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Noether’s theorem and conserved quantities for the crystal- and ligand-field Hamiltonians
invariant under continuous rotational symmetry
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Applications of Noether’s theorem to crystal-field~CF! and ligand-field Hamiltonians invariant under con-
tinuous rotational symmetry are discussed. Deeper meaning of the seemingly unrelated concepts of~i! Noet-
her’s theorems,~ii ! the algebraic symmetry of Hamiltonians, and~iii ! the rotational invariants and moments of
CF Hamiltonians is considered and their interrelationships unraveled. Our investigations enable formulation of
an important theorem and a conjecture on the conserved quantities stipulated by Noether’s theorem for the CF
Hamiltonians in question. Geometrical meaning of the second-order conserved quantities suggests feasibility of
derivation of a conservation law encompassing all the conserved quantities identified. The existence of the
conserved quantities has profound implications for interpretation of experimental CF parameter data sets,
which are encapsulated in five corollaries. Our considerations reveal that various aspects require reinterpreta-
tion. This includes, e.g.,~i! the feasibility of determination of CF parameters from fitting experimental spectra,
and ~ii ! the reduction of the existing higher-order rotational invariants for hexagonal type-II and cubic sym-
metries to combinations of primary lower-order invariants. The approach presented in this paper enables
adoption of better-fitting strategies utilizing the well-defined conserved quantities, which are invariant under
continuous rotational symmetry.
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I. INTRODUCTION

For reasons ranging from obtaining a deeper understa
ing of the underlying physics to practical implications f
analysis of crystal-field~CF! @also referred to as ligand-fiel
~LF!# spectra, it appears worthwhile to consider the dee
interrelationships that may exist between the seemingly
related concepts and aspects discussed in detail in Se
This comprises, on one hand, Noether’s theorems, wh
have profound theoretical significance to many areas
physics, since they utilize the geometrical symmetries
classical and quantum systems to obtain specific conse
tion laws as well as various associated conserved quant
and, on the other hand,~i! the intricate properties of CF
Hamiltonians invariant under continuous rotational symm
try, which have not to our best knowledge, been fully und
stood in the literature as yet, especially the underutiliz
concept of the algebraic symmetry of such CF Hamiltonia
and its important implications for analysis of CF spectra,
well as~ii ! the two interrelated general concepts, namely,~a!
the CF rotational invariants and~b! the moments of CF
Hamiltonians, which are defined for arbitrary symmetry C
Hamiltonians and which play a special role in the descript
of CF spectra. In brief, the canonical Noether’s theorem
plies, for given symmetry transformations of the coordinat
the existence of the associated conserved quantities, w
are functions of the parameters describing a given class
or quantum system. This theorem should, in principle, ap
also to any CF Hamiltonian invariant under continuous ro
tional symmetry, which includes five symmetry class
namely, hexagonal II (C6 ,C3h ,C6h), tetragonal II
(C4 ,S4 ,C4h), trigonal II (C3 ,S6), monoclinic
(C2 ,C1h ,C2h), and triclinic (Ci ,C1). Here, this problem
0163-1829/2003/67~17!/174420~14!/$20.00 67 1744
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will be discussed from another point of view.
It appears that researchers working in the CF-theory a

~including one of the present authors, C.R.! have apparently
not yet explored the potential interrelationships between
concepts and aspects outlined above. The algebraic sym
try of CF Hamiltonians invariant under continuous rotation
symmetry has been considered for several symmetry c
by one of us as early as in 1985~for references, see Sec. II!.
However, it had not been realized at that time that the ‘‘
variant combinations’’ of the CF parameters algebraically
termined for specific symmetry cases may arise naturally
the conserved quantities stipulated by the canonical N
her’s theorem applied to the CF Hamiltonians in questi
On the other hand, it may be expected that such conse
quantities~invariant under continuous rotational symmetr!
should be somehow related to the rotational invariants
hence the moments of CF Hamiltonians, which are defin
for arbitrary symmetry and which are also conserved un
rotations of the coordinates. One may also hope to arrive
a direct consequence of Noether’s theorem, at a gen
‘‘conservation law,’’ which may possibly encompass all th
conserved quantities in question.

It turns out that application of Noether’s theorem and t
associated conserved quantities stipulated by Noether’s t
rem, which should, as it seems intuitively obvious, be inh
ent for the CF Hamiltonians for each of the five symme
classes involving continuous rotational symmetry, have
been explored as yet. Driven by both theoretical curios
and the profound implications Noether’s theorem may ha
for the CF studies, we attempt to fill this gap. The main ai
of this paper are to unravel the interrelationships between
crucial concepts in question and discuss their implicatio
To achieve these aims, first in Sec. II we provide sufficie
background for the present considerations by presenting
nutshell the crucial concepts drawn from various areas
©2003 The American Physical Society20-1
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theoretical physics. Next we outline the basic properties
CF Hamiltonians in Sec. III, and in Sec. IV we consider t
algebraic symmetry of CF Hamiltonians from the point
view of Noether’s theorem. The relationships between
predictions of Noether’s theorem as well as of the algeb
symmetry considerations, the concepts of CF rotational
variants, and the moments of CF Hamiltonians are con
ered in Sec. V. Comparative analysis and consequence
Noether’s theorem for interpretation of the CF parame
~CFP! data sets forS4 symmetry occurring, e.g., for rare
earth ~RE! RE31 ions in LiYF4 revealed by our survey o
recent literature, will be presented in a future paper. T
systematic method of interpretation of experimental data p
posed here may in turn bring about increased reliability
the CF parameter data sets for the future.

