
s

PHYSICAL REVIEW B 67, 174421 ~2003!
Formation and propagation of spin-wave envelope solitons in weakly dissipative ferrite waveguide
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The influence of dissipation on the process of formation and propagation of envelope solitons is considered
on the example of spin wave envelope solitons in yttrium iron garnet~YIG! film waveguides. It is shown that
the measurements of attenuation of the peak power of a propagating nonlinear wave packet in a weakly
dissipative medium can be used to determine the soliton formation length. This length turns out to be smaller
than the characteristic dispersion length calculated for a given shape and duration of the input pulse. A simple
approximate analytic expression for the soliton formation time in a dissipative medium is introduced and
confirmed by both numerical calculations and preliminary laboratory experiments on dipolar spin waves in
YIG waveguides.
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I. INTRODUCTION

Envelope solitons are stable nonlinear wave packets
preserve their shape while propagating in a nonlinear dis
sive medium, even after collisions with other envelope s
tons. These properties make them attractive for applicat
as information carriers in communication and signal proce
ing systems. In particular, optical envelope solitons in fib
have been studied very intensively during recent deca
~see Ref. 1 and references therein!. These optical solitons
propagating in silica fibers with very low propagation loss
have a typical duration of several picoseconds, and are
sidered now as the most promising carriers of information
future fiber optic communication lines.2

Another important example of a physical system wh
envelope solitons can be easily observed and studied ex
mentally are spin waves propagating in thin magnetic film3

Spin-wave envelope solitons propagating in yttrium iron g
net ~YIG! films typically have carrier frequencies in the m
crowave frequency range~i.e., several gigahertz!, a group
velocity about four orders of magnitude smaller than
group velocity of optical solitons and durations of 5–200
Solitons of this type might find applications in microwav
signal processing systems and radar technology.4

In all laboratory experiments where envelope solito
have been studied, they were propagating in media w
weak, but finite dissipation. Of course, in all the ‘‘soliton
experiments~in optical fibers,1,2 magnetic films,3 on the wa-
ter surface, and in other physical systems5!, special care was
taken to make sure that the influence of dissipation on
profile of the propagating wave pulse is small compared
competing influences of dispersion and nonlinearity that
responsible for the soliton formation. However, the influen
of dissipation cannot completely be excluded, and there
the experimentally observed nonlinear wave packets are
envelope solitons in a pure mathematical sense of
definition.6 In every medium supporting envelope solito
there is, however, an interval of propagation distances
which the propagating nonlinear wave packet has ‘‘soliton
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properties~i.e., approximately preserves its shape in prop
gation and in collisions with other solitons!. This interval is
limited from below, because it takes a certain minimu
propagation length to form a soliton from an arbitrary inp
pulse. It is also limited from above, because at large pro
gation distances in a dissipative medium the amplitude o
propagating wave packet decreases~as, consequently, doe
the influence of nonlinearity! and, finally, the dissipation and
the unbalanced effect of dispersion lead to the destructio
a soliton. These ‘‘approximately solitonic’’ nonlinear wav
packets moving in the above described limited interval
propagation distances we shall call ‘‘envelope solitons’’ b
low. It also turns out that in some media dissipation can p
a decisive role in the formation process of envelope solit
from initially linear wave pulses when their amplitude
increased, and can determine the shape of the threshold c
for soliton formation.

We have chosen magnetic~or spin wave! envelope soli-
tons for this study because they are much stronger affe
by dissipation than, e.g., optical solitons in fibers. Even
best magnetic materials~monocrystalline YIG films! have
relaxation parameters that are three orders of magnit
larger than the corresponding parameters in optical fib
Spin waves in magnetic films are also relatively slow~four
orders of magnitude slower than optical waves in fiber!,
which leads to a much larger spatial attenuation and pro
gation losses of spin waves. Thus, the influence of diss
tion is critical and has to be taken into account in the case
spin-wave envelope solitons.

