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Applications of Noether’s theorem to crystal-figl@F) and ligand-field Hamiltonians invariant under con-
tinuous rotational symmetry are discussed. Deeper meaning of the seemingly unrelated con@gpieedt
her’s theoremsji) the algebraic symmetry of Hamiltonians, afiid) the rotational invariants and moments of
CF Hamiltonians is considered and their interrelationships unraveled. Our investigations enable formulation of
an important theorem and a conjecture on the conserved quantities stipulated by Noether’s theorem for the CF
Hamiltonians in question. Geometrical meaning of the second-order conserved quantities suggests feasibility of
derivation of a conservation law encompassing all the conserved quantities identified. The existence of the
conserved quantities has profound implications for interpretation of experimental CF parameter data sets,
which are encapsulated in five corollaries. Our considerations reveal that various aspects require reinterpreta-
tion. This includes, e.g(j) the feasibility of determination of CF parameters from fitting experimental spectra,
and (ii) the reduction of the existing higher-order rotational invariants for hexagonal type-1l and cubic sym-
metries to combinations of primary lower-order invariants. The approach presented in this paper enables
adoption of better-fitting strategies utilizing the well-defined conserved quantities, which are invariant under
continuous rotational symmetry.
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[. INTRODUCTION will be discussed from another point of view.
It appears that researchers working in the CF-theory area
For reasons ranging from obtaining a deeper understandincluding one of the present authors, Q.Rave apparently
ing of the underlying physics to practical implications for Not yet explored the potential interrelationships between the
analysis of crystal-fieldCF) [also referred to as ligand-field CONCePts and aspects outlined above. The algebraic symme-

(LF)] spectra, it appears worthwhile to consider the deepevy of CF Hamiltonians invgriant under continuous rotational
' symmetry has been considered for several symmetry cases

interrelationships that may exist_between ihe see_m_ingly un y one of us as early as in 198®r references, see Sec).Il
related concepts and aspects discussed in detail in Sec. [lisyever, it had not been realized at that time that the “in-
This comprises, on one hand, Noether’s theorems, whicljariant combinations” of the CF parameters algebraically de-
have profound theoretical significance to many areas ofermined for specific symmetry cases may arise naturally as
physics, since they utilize the geometrical symmetries othe conserved quantities stipulated by the canonical Noet-
classical and quantum systems to obtain specific conservaer’'s theorem applied to the CF Hamiltonians in question.
tion laws as well as various associated conserved quantitie®n the other hand, it may be expected that such conserved

and, on the other handj) the intricate properties of CF guantities(invariant under continuous rotational symmetry
Hamiltonians invariant under continuous rotational symme-Should be somehow related to the rotational invariants and

try, which have not to our best knowledge, been fully under-hence the moments of CF Hamiltonians, which are defined

stood in the literature as yet, especially the underutilizeJOr arbitrary symmetry and which are also conserved under

concent of the alaebraic svmmetry of such CE Hamiltonian rotations of the coordinates. One may also hope to arrive, as
P 9 y y % direct consequence of Noether’'s theorem, at a general

and its i_r_nportant implications for analysis of CF spectra, as..qnservation law,” which may possibly encompass all the
well as(ii) the two interrelated general concepts, namily,  conserved quantities in question.

the CF rotational invariants antb) the moments of CF It turns out that application of Noether’s theorem and the
Hamiltonians, which are defined for arbitrary symmetry CFassociated conserved quantities stipulated by Noether’s theo-
Hamiltonians and which play a special role in the descriptionrem, which should, as it seems intuitively obvious, be inher-
of CF spectra. In brief, the canonical Noether’s theorem im-ent for the CF Hamiltonians for each of the five symmetry
plies, for given symmetry transformations of the coordinatesclasses involving continuous rotational symmetry, have not
the existence of the associated conserved quantities, whidieen explored as yet. Driven by both theoretical curiosity
are functions of the parameters describing a given classicaind the profound implications Noether’s theorem may have
or quantum system. This theorem should, in principle, applyfor the CF studies, we attempt to fill this gap. The main aims
also to any CF Hamiltonian invariant under continuous rota-of this paper are to unravel the interrelationships between the
tional symmetry, which includes five symmetry classes,crucial concepts in question and discuss their implications.
namely, hexagonal Il @g,Cs,,Cqn), tetragonal |1l To achieve these aims, first in Sec. Il we provide sufficient
(C4,S4,C4p), trigonal 1l (C3,Sg), monoclinic  background for the present considerations by presenting in a
(C,,C411,Cy,), and triclinic (C;,C;). Here, this problem nutshell the crucial concepts drawn from various areas of
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theoretical physics. Next we outline the basic properties of variety of classical dynamical systerfsee, e.g., Ref. 10,
CF Hamiltonians in Sec. Ill, and in Sec. IV we consider theand references thergin

algebraic symmetry of CF Hamiltonians from the point of In the realm of CHor LF) theory(see, e.g., Refs. 11-19,
view of Noether’s theorem. The relationships between thénd references thergimumerous cases of CF Hamiltonians
predictions of Noether's theorem as well as of the algebraid?Variant under continuous rotational symmetry exe,
symmetry considerations, the concepts of CF rotational in&-9- RefS. 20-22, and references thare¥et to the best of

variants, and the moments of CF Hamiltonians are conside. knowledge, as a recent Science Citation IndB&)
' arch indicates, no application of Noether’s thedsero

: : . S
ered in Sec. V. Comparative analysis and consequences Qgch CF Hamiltonians has so far been discussed in the lit-
Noether’s theorem for interpretation of the CF parametelratyre. Out of 11 Laue-symmetry claséese, e.g., Refs. 12,
(CFP data sets forS, symmetry occurring, e.g., for rare- 17, and 23 five classes yield CF Hamiltonians invariant
earth(RE) RE3" ions in LiYF, revealed by our survey of under continuous rotational symmetry. The cases of transi-
recent literature, will be presented in a future paper. Thdion ions at sites having such symmetry are also referred to
systematic method of interpretation of experimental data proas the low-symmetry cases, since the respective CF Hamil-
posed here may in turn bring about increased reliability oftonians involve so-called “imaginary” or “low-symmetry”

the CF parameter data sets for the future. CF parameter$® This includes the following point-
symmetry groupgin descending symmetry ordetexago-

nal type-ll (Cg,C3;,,Céqh), tetragonal type-ll C4,S4,Cap),
trigonal type-Il (C3,Sg), monoclinic C,,Cyp,Csy), and tri-
clinic (C4,C,) symmetries. A detailed consideration of the
intricacies of the CF theory for the RE ions at low-symmetry
The geometrical symmetries of classical and quantunsites in various crystals and a review the CF parameters
systems have been widely studied and exploited to simplifff CFP’9 appearing in the literature up to 1985 for the tetrag-
various theoretical problems. Various formulations of Noet-onal Il, trigonal I, hexagonal Il, and monoclinic have been
her’s theorerts), which utilize geometrical symmetries, from dealt with in Refs. 20—22. Several pertinent monoclinic,
introductory? to advanced mathematical on&s,can be triclinic,” and tetragonal cas€shave recently been under
found in the literature. Formulations especially pertinent inconsideration by us. Note that the triclinic symmetry require
the present context are “If a system has a continuous symseparate consideration, since no symmetry-related coordinate
metry property, then there are corresponding quantitiesxes exist for these cas&sSome pertinent references for
whose values are conserved with timé.and “For every low-symmetry CF studies may also be found in Refs. 12
continuous symmetry of the laws of physics, there must exisand 14-17.
a conservation law. For every conservation law, there must Independent developments in the CF-theory area, which
exist a continuous symmetry?’In classical mechanics, No- potentially may beand as we shall show in this paper, in
ether’'s theorem leads to conservation of linear momentunfact, arg linked to the general aspects of Noether’s theorems,
total energy, and angular momentum for the continuous symare twofold. Of particular relevance are the concepts of the
metry being spatial displacement, time displacement, and ra-otational invariants, including the equivalent one of the
tation about an axis, respectivély.The distinction between norms N, and the moments of CF Hamiltonians. The CF
various variants of Noether’s theorems is not clear-cut in theotational invariantsS,, quadratic in the CFP’s have been
literature. Some authofsee, e.g., Refs. 6—8, and referencesintroduced by several autho?s:23Yet no formal derivation
therein use the following nomenclature concerning applica-from “first principles” has been provided in the papéfs®®
tions of Noether’s theorems in classical theori@$:Noet-  Independently, in the electron magnetic-resonafe®IR)
her’s first theorem establishes the connection between globakea(for a review, see Refs. 34 and)3he normsN, of the
symmetries and the conservations laws, &in Noether’s  zero-field splitting(ZFS) parameters have been introdut®ed
second theorem refers to the local symmetry of a system arahd later related to the transformation properties of the nor-
implies existence of Noether’s identities, wherdis the malized Stevens operatots.These quantities, which are
connection between canonical continuous symmetry andonserved under arbitrary rotations of the coordinates, arise
conservations laws is referred to as the canonical Noetheras a consequence of the transformation properties of the CF
theorem. Various applications of Noether’s theof@nto  and ZFS Hamiltonians. The nornig have been used to a
specific classical and quantum-mechanical systems existather limited extent in the EMR area—see, e.g., Refs. 38—
see, e.g., Refs. 6-9, and references therein. According #0. The quadratic CF rotational invariar8s, S,, andS; of
Castaos et al,’ Noether's theorem asserts that, under cer-CFP’s as well as a combined quantity, namely, their average,
tain conditions satisfied by a Lagrangian of the system representing the “strength of the crystal field,” have been
=L(x;,X;,t), to the symmetry transformation of the coordi- used to a moderate extent by several autliges, e.g., Refs.
nate, x; corresponds a conserved quantitalled also the 41-52. The third- and higher-order invariants in CFP’s have
Noether charge These authors have derived explicit forms also been introducéd and discussed but only for the sim-
of the associated conserved quantities for several quantunplest symmetry cases, i.e., cubic and hexagonal, as reviewed
mechanical systems. Noether’s inverse theorem can be uség Yeung®® On the other hand, the rotational invariants of a
to establish the associated symmetry transformatiét-  givenkth order have been shown to be in general related to
tempts have also been made using various methods, not ithe kth-order moments of CF Hamiltonians, thus not within
volving Noether’s theorems, to construct exact invariants fothe wholenIN configuration but within an approximation of a