II. AN OVERVIEW OF CRUCIAL CONCEPTS AND
ASPECTS

The geometrical symmetries of classical and quant
systems have been widely studied and exploited to simp
various theoretical problems. Various formulations of No
her’s theorem~s!, which utilize geometrical symmetries, from
introductory1,2 to advanced mathematical ones,3–5 can be
found in the literature. Formulations especially pertinent
the present context are ‘‘If a system has a continuous s
metry property, then there are corresponding quanti
whose values are conserved with time.’’3 and ‘‘For every
continuous symmetry of the laws of physics, there must e
a conservation law. For every conservation law, there m
exist a continuous symmetry.’’2 In classical mechanics, No
ether’s theorem leads to conservation of linear moment
total energy, and angular momentum for the continuous s
metry being spatial displacement, time displacement, and
tation about an axis, respectively.2,3 The distinction between
various variants of Noether’s theorems is not clear-cut in
literature. Some authors~see, e.g., Refs. 6–8, and referenc
therein! use the following nomenclature concerning applic
tions of Noether’s theorems in classical theories:~i! Noet-
her’s first theorem establishes the connection between gl
symmetries and the conservations laws, and~ii ! Noether’s
second theorem refers to the local symmetry of a system
implies existence of Noether’s identities, whereas~iii ! the
connection between canonical continuous symmetry
conservations laws is referred to as the canonical Noeth
theorem. Various applications of Noether’s theorem~s! to
specific classical and quantum-mechanical systems e
see, e.g., Refs. 6–9, and references therein. Accordin
Castan˜os et al.,9 Noether’s theorem asserts that, under c
tain conditions satisfied by a Lagrangian of the systemL
5L(xi ,ẋi ,t), to the symmetry transformation of the coord
nate, xi corresponds a conserved quantity~called also the
Noether charge!. These authors have derived explicit form
of the associated conserved quantities for several quan
mechanical systems. Noether’s inverse theorem can be
to establish the associated symmetry transformation.9 At-
tempts have also been made using various methods, no
volving Noether’s theorems, to construct exact invariants
17442
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a variety of classical dynamical systems~see, e.g., Ref. 10
and references therein!.

In the realm of CF~or LF! theory~see, e.g., Refs. 11–19
and references therein!, numerous cases of CF Hamiltonian
invariant under continuous rotational symmetry exist~see,
e.g., Refs. 20–22, and references therein!. Yet to the best of
our knowledge, as a recent Science Citation Index~SCI!
search indicates, no application of Noether’s theorem~s! to
such CF Hamiltonians has so far been discussed in the
erature. Out of 11 Laue-symmetry classes~see, e.g., Refs. 12
17, and 23!, five classes yield CF Hamiltonians invaria
under continuous rotational symmetry. The cases of tra
tion ions at sites having such symmetry are also referred
as the low-symmetry cases, since the respective CF Ha
tonians involve so-called ‘‘imaginary’’ or ‘‘low-symmetry’’
CF parameters.24 This includes the following point-
symmetry groups~in descending symmetry order!: hexago-
nal type-II (C6 ,C3h ,C6h), tetragonal type-II (C4 ,S4 ,C4h),
trigonal type-II (C3 ,S6), monoclinic (C2 ,C1h ,C2h), and tri-
clinic (C1 ,Ci) symmetries. A detailed consideration of th
intricacies of the CF theory for the RE ions at low-symme
sites in various crystals and a review the CF parame
~CFP’s! appearing in the literature up to 1985 for the tetra
onal II, trigonal II, hexagonal II, and monoclinic have bee
dealt with in Refs. 20–22. Several pertinent monoclin
triclinic,25 and tetragonal cases26 have recently been unde
consideration by us. Note that the triclinic symmetry requ
separate consideration, since no symmetry-related coordi
axes exist for these cases.25 Some pertinent references fo
low-symmetry CF studies may also be found in Refs.
and 14–17.

Independent developments in the CF-theory area, wh
potentially may be~and as we shall show in this paper,
fact, are! linked to the general aspects of Noether’s theorem
are twofold. Of particular relevance are the concepts of
rotational invariants, including the equivalent one of t
norms Nk , and the moments of CF Hamiltonians. The C
rotational invariantsSk , quadratic in the CFP’s have bee
introduced by several authors.27–33Yet no formal derivation
from ‘‘first principles’’ has been provided in the papers.27–33

Independently, in the electron magnetic-resonance~EMR!
area~for a review, see Refs. 34 and 35! the normsNk of the
zero-field splitting~ZFS! parameters have been introduced36

and later related to the transformation properties of the n
malized Stevens operators.37 These quantities, which ar
conserved under arbitrary rotations of the coordinates, a
as a consequence of the transformation properties of the
and ZFS Hamiltonians. The normsNk have been used to
rather limited extent in the EMR area—see, e.g., Refs. 3
40. The quadratic CF rotational invariantsS2 , S4 , andS6 of
CFP’s as well as a combined quantity, namely, their avera
representing the ‘‘strength of the crystal field,’’ have be
used to a moderate extent by several authors~see, e.g., Refs
41–52!. The third- and higher-order invariants in CFP’s ha
also been introduced43 and discussed but only for the sim
plest symmetry cases, i.e., cubic and hexagonal, as revie
by Yeung.53 On the other hand, the rotational invariants o
given kth order have been shown to be in general related
the kth-order moments of CF Hamiltonians, thus not with
the wholenlN configuration but within an approximation of
0-2
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given J multiplet.29–31,42,47,53The moments of Hamiltonian
have also been defined in a general way for any Hamilton
and have found useful applications in statistical spectrosc
in various areas, e.g., atomic, nuclear, and vibrational sp
troscopies~see, e.g., Refs. 54–56, and references there!.
The moments ofN-particle Hamiltonians are also invarian
of the unitary transformations of the basis in the mo
space.56

Another development in CF theory and related are
which is potentially related to Noether’s theorems, conce
another type of symmetry, namely, the algebraic symmetr
CF Hamiltonians defined, in general, as the symmetry of
characteristic equation of a Hamiltonian.57 The concept of
the algebraic symmetry has been applied originally
Clark57 to the second-order Hamiltonians of a ‘‘spin
Hamiltonian type’’ having the formH5A•J1J•B•J, which
occurs in many areas of physics and chemical physics.
first term may represent interaction with magnetic fie
whereas the second term represents, e.g., nuclear hype
interactions~considered in detail in Ref. 57! or the ZFS
terms studied by EMR.34,35For such a simple Hamiltonian i
has been feasible to carry out analytical considerations of
algebraic symmetry. This has enabled57 to derive polynomi-
als in the ‘‘symmetrized parameters,’’ being combinations
the Hamiltonian parametersAi j andBi j . Clark57 has shown
that any polynomial function of the matrix elements of t
Hamiltonian, which is invariant under all transformations
the frame of reference, can be written as a polynomial in
‘‘symmetrized parameters.’’ One advantage of the algeb
symmetry considerations57 was that the number of matri
elements to be calculated could be reduced. Other us
general properties arising from the existence of several
variant quantities being functions of the Hamiltonian para
etersAi j andBi j have been discussed in Ref. 57. In partic
lar, Clark57 has provided solid theoretical justification for th
axes conventions for reporting the principal valuesVii of the
electric-field gradient used in nuclear magnetic resonan
The concept of ordering the principal values of interact
‘‘tensors’’ is equivalent to the standardization of the orth
rhombic second-order ZFS parameters introduced inde
dently in the EMR area as reviewed in Ref. 58. The standa
ization idea, which is applicable both to the CF and Z
Hamiltonians, has been extended to the fourth- and si
order terms58 as well as to monoclinic and triclinic
symmetries.22 In relation to Noether’s theorems we note th
the standardization of the orthorhombic and lower-symme
Hamiltonians~including CF, ZFS, and related ones! involves
continuous permutational symmetry, and not rotational sy
metry, being the focus of this paper, and hence requires s
rate consideration.