The aim of this paper is to study the influence of dissip
tion on the process of formation and propagation of envel
solitons in nonlinear dispersive media. Using the example
spin-wave envelope solitons, we show that the dissipa
parameter in a weakly dissipative medium determines
amplitude threshold of the envelope soliton formation. It a
determines the shape and fine structure of the thres
curve, and the optimum duration of the input wave pulses
which the threshold of envelope soliton formation h
minima. We show that it is reasonable to use measurem
©2003 The American Physical Society21-1
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TABLE I. Characteristic parameters in optical and magnetic media.

Type of waves uvgu uDu uNuC G T TP TD TG

~cm/s! (cm2/s) (W21 s21) (s-1) ~ns! (ms) (ms) (ms)

Optical waves 231010 13103 (0.426)3106 13104 0.01 5–50 1 100
in single-mode fibersa

Magnetostatic waves 43106 33103 13107 53106 20 0.2 0.2 0.2
in YIG films b, c

Dipole-exchange 23106 53105 33107 53106 200 0.2 0.05 0.2
spin waves
in YIG films b, d

aReference 1.
bReference 3.
cReference 10.
dReference 15.
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of the peak power attenuation of a nonlinear wave pac
propagating in a weakly dissipative medium to determ
experimentally the propagation lengthL f , within which the
soliton is formed, and the interval of propagation distan
Ls where the propagating wave packet retains its solito
properties.

II. EVOLUTION EQUATION

Below we shall restrict our attention to the case of qua
one-dimensional spin-wave soliton propagation in narr
strips of YIG films~YIG waveguides!, having a typical width
of 1–2 mm. Diffraction, self-focusing, and other two
dimensional effects, which manifest themselves in wider fi
samples, have been discussed in detail elsewhere.7,8 The one-
dimensional propagation of envelope solitons in a nonlin
dispersive medium with weak dissipation is usually d
scribed by a perturbed nonlinear Schro¨dinger equation1–3

~NSE! ~see also Refs. 9–25!,

i S ]f

]t
1vg

]f

]z D1
D

2

]2f

]z2
2Nufu2f52 iGf, ~1!

where f(z,t)5c(z,t)eis(z,t) is the slowly varying dimen-
sionless complex amplitude of the wave andc ands are real
functions. In the case of spin waves propagating in a m
netic medium the complex wave amplitudef is related with
the amplitude of transverse magnetizationm and saturation
magnetization M0 by3 f25m2/2M0

2. In Eq. ~1! vg

5]v/]kuk0
is the group velocity,D5]2v/]k2uk0

is the dis-

persion coefficient, andN5]v/]ufu2uk0
is the nonlinearity

coefficient. All coefficients are calculated at the carrier wa
numberk0. The dissipation coefficientG5gDH is propor-
tional to the ferromagnetic resonance linewidthDH of the
ferrite andg denotes the gyromagnetic ratio. The dissipati
which is responsible for the effects of interest in the pres
paper, is assumed to be a small perturbation compared t
other terms. Typical values of these coefficients, both
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magnetostatic wave soliton experiments in YIG films a
for optical envelope solitons in fibers, are given in Table

For a lossless medium (G50) Eq.~1! was solved exactly
using the method of inverse scattering transformat
~IST!.6,19 It was shown that if the Lighthill criterion (ND
,0; see Refs. 6 and 9! is fulfilled, the NSE-governed evo
lution of a sufficiently smooth and rapidly decaying inp
pulse profilef(z,0)5Ug(z) ~where U is a real constant!
leads to the formation of bright envelope solitons.

The IST method also allows us to find the threshold
the soliton formation. In particular, it was shown in Ref.
that in a medium without dissipation arectangular input
pulse of durationT and amplitudeU splits into n envelope
solitons if the following condition is fulfilled:

UuvguTAuN/Du>
p~2n21!

2
. ~2!

