)2

Experimental measurements of the effects of dissipation ) )

on the propagation of dipolar spin-wave envelope solitons irlt is interesting to note that Eq23) can also be rewritten

YIG films2122have shown that although dissipation for theselSimilar to Eq.(2)] as a threshold condition for the dimen-

waves is not a small perturbatigsee Table)l the perturba- Sionless pulse aregdefined by Eq(9):

tive solution, Eq.(19), describes the expected soliton prop-

erties surprisingly well. There is a range of propagation dis- ~m(2n—1)

tances within which the dissipation of solitons is exponential hn™ 2

and almost twice as large as the dissipation of linear sinu-

soidal signals in the same medium. This factor 2 in the peak follows from Eq. (27) that for the conditions of the

power dissipation rate can be used as a signature of a fullgxperiment&*?® only the threshold area necessary for the

formed soliton in a dissipative medium. formation of a single i=1) soliton is substantially cor-

(24)

2

. (27)

21
D«
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Amplitude T, o T, T
b T . .
2 1
-1 7
= ]
]
it i
s I
®
s £
0 T 2 o | | |
Propagation time 0 100 200 300
FIG. 3. Schematic picture showing evolution of an input pulse time (ns)
of durationTy and amplitudeJ, in a nonlinear dispersive medium _ _ o _
with dissipation.T is the single soliton formation time antk is FIG. 4. Profiles of approximately solitonic pulses numerically
the time interval in which the pulse propagation is approximatelycalculated from Eq(1) for the parameters of the experimeftef.
solitonic. 10) and rectangular input pulses of durati®s 15 ns. The initial

amplitude of the input pulse was chosen such that the pulse area

rected by dissipation, and can increase from a value/af corresponds to the upper boundary of the single-soliton regime
. =2 in Egs.(3) and(16)]. The soliton formation tim& ¢ is defined

(for '=0) up to 7. The areas of pulses necessary for the N ; i
formation of higher order solitonsn1) are only weakly as a propagation time at which propagating pulse starts to demon-
affected by dissipation since, increases rapidly with in- strate *solitonic” dissipatior{see £q/(19)]

Cre?r?ien?hrsgsli;%rl]dneljgtr):;sions for envelope soliton formatioﬁNidth increases because of dissipation. T+ Ts the
in the dissipative medium, Eq&23) and (26), were experi- pulse amplitude has decreasedUg, defined by Eq(25).

mentally confirmed for both purelv dipolar Spin Waves Then the nonlinearity becomes insufficient to compensate the
Yy , X purely dip pin 4+ dispersion spreading of the wave packet, and the solitonic
propagating in tangentially magnetized YIG filfd

. : . pulse turns into an ordinary linear pulse. The amplitude of
fr?\;gﬂr?e/\rll)dﬁ:ﬁljafr?; g:gcg)lneétei;gga;ll%e fﬁﬁlorg waves propagatin he linear pulse decreases monotonously on propagation due

. to dispersion spreading and damping. It is this “approxi-
All th(_e above results apply to fully fo_rmed _envelope soli- mately solitonic” nonlinear wave packet moving in the lim-
tons. It is, however, well-known that, if an input pulse of

arbitrary (nonsolitoni¢ shape enters a nonlinear dispersiveItecj interval of propagation imef <t <T¢. + Ts that is usu-

medium, a certain propagation tiriar propagation distange ally called “envelope soliton” in a dissipative medium. Thus,

is neces,sar o foFr)m pa gsoliton out gf t%is? inbut pulse Wethe dissipation in the medium not only influences the thresh-
y N out of ThiS input pulse. old of soliton formation[see Eqs(23) and (25)], but also

propose to use the characteristic dissipation properties of an

o ) ) . imits the time intervalboth from above and from belgvin
envelope solitorii.e., the decay of its peak amplitude witha _ . . . T
: : . : which nonlinear wave packets can propagate in a dissipative
rate twice as large as for a linear cw signt determine

) L . medium as solitons. A theoretical estimate of the single-
experimentally the propagation times and distances where a . o S
soliton formation timeT ¢ is given below.

single envelope soliton has been formed. This idea was pre- Numerical calculations o in terms of the NSE model

viously suggested in Ref. 21 and successfully used in soliton, . . . TS .
collision experiments$® There are also other opinions on this r(‘l) fln2t7heTﬁgsseomggoflétr:]IaS;é%ai:?nfg—Saavsvedr:ﬁ;z%oir:‘egé?
. . F .

) e
subject. For example, the authors of Ref. 11 proposed to us?7 as the moment when the amplitude of the propagating

the symmetry of the output pulse profile as an indication tha Ulse stops to chanae and remains constant. Thus the forma-
a soliton is fully formed. The symmetry criterion, however, is pulse stop 9 . : .
tion time T¢ for a rectangulafB=1) input pulse, having an

a qualitative one, and, in general, it is very difficult to check. . . ; .
it experimentally, while the formation criterion based on the|n|t|aI amplitude and duration such that the area of the pulse

dissipative behavior of envelope solitons can be easil)forresponds t.me“f: .3/2 (.stl)' turned ou_t to be propor-

applied. t!onal_to the d_|s_perS|on tim&p, Te=BTy with the propor-
To illustrate our ideas about the soliton formation time Wetlonallty co_eff!C|er_1thZ.5.