Regrettably, the concept of algebraic symmetry has b
underutilized and the paper57 remains largely forgotten, a
revealed by a SCI citation search. The only applications
the algebraic symmetry are those by one of us to CF Ha
tonians invariant under continuous rotational symmetry
the RE ions at tetragonal II,20 trigonal II and hexagonal II,21

and monoclinic22 symmetry sites. The considerations of t
algebraic symmetry of such CF Hamiltonians have been
ried out20–22not in an analytical way57 but by using a ‘‘brute-
17442
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force’’ method. By employing a computer algebraic pr
gramming, explicit solutions of the characteristic equation
the CF Hamiltonian within variousJ multiplets of RE ions at
various symmetry sites could be obtained.20–22 This has en-
abled to study the properties of the coefficients in the ch
acteristic equations, which by their nature were combinati
of the CFP’s involved. The major findings arising from th
algebraic symmetry considerations20–22 concern the follow-
ing aspects. First, several conserved quantities, being p
nomial functions of first and up to third order in CFP’s ha
been explicitly identified in the characteristic equations
CF Hamiltonians invariant under continuous rotational sy
metry. Secondly, implications of the existence of the co
served quantities for the feasibility of determination of CFP
from spectral data have been elucidated. It has turned
that independent determination of the magnitudes and r
tive signs of all CFP’s admissible by group theory for a giv
symmetry was not possible. Thirdly, the three approaches~C,
R, and A—for definitions, see Sec. IV C! used in the litera-
ture in this regard have been critically examined20–22 and
various inconsistencies in the experimental determination
the low-symmetry CFP’s have been pointed out. As revea
by SCI and literature searches, although these findings h
been utilized so far by several authors59–75~see also Ref. 17!,
inconsistent CFP data sets for RE ions at low-symmetry s
still do appear in a number of papers.

III. GENERAL PROPERTIES OF CF HAMILTONIANS
AND PARAMETERS

Here we discuss only the major aspects, which bear on
present considerations. Other pertinent theoretical aspec
the CF Hamiltonians, which parametrize the effect of t
electric field due to surrounding ligands acting on the cen
paramagnetic ion, as well as the ZFS ones, which desc
effectively the splitting of the spin states of the lowest orbi
singlet in the absence of an external magnetic field, h
been reviewed in Ref. 34 and more recently in Ref. 35. T
includes a succinct description of the physical nature of
two Hamiltonians as well as clarification of the crucial term
which are often confused with each other.34,35 Especially
widespread in the literature is the confusion between the
tual ZFS and CF parameters as recently reviewed.76 As a
reference notation we use the general forms of the intrac
figurational CF Hamiltonian11–19 HCF8 . Within a givenJ or
L multiplet HCF8 can be expressed12,34,35 in terms of the
extended Stevens’~ES! operators37 as

HCF5(
kq

Bk
qOk

q~Jx ,Jy ,Jz!, ~1!

where the nature of the ES operators37 Ok
q(Jx ,Jy ,Jz) in Eq.

~1! is explicitly indicated as being the functions of the tot
angularJ ~or total orbitalL ! momentum operators. The Wy
bourne notation11,34 is more widely used in the optical spec
troscopy area.11–19,47,53 Within a given nlm configuration
HCF, in the compactform ~as defined in Ref. 34! is given
by11,16,17
0-3
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C. RUDOWICZ AND J. QIN PHYSICAL REVIEW B67, 174420 ~2003!
HCF5(
kq

BkqCkq , ~2!

whereas in theexpandedform, i.e., using explicitly the pairs
of the tensor operators with6q, HCF is given by34

HCF5(
k

XBk0Ck01 (
q51

k

$ReBkq@Ckq1~21!qCk2q#

1 i Im Bkq@Ckq2~21!qCk2q#% C. ~3!

In addition to the ES operators37 and Wybourne
operators,11,34several other types of operators have also b
employed in the literature as reviewed in Ref. 34.

Since the ES operators37 belong to the class of tesser
tensor operators, whereas the Wybourne operators11 belong
to the class of spherical tensor operators,34,35 the CFP’s de-
fined in Eq.~1! are all real, whereas, those in Eq.~2! are in
general complex. Note that the negative componentsBk

2q of
the CFP’s in Eq.~1! correspond to the imaginary parts of th
CFP’s in Eq.~3!, Im Bkq, whereas the positive onesBk

1q to
the real parts, ReBkq.20,34SinceHCF must be invariant unde
a given local site symmetry groupG of a paramagnetic ion in
crystal, the number of the admissible nonzero CFP’s in E
~1!–~3! can be determined by group theory.11–19A question
arises as to whether all CFP’s predicted by group theory
be independently determined. Full discussion of the forms
HCF for the symmetry cases in question20–22 and the intrica-
cies involved has been given in Ref. 25. In brief, the CF
can be experimentally determined by optical-absorpt
spectroscopy, inelastic neutron-scattering, and infrared s
troscopy techniques~see, e.g., Refs. 16–19!, whereas the
ZFS ones by the EMR techniques~see, e.g., Refs. 12, 13, 34
and 35!, as well as by related spectroscopic and magn
techniques, including magnetic susceptibility, magnetic
isotropy, and Mo¨ssbauer spectroscopy. The major differen
between the various experimental techniques in questio
the ability to determine the directional properties of a giv
transition ion located at a particular site in crystal. The EM
techniques, which, like electron paramagnetic resona
~EPR! and electron spin resonance, apply the external m
netic field with orientation varying in several different cry
tallographic planes, offering a deeper insight into the lo
site symmetry. This enables determination of the orienta
of the symmetry axes at transition ion sites from the o
served EMR spectra. However, the techniques, which pr
the energy levels and the intensity of transitions only at z
external magnetic field, cannot provide such ‘‘directiona
information. Thus the above CF experimental techniques
yield the values of the CFP’s but cannot determine the
entation of the symmetry axes.11,16–19Likewise the zero-field
EPR ~Refs. 77 and 78! yields only the values of the ZFS
parameters. This inherent limitation, which is most import
for low-symmetry cases involving a large number of the p
rameters, is often not realized by experimenters. As a co
quence, the low-symmetry CFP’s have often been de
mined as if the orientation of the symmetry axes could
obtained from the least-squares fitting of the experime
17442
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and theoretical energy levels~see Sec. IV!. These
widespread-in-the-literature ambiguities in the CF parame
zation make the CFP data sets unreliable and hamper rel
interpretation of the CFP data sets. The general methods
ployed in the CF/LF studies of determination of the ax
systems for the CF Hamiltonians invariant under continuo
rotational symmetry as well as the implications of vario
choices for interpretation of the CFP data sets appearin
the literature have recently been considered.25 A general
framework to achieve increased compatibility and reliabil
of CFP data sets for RE ions at low-symmetry sites in cr
tals has also been proposed25 and applied to the apparentl
incompatible CFP data sets reported for Nd31 (Pr31) in
NdGaO3 (PrGaO3).