This condition results from the fact that the linear sc
tering problem associated with the NSE hasn discrete
eigenvalues only when the dimensionless areaS
5UuvguTAuN/Du under the rectangular input pulse~which
determines the initial scattering potential of the inverse sc
tering problem! is larger than a minimum value determine
by Eq. ~2!.

The condition~2! gives the threshold amplitude of an in
put rectangular pulse that is required to formn envelope
solitons in a medium without dissipation:

uNuU th n
2 5

1

4
uDuF ~2n21!p

uvguT G2

. ~3!

It is clear from Eq.~3! that the threshold power for the sol
ton formation,

Pth5
U th

2

C
~4!
1-2
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~whereC is a scaling coefficient depending on the efficien
of the MSW excitation and measured in W21), is inversely
proportional to the squared duration of the input pulse. I
also clear that (2n21)2 times more power is required t
form n envelope solitons than to form a single one. As w
be shown later, the dissipation in the medium changes
dependence~3! qualitatively ~see also Refs. 24 and 26!.

III. CHARACTERISTIC LENGTHS AND TIMES:
INFLUENCE OF THE SHAPE OF THE INPUT PULSE

Formation and propagation of solitons in the framewo
of the NSE ~1! where dissipation is neglected (G50) are
usually discussed in terms of the characteristic dispers
and nonlinear lengthsLD and LNL ~or times TD5LD /uvgu
andTNL5LNL /uvgu), which are defined as propagation di
tances~or time intervals! at which dispersion and nonlinea
ity in the medium significantly~in some sense! affect the
profile of the input wave packet~see, e.g., Refs. 1, 10 an
11!, and usually it is considered that the dispersion lengt
a good estimate of a propagation distance at which a so
is formed. For example, in optics these lengths are define
~see Ref. 1, p. 61!

LD5uvguTD5
uvgu3T0

2

uDu
, ~5!

LNL5uvguTNL5
uvgu

uNuU2
, ~6!

whereT0 is a parameter characterizing the time duration
the input wave packet. The characteristic lengths in Eqs.~5!
and~6! are defined in such a way that the integer part of
square root of their ratio is equal to the order of the soli
solution of the NSE~1! ~or ‘‘soliton order’’! NS ~see pp.
142–146 in Ref. 1!:

NS5^ALD /LNL &, ~7!

where^•••& denotes an integer part of the argument. Th
definitions in optics are used for input pulses of arbitrary
smooth shape.1

It is, however, intuitively obvious that the input pulses
different shape will be affected differently by the same d
persion, and, therefore, the characteristic dispersion len
LD should depend on the input pulse shape. Also, the par
eter T0, characterizing the time duration of the input wa
packet should be explicitly defined for input pulses of diffe
ent shapes.

Using the formalism of the inverse scatterin
problem6,12,13,19we extend the definition~5! of the dispersion
lengthLD to account for the shape of the input pulse. If w
assume that the envelope of the input pulse~at t50) is posi-
tive and smooth,f(z,0)5Ug(z).0 @0,g(z)<1#, the or-
der NS of the soliton solution of Eq.~1! that develops from
an input wave packet of the normalized areaS can be found
from the expression12,13
17442
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p L , ~8!

where^•••& again denotes an integer part of the argume

S5
UL

b
AuN/Du ~9!

is the dimensionless area under the input pulse,L5uvguT
and T are the spatial size and the temporal duration of
input pulse, correspondingly, while the dimensionless sh
factor b is defined by

b215
1

LE2`

1`

g~z!dz, ~10!

where the functiong2(z) describing theintensity~or power!
profile of the input pulse is shown in Fig. 1. Condition~8! is
a direct generalization of Eq.~2! for the case of an arbitrary
smooth shape of the input pulse.12,13

Direct comparison between Eqs.~2! and ~8! allows us to
find a simple relation between the ‘‘order of soliton solution
of Eq. ~1! and the ‘‘effective number of solitons’’neff ,

neff5NS1
1

2
, ~11!