II. AN OVERVIEW OF CRUCIAL CONCEPTS AND
ASPECTS
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given J multiplet?9-31424753The moments of Hamiltonians force” method. By employing a computer algebraic pro-
have also been defined in a general way for any Hamiltoniagramming, explicit solutions of the characteristic equation of
and have found useful applications in statistical spectroscopthe CF Hamiltonian within varioud multiplets of RE ions at
in various areas, e.g., atomic, nuclear, and vibrational spea/arious symmetry sites could be obtairfd’ This has en-
troscopies(see, e.g., Refs. 54—56, and references thereinabled to study the properties of the coefficients in the char-
The moments ofN-particle Hamiltonians are also invariants acteristic equations, which by their nature were combinations
of the unitary transformations of the basis in the modelof the CFP's involved. The major findings arising from the
space’® algebraic symmetry consideratighs™ concern the follow-
Another development in CF theory and related areasiNd aspects. First, sgveral conserve'd quantit?es, being poly-
which is potentially related to Noether’s theorems, concerndlomial functions of first and up to third order in CFP's have
another type of symmetry, namely, the algebraic symmetry obeen epr|C|t_Iy |d_ent|f|e_1d in the charqctenstlc equations of
CF Hamiltonians defined, in general, as the symmetry of th&F Hamiltonians invariant under continuous rotational sym-
characteristic equation of a Hamiltoni&hThe concept of Metry. Secondly, implications of the existence of the con-
the algebraic symmetry has been applied originally byserved guantities for the feasibility 01_‘ determination of CFP’s
Clark®” to the second-order Hamiltonians of a “spin- from_spectral data have_begn elucidated. It has turned out
Hamiltonian type” having the fornti =A-J+J-B-J, which that |_ndependent determln_atl_on of the magnitudes and_ rela-
occurs in many areas of physics and chemical physics. Thive signs of all CFP's admissible by group theory for a given
first term may represent interaction with magnetic field,Symmetry was not possible. Thirdly, the three approa¢Bes
whereas the second term represents, e.g., nuclear hyperfiRe @1d A—for definitions, see Sec. IV)@sed |n_the2I|tera—
interactions (considered in detail in Ref. 57or the ZFS ture in this regard have been critically examiffed” and
terms studied by EMR*3°For such a simple Hamiltonian it Varous inconsistencies in the expenmgntal determination of
has been feasible to carry out analytical considerations of thi1€ low-symmetry CFP’s have been pointed out. As revealed
algebraic symmetry. This has enabiétb derive polynomi- by SCI _qnd literature searches, althousgh these findings have
als in the “symmetrized parameters,” being combinations of2€en utilized so far by several authi?r‘g (see also Ref. 7
the Hamiltonian parameters; andB;; . Clarké” has shown |n_conS|stent CF_P data sets for RE ions at low-symmetry sites
that any polynomial function of the matrix elements of theStill do appear in a number of papers.
Hamiltonian, which is invariant under all transformations of
the frame_ of reference, can be written as a polynomial in th_e Ill. GENERAL PROPERTIES OF CE HAMILTONIANS
“symmetrized parameters.” One advantage of the algebraic AND PARAMETERS
symmetry consideratioRSwas that the number of matrix
elements to be calculated could be reduced. Other useful Here we discuss only the major aspects, which bear on the
general properties arising from the existence of several inpresent considerations. Other pertinent theoretical aspects of
variant quantities being functions of the Hamiltonian param-the CF Hamiltonians, which parametrize the effect of the
etersA;; andBj; have been discussed in Ref. 57. In particu-electric field due to surrounding ligands acting on the central
lar, Clark®’ has provided solid theoretical justification for the paramagnetic ion, as well as the ZFS ones, which describe
axes conventions for reporting the principal valvgsof the  effectively the splitting of the spin states of the lowest orbital
electric-field gradient used in nuclear magnetic resonancesinglet in the absence of an external magnetic field, have
The concept of ordering the principal values of interactionbeen reviewed in Ref. 34 and more recently in Ref. 35. This
“tensors” is equivalent to the standardization of the ortho-includes a succinct description of the physical nature of the
rhombic second-order ZFS parameters introduced indepeitwo Hamiltonians as well as clarification of the crucial terms,
dently in the EMR area as reviewed in Ref. 58. The standardwhich are often confused with each otf&?> Especially
ization idea, which is applicable both to the CF and ZFSwidespread in the literature is the confusion between the ac-
Hamiltonians, has been extended to the fourth- and sixthtual ZFS and CF parameters as recently revie(fetls a
order term® as well as to monoclinic and triclinic reference notation we use the general forms of the intracon-
symmetrie$? In relation to Noether’s theorems we note that figurational CF Hamiltoniah—?Hc, . Within a givend or
the standardization of the orthorhombic and lower-symmetryt. multiplet Hep: can be expresséd®*3®in terms of the
Hamiltonians(including CF, ZFS, and related ondsvolves  extended StevensES) operatord’ as
continuous permutational symmetry, and not rotational sym-
metry, being the focus of this paper, and hence requires sepa-
rate consideration. Her= > BIOJ(J,,d,.3,), (1)
Regrettably, the concept of algebraic symmetry has been kq
underutilized and the papérremains largely forgotten, as
revealed by a SCI citation search. The only applications ofvhere the nature of the ES operafér®f(J,,J,,J,) in Eq.
the algebraic symmetry are those by one of us to CF Hamil¢1) is explicitly indicated as being the functions of the total
tonians invariant under continuous rotational symmetry forangularJ (or total orbitalL) momentum operators. The Wy-
the RE ions at tetragonal i, trigonal Il and hexagonal it bourne notatioh**is more widely used in the optical spec-
and monoclinié? symmetry sites. The considerations of thetroscopy ared:~%4"53Wwithin a given nI™ configuration
algebraic symmetry of such CF Hamiltonians have been calH g, in the compactform (as defined in Ref. 34is given
ried out®~??not in an analytical way but by using a “brute-  by**1¢:7