The important quantities employed in the CF and Z
studies are therotational invariants Sk ~Refs. 29–33! and the
equivalentnorms Nk of the CF~ZFS! parameters.34,36,37For
the normalized Stevens’ operators34–36 Ok8

q , Nk are defined
as

Nk5(
q

$Bk8
q%25(

q
@Bk8

q#2, ~4!

where2k<q<1k, whereas for the ES operators,37 which
are not ‘‘normalized,’’34,37 they are defined as22

Nk5$Bk
0%21 (

q51

k S 1

cq
kD 2

~$Bk
q%21$Bk

2q%2!. ~5!

The coefficientscq
k are listed in Refs. 34 and 37. For th

Wybourne notation the CFrotational invariants Sk are
defined22,29–33,47,53as

~Sk!
25

1

2k11 (
q

uBkqu25
1

2k11
Nk , ~6!

whereas thenorms26 are defined as

Nk5(
q

uBkqu25$Bk0%
212(

q51

k

@~ReBkq!
21~ Im Bkq!

2#.

~7!

The quantitiesSk andNk in Eqs. ~4!–~7! are invariant with
respect to an arbitrary rotation of the axis system~see Sec.
V!. Hence, they were employed to measure the ‘‘strength’
the CF ~Refs. 29–33, 47, and 53! and ZFS.38–40 Another
useful property of the quantitiesSk is that they provide an
additional check of the reliability of fitting of the experimen
tal CFP’s as well as of the consistency of the transform
CFP’s expressed in different axis systems by various auth
~see, e.g., Ref. 25!. The necessary rotations of the coord
nates are facilitated by the recently developed24,79,80 com-
puter package for Conversions, Standardization, and Tr
formations ~CST!. The CST package24,79,80 is useful for
general manipulations of the ZFS and CF parameters
various systems, especially for transitions ions at orthorho
bic and lower-symmetry sites in crystals. Automatic calcu
tion of the rotational invariantsSk for all major tensor opera-
tor notations has been provided in the extended version
the CST package.80
0-4
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The quantitiesSk are actually the second-order rotation
invariants of the ranksk52, 4, and 6, whereas, in general,
given nth order in CFP rotational invariants has also be
defined. The latter quantities are related, within an appro
mation of a givenJ multiplet, to thenth-order ~spectral!
moments of CF Hamiltonians29–31,41,42defined as53

@sn~aLSJ!#n5@1/~2J11!#Tr~HCF!
n. ~8!

Yeung53 has provided the general relations for the mome
of the second through fourth order in terms of the cor
spondingnth-order rotational invariants. It appears that t
existence of the first-order moments and their invariant pr
erties have not been explicitly considered so far. Using
~8! and the Wigner-Eckart theorem we obtain the relation

@s1~aLSJ!#5@1/~2J11!#(
k

Bk
0^aLSJiC~k!iaLSJ&

3S J J k

2MJ MJ 0D , ~9!

which is utilized in Sec. V. Since the moments ofN-particle
Hamiltonians, including CF Hamiltonians, are invariants
the unitary transformations of the basis in the model spac56

the quantitysn(aLSJ), includings1(aLSJ), is also invari-
ant. Although used only occasionally in CF studies, the qu
tities Sk play a specific role as a handy but approximate t
in interpretation of the optical spectra for transition ions~see,
e.g., Refs. 29–31, 41, 42, 47, and 53!. The relationships be
tween the two interrelated quantities, i.e.,Sk in Eq. ~6! and
@s2(aLSJ)#2, and the second-order conserved quantit
stipulated by Noether’s theorem discussed in Sec. IV prov
a deeper meaning for the former quantities as discusse
Sec. V.

IV. APPLICATION OF NOETHER’S THEOREM TO CF
HAMILTONIANS INVARIANT UNDER CONTINUOUS

ROTATIONAL SYMMETRY

A. General considerations

With the background presented in Sec. II and III in min
we set out to consider the deeper interrelationships betw
the concepts outlined above: the canonical Noether’s th
rem and the algebraic symmetry on the one hand, and
properties of CF Hamiltonians invariant under continuo
rotational symmetry, including the rotational invariants a
the moments of CF Hamiltonians, on the other hand. We s
with a generalization of CF Hamiltonians defined in Eq
~1!–~3! and consider a generic Hamiltonian of the form

H5SAlmx lm~X!, ~10!

where Alm denote the parameters associated with a gi
generic type of the tensor operatorsx lm(X) of the specific
angular momentumX(Xx ,Xy ,Xz) operators, expressed in
given axis system~x, y, z!. Note that the generic symbolsx lm
and Alm used in Eq.~10! do not define yet another tenso
operator notation, an abundance of which already exist
the literature,34,35but may represent any of the various sets
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tensor operators and associated parameters. As discuss
Refs. 34 and 35 such generic Hamiltonians accounts fo~i!
the CF interaction, ifX is taken as the orbital angular mo
mentum, eitherli or L , as well as the total angular momen
tum, j i or J when only the one-electron CF Hamiltonian
considered and the spin-correlated CF terms are neglec
and~ii ! the ZFS splitting, ifX is taken as either theeffective
spin, S̃, or the fictitious spin, S8, as well as~iii ! any other
mathematically similar higher-order interactions being fun
tions of physically different angular momentum operato
e.g., the nuclear spinI . Other more sophisticated variants
the CF Hamiltonian, e.g., the correlation CF or the sp
correlated CF Hamiltonians,16,17 may be treated in a simila
way as the CF Hamiltonians, Eqs.~1!–~3!, dealt with in Sec.
IV B. However, the amount of work involved in rigorou
derivations of the associated conserved quantities would
prohibitive. Since the present arguments are based on s
metry requirements, which apply to all types of CF Ham
tonians, the general conclusions concerning the implicati
of Noether’s theorem should be valid for these CF Hamil
nians as well.