which means that for a fundamental~single! soliton solution
of the orderNS51 the effective value ofn is neff53/2. In
other words, the fundamental~single! soliton solution of the
orderNS51 exists when the dimensionless area of the in
pulse lies between the limits defined by Eq.~2! for n51 and
n52

p

2
>S>

3p

2

and the exact single-soliton regime is achieved in the mid
of the interval whenS5p and neff53/2. This is illustrated
by Fig. 2 where we plot the amplitudeU of the input pulse as
a function of its inverse width 1/L for the simplest case of a
rectangular input profile (b51). The solid straight lines

FIG. 1. Intensity profile of the input pulse from which envelop
solitons are formed.L is the characteristic width of the pulse de
fined by Eqs.~12!–~14!, while LFWHM is the full width of the pulse
at half its maximum of intensity.
1-3
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calculated from Eq.~2!, show the boundaries between solito
solutions of different ordersNS , while the inclined broken
lines in between, calculated from Eq.~8!, correspond to the
exact conditions of existence of these solutions. It is cl
from Fig. 2 that for any given widthL of the input pulse
there is a range of amplitudes~between the solid lines corre
sponding ton51 andn52) where a single~fundamental!
soliton NS51 can exist in the case without dissipation.

The horizontal broken line in Fig. 2 corresponds to t
minimum dissipation-dependent threshold of the soliton f
mation and will be discussed below@see Eqs.~23! and~25!#.
It has been shown in Ref. 24 that the presence of dissipa
in the medium will restrict from below the interval of inpu
amplitudes in which the formation of a single~fundamental!
soliton is possible.

Equation~8! can easily be rewritten in a form similar t
Eq. ~7! if we retain the definition~6! for the nonlinear length
LNL and introduce the following definition for the dispersio
length

LD5uvguTD5
uvguL2

b2p2uDu
5

uvgu3T2

b2p2uDu
, ~12!

where the shape factorb can be calculated for different inpu
pulse profiles from Eq.~10!. In particular, for a rectangula
input pulse defined by

g~z!5rect~2z/L !5H 1, if uzu<L/2

0, if uzu.L/2
~13!

the calculation is trivial and yieldsb51. For a Gaussian
input pulse

g~z!5exp@22~z/L !2#, ~14!

which is widely used in experiments in optical fibers, w
haveb5A2/p, and the spatial size of the input pulseL is
related to the traditionally used ‘‘full width at half maximum
intensity’’ LFWHM by LFWHM5Aln 2L.0.833L. For a
hyperbolic-secant input pulse,

FIG. 2. Regions of existence ofn-soliton solutions of the non-
linear Schro¨dinger equation~1! on the plane ‘‘amplitude-inverse
length’’ of the rectangular input pulse.
17442
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g~z!5sech@2z/L#, ~15!

we haveb52/p, and the spatial size of the input pulseL
5uvguT is related to the width byLFWHM5@ ln(11A2)#L
.0.88L. The intensity profile of the initial pulseg2(z) and
its parametersL andLFWHM are shown in Fig. 1.

From the comparison of Eqs.~5! and ~12! it is clear that
the conventional definition1 of LD , Eq. ~5!, is only exact for
the hyperbolic-secant input pulse if we assume that the
rameterT0 in Eq. ~5! is half the duration of the input pulse
T05T/25(L/2)uvgu. It is also clear from Eq.~12! that the
characteristic dispersion time for a rectangular input puls
considerably@(p/2)2 times# shorter than for a hyperbolic
secant pulse of the same durationT. In experiments on opti-
cal fiber solitons, where the input pulse duration is relativ
short ~several picoseconds!, and the pulse shape is usual
close to either hyperbolic-secant or Gaussian shape,
traditional definitions, Eqs.~5!–~7! work reasonably well
when T05T/2. In contrast, in spin-wave soliton
experiments3,10,15–18the input pulses are relatively long~10–
1000 ns! and almost rectangular~b51!. This fact should be
taken into account when calculating the characteristic leng
for spin wave envelope soliton formation, and the definitio
Eq. ~12!, for LD should be used, especially when the e
pected ‘‘soliton order’’NS is evaluated from these calcula
tions ~see, e.g., Ref. 11!.