174420-3



C. RUDOWICZ AND J. QIN PHYSICAL REVIEW B67, 174420(2003

and theoretical energy levelgsee Sec. Y. These
Herm kE BkqCrka: (2 widespread-in-the-literature ambiguities in the CF parametri-
a zation make the CFP data sets unreliable and hamper reliable
whereas in thexpandedorm, i.e., using explicitly the pairs interpretation of the CFP data sets. The general methods em-
of the tensor operators wittt q, Hcr is given by ployed in the CF/LF studies of determination of the axis
systems for the CF Hamiltonians invariant under continuous
rotational symmetry as well as the implications of various
HCF:; BroCuot 21 {ReByq[ Cqt (—1)Cy—q] choices for interpretation of the CFP data sets appearing in
K the literature have recently been consideéfed general
framework to achieve increased compatibility and reliability
+i1mByg[ Cyq— (—1)ICy_ql} |- (3)  of CFP data sets for RE ions at low-symmetry sites in crys-
tals has also been propodga@nd applied to the apparently
In additon to the ES operatdfs and Wybourne incompatible CFP data sets reported for3Nd(Pr*) in
operators**several other types of operators have also beelNdGaQ; (PrGaQ).
employed in the literature as reviewed in Ref. 34. The important quantities employed in the CF and ZFS
Since the ES operatd¥sbelong to the class of tesseral studies are theotational invariants § (Refs. 29-33and the
tensor operators, whereas the Wybourne operdtbedong  equivalentnorms N, of the CF(ZFS) parameterd®**3"For
to the class of spherical tensor operattr¥ the CFP’s de- the normalized Stevens’ operatdfs®*® O,%, N, are defined
fined in Eq.(1) are all real, whereas, those in E) are in  as
general complex. Note that the negative componBgt$ of
the CFP’s in Eq(1) correspond to the imaginary parts of the _ rn2_ 1972
CFP’s in Eq.(3), Im Bkg‘,1 whereas the positive oné&;, 9 to N zq: {Bic} zq: (BT @

the real parts, RBy,.*%** SinceH ¢ must be invariant under 3 .

a given local site symmetry group of a paramagnetic ion in where “kgqg + K, ",22%566‘5 for the ES operatdiswhich
e o are not “normalized,®*?®’ they are defined 4%

crystal, the number of the admissible nonzero CFP’s in Egs.

(1)—(3) can be determined by group thedty'°A question K /112

arises as to whether all CFP’s predicted by group theory can Nk:{38}2+ 2 (_E> ({BN2+{B, 2. (5)

be independently determined. Full discuszsion of the forms of a=11\Cq

Egg ﬁ?}:/g?\?ezy?argigéﬁagsﬁzmnqll“'qeesfﬁgr: ?nngrtiz;e LEZI?I;P' The coefficientscg are listed in Refs. 34 and 37. For the
; Lo e L . bourne notation the CHotational invariants § are

can be exper_lmenta_llly determined t_)y optlcz_al-absorptlondeﬁnec}z,zg-aa,47,53as

spectroscopy, inelastic neutron-scattering, and infrared spec-

troscopy techniquessee, e.g., Refs. 16—)19whereas the 1 1

ZFS ones by the EMR techniquésee, e.g., Refs. 12, 13, 34, (Sk)2=m2 |qu|2=me, (6)

and 335, as well as by related spectroscopic and magnetic q

techniques, including magnetic susceptibility, magnetic anyhereas thanorm<® are defined as

isotropy, and Mssbhauer spectroscopy. The major difference

between the various experimental techniques in question is K

the ability to determine the directional properties of a given Nx= > |Bygl2=1{Bio}2+2 >, [(ReByq)2+(ImByy)2].

transition ion located at a particular site in crystal. The EMR a a=1 @

techniques, which, like electron paramagnetic resonance

(EPR and electron spin resonance, apply the external magFhe quantitiesS, and N, in Egs. (4)—(7) are invariant with

netic field with orientation varying in several different crys- respect to an arbitrary rotation of the axis systeme Sec.

tallographic planes, offering a deeper insight into the locaV). Hence, they were employed to measure the “strength” of

site symmetry. This enables determination of the orientatiotthe CF (Refs. 29—-33, 47, and 53and ZFS®-%° Another

of the symmetry axes at transition ion sites from the ob-useful property of the quantitieS, is that they provide an

served EMR spectra. However, the techniques, which probadditional check of the reliability of fitting of the experimen-

the energy levels and the intensity of transitions only at zerdal CFP’s as well as of the consistency of the transformed

external magnetic field, cannot provide such “directional” CFP’s expressed in different axis systems by various authors

information. Thus the above CF experimental techniques cafsee, e.g., Ref. 25 The necessary rotations of the coordi-

yield the values of the CFP’s but cannot determine the orinates are facilitated by the recently develdi3€d®® com-

entation of the symmetry axés1-%Likewise the zero-field puter package for Conversions, Standardization, and Trans-

EPR (Refs. 77 and 7Byields only the values of the ZFS formations (cs1). The csT packagé*’®% is useful for

parameters. This inherent limitation, which is most importantgeneral manipulations of the ZFS and CF parameters for

for low-symmetry cases involving a large number of the pa-various systems, especially for transitions ions at orthorhom-

rameters, is often not realized by experimenters. As a consdic and lower-symmetry sites in crystals. Automatic calcula-

guence, the low-symmetry CFP’s have often been detertion of the rotational invariantS, for all major tensor opera-

mined as if the orientation of the symmetry axes could beor notations has been provided in the extended version of

obtained from the least-squares fitting of the experimentaihe csT package®

k
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The quantitiesS, are actually the second-order rotational tensor operators and associated parameters. As discussed in
invariants of the rankk=2, 4, and 6, whereas, in general, a Refs. 34 and 35 such generic Hamiltonians accountsifor
given nth order in CFP rotational invariants has also beenthe CF interaction, ifX is taken as the orbital angular mo-
defined. The latter quantities are related, within an approximentum, eithet; or L, as well as the total angular momen-
mation of a givenJ multiplet, to thenth-order (spectral  tum, j; or J when only the one-electron CF Hamiltonian is
moments of CF Hamiltoniaf% *"*"**defined a¥’ considered and the spin-correlated CF terms are neglected,

and (ii) the ZFS splitting, ifX is taken as either theffective

[on(aLSI]"=[1A23+1)]Tr(Hc)" (8) spin, S, or thefictitious spin, S', as well asiii) any other
Yeung? has provided the general relations for the momentgnathematically similar higher-order interactions being func-
of the second through fourth order in terms of the corredions of physically different angular momentum operators,
spondingnth-order rotational invariants. It appears that thee.g., the nuclear spin Other more sophisticated variants of
existence of the first-order moments and their invariant propthe CF Hamiltonian, e.g., the correlation CF or the spin-
erties have not been explicitly considered so far. Using Eqcorrelated CF Hamiltonian'$;'” may be treated in a similar
(8) and the Wigner-Eckart theorem we obtain the relation way as the CF Hamiltonians, Eq4)—(3), dealt with in Sec.
IV B. However, the amount of work involved in rigorous
derivations of the associated conserved quantities would be
prohibitive. Since the present arguments are based on sym-
metry requirements, which apply to all types of CF Hamil-
J J k)’ 9) tonians, the general conclusions concerning the implications
-M; M; O of Noether’s theorem should be valid for these CF Hamilto-
nians as well.

Next we consider the continuous rotational symmetry as-
pects inherent in each of the following symmetry cases: te-

[al(aLSJ)]=[1/(2J+1)]§k: BXaLSJCW|aLSJ)

X

which is utilized in Sec. V. Since the momentsi+particle
Hamiltonians, including CF Hamiltonians, are invariarég, of
the unitary transformations of the basis in the model space, .
the quantityo,(aLSJ), includingo;(aLSJ), is also invari- tragonal Il (C4,S4,Can), tngc_)n_al Il (C3,S), hexagonal i
ant. Although used only occasionally in CF studies, the quan{C6:Can:Cen), and monoclinic €5,Cyp,Cop). For each
tities S, play a specific role as a handy but approximate tooC@S€ there exists a unique symmetry axisr direction. An

in interpretation of the optical spectra for transition igeee, ~ arbitrary rotationg/Ou leaves the form of a given Cfin
e.g., Refs. 29-31, 41, 42, 47, and)53he relationships be- general, generjcHamiltonian invariant. However, as con-
tween the two interrelated quantities, i.6,,in Eq. (6) and ~ cerns the CF parameters, only the=0 (I=0) components
[0,(aLS)]? and the second-order conserved quantitiegire invariant, whereas the CFP’s with* 0 (the associated
stipulated by Noether’s theorem discussed in Sec. IV providé\, ones withl #0) acquire different values for each specific
a deeper meaning for the former quantities as discussed mmansformationg/Ou. Hence, one may generate an infinite

Sec. V. number of distinct yet physically equivalent CFP data sets.
For triclinic symmetry no symmetry-related coordinate axes