Next we consider the continuous rotational symmetry
pects inherent in each of the following symmetry cases:
tragonal II (C4 ,S4 ,C4h), trigonal II (C3 ,S6), hexagonal II
(C6 ,C3h ,C6h), and monoclinic (C2 ,C1h ,C2h). For each
case there exists a unique symmetry axisu ~or direction!. An
arbitrary rotationf/Ou leaves the form of a given CF~in
general, generic! Hamiltonian invariant. However, as con
cerns the CF parameters, only theq50 (l 50) components
are invariant, whereas the CFP’s withqÞ0 ~the associated
Alm ones withlÞ0) acquire different values for each specifi
transformationf/Ou. Hence, one may generate an infini
number of distinct yet physically equivalent CFP data se
For triclinic symmetry no symmetry-related coordinate ax
exist and the choice of the CF axes is completely arbitrar25

For this case, unlike that for the monoclinic one, any cho
of the CF axes yields an identical and physically equival
form of the CF Hamiltonian with a distinct yet physicall
equivalent CFP data set for each specific choice of the
axes. Hence, one may generate an infinite number of dis
yet physically equivalent CFP data sets by applying differ
Euler angles~a, b, g!. Each transformed CF Hamiltonia
involves all CFP’s with components2k<q<1k for a given
rank k52, 4, and 6 as defined in Eqs.~1!–~3!. However, all
CFP’s, includingq50 ~the associatedAlm ones withl 50),
acquire different values for each specific transformation~a,
b, g!. The physical equivalence of the CFP data sets ge
ated in this way implies that the corresponding energy lev
and also the intensity of CF transitions are identical for ea
related CFP data set. Hence, it appears that the transfo
tions in question correspond to ‘‘the equivalence transform
tions among physical states’’ generated by independent g
erators of the gauge transformation considered for vari
dynamical systems.8 Likewise for Lagrange’s variables,6–9 a
crucial question arises, namely, what identities or interre
tionships between the CFP’s must be obeyed in order to
sure that the physical equivalence is, in fact, fully preserv
0-5
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The answer is provided by the canonical Noether’s theo
and the algebraic symmetry considerations discussed in
next section.

B. The canonical Noether’s theorem and the conserved
quantities

In the spirit of the canonical Noether’s theorem1–9 we
argue that for the continuous symmetry cases in ques
there must exist associatedconserved quantities, i.e., poly-
nomial functions of the CFP’s~in general, the genericAlm
ones!. Existence of such quantities ensures the phys
equivalence of the CFP data sets interrelated by the con
ous symmetry transformations discussed in Sec. IV A. T
central idea put forward here may be encapsulated in
canonical Noether’s theorem for the CF and equival
Hamiltonians invariant under continuous rotational symm
try as follows.

a. Theorem 1

If the CF Hamiltonian defined in Eq.~1! @and Eqs.~2! and
~3!; in general, any Hamiltonian of the type in Eq.~10!# is
invariant under continuous rotational symmetry, then sev
quantities of various order in the CF parametersBk

q ~and
equivalent ones; in general, the associatedAlm ones! are con-
served.

By ‘‘conservation’’ we mean here the invariance of su
quantities under the continuous rotational symmetry ope
tions. We attempt to provide a clear exposition of the pe
nent aspects at the level comprehensible to the CF prac
ners. Analytical rigorous derivations of the conserv
quantities in question are beyond the immediate scope o
present work. Such derivations~see, e.g., Ref. 57! may be
particularly appealing to algebraists and quantu
mechanical theorists because Hamiltonians of the type in
~10! are far less complex than those considered using N
her’s theorems in particle physics, high-energy physics,
field theories.6–10

Instead of rigorous derivations of the conserved quanti
here we fully exploit the results of the algebraic symme
studies of the CF Hamiltonians invariant under continuo
rotational symmetry.20–22 Although it had not been realize
at that time, it turns out that the algebraic symme
considerations20–22provide a direct proof of theorem 1 for a
symmetry cases in question, except triclinic symme
which has not been dealt with in a similar way so far. T
studies20–22 have, in fact, revealed for monoclinic or high
continuous symmetry the existence in the characteri
equations of CF Hamiltonians of several ‘‘invariant combi-
nations’’ ~IC’s! being polynomial functions of CFP’s of th
form f $(Bk

q) i(Bk
q) j (Bk

q)m(Bk
q) l%, with various values of~k, q!

in each term and the power coefficients~i, j, m, l!. The pos-
sible IC’s, which have been explicitly identified in Ref. 2
for tetragonal II, in Ref. 21 for hexagonal II and trigonal I
and in Ref. 22 for monoclinic symmetry cases, can be c
sified as follows. In terms of the ES operators,34,37 provided
that the special symmetry axis or direction is taken as
quantizationz axis of the ES operators, the explicit forms
the admissible IC’s are as follows:
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~a! The first-order IC’s are simply the parametersBk
q with

q50, i.e.,B2
0, B4

0, andB6
0.

~b! Two types of second-order IC’s exist and have the f
lowing meaning:

~i! The second-order IC’s of the type~i! have the
meaning of the ‘‘length of a vector’’vkq formed by
the pairs (1q and2q) of the CFP’s with a givenk
and are defined by

~$Bk
1q%21$Bk

2q%2!1/2[uvkqu. ~11!

Invariance of the quantityuvkqu under continuous sym
metry transformations discussed in Sec. IV A aris
from the conservation of the ‘‘magnitude,’’ i.e., ‘‘lengt
of the vector’’vkq5(Bk

1q ,Bk
2q).

~ii ! The second-order IC’s of the type~ii ! have the
meaning of the ‘‘scalar product’’ of any two pos
sible vectorsvkq and vk8q in Eq. ~11! and are de-
fined by

Bk
1qBk8

1q
1Bk

2qBk8
2q[vkq•vk8q5uvkquuvk8qucos~b kq

k8q!.
~12!

Invariance of the quantityvkq•vk8q under continuous
symmetry transformations discussed in Section IV
arises from the conservation of the ‘‘relative orient

tion’’ between the two vectors, i.e., the anglebkq
k8q be-

tweenvkq and vk8q , for each possible combination o
the indices~k, q! and (k8,q) pertinent for a given sym-
metry case20–22 ~see below!.

~c! The higher-(nth) order (n.2) IC’s exist for the
cases that require solution of the characteristic eq
tions of the order greater than two. The thi
(n53) and fourth-order (n54) IC’s involve a great
number of complicated combinations of the produ
of n number of independent CFP’s, which have be
identified for trigonal II ~Ref. 21! and monoclinic22

symmetries. The number of IC’s and the degree
their complication increases with the order.