Equation~7! can be rewritten as a threshold condition f
the amplitudeU of the input pulse of an arbitrary smoot
shape having a durationT that is necessary to formn enve-
lope solitons in a medium without dissipation,

uNuU th n
2 5

1

4
uDuFbp~2n21!

uvguT G2

5
1

4
uDukn

2 , ~16!

where kn is a quantity that has the dimension of inver
length and can be interpreted as a characteristic wave n
ber of the envelope of the input pulse and which depends
the numbern of formed solitons:

kn5
bp~2n21!

uvguT
, n51,2,3, . . . . ~17!

IV. INFLUENCE OF DISSIPATION ON THE
PROPAGATION OF A SINGLE „FUNDAMENTAL …

ENVELOPE SOLITON

When finite but small dissipation is taken into account
Eq. ~1!, the fundamental ‘‘single-soliton’’ (NS51) solution
of this equation can be found using the perturbation the
where the dissipative term in the right-hand part of the eq
tion is treated as a small perturbation.14

The modulus of a single-soliton solution of Eq.~1! ob-
tained for the initial condition

f~z,0!5Ug~z!exp~ ihz! ~18!

containing a spatial modulation of the initial profile wit
wave numberh has the form

uf~z,t !u5Ue22Gtsech@Ue22GtAuN/Du~z2vst !#, ~19!
1-4
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where the soliton velocity isvs5vg1huDu. It is clear from
Eq. ~19! that a small dissipative perturbation does not qu
tatively change the single-soliton solution of the NSE wi
out dissipation~G50!. A fully formed envelope soliton sim-
ply broadens due to dissipation, and its amplitude decre
with propagation time twice as fast as the amplitude o
linear sinusoidal signal in the same medium. Numeri
calculations20 show that the perturbation solution, Eq.~19!,
works well up to the timest<0.7G21. Beyond this value the
broadening of the propagating soliton changes over to tha
a linear pulse and becomes much slower than predicted
the solution, Eq.~19!.

In a dissipative medium it is convenient to introduce tw
more characteristic times for soliton propagation. First of
we shall introduce the characteristic relaxation time in
medium

TG5G21. ~20!

Another important characteristic time for the soliton form
tion is the propagation time in the mediumTP , which is
equal to the ratio of the propagation distancel and group
velocity vg :

TP5 l /uvgu. ~21!

In order to observe the formation of envelope solitons~e.g.,
fundamentalNS51 envelope solitons! in real experiments
the characteristic times our system have to fulfill the follo
ing relations:15

TD!TG , TN!TG , TD.TN , TN!TP,TG . ~22!

Typical values of some important parameters and cha
teristics times for optical waves in fibers, magnetosta
waves ~or dipolar spin waves!, and dipole-exchange spi
waves in ferrite films are presented in Table I. It is evide
from these values that the influence of dissipation on
process of soliton formation and propagation is much str
ger for magnetic solitons than for solitons in optical fibe
Solitons of dipole-dominated spin waves~or magnetostatic
waves! are actually formed in a regime, where the influen
of dissipation and dispersion on the profile of the input pu
are comparable:TD.TG.TP , and one may doubt whethe
nonlinear spin wave packets formed in this regime have s
tonic properties. Several recent experiments16–18 have
shown, however, that nonlinear wave packets formed in
strongly dissipative regime approximately preserve th
shapes during propagation and after collisions with ot
packets, and, therefore, can be called solitons.