IV. APPLICATION OF NOETHER’S THEOREM TO CF exist and the choice of the CF axes is completely arbiffary.
HAMILTONIANS INVARIANT UNDER CONTINUOUS For this case, unlike that for the monoclinic one, any choice
ROTATIONAL SYMMETRY of the CF axes yields an identical and physically equivalent

form of the CF Hamiltonian with a distinct yet physically

_ _ ~equivalent CFP data set for each specific choice of the CF
With the background presented in Sec. Il and Il in mind, axes. Hence, one may generate an infinite number of distinct

we set out to consider the deeper interrelationships betwesgyet physically equivalent CFP data sets by applying different

the concepts outlined above: the canonical Noether’s thegeler angles(a, B, 7). Each transformed CF Hamiltonian

rem and the algebraic symmetry on the one hand, and thgyolves all CFP’s with componentsk<g< +k for a given

properties of CF Hamiltonians invariant under continuousgnkk=2. 4. and 6 as defined in Eq€)—(3). However, all

rotational symmetry, including the rotational invariants andCFP’s includingg=0 (the associated,,, ones withl =0)
il m il

the moments of CF Hamiltonians, on the other hand. We star . . . .
: L ' . . . ire different val for h ific transform
with a generalization of CF Hamiltonians defined in Eqgs atlcqu e different values for each specific transformation

(1)—(3) and consider a generic Hamiltonian of the form B, v). The physical equivalence of the CFP data sets gener-
ated in this way implies that the corresponding energy levels

H=SAxim(X), (10) and also the intensity of CF transitions are identical for each
related CFP data set. Hence, it appears that the transforma-
where A, denote the parameters associated with a givemions in question correspond to “the equivalence transforma-
generic type of the tensor operatoys,(X) of the specific  tions among physical states” generated by independent gen-
angular momentunx(X,,Xy,X,) operators, expressed in a erators of the gauge transformation considered for various
given axis systenix, y, 2. Note that the generic symbols,,  dynamical system$Likewise for Lagrange’s variablés?® a
and A, used in Eq.(10) do not define yet another tensor- crucial question arises, namely, what identities or interrela-
operator notation, an abundance of which already exists itionships between the CFP’s must be obeyed in order to en-
the literature®**°but may represent any of the various sets ofsure that the physical equivalence is, in fact, fully preserved?

A. General considerations
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The answer is provided by the canonical Noether’s theorenga)
and the algebraic symmetry considerations discussed in the
next section. (b)

B. The canonical Noether’s theorem and the conserved
guantities

In the spirit of the canonical Noether’s theorethwe
argue that for the continuous symmetry cases in question
there must exist associatednserved quantities.e., poly-
nomial functions of the CFP’¢in general, the generié,
ones. Existence of such quantities ensures the physical
equivalence of the CFP data sets interrelated by the continu-
ous symmetry transformations discussed in Sec. IVA. The
central idea put forward here may be encapsulated in the
canonical Noether's theorem for the CF and equivalent
Hamiltonians invariant under continuous rotational symme-
try as follows.

a. Theorem 1

If the CF Hamiltonian defined in Eq1) [and Eqs(2) and
(3); in general, any Hamiltonian of the type in Eq.0)] is
invariant under continuous rotational symmetry, then several
quantities of various order in the CF paramet8is (and
equivalent ones; in general, the associgtggones are con-
served.

By “conservation” we mean here the invariance of such
guantities under the continuous rotational symmetry opera-
tions. We attempt to provide a clear exposition of the perti-
nent aspects at the level comprehensible to the CF practitiqc)
ners. Analytical rigorous derivations of the conserved
guantities in question are beyond the immediate scope of the
present work. Such derivatiorisee, e.g., Ref. 57may be
particularly appealing to algebraists and quantum-
mechanical theorists because Hamiltonians of the type in Eq.
(10) are far less complex than those considered using Noet-
her’s theorems in particle physics, high-energy physics, and
field theories 10

Instead of rigorous derivations of the conserved quantities

PHYSICAL REVIEW B67, 174420(2003

The first-order IC’s are simply the paramet@&g with
g=0, i.e.,BY, BY, andB..

Two types of second-order IC’s exist and have the fol-
lowing meaning:

(i) The second-order IC's of the typ&) have the
meaning of the “length of a vectorV,, formed by
the pairs (-q and—q) of the CFP’s with a giverk
and are defined by

({By W2+ {B 2= Vi (1D

Invariance of the quantitjv,,| under continuous sym-

metry transformations discussed in Sec. IV A arises

from the conservation of the “magnitude,” i.e., “length

of the vector"v,,= (B 9,B, 9).

(i) The second-order IC’'s of the typ@é) have the
meaning of the “scalar product” of any two pos-
sible vectorsv,, and vy in Eq. (11) and are de-
fined by

B;qB;’q"' B;qurqEqu' Vk’q = |qu| |Vk’q| COS(IB tqq)_
(12)
Invariance of the quantity,-Vviq under continuous
symmetry transformations discussed in Section IV.A
arises from the conservation of the “relative orienta-

tion” between the two vectors, i.e., the angﬂé;q be-
tweenvy, andvy 4, for each possible combination of
the indicegk, g) and k',q) pertinent for a given sym-
metry cas& 22 (see below

The higher-th) order (>2) IC’s exist for the
cases that require solution of the characteristic equa-
tions of the order greater than two. The third
(n=3) and fourth-orderrf=4) IC’s involve a great
number of complicated combinations of the products
of n number of independent CFP’s, which have been
identified for trigonal Il (Ref. 21 and monoclinié
symmetries. The number of IC’'s and the degree of
their complication increases with the order.

here we fully exploit the results of the algebraic symmetry The properties of IC’s defined above can be summarized
studies of the CF Hamiltonians invariant under continuoug?s follows. The following vectors, exist for a given sym-
rotational symmetr§®-22 Although it had not been realized Metry casek=2: |qg|=2 for a monoclinicC,lZ casé’

at that time, it turns out that the algebraic symmetry(other monoclinic cases are discussed bgjde=4: |q
consideratior®22provide a direct proof of theorem 1 for all - =3 for trigonal 11> |g|=4 for tetragonal I and|q|=2
symmetry cases in question, except triclinic symmetryand 4 for a monoclinic,lZ case?” andk=6: |q|=6 for
which has not been dealt with in a similar way so far. Thehexagonal If*|g|=3 and 6 for trigonal IF* |g|=4 and 6
studie€®-?? have, in fact, revealed for monoclinic or higher for tetragonal IE° and [g|=2, 4, and 6 for a monoclinic
continuous symmetry the existence in the characteristi€.llZ case’” Note that for triclinic symmetry all the pairs

equations of CF Hamiltonians of severahtariant combi-

(+9 and —q) for a givenk are admissible. The admissible

nations (IC’s) being polynomial functions of CFP’s of the range and order of the IC’s predicted by the algebraic sym-

form f{(BN'(BY)(BH™(B)", with various values ofk, o)
in each term and the power coefficiefitsj, m, I). The pos-

metry considerations depend on the local site symmetry. For
hexagonal Il symmetry only three first-order ICRY, BZ,

sible IC’s, which have been explicitly identified in Ref. 20 andBY, as well as one second-order @4, exist?>%For
for tetragonal I, in Ref. 21 for hexagonal Il and trigonal Il, tetragonal Il symmetry the determinants of the orders (2
and in Ref. 22 for monoclinic symmetry cases, can be clasx2), (3x3), and (4<4) were analyzed algebraicaf.It

sified as follows. In terms of the ES operatdts! provided

was proveé that the IC’s of the first and second orders are

that the special symmetry axis or direction is taken as théully sufficient for this case. For trigonal Il symmetfy,in
guantizatiorz axis of the ES operators, the explicit forms of addition to the first- and second-order IC’s, the existence of

the admissible IC’s are as follows:
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ng has been identified by explicit algebraic derivations. Itsymmetry and are also conserved under rotations of the co-
may be expected that no higher-order IC’s exist for trigonalordinates. These ramifications of theorem 1 and conjecture 1
Il symmetry?! For the monoclinic symmetrg,|lZ cas€??in  are considered in Sec. V.
addition to the first-, second-, and several more third-order Explicit forms of the IC’s i.e., the conserved quantities in
IC’s, a large number of the fourth-order IC’s has been idenquestion, depend on the notations and conventions used to
tified by explicit algebraic derivations. Some of the third- express CF Hamiltonians. In the above formulation we have
order IC’s for the monoclinic symmeti§@,|lZ case could be employed, without the loss of generality, the ES
resolved into products of the first-order IC'8{ with q  operator$**” used in Eq.(1). Similar relations to Eqs(11)
=0) and second-order ICEViq| and viq-Virq defined in ~ and (12) apply for the CF Hamiltonians expressed in the
Egs. (11) and (12), respectively. Concerning the fourth- \Wybourne notatioh**employed in Eqs(2) and(3) and are
order IC’s, their complexity for monoclinic symmetry is given in the Appendix. The conservation of the quantities
reflected®® e.g., in the fact that the IC's of the type definedin Eq(ll). reflgcts the fact that under the continuous
F{BEZBE,’BE:B?} only involve 116 terms of the fourth or- symmetry operation, i.e., here a rotation abput a special sym-
e B . metry axis(or direction, the parameters with-q and —q
der in By’s with k'_k  K'=2,4 e’mdq » Q'=22 and 4. for a given k transform only into combinations of
Resolution of all higher-order IC’s, which may appear in thethemselve§?‘22Whereas the parameteB, k=2, 4, and 6,