The properties of IC’s defined above can be summari
as follows. The following vectorsvkq exist for a given sym-
metry case:k52: uqu52 for a monoclinicC2iZ case22

~other monoclinic cases are discussed below!; k54: uqu
53 for trigonal II,21 uqu54 for tetragonal II,20 and uqu52
and 4 for a monoclinicC2iZ case;22 andk56: uqu56 for
hexagonal II,21 uqu53 and 6 for trigonal II,21 uqu54 and 6
for tetragonal II,20 and uqu52, 4, and 6 for a monoclinic
C2iZ case.22 Note that for triclinic symmetry all the pairs
(1q and2q) for a givenk are admissible. The admissibl
range and order of the IC’s predicted by the algebraic sy
metry considerations depend on the local site symmetry.
hexagonal II symmetry only three first-order IC’s,B2

0, B4
0,

andB6
0, as well as one second-order IC,uv66u, exist.21,53 For

tetragonal II symmetry the determinants of the orders
32), (333), and (434) were analyzed algebraically.20 It
was proved22 that the IC’s of the first and second orders a
fully sufficient for this case. For trigonal II symmetry,21 in
addition to the first- and second-order IC’s, the existence
three IC’s of the third order inBk

q , denotedT46
36, V466

336, and
0-6
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T66
36, has been identified by explicit algebraic derivations

may be expected that no higher-order IC’s exist for trigo
II symmetry.21 For the monoclinic symmetryC2iZ case,22 in
addition to the first-, second-, and several more third-or
IC’s, a large number of the fourth-order IC’s has been id
tified by explicit algebraic derivations. Some of the thir
order IC’s for the monoclinic symmetryC2iZ case could be
resolved into products of the first-order IC’s (Bk

q with q
50) and second-order IC’s@ uvkqu and vkq•vk8q defined in
Eqs. ~11! and ~12!, respectively#. Concerning the fourth-
order IC’s, their complexity for monoclinic symmetry i
reflected,22 e.g., in the fact that the IC’s of the typ

F$Bk
62Bk8

q8Bk9
q9B6

66% only involve 116 terms of the fourth or
der in Bk

q’s with k, k8, k952, 4 andq8, q9562 and64.
Resolution of all higher-order IC’s, which may appear in t
characteristic equations of the monoclinic CF Hamiltonia
presents a formidable algebraic task. Several points
worth mentioning. First, it has been directly checked, us
transformation relations26 and algebraic calculations,20–22

that each of the second-, third-, and fourth-order IC’s exp
itly identified is indeed invariant with respect to an arbitra
rotationf/Oz. Second, only the quantities in Eq.~11! have
been to a certain extent, utilized independently~see Sec. V!,
whereas neither those in Eq.~12! nor the higher-order IC’s
(n.2) have been considered in the literature since they w
introduced in the literature.20–22 Third, all IC’s carry useful
information,20–22 which can be utilized for a more compre
hensive description of transition ions at low-symmetry si
as illustrated by our recent studies. Here we exploit the
nonical Noether’s theorem~theorem 1! and the algebraic
symmetry considerations discussed above to put forward
following statement.

b. Conjecture 1

The ‘‘invariant combinations’’~IC’s! revealed by the al-
gebraic symmetry considerations and categorized above
the conserved quantities stipulated by the canonical N
her’s theorem applied to the CF Hamiltonians in quest
~theorem 1!.

The IC’s identified in the course of the explicit algebra
symmetry considerations20–22 as specific combinations o
CFP’s, i.e., equivalently the conserved quantities, arise n
rally from the canonical Noether’s theorem. Theorem 1 a
conjecture 1 establish a direct link between Noether’s th
rem and the algebraic symmetry of CF Hamiltonians inva
ant under continuous rotational symmetry. Thus the ma
part of the main aims of this paper outlined in the Introdu
tion has been achieved. Neither the specific features of c
tinuous symmetry cases in question discussed in Sec.
nor their deeper meaning encapsulated in theorem 1 and
jecture 1 proposed above have been fully realized in the
erature as yet. The same applies to their implications
counted for by corollaries 1–5 discussed in Sec. IV C. On
other hand, it may be expected that the conserved quan
algebraically determined for CF Hamiltonians invariant u
der continuous rotational symmetry should be somehow
lated to the rotational invariants and the moments of
Hamiltonians. The latter quantities are defined for arbitr
17442
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symmetry and are also conserved under rotations of the
ordinates. These ramifications of theorem 1 and conjectu
are considered in Sec. V.

Explicit forms of the IC’s i.e., the conserved quantities
question, depend on the notations and conventions use
express CF Hamiltonians. In the above formulation we ha
employed, without the loss of generality, the E
operators34,37 used in Eq.~1!. Similar relations to Eqs.~11!
and ~12! apply for the CF Hamiltonians expressed in t
Wybourne notation11,34 employed in Eqs.~2! and~3! and are
given in the Appendix. The conservation of the quantit
defined in Eq.~11! reflects the fact that under the continuo
symmetry operation, i.e., here a rotation about a special s
metry axis~or direction!, the parameters with1q and 2q
for a given k transform only into combinations o
themselves,20–22 whereas the parametersBk

0, k52, 4, and 6,
remain invariant as discussed in Sec. IV A. Equations~11!
and~12! apply uniquely for tetragonal II (C4 ,S4 ,C4h), trigo-
nal II (C3 ,S6), and hexagonal II (C6 ,C3h ,C6h) symmetries,
for which the choice of the special symmetry axis as
quantizationz axis of the operators is a unique natural cho
~see Refs. 17, 20, and 21!. For monoclinic (C2 ,C1h ,C2h)
symmetry, apart from theC2iZ case, two additional choice
exist22 for labeling the special symmetry axis~or direction!,
namely,C2iy and theC2ix axis of the ES operators37 Ok

q .
Hence, Eqs.~11! and ~12! apply only for the choice of the
special symmetry axis~or direction! as the quantizationz
axis:C2iZ. For the other two choices,C2iy andC2ix, more
complicated forms of Eqs.~11! and~12! are required, which
involve other combinations of the CFP’s with the choic
specific values ofq for a givenk. However, the same mean
ing, i.e., the ‘‘length of vectors’’ and the ‘‘angles between
vectors,’’ can be ascribed to the conserved quantities of
second order for each monoclinic case.