present a qualitative picture of evolution of a high-amplitude In t'he dissipative casél“.#'O) we suggest to' use EQZQ)

wave packet propagating in a nonlinear dispersive mediuri d€fine a new characteristic ting, (dispersion time in a

with dissipation in Fig. 3. The packet with initial amplitude diSSipative mediuiras the inverse of the right-hand-side part

U, and durationT, is excited att=0. This packet propa- of Eq. (23) for ney=3/2 (Ns=1):

gates in the medium subject to the combined influence of

2
nonlinearity, dispersion, and dissipation. After a characteris- -~ D[ x5/
X ook . ; : Trp=————. (28
tic propagation timé ¢ this pulse is reshaped and turned into 5 -
a solitonic pulse with the amplitud® 5, and durationT. r +ZD K32

The solitonic pulse then propagates in the medium for a time
Ts. During this time the shape of the pulse envelope remainghis definition can be rewritten entirely in terms of the char-
solitonic (i.e., sech-likg but its amplitude decreases and its acteristic timesT, and T [see Eqg$12) and(20)]:

174421-6



FORMATION AND PROPAGATION OF SPIN-WAE . . . PHYSICAL REVIEW B 67, 174421 (2003

400 77— Dparson Tme o ing pulse is solitonic, i.e., linear in a logarithmic scale, and,
....... Characteristc Time Trp thus, Tg can be considered as the numerically calculated
@ Formaton time T soliton formation timeTg was evaluated for different values
of the input pulse duratiom (while the area of the input
pulse corresponding to=2 was kept constanusing graphs
similar to the ones shown in Fig. 4. The characteristic times
Tp andTrp were calculated for the same parameters of the
NSE (1) and different values of using Eqs.(12) and(29).
The numerical results of all these calculations presented in
Fig. 5 clearly demonstrate that in a dissipative medium, the
: : : single soliton formation timeT: indeed becomes smaller
5 10 15 20 25 than that in a medium without dissipation. We can conclude
Input Pulse Duration, T (ns) from Fig. 5 thatTp yields a reasonable quantitative esti-
o . ) mate of the numerically determined formation tiffie. Pre-
FIG. 5. Characteristic times of a single envelope soliton forma'liminary measurements of the BVMSW soliton formation
tion as functions of the input rectangular pulse durafforSolid 4,28 (defined as suggested abdyeerformed in a weakly
line: disp?r$i°'? timeTp calculated using Eq(11); br.Oken line: dissipative YIG waveguide also gave a valueTgf that is
characteristic timelp calculated from Eq(28); full circles: nu- substantially smaller, than the characteristic dispersion time
merically calculated soliton formation tin¥g: determined as in Fig. 4 litativel ts the ab d
4. All model parameters are as in Fig. 4 and in experimentTD' Thg resutt- qua |ta_t|vey Supports the above propose
(Ref. 10. expression for the sohto_r) formatlon. time in a d|§S|p_at|ve
medium Eq.(29), but additional experimental investigations
are necessary to check the quantitative validity of the for-
_ To (29) mula (29).
1+(Tp/2Tp)?

300

200

Soliton Formation Time, (ns)

Tro
VI. CONCLUSION
It is reasonable to assume thgt, would be a good analyti- ) i
cal estimate for the formation time of a single soliton in a  The analytical and numerical results presented above
dissipative mediumTe~Typ, similar to Tp being a good show that d|SS|pat|0n_pIays an important quahtgtlvg role in
estimate of the formation time in a medium without dissipa-the process of formation and propagation of solitonic pulses
tion. Note that from Eqs(23) and (29) it follows that for a I weakly d|ss!pa.t|ve. me_d|a. In ferrite wavegwdgs wh(_are th_e
single (Ns=1) soliton we haveTpp=Ty. It is also clear mfluenge _of cyssmatlon is much stronge( than in optlcgl f|—_
from Eq. (29) that Typ<Tp. Consequently, in dissipative bers, d|_SS|pat|on s_h(_)uld always be taken into account since it
(I'+0) medium a fundamentalNs=1) envelope soliton is dete_rmmes the minimum threshold of envelope soll_ton for-
formed fasterthan in the medium without dissipation. mation and the shape of the threshold curve for soliton for-
To evaluate the quality of the theoretical estimate, Eq_mauon. The characteristic solitonic Q|ss_|pat|on qf th.e peak
(29), for the soliton formation tim& , it is necessary to use POWer of the wave packet propagating in a dissipative me-
some criterion for the soliton formation indissipative me-  dium can be used to determine experimentally the time when
dium The best choice is the criterion suggested in Ref. 24N€ propagating wave packet becomes a fully formed “ap-
based on the property of the fully developed soliton to disProximate” envelope soliton. This formation time can be es-

sipate exponentially twice as fast as a linear cw signal. Thudimated analytically including the effects of dissipation. All
the soliton formation timélg in a ferrite film is the propa-

these conclusions are well supported by the numerical mod-
gation time at which the solitonic dissipation starts. eling in the framework of the NSE model, and most of them
Figure 4 shows a numerical simulation of the profiles of&'€ @lS0 supported by our laboratory experiments performed
solitonlike pulses formed from an initial rectangular pulse ofon Poth dipole-dominated8VMSW) and dipole-exchange
durationT=15 ns after different propagation times. The ini- SPIN Waves propagating in YIG film waveguides.

tial amplitude of the pulse was chosen in such a way that the
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