Experimental measurements of the effects of dissipa
on the propagation of dipolar spin-wave envelope soliton
YIG films21,22have shown that although dissipation for the
waves is not a small perturbation~see Table I!, the perturba-
tive solution, Eq.~19!, describes the expected soliton pro
erties surprisingly well. There is a range of propagation d
tances within which the dissipation of solitons is exponen
and almost twice as large as the dissipation of linear s
soidal signals in the same medium. This factor 2 in the p
power dissipation rate can be used as a signature of a
formed soliton in a dissipative medium.
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V. INFLUENCE OF DISSIPATION ON THE THRESHOLD
AND CHARACTERISTIC TIME OF SOLITON

FORMATION

Experiments performed on optical solitons in fibers,1,2

where the influence of dissipation is relatively small, ha
demonstrated that the soliton threshold formulas, Eqs.~3!
and ~16!, obtained in the lossless case~G50! describe the
experiments quite well. The situation was, however, qu
different in the case of dipolar spin waves@backward volume
magnetostatic waves~BVMSW!# in YIG films where the in-
fluence of dissipation is relatively strong.23 Although the
threshold curve measured in Ref. 23 had linear regions w
slopes well described by Eq.~3! for n51,2, it also had a
distinct structure with two well-pronounced minima th
were not described by the classical theory, Eq.~3!. The ex-
planation for this threshold curve was given in Ref. 24 whe
dissipation was taken into account in the process of enve
soliton formation.

The threshold formula derived in Ref. 24 usin
formalism25 has the form

uNuUth n
2 5

G21 1
4 D2kn

4

uDukn
2

, ~23!

wherekn is defined by Eq.~17!. The right-hand-side part o
the threshold condition, Eq.~23!, defines a series of thresh
old curves corresponding to the formation ofn51,2,3, . . .
envelope solitons. These curves have minima atT5Tn
which are given by the expression

Tn5
pb~2n21!

uvgu AuDu
2G

. ~24!

Thus, in a weakly dissipative medium there is an optimu
duration of an input pulseT5Tn which corresponds to a
minimum threshold of the formation ofn envelope solitons
defined by the expression

uNuU th min
2 5G. ~25!

The threshold curves calculated from Eq.~23! for the rectan-
gular input pulse~b51! andn51,2,3 are shown in Fig. 3 o
Ref. 24. Note that by means of Eqs.~23!–~25! the expression
for the relative threshold of soliton formation in a dissipati
medium can be written in the simple normalized form

U th n
2

U th min
2

5
11~Tn /T!4

2~Tn /T!2
. ~26!

It is interesting to note that Eq.~23! can also be rewritten
@similar to Eq.~2!# as a threshold condition for the dimen
sionless pulse areaS defined by Eq.~9!:

Sth n5
p~2n21!

2 A11S 2G

uDukn
2D 2

. ~27!

It follows from Eq. ~27! that for the conditions of the
experiments23,26 only the threshold area necessary for t
formation of a single (n51) soliton is substantially cor-
1-5
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A. N. SLAVIN AND H. BENNER PHYSICAL REVIEW B 67, 174421 ~2003!
rected by dissipation, and can increase from a value ofp/2
~for G50! up to p. The areas of pulses necessary for t
formation of higher order solitons (n.1) are only weakly
affected by dissipation sincekn increases rapidly with in-
creasing soliton numbern.

The threshold expressions for envelope soliton format
in the dissipative medium, Eqs.~23! and ~26!, were experi-
mentally confirmed for both purely dipolar spin wav
propagating in tangentially magnetized YIG films23,24

~BVMSW! and for dipole-exchange spin waves propagat
in perpendicularly magnetized YIG films.26

All the above results apply to fully formed envelope so
tons. It is, however, well-known that, if an input pulse
arbitrary ~nonsolitonic! shape enters a nonlinear dispersi
medium, a certain propagation time~or propagation distance!
is necessary to form a soliton out of this input pulse. W
propose to use the characteristic dissipation properties o
envelope soliton~i.e., the decay of its peak amplitude with
rate twice as large as for a linear cw signal! to determine
experimentally the propagation times and distances whe
single envelope soliton has been formed. This idea was
viously suggested in Ref. 21 and successfully used in sol
collision experiments.18 There are also other opinions on th
subject. For example, the authors of Ref. 11 proposed to
the symmetry of the output pulse profile as an indication t
a soliton is fully formed. The symmetry criterion, however,
a qualitative one, and, in general, it is very difficult to che
it experimentally, while the formation criterion based on t
dissipative behavior of envelope solitons can be ea
applied.