An interesting question is whether any geometrical or
pological meaning can be ascribed to the IC’s~the conserved
quantities! in question. A simple geometrical meaning can
ascribed to the second-order quantities defined in Eqs.~11!
and~12! as illustrated in Figs. 1 and 2 using two- and thre
dimensional representations in the CFP space, respecti
The planar representation in Fig. 1 is fully sufficient for he
agonal II ~one vector,v66 only! and tetragonal II symmetry
~two vectors,v44 and v64 only! cases. More involved dia
grams, as, e.g., in Fig. 2, are needed for trigonal II symme
yielding three vectors (v43,v63,v66) and for monoclinic and
triclinic symmetries, yielding even more such vectors. Ho
ever, due to the complexity and large number of the IC’s
the order higher than two, no adequate geometrical mea
could be ascribed in a straightforward way to the high
order IC’s identified so far.21,22A vexing question to be con
sidered is if a single conservation law can sum up all the I
~the conserved quantities! discussed above. For tetragonal
symmetry the area of the triangle span by vectorsv44 andv64
in Fig. 1 or equivalently the volume of the two cone
spanned by these vectors in Fig. 2 is a conserved quan
An extension of such geometrical interpretations of t
second-order conserved quantities presented in Figs. 1 a
as well as the concept of ‘‘constrained hypersurface’’ in t
phase space of the Lagrangian7 may provide a hint in a
0-7
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C. RUDOWICZ AND J. QIN PHYSICAL REVIEW B67, 174420 ~2003!
search for such a generalized conservation law. By analo
may be expected that the conservation of a hyperstruct
quantity, e.g., volume enclosed by a hypersurface in the C
multidimensional space, shall also be obeyed for trigon
monoclinic, and triclinic symmetries. However, the amou
of work involved in explicit derivation of the necessa

FIG. 1. Schematic planar representation of the second-o
conserved quantities stipulated by Noether’s theorem: type~i!—the
length of vectors and type~ii !—the relative orientation, i.e., the
angle between two respective vectors. Points~1!–~4! denoted byd
are discussed in text.

FIG. 2. Schematic three-dimensional representation of
second-order conserved quantities of the rankk52, 4, and 6 stipu-
lated by Noether’s theorem: type~i!—the length of vectors and typ
~ii !—the relative orientations, i.e., the angles between two res
tive vectors.
17442
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equations and their proof may be prohibitive. One may ho
that by employing modern algebraic programming tec
niques and parallel computing it may be feasible to arrive
a general ‘‘conservation law’’ as a direct consequence of N
ether’s theorem, which shall encompass all the ‘‘primar
conserved quantities in question.

C. Implications of the canonical Noether’s theorem and the
conserved quantities

Other aspects involved in the main aims of this pap
concern application of the general constraints imposed
Noether’s theorem on the CF Hamiltonians in question
appears that the existence of the conserved quantities s
lated by theorem 1 and conjecture 1 put forward in Sec. IV
has profound practical implications for interpretation of e
perimental CFP data sets for the continuous symmetry c
in question. For example, it has been established earli20

that for tetragonal II symmetry only the ‘‘length of the ve
tor,’’ given in the ES notation as

uv44u5~$B4
4%21$B4

24%2!1/2, ~13!

can be experimentally determined. This contradicts the fitt
strategy used in one of the existing CF approaches~the ap-
proach ‘‘C’’ defined below!, which attempts to determine in
dependently the values of both CFP’s:B4

4 andB4
24. It turns

out that the limitation imposed by Eq.~13! is a direct impli-
cation of the canonical Noether’s theorem, since the len
of the vectoruv44u is nothing else but the conserved quant
stipulated by Noether’s theorem for these continuous sy
metry cases.

The properties of the conserved quantities and their
plications are summarized in the following three corollarie
which are generalizations of the conclusions arising from
explicit algebraic symmetry considerations.20–22These impli-
cations apply, in general, to any Hamiltonian of the type
Eq. ~10! invariant under continuous rotational symmetry.

a. Corollary 1

The coefficients of the characteristic equations of the
Hamiltonians described by the theorem 1 are functions of
admissible conserved quantities defined by conjecture 1 o

The validity of corollary 1 has been confirmed directly b
using the algebraic programming languageALTRAN to derive
the explicit functional dependence of the coefficients of
characteristic equations of the CF Hamiltonians for RE io
for each of the four symmetry cases in question.20–22 It has
been revealed that these coefficients are simple function
the CFP’sBk

0, with k52, 4, and 6~i.e., the first-order con-
served quantities!, whereas they are complicated functions
the second- and higher-order (n.2) conserved quantities
only. In other words, the meaning of corollary 1 is that t
algebraic symmetry of the CF Hamiltonians in question m
reflect the conservation of the quantities stipulated by th
rem 1 and conjecture 1. In the discussion that follows th
quantities are referred to as ‘‘the conserved quantities.’’
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b. Corollary 2

Only the conserved quantities can be directly and in
pendently determined from fitting the experimental ener
level structure to the theoretical energy levels.

Corollary 2 points out that, contrary to the fitting strate
used implicitly by many authors~see, e.g., Refs. 20–22, 25
and 26!, the CFP’s admissible by group theory for a giv
symmetry cannot be directly and independently determi
from fitting the experimental spectra. These are only the c
served quantities stipulated by Noether’s theorem, which
be determined in this way. Moreover, knowledge of the c
served quantities does not enable independent determin
of the full set of the CFP’s admissible by group theory fo
given symmetry case. This is due to the fact that the c
served quantities of the order higher than one, as, e.g.,
type ~i! second-order quantities in Eq.~11!, always involve
combinations of two interrelated CFP’s. Hence, not each
dividual CF parameter belonging to a given pair (1q and
2q) can be independently determined from fitting the e
perimental energy-level structure.

c. Corollary 3

The conserved quantities of the ordern51 determine di-
rectly the magnitudes and the signs of the CFP’sBk

q with q
50, whereas those of the ordern>2 determine the magni
tudes of the allowed combinations of the CFP’s and the r
tive signs ofBk

q with qÞ0.
Corollary 3 has an important bearing on the feasibility

the experimental determination of the magnitudes and s
of the CFP’s for very low-symmetry cases. For monoclin
and triclinic symmetries, since there exist more CFP’s ap
from the first- and second-order conserved quantities,
would need to establish all possible higher-order conser
quantities in order to account for all the interrelationsh
between the CFP’s. In principle, one should be able to ob
all admissible conserved quantities by considering the a
braic symmetry of the characteristic equations as was don
Refs. 20–22, and hence construct all these interrelationsh
Knowledge of these interrelationships could be utilized in
twofold way. First, it would enable independent determin
tion of the magnitudes and relative signs of some but not
CFP’s admissible by group theory for a given symmet
Second, it would enable imposing sensible constraints on
fitting procedures. However, solving the whole set of t
equations for the conserved quantities, which is required
order to obtain all interrelationships between CFP’s, may
practically impossible. Hence, one would need to res
again to numerical fitting strategies without the knowled
of sensible constraints, as is the current practice, in spit
the often-unreliable outcomes.