characteristic equations of the monoclinic CF Ham'lton'an'remain invariant as discussed in Sec. IV A. Equatioh®

presents a formidable algebraic task. Several points ar&nd(lZ) apply uniquely for tetragonal 11G,,S,,Cyp), trigo-

worth mentioning. First, it has been directly checked usinqq :
. Y . on! al Il (C5,Sg), and hexa , , ,
transformation relatiot8 and algebraic calculatiorf§;?? for Wr(lic% ?ﬁ)e choicexofg(t)r?: I;Lﬁgigsgy?nerﬁefémg(?;rgss the

that each of the second-, third-, and fourth-order IC’s eXIOIIC'quantizationz axis of the operators is a unique natural choice

itly identified is indeed invariant with respect to an arbitrary (see Refs. 17, 20, and R1For monoclinic Cy,Cyp,Cor)
. y , 21~1h1%~2

rotation ¢/Oz. Second, only the quantities in E@L.1) have e :
: - ; symmetry, apart from th€,lZ case, two additional choices
been to a certain extent, utilized independefitige Sec. VY, - . . - .
whereas neither those in E(L2) nor tr?e higher-order |§C/:'S exist” for labeling the speC|aI_ symmetry axier dlrgglo?,
(n>2) have been considered in the literature since they Wer%amely,czlly and theC,lix axis of the ES opera_t Ok
introduced in the literatur®-22Third, all IC’s carry useful | ce: Eqs(11) and (1) apply only for the choice of the
' ' special symmetry axigor direction as the quantizatioz

information?°~?2 which can tilized for a more compre- >F) ’
° ch can be utilized for a more compre axis: C,lIZ. For the other two choice§,lly andC,llx, more

hensive description of transition ions at low-symmetry sites : : .
as illustrated by our recent studies. Here we exploit the Ca(_:ompllcated forms of Eqs11) and(12) are required, which

nonical Noether’s theorenftheorem ] and the algebraic mvolyg other combinations of the CFP's with the choice-
symmetry considerations discussed above to put forward th%pec.mc value‘s of for a givenk. Howeverlz the same mean-
following statement, ihg, |.e.", the ‘1ength _of vectorsand the “angles pgtween

vectors” can be ascribed to the conserved quantities of the
second order for each monoclinic case.

An interesting question is whether any geometrical or to-
The “invariant combinations(IC’s) revealed by the al- pological meaning can be ascribed to the IEs conserved
gebraic symmetry considerations and categorized above afgiantitie$ in question. A simple geometrical meaning can be

the conserved quantities stipulated by the canonical Noe®scribed to the second-order quantities defined in Es.
her's theorem applied to the CF Hamiltonians in questiorand(12) as illustrated in Figs. 1 and 2 using two- and three-
(theorem 1 dimensional representations in the CFP space, respectively.
The IC’s identified in the course of the explicit algebraic The planar representation in Fig. 1 is fully sufficient for hex-
symmetry consideratioh%?? as specific combinations of agonal Il (one vectoryvgs only) and tetragonal Il symmetry
CFP's, i.e., equivalently the conserved quantities, arise natuiwo vectors,v4, and vg, only) cases. More involved dia-
rally from the canonical Noether’s theorem. Theorem 1 andjrams, as, e.g., in Fig. 2, are needed for trigonal Il symmetry,
conjecture 1 establish a direct link between Noether’s theoyielding three vectors\ys,Veg3,Vgs) and for monoclinic and
rem and the algebraic symmetry of CF Hamiltonians invari-triclinic symmetries, yielding even more such vectors. How-
ant under continuous rotational symmetry. Thus the majoever, due to the complexity and large number of the IC’s of
part of the main aims of this paper outlined in the Introduc-the order higher than two, no adequate geometrical meaning
tion has been achieved. Neither the specific features of corcould be ascribed in a straightforward way to the higher-
tinuous symmetry cases in question discussed in Sec. IV Arder IC’s identified so faf?2A vexing question to be con-
nor their deeper meaning encapsulated in theorem 1 and cosidered is if a single conservation law can sum up all the IC’s
jecture 1 proposed above have been fully realized in the lit{the conserved quantitiegliscussed above. For tetragonal Il
erature as yet. The same applies to their implications acsymmetry the area of the triangle span by vectqrsandveg,
counted for by corollaries 1-5 discussed in Sec. IV C. On thén Fig. 1 or equivalently the volume of the two cones
other hand, it may be expected that the conserved quantitieppanned by these vectors in Fig. 2 is a conserved quantity.
algebraically determined for CF Hamiltonians invariant un-An extension of such geometrical interpretations of the
der continuous rotational symmetry should be somehow resecond-order conserved quantities presented in Figs. 1 and 2
lated to the rotational invariants and the moments of CRas well as the concept of “constrained hypersurface” in the
Hamiltonians. The latter quantities are defined for arbitraryphase space of the Lagrangiamay provide a hint in a

b. Conjecture 1

174420-7
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B.? (ImByy) equations and their proof may be prohibitive. One may hope
that by employing modern algebraic programming tech-
nigues and parallel computing it may be feasible to arrive at
a general “conservation law” as a direct consequence of No-
ether’'s theorem, which shall encompass all the “primary”

conserved quantities in question.

€]

Vi

! C. Implications of the canonical Noether’s theorem and the

conserved quantities

K'q
K

B (ReByy) . _ o _

3) o Other aspects involved in the main aims of_thls paper
concern application of the general constraints imposed by
Noether’s theorem on the CF Hamiltonians in question. It
appears that the existence of the conserved quantities stipu-
lated by theorem 1 and conjecture 1 put forward in Sec. IV B
has profound practical implications for interpretation of ex-

“) perimental CFP data sets for the continuous symmetry cases
in question. For example, it has been established e&rlier

FIG. 1. Schematic planar representation of the second-ordehat for tetragonal Il symmetry only the “length of the vec-

conserved quantities stipulated by Noether’s theorem: ypethe tor,” given in the ES notation as

length of vectors and typéi)—the relative orientation, i.e., the

angle between two respective vectors. Poitiis-(4) denoted by®

are discussed in text. IVad = ({B4}2+{B; “19)?, (13

search for such a generalized conservation law. By analogy #tan be experimentally determined. This contradicts the fitting
may be expected that the conservation of a hyperstructuratrategy used in one of the existing CF approadties ap-
quantity, e.g., volume enclosed by a hypersurface in the CFBroach “C” defined below, which attempts to determine in-
multidimensional space, shall also be obeyed for trigonaldependently the values of both CFPB; andB, . It turns
monoclinic, and triclinic symmetries. However, the amountout that the limitation imposed by E¢L3) is a direct impli-

of work involved in explicit derivation of the necessary cation of the canonical Noether’s theorem, since the length
of the vector]v,,| is nothing else but the conserved quantity
stipulated by Noether’s theorem for these continuous sym-
metry cases.

The properties of the conserved quantities and their im-
plications are summarized in the following three corollaries,
which are generalizations of the conclusions arising from the
explicit algebraic symmetry consideratiot’s??These impli-
cations apply, in general, to any Hamiltonian of the type in
Eq. (10) invariant under continuous rotational symmetry.

a. Corollary 1

The coefficients of the characteristic equations of the CF
Hamiltonians described by the theorem 1 are functions of the
admissible conserved quantities defined by conjecture 1 only.

The validity of corollary 1 has been confirmed directly by
using the algebraic programming languagerAN to derive
the explicit functional dependence of the coefficients of the
characteristic equations of the CF Hamiltonians for RE ions
for each of the four symmetry cases in questidrf? It has
been revealed that these coefficients are simple functions of
the CFP'sB?, with k=2, 4, and 6(i.e., the first-order con-
served quantitieswhereas they are complicated functions of
the second- and higher-orden>*2) conserved quantities

FIG. 2. Schematic three-dimensional representation of th@nly. In other words, the meaning of corollary 1 is that the
second-order conserved quantities of the rami2, 4, and 6 stipu- algebraic symmetry of the CF Hamiltonians in question must
lated by Noether’s theorem: tygie—the length of vectors and type reflect the conservation of the quantities stipulated by theo-
(il)—the relative orientations, i.e., the angles between two respedem 1 and conjecture 1. In the discussion that follows these
tive vectors. quantities are referred to as “the conserved quantities.”