To illustrate our ideas about the soliton formation time
present a qualitative picture of evolution of a high-amplitu
wave packet propagating in a nonlinear dispersive med
with dissipation in Fig. 3. The packet with initial amplitud
U0 and durationT0 is excited att50. This packet propa-
gates in the medium subject to the combined influence
nonlinearity, dispersion, and dissipation. After a characte
tic propagation timeTF this pulse is reshaped and turned in
a solitonic pulse with the amplitudeUmax and durationT.
The solitonic pulse then propagates in the medium for a t
TS . During this time the shape of the pulse envelope rema
solitonic ~i.e., sech-like! but its amplitude decreases and

FIG. 3. Schematic picture showing evolution of an input pu
of durationT0 and amplitudeU0 in a nonlinear dispersive medium
with dissipation.TF is the single soliton formation time andTS is
the time interval in which the pulse propagation is approximat
solitonic.
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width increases because of dissipation. Att5TF1TS the
pulse amplitude has decreased toUmin defined by Eq.~25!.
Then the nonlinearity becomes insufficient to compensate
dispersion spreading of the wave packet, and the solito
pulse turns into an ordinary linear pulse. The amplitude
the linear pulse decreases monotonously on propagation
to dispersion spreading and damping. It is this ‘‘appro
mately solitonic’’ nonlinear wave packet moving in the lim
ited interval of propagation timesTF,t,TF1TS that is usu-
ally called ‘‘envelope soliton’’ in a dissipative medium. Thu
the dissipation in the medium not only influences the thre
old of soliton formation@see Eqs.~23! and ~25!#, but also
limits the time interval~both from above and from below! in
which nonlinear wave packets can propagate in a dissipa
medium as solitons. A theoretical estimate of the sing
soliton formation timeTF is given below.

Numerical calculations ofTF in terms of the NSE mode
~1! in the case without dissipation~G50! were reported in
Ref. 27. The soliton formation timeTF was defined in Ref.
27 as the moment when the amplitude of the propaga
pulse stops to change and remains constant. Thus the fo
tion time TF for a rectangular~b51! input pulse, having an
initial amplitude and duration such that the area of the pu
corresponds toneff53/2 (NS51), turned out to be propor
tional to the dispersion timeTD , TF5BTD with the propor-
tionality coefficientB.2.5.

In the dissipative case~GÞ0! we suggest to use Eq.~23!
to define a new characteristic timeTGD ~dispersion time in a
dissipative medium! as the inverse of the right-hand-side pa
of Eq. ~23! for neff53/2 (NS51):

TGD5
uDuk3/2

2

G21
1

4
D2k3/2

4

. ~28!

This definition can be rewritten entirely in terms of the cha
acteristic timesTD andTG @see Eqs.~12! and ~20!#:

FIG. 4. Profiles of approximately solitonic pulses numerica
calculated from Eq.~1! for the parameters of the experiment~Ref.
10! and rectangular input pulses of durationT515 ns. The initial
amplitude of the input pulse was chosen such that the pulse
corresponds to the upper boundary of the single-soliton regime@n
52 in Eqs.~3! and~16!#. The soliton formation timeTF is defined
as a propagation time at which propagating pulse starts to dem
strate ‘‘solitonic’’ dissipation@see Eq.~19!#.
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FORMATION AND PROPAGATION OF SPIN-WAVE . . . PHYSICAL REVIEW B 67, 174421 ~2003!
TGD5
TD

11~TD/2TG!2
. ~29!