174420-8
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b. Corollary 2 The first is the approximate@®) approach, in which the
actual point-symmetry group is approximated by a higher

Only the conserved quantities can be directly and inde X .
pendently determined from fitting the experimental energy-grOUp’ for which the CFP data set does not involve the nega-

. tive g components in Eq.1) [or equivalently the Im parts of
level structure to_the theoretical energy Ievels_. _ CFP's in Eqs.(2) and (3)]. The major motivation for adopt-
Corollary 2 points out that, contrary to the fitting strategying the approach A is that it offers a significant computation
used implicitly by many author&see, e.g., Refs. 20-22, 25,

, o ] simplification by neglecting of the “imaginary” terms, i.e.,
and 26, the CFP’s admissible by group theory for a given;, ¢a4 the imaginary matrix elements. Truncation of the CF

symmetry cannot be directly and independently determineg,,miitonian, however, affects the selections rules and thus
from fitting the experimental spectra. These are only the conge assignments of the theoretical energy levels to those ob-
served quantities stipulated by Noether’s theorem, which cagepyed experimentally. Hence it may lead to incorrect values
be determined in this way. Moreover, knowledge of the conof the experimental energy levels being used in fittings. In
served quantities does not enable independent determinati@pite of its drawbacks, the approach A combined with the
of the full set of the CFP’s admissible by group theory for adescent in symmetry methdsee, e.g., Refs. 16 and)lImay
given symmetry case. This is due to the fact that the conprovide reliable, albeit approximate values of CFP’s. Ap-
served quantities of the order higher than one, as, e.g., theroach A is satisfactory especially if the distortions account-
type (i) second-order quantities in E¢L1), always involve ing for lowering the local site symmetry to the actual one can
combinations of two interrelated CFP’s. Hence, not each inbe considered as small in the crystallographic sense. Then, to
dividual CF parameter belonging to a given paird and a good approximation the effect of the corresponding low-
—q) can be independently determined from fitting the ex-symmetry CFP’s on the observed spectra can be neglected.
perimental energy-level structure. The second is the reducd®) approach, in which one
component of a pair of CFP’s witt g and—q is set to zero.

In practice, usually the CFn the ES operator notatiot;*’

Eqg. (1)] B, 9, with the highest for the lowestk, is selected

The conserved quantities of the order 1 determine di- for reduction to zero, i.e.l,3g6 for hexagonal II,B;4 for
rectly the magnitudes and the signs of the CABfiswith g tetragonal II, and, * for trigonal II, butB, 2 for monoclinic
=0, whereas those of the ordeE2 determine the magni- symmetry. This approach has also an apparent computational
tudes of the allowed combinations of the CFP’s and the relaadvantage, since less CFP’s are used in calculating the ma-
tive signs ofBy with q+0. trix elements and hence in carrying out the fittings.

Corollary 3 has an important bearing on the feasibility of The last is the completéC) approach, in which all CFP’s
the experimental determination of the magnitudes and signgdmissible by group theory for a given site symmetry are
of the CFP’s for very low-symmetry cases. For monoclinicallowed in the fittings. On the face, this approach seems to be
and triclinic symmetries, since there exist more CFP’s aparthe most correct one from the point of view of group theory.
from the first- and second-order conserved quantities, onklowever, it turns out that proponents of approach C as well
would need to establish all possible higher-order conserveds of approach R have overlooked some more subtle points,
guantities in order to account for all the interrelationshipswhich bear on the interpretation of experimental data and the
between the CFP’s. In principle, one should be able to obtaigorrectness of each approach.
all admissible conserved quantities by considering the alge- On the basis of corollaries 1-3, which concern the general
braic symmetry of the characteristic equations as was done igonstraints imposed on the CF Hamiltonians invariant under
Refs. 20—-22, and hence construct all these interrelationshipsontinuous symmetry and arise from theorem 1 and conjec-
Knowledge of these interrelationships could be utilized in ature 1, we put forward corollary 4 and 5, which concern
twofold way. First, it would enable independent determina- implications specific for interpretation of approaches C and
tion of the magnitudes and relative signs of some but not alR. These corollaries account for the feasibility of determina-
CFP’s admissible by group theory for a given symmetry.tion of the magnitudes and signs of CFP’s from spectral data
Secondit would enable imposing sensible constraints on theand have a profound bearing on the interpretation of the CFP
fitting procedures. However, solving the whole set of thedata sets experimentally determined using approach C or R.
equations for the conserved quantities, which is required ilReviews of such CFP data sets available in the literature are
order to obtain all interrelationships between CFP’s, may bearried out in separate papérs®
practically impossible. Hence, one would need to resort
again to numerical fitting strategies without the knowledge
of sensible constraints, as is the current practice, in spite of There exist one to many correspondences between the
the often-unreliable outcomes. conserved quantities and the magnitudes of the CFP’s with

Before putting forward the remaining two specific corol- g0 determined in approach C.
laries we shall first outline briefly the current situation con-  According to corollary 4 the least-squares fitting using
cerning interpretation of experimental data for the continu-approach C turns out to yield CFP data sets, which at best
ous symmetry cases. There exist in the literature threeorrespond to one possible minimum from a continuous set
approaches, denot®d??“A,” “R,” and “C,” to fitting the of equivalent minima in the multidimensional CFP space, but
experimental spectra for RE ions at sites exhibiting one o&t worst correspond to an ill-determined local minimum. Two
the five symmetry types in questiéfi222526.59-75 important facts arise as a consequence of the inherent con-

c. Corollary 3

d. Corollary 4
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straint stated in corollary &irst, because of the continuous accounted for by theorem 1 and conjecture 1. Taking into

symmetry, there exists an infinite number of “full” CFP data account that only the relative signs of some CFP’s can be
sets, i.e., including all group-theory admissible CFP’s, whichdetermined experimentally, the CFP data sets with the same
are used in approach C. Each equivalent CFP data set yiel@isagnitude but different signs also satisfy the conservation

the same values of the energy leveBecond approach C criteria as shown in Fig. 1. The specific character of a par-

apparentlyoffers experimental determination of the angle ofticular CFP data set determined in approach R reside in the
rotation¢/Oz, which can bring one component of the pair of actual selection of one component of a pair of parameters
parameters with- g and —q to zero. This might have been a (B, % B, 9) that is reduced to zero, i.e., such a CFP data set
viable result only if the originak andy axes could have been s k and +q specific.

defined with respect to the crystallographic axes. If one |n view of the above, three additional questions arise. The
could define such an initial reference frame, an infinite num'ﬁrst question concerns the uniqueness of the “intrinsic” se-
ber of physically equivalent yet distinct data sets could havgection within a given pairB, 9,B, %), since several “intrin-
been determined from fittings. Each such data(geshould  gic* choices to reduce one parameter to zero exist, as de-

yield the same value, sag, of the angle of rotatiosy; /Oz  picted in Fig. 1. On the plane with the axes denotefBj"}
required to set one component of the pair of parameters wit nd{B; % all possible values of the two corresponding pa-

+qand—q to zero. Howe\(er, in fact, this is impossible, and rameters for each paik(|q|) can be represented by a circle
no x andy axes can be defined for the symmetry cases und%ith the radius given byvi (see Fig. 1 Although the

consideration. As our literature survey reveals, these facts are  anitudes oB- Y (ImBy) corresponding to point€?) and
still not recognized by many experimentalists, especially 9 k o P ng 1o p .
) are of the same value, they differ in sign. Hence points

those employing inelastic neutron-scattering measuremené% e TS ) q
for determination of CFP's. Concrete recent examples and?) @nd (4) represent aliernatlve intrinsic” choicesB{

their analyses are provided, e.g., for tetragonaRef. 2§ ~ =0 andB,“>0) and B, =0 andB, “<0), respectively.
and monoclinic symmetrieS:”* Even having reliable initial ~Similarly, points (1) and (3) correspond to the prevailing
CFP data sets to start the fittings, which can be predictedhoiceBy =0, but two alternative “intrinsic” choices exist,
e.g., by the point-charge model or more advanced moddlamely, By 9>0 and B, 9<0, respectively. All alternative
calculations:®*" the final outcome of approach C fittings choices satisfy the conservation criteria. Hegondjuestion
may be some artifacts rather than well-determined CFP dateoncerns the uniqueness of the pai (',B, 9) selected for
sets. This may be one of the reasons why the nonlinear leastie reduction of one component to zero. In the cases in
squares fittings of 15 CFP’s required for RE ions at monoawhich more than one paiB{,B, 9) exists, more “extrinsic”
clinic symmetry sites are regarded asnotoriously choices of the rank is available for reduction of the param-
unreliable” >* Additional reasons for such unreliability are eterB, 9 (or B, “—as an “intrinsic” choice to zero. This is

provided by the present considerations. the case for trigonal I(two pair9, monoclinic (six pair9,
and triclinic symmetrieg12 pairg. What criteria are to be
e. Corollary 5 adopted in selecting a particular pair? Each particular choice

h . q b results in a physically equivalent CFP data set, yet the values
There exists a one-to-one correspondence between thg crpig are completely different. Examples of such corre-

conserved quantities and the magnitudes of the CFP’s Witrhted CFP data sets may be found, e.g., in Refs. 22 and 25.
q+0 determined in approach R for each specific choice Otrng cyrrent practice in this regard is an arbitrary choice of

theACF pé:l_ramteter reﬁuceg tct)hzeg)l.zp ts with th i B, 9=0 with the lowestk. This is the most widely used
\ceording to corofiary o, the Sets wi € Specilic . oice, although no specific justification or advantage is of-

choice of CF parameter reduced to zero can be determin

G

: . . red. Thethird question concerns the mutual correlation be-
experimentally using approach R. Each such set is select

o . . een the alternative data sets obtained in approach R. Are
out of an infinite number of CFP data sets by imposing the[he nonzero CFP’s obtained from fitting using approach R

additional conditionB, =0 (or eqU|v§IgntIyBg6qEO). FOr  hroperly mutually correlated or do various parameters belong
hexagonal Il symmetry, setting eithBg * or B ° to zero is g gisparati.e., uncorrelategareas in the multidimensional
equivalent to a specific choice of the rotational invariantcgp space, each of which corresponding to a specific choice
[Ved =|Bg °| or [ved =|Bg°|, respectively. However, since of the CF parameter reduced to zero? A possible way to
no more (= q) pairs exist using this specific choice, this doesyerify that the values in a given fitted CFP data set are prop-
not affect the values of other CFP’s, i.e., the first-order IC’serly correlated would be to carry out a number of fittings
B, k=2, 4, and 6. For tetragonal Il symmetry, there exist(say, i=1-N) including all CFP’s, as in approach C, and
two pairs of the parameteB;, @ andB, 9 to use for a reduc- check the mutual correlation between data sets by proper
tion of one component of one pair to zero, whereas bothransformation¥ ¢;/Oz. The rotational invariants and
components of the other pair can be completely determinedormsdefined in Eqs(4)—(7) are then helpful to assess the
in approach R. In general, the CFP’s witz0 in the ES likelihood of the nonzero CFP’s being properly mutually cor-
operator notatioif’ (and the equivalent Re and Im parts of related within a given CFP data set as well as with other data
CFP’s in the Wybourne notatioh®) determined in approach sets.

R turn out to represent just one specific CFP data set out of In view of the properties discussed above, the widespread
an infinite number of such data sets. Each such CFP set satterpretations of the CF parameter sets obtained using ap-
isfies the requirement of the conservation of the quantitieproach R, which imply, e.g., that theparametergare given
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in the axis system with one component of the pair of paramether’s theorem. These quantities are nothing else but com-
eters with+q and —q (usually —q) set to zero” or that “a  binations of the conserved quantities of the first—ordﬁz{f)(
rotation has been carried out to bring one CF parameter toand second-orderB{) ones of type(i). Since thenth mo-
zerg” are, in fact, incorrect. This interpretation assumes im-ments of CF Hamiltonians, E@8), can be express&f3in
plicitly that such a transformation can be done,_i.e., the anglgerms of the second-ordefS() and higher-order rotational

of rotation around the symmetry axis, for which the latterinvariants, hence, in turn, the former quantities are also re-
condition is satisfied, can be determined. In fact, howevenated to the conserved quantities stipulated by Noether’s
this angle cannot be determined from fitting the experimentajheorem. The first-order moment in E) is itself a con-
energy levels. No particular orientation of the coordinateserved quantity, which ensures the conservation of the CFP’s
axes can be assigned to the CFP's determined in approach BY as stipulated by Noether’s theorem stated in Sec. IV B.
since as stated in corollary 2 the quantities that can be ex- Another way of looking at the rotational invariar8g and
perimentally measured are the conserved quantities, i.e., thge normsN, for triclinic symmetry defined in Eqg4)—(7)
first-order quantities BY), the second-order quantities de- js to consider the CEP’s for a givek=2, 4, and 6, as a
fined in Egs.(11) and(12), and higher-order quantiti€see  mytidimensional vectoB,={B, “,...,.B),... B}, i.e., (%
theorem 1 and conjecture.lF(_)r monoclinic(and tr|(_:I|n|(_:) +1)=5, 9, and 13, respectively. In analogy to the interpre-
symmetry cases more such circles such as those in Fig. 1 @44ion ysed for a limitedtwo-dimensional subspace in Eq.
cones such as those in F.|g. 2_are needed to represent t(ﬁ)' the quantitiesN, as well asS, [apart from the numeri-
magnitudes and the relative signs of the CF parameterg,| constant used in E46)] thus have the meaning of the
Hence, more equivalent points sudh and(3) as well ag2) length of the vectoB, .

and (4) can be found in the Circles’ (Fig. 1) or “cones Due to the ascent in symmetry method, the second-order
(Fig. 2 corresponding to approach R for these very low-oiational invariants and the CF strength parameters as well
symmetry cases. A similarcircular” phenomenon has been 55 the norms of the ZFS parameters, defined in Es(7)
encougtered In (Eh_e Cslglanaly5|_s within thB approximation  for tricjinic symmetry, can be generalized to the cases for
for 3d" and 3° ions™ for axial type-Il symmetry cases \yhich some CRor ZFS parameters must be exactly zero, as
without ’the deeper realization that it is a consequence Ofequired for higher symmetries than triclinic. Thus, one ob-
Noether's theorem. The ground-state phase diadtafos  5ing similarly these second-order quantities as the sums of
te_tragonal Il and trlgona_l Il symmetries indicate de_fml_tethe squares of the individual first- and second-oftigre (i)]
circles for the corresponding wave functions, thus satisfying.gnserved quantities. Hence, the quantiSeandN, can be

the relationships between the CFP’s stipulated by Noether’s;g, applied to any higher-symmetry case and not only to
theorem. _ _ , triclinic symmetry.

Extension of the considerations of the algebraic symme- 14 jjjystrate the relationship between the CF rotational
try, carried out so far for the four cases of CF Hamiltoniansariants and the conserved quantities stipulated by Noet-
invariant under continuous rotational symmetry about a Spepear's theorem. we consider hexagortigipes Il and ) and
cific axis*~**to triclinic symmetry requires computation of ¢ pc symmetries dealt with in Ref. 53. For hexagonal I
a horrendously large number of complicated higher-order ingymmery, the axis is along the hexagonal axis or direction,
variant combinations appearing in the characteristic equatiofjhije thex andy axes are in the plane perpendicular to the
of a CF Hamiltonian. If one resorts to these involved com-5yis with the direction of the (y) axis arbitrary in this plane.
putations then perhaps the algebraic symmetry approach cagi this choice of the-axis direction, there are in total five
also provide additional invariants to those identified for thecpp:g permissible by group theory, i.e., using the compact
higher—;ymmgtry cases. Nevertheless all gen(_ara_ll gspects R m in the Wybourne notation, E), we have the nonzero
conclusions discussed in Sec. IV apply also triclinic symme-gpig53 Bo, Buo, Beo (real ones andBgg andBg.g (COM-
try. Additional aspects specific for CF Hamiltonians of tri- plex ones. The arbitrariness of the direction of theandy

clinic symmetry are discussed in the next section. axes will induce the existence of an infinite number of CFP
data sets corresponding to an arbitrary rotation around the