It is reasonable to assume thatTGD would be a good analyti-
cal estimate for the formation time of a single soliton in
dissipative medium:TF'TGD , similar to TD being a good
estimate of the formation time in a medium without dissip
tion. Note that from Eqs.~23! and ~29! it follows that for a
single (NS51) soliton we haveTGD5TN . It is also clear
from Eq. ~29! that TGD,TD . Consequently, in adissipative
~GÞ0! medium a fundamental (NS51) envelope soliton is
formed faster than in the medium without dissipation.

To evaluate the quality of the theoretical estimate, E
~29!, for the soliton formation timeTF , it is necessary to use
some criterion for the soliton formation in adissipative me-
dium. The best choice is the criterion suggested in Ref.
based on the property of the fully developed soliton to d
sipate exponentially twice as fast as a linear cw signal. Th
the soliton formation timeTF in a ferrite film is the propa-
gation time at which the solitonic dissipation starts.

Figure 4 shows a numerical simulation of the profiles
solitonlike pulses formed from an initial rectangular pulse
durationT515 ns after different propagation times. The in
tial amplitude of the pulse was chosen in such a way that
pulse area corresponds to the upper boundary of the sin
soliton regime@n52 in Eqs.~3! and~16! and in Fig. 2#. The
typical parameters of spin-wave soliton experiments10 vg5
23.2 cm/ms, D51.43103 cm2/s, andG553106 s21 were
used in this calculation. It can be seen in Fig. 4 that wit
the time intervalTF,t,TS the attenuation of the propaga

FIG. 5. Characteristic times of a single envelope soliton form
tion as functions of the input rectangular pulse durationT. Solid
line: dispersion timeTD calculated using Eq.~11!; broken line:
characteristic timeTGD calculated from Eq.~28!; full circles: nu-
merically calculated soliton formation timeTF determined as in Fig.
4. All model parameters are as in Fig. 4 and in experim
~Ref. 10!.
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ing pulse is solitonic, i.e., linear in a logarithmic scale, an
thus, TF can be considered as the numerically calcula
soliton formation time. TF was evaluated for different value
of the input pulse durationT ~while the area of the inpu
pulse corresponding ton52 was kept constant! using graphs
similar to the ones shown in Fig. 4. The characteristic tim
TD andTGD were calculated for the same parameters of
NSE ~1! and different values ofT using Eqs.~12! and ~29!.
The numerical results of all these calculations presente
Fig. 5 clearly demonstrate that in a dissipative medium,
single soliton formation timeTF indeed becomes smalle
than that in a medium without dissipation. We can conclu
from Fig. 5 thatTGD yields a reasonable quantitative es
mate of the numerically determined formation timeTF . Pre-
liminary measurements of the BVMSW soliton formatio
time28 ~defined as suggested above! performed in a weakly
dissipative YIG waveguide also gave a value ofTF that is
substantially smaller, than the characteristic dispersion t
TD . The result28 qualitatively supports the above propos
expression for the soliton formation time in a dissipati
medium Eq.~29!, but additional experimental investigation
are necessary to check the quantitative validity of the f
mula ~29!.

VI. CONCLUSION

The analytical and numerical results presented ab
show that dissipation plays an important qualitative role
the process of formation and propagation of solitonic pul
in weakly dissipative media. In ferrite waveguides where
influence of dissipation is much stronger than in optical
bers, dissipation should always be taken into account sinc
determines the minimum threshold of envelope soliton f
mation and the shape of the threshold curve for soliton f
mation. The characteristic solitonic dissipation of the pe
power of the wave packet propagating in a dissipative m
dium can be used to determine experimentally the time w
the propagating wave packet becomes a fully formed ‘‘a
proximate’’ envelope soliton. This formation time can be e
timated analytically including the effects of dissipation. A
these conclusions are well supported by the numerical m
eling in the framework of the NSE model, and most of the
are also supported by our laboratory experiments perform
on both dipole-dominated~BVMSW! and dipole-exchange
spin waves propagating in YIG film waveguides.
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