V. CONSERVED QUANTITIES VS ROTATIONAL axis. Hence, the invariance of certain combinations of CFP’s
INVARIANTS AND MOMENTS OF CE HAMILTONIANS exists. In view of the findings presented in Sec. IV, the re-

sults given for hexagonal symmetfyneed reinterpretation.
As discussed in Sec. IV Noether’s theorétheorem 1 The second-order rotational invariants of the second, fourth,
asserts that there must exist conserved quantities for triclinignd sixth rank for hexagonal symmetry were gitefin the
symmetry cases as well. Unlike in the case of highernotation used heyerespectively, as
symmetry CF Hamiltonians invariant only under continuous

rotational symmetry about a specific axis, triclinic CF Hamil- (S5)2=(By0)?/5, (S4)?=(B40)?/9,
tonians are invariant under an arbitrary rotation of the coor-
dinate system, which, in general, can be given by the three (Se)2={|Beo2+ 2|Bgg 21/13. (14)

Euler angles(«, B, 7). The second-order rotational invari-

ants, namely, the CF invarian& and the normd\, of the  On the other hand, as discussed in Sec. |V for this continu-
ZFS parametefd~“defined in Sec. Il for triclinic symme- ous symmetry case the following conserved quantities exist:
try, as well as the related quantities, i.e., the CF strengtlthe first-order onesB,;, Bsy, and Bgy, and only one
parameteré?-3341-5%cquire deeper meaning in view of No- second-order one, which has the meaning of the length of the
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vectorvgg={2|Bgg %} ?={2(ReBgg) 2+ 2(ImBgg) 2} Y2 Only ~ symmetry, i.e., for the following cases: hexagonal II
these conserved quantities can be determined by fitting th€Cs,C3n,Cen), tetragonal Il C4,S4,Cyup), trigonal I
experimental energy-level structure. In approach RBigis  (C3,Sg), monoclinic (C,,Cyy,Csp), and triclinic (C;,C,)
set to zero and the second-order conserved quantity becomggmmetries. The interrelationships between Noether’s theo-
[Ved ={2(ReBgg)?}¥2. Comparing the second-order rota- 'em and the algebraic symmetry of CF Hamiltonians for
tional invariants in Eq(14) with the conserved quantities these symmetry cases have been investigated. This has en-
(the IC’s) defined in Sec. IV B, it turns out that the second- abled formulation of two important statements: Theorem 1
and fourth-rank rotational invariants in Ref. 53 are equiva-and conjecture 1, which establish a direct link between the
lent, to, within a multiplicative factor, the first-order con- two concepts. Theorem 1 stipulates the existence of several
served quantities stipulated by Noether’s theorem. Th&onserved quantities, which by conjecture 1 are equivalent to
second-order rotational invariditof the sixth rank in Eq. the invariant combinations revealed by the algebraic symme-
(14) is a sum of the squares of the individual first-order con-try considerations. Explicit forms of the conserved quanti-
served quantity and the second-order type-i conserved quaties, of the first and up to fourth order in CFP’s, have been
tity defined in Sec. IV. Obviously a sum as well as a productdiscussed for the CF Hamiltonians in question. Conse-
of conserved quantities are themselves conserved quantitieguently, several corollaries based on theorem 1 and conjec-
One important invariant quantity has not yet been acture 1 have been proposed. Corollary 1 establishes the link
counted for in the approach used in Ref. 53, namBly,. between the coefficients of the characteristic equations of the

Taking this into account, it turns out that all nine third-order CF Hamiltonians and the conserved quantities. The conse-
rotational invariantsv,(k;k,ks) derived for hexagonal duences of the invariance of CF Hamiltonians under continu-
symmetry® can be resolved into simple combinations of pri- Ous rotational symmetry, as stipulated by Noether’s theorem,
mary invariants. A question arises as to which, if any, of suctare encapsulated in corollaries 2-5.

combinations carry a piece of information that may be useful Insight has been gained by looking at the canonical No-
for fitting and interpretation of CF spectra. Assuming that, inether’s theorem from the point of view of the algebraic sym-
principle, both magnitudes and signs of the first-order conmetry. The ramifications of the present considerations pro-
served quantitie®,,, B4y, andBg, can be independently Vide a solid basis for interpretation of experimental CF
determined, none of the third-order rotational invaridhts Parameter data sets appearing in the literature. The existing
vi(kqkoks) carries a piece of such information. In practice, three approaches to fitting experimental data, namely, com-
however, it may be useful to incorporate into the fitting pro-plete (C—all CF parametejs reduced(R—one CF param-
cedure a constraint arising from one of the third-order rota&ter set to zeng and approximateA—all imaginary compo-
tional invariant8® v, (k;koks), namely, v, (246) hents of CE parameter neglectettave been _rg:-consjdered
=sq rt(5/143B,B4oBso. Since it fixes the relative signs of from the point of view of the conse_rved quantities stipulated
the three CFP's each being independently a first-order corly Noether’s theorem. The considerations enable also to
served quantity. All other eight quantities(k,k,ks) in Ref. ~ Solve the longstanding problem, i.e., choosing the CF param-

53 can be resolved into simple combinations of primary in-eters that can be determined from fitting the experimental
variants and appear to play no useful role. energy-level structure to the theoretical energy levels. The

A similar reinterpretation applies also to the rotational in-fotational invariants and norms as well as the moments of CF
variants derived in Ref. 53 for cubic symmetry. All the “qua- Hamiltonians used in the CF studies are discussed from the
dratic moments,” i.e., the second-order rotational invariantsPOint of view of the conserved quantities stipulated by No-
as well as the third- and fourth-order rotational invariants,&ther's theorem. In order to illustrate the implications of No-
are functions of only three first-order conserved quantitie€ther's theorem and to provide practical applications of theo-
B.o, Bao, andBgo. It should be emphasized that it does not'ém 1, conjecture 1, and the resulting corollaries, two
matter which numerical coefficients are associated with théPecific cases are considered in detail. In this paper the rota-
combinations, either sums or products, of primary invariantstional invariants for hexagonatypes Il and )} and cubic
Hence, the painstaking derivatfirof the involved numeri- Symmetries are discussed. Their deeper meaning, hitherto,

cal coefficients, e.g., of the typ(k;k,ksk,) in the expres- Mot realized in the literature, is elucidated. In a separate
sions for the fourth-order  rotational invariants Papef® the interpretation of CFP data sets for rare-earth ions

v a(Kikoksky:K) = di(KiKoKsk,) (Ba)™(Bgg)”  could be in LiYF, and structurally similar systems with tetragonal

avoided since they do not introduce any new physical inforlyPe-Il (S4) symmetry are thoroughly reviewed and dis-
mation. cussed. A detailed survey of the relevant examples taken

from the recent CF and superposition models as well as ZF-

EPR studies for various symmetry cases will be presented
VI. SUMMARY AND CONCLUSIONS elsewhere in the future.

To the best of our knowledge, we have provided the first
application of Noether’s theorem in the area of the crystal-
(ligandy field (CF/LF) theory. The present considerations ACKNOWLEDGMENTS
can be also applied to any generic Hamiltonian of the form Thanks are due to Joseph H. T. Lau and Dr. A. Galeev for
H=3 Axim(X), representing among others, also the zeroproviding Refs. 2 and 5 and Refs. 30 and 31, respectively.
field splitting (ZFS) Hamiltonians. Noether’s theorem ap- This work was supported by the City University of Hong
plies to Hamiltonians invariant under continuous rotationalkong through a doctoral studentship to Ms. Qin.
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APPENDIX

The forms of the conserved quantities stipulated by Noet-

her’s theorem(Sec. IV B expressed in terms of the CF pa-
rameters in the Wybourne notatidri*are as follows:

first order: Byy, B, Bgo, second order: (i) [vigl

= (2{ReByg*+2{Im B}9)*? q>0, (i) Vg Virq

:|qu||Vk’q| COS(Bqu) a,q'>0.
Explicitly, the second-order conserved quantities of t{ipe
(Sec. IVB) are given by

Vkg' Vqu:(RequReBqu+ Im qu Im Bqu)

= ({ReByq}?+{Im Byg}*) YA {ReBy )

+{Im By g}?)Y2c0 Bl

PHYSICAL REVIEW B 67, 174420(2003
or, alternatively, by the angle
Biq" = arcco§(vig: Vie ) ([Vieg Vi) }-
Specifically, for tetragonal type-Il symmetry we obtain
Vsl =[2({ReByg?+[Im B44]?) 1™,
Vel =[2({ReBggt*+{Im Bggt?) ]2
%4=arccog(ReB,,ReBgy+ 1M By, Im Bgy)/{[ (ReB )2

+(Im By 21 (ReBgy) 2+ (IM Bgy)*12).

In the approach R, IB,,=0. In the approach A, I8,
E0, Im BG4EO'
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