Before putting forward the remaining two specific coro
laries we shall first outline briefly the current situation co
cerning interpretation of experimental data for the contin
ous symmetry cases. There exist in the literature th
approaches, denoted20–22 ‘‘A,’’ ‘‘R,’’ and ‘‘C,’’ to fitting the
experimental spectra for RE ions at sites exhibiting one
the five symmetry types in question:20–22,25,26,59–75
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The first is the approximated~A! approach, in which the
actual point-symmetry group is approximated by a high
group, for which the CFP data set does not involve the ne
tive q components in Eq.~1! @or equivalently the Im parts o
CFP’s in Eqs.~2! and ~3!#. The major motivation for adopt-
ing the approach A is that it offers a significant computati
simplification by neglecting of the ‘‘imaginary’’ terms, i.e
in fact the imaginary matrix elements. Truncation of the C
Hamiltonian, however, affects the selections rules and t
the assignments of the theoretical energy levels to those
served experimentally. Hence it may lead to incorrect val
of the experimental energy levels being used in fittings.
spite of its drawbacks, the approach A combined with
descent in symmetry method~see, e.g., Refs. 16 and 17! may
provide reliable, albeit approximate values of CFP’s. A
proach A is satisfactory especially if the distortions accou
ing for lowering the local site symmetry to the actual one c
be considered as small in the crystallographic sense. The
a good approximation the effect of the corresponding lo
symmetry CFP’s on the observed spectra can be neglec

The second is the reduced~R! approach, in which one
component of a pair of CFP’s with1q and2q is set to zero.
In practice, usually the CFP@in the ES operator notation,34,37

Eq. ~1!# Bk
2q , with the highestq for the lowestk, is selected

for reduction to zero, i.e.,B6
26 for hexagonal II,B4

24 for
tetragonal II, andB4

23 for trigonal II, butB2
22 for monoclinic

symmetry. This approach has also an apparent computati
advantage, since less CFP’s are used in calculating the
trix elements and hence in carrying out the fittings.

The last is the complete~C! approach, in which all CFP’s
admissible by group theory for a given site symmetry a
allowed in the fittings. On the face, this approach seems to
the most correct one from the point of view of group theo
However, it turns out that proponents of approach C as w
as of approach R have overlooked some more subtle po
which bear on the interpretation of experimental data and
correctness of each approach.

On the basis of corollaries 1–3, which concern the gene
constraints imposed on the CF Hamiltonians invariant un
continuous symmetry and arise from theorem 1 and con
ture 1, we put forward corollary 4 and 5, which conce
implications specific for interpretation of approaches C a
R. These corollaries account for the feasibility of determin
tion of the magnitudes and signs of CFP’s from spectral d
and have a profound bearing on the interpretation of the C
data sets experimentally determined using approach C o
Reviews of such CFP data sets available in the literature
carried out in separate papers.25,26

d. Corollary 4

There exist one to many correspondences between
conserved quantities and the magnitudes of the CFP’s w
qÞ0 determined in approach C.

According to corollary 4 the least-squares fitting usi
approach C turns out to yield CFP data sets, which at b
correspond to one possible minimum from a continuous
of equivalent minima in the multidimensional CFP space,
at worst correspond to an ill-determined local minimum. Tw
important facts arise as a consequence of the inherent
0-9
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straint stated in corollary 4.First, because of the continuou
symmetry, there exists an infinite number of ‘‘full’’ CFP da
sets, i.e., including all group-theory admissible CFP’s, wh
are used in approach C. Each equivalent CFP data set y
the same values of the energy levels.Second, approach C
apparentlyoffers experimental determination of the angle
rotationf/Oz, which can bring one component of the pair
parameters with1q and2q to zero. This might have been
viable result only if the originalx andy axes could have bee
defined with respect to the crystallographic axes. If o
could define such an initial reference frame, an infinite nu
ber of physically equivalent yet distinct data sets could h
been determined from fittings. Each such data set~i! should
yield the same value, say,f, of the angle of rotationf i /Oz
required to set one component of the pair of parameters
1q and2q to zero. However, in fact, this is impossible, an
no x andy axes can be defined for the symmetry cases un
consideration. As our literature survey reveals, these facts
still not recognized by many experimentalists, especia
those employing inelastic neutron-scattering measurem
for determination of CFP’s. Concrete recent examples
their analyses are provided, e.g., for tetragonal II~Ref. 26!
and monoclinic symmetries.25,71 Even having reliable initial
CFP data sets to start the fittings, which can be predic
e.g., by the point-charge model or more advanced mo
calculations,15–17 the final outcome of approach C fitting
may be some artifacts rather than well-determined CFP
sets. This may be one of the reasons why the nonlinear le
squares fittings of 15 CFP’s required for RE ions at mo
clinic symmetry sites are regarded as ‘‘notoriously
unreliable.’’ 53 Additional reasons for such unreliability ar
provided by the present considerations.

e. Corollary 5

There exists a one-to-one correspondence between
conserved quantities and the magnitudes of the CFP’s
qÞ0 determined in approach R for each specific choice
the CF parameter reduced to zero.

According to corollary 5, the CFP sets with the speci
choice of CF parameter reduced to zero can be determ
experimentally using approach R. Each such set is sele
out of an infinite number of CFP data sets by imposing
additional conditionBk

2q[0 ~or equivalentlyBk
1q[0). For

hexagonal II symmetry, setting eitherB6
26 or B6

16 to zero is
equivalent to a specific choice of the rotational invaria
uv66u5uB6

16u or uv66u5uB6
26u, respectively. However, sinc

no more (6q) pairs exist using this specific choice, this do
not affect the values of other CFP’s, i.e., the first-order IC
Bk

0, k52, 4, and 6. For tetragonal II symmetry, there ex
two pairs of the parametersBk

2q andBk
1q to use for a reduc-

tion of one component of one pair to zero, whereas b
components of the other pair can be completely determi
in approach R. In general, the CFP’s withqÞ0 in the ES
operator notation34,37 ~and the equivalent Re and Im parts
CFP’s in the Wybourne notation11,34! determined in approach
R turn out to represent just one specific CFP data set ou
an infinite number of such data sets. Each such CFP set
isfies the requirement of the conservation of the quanti
17442
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accounted for by theorem 1 and conjecture 1. Taking i
account that only the relative signs of some CFP’s can
determined experimentally, the CFP data sets with the s
magnitude but different signs also satisfy the conserva
criteria as shown in Fig. 1. The specific character of a p
ticular CFP data set determined in approach R reside in
actual selection of one component of a pair of parame
(Bk

1q ,Bk
2q) that is reduced to zero, i.e., such a CFP data

is k and6q specific.
In view of the above, three additional questions arise. T

first question concerns the uniqueness of the ‘‘intrinsic’’ s
lection within a given pair (Bk

1q ,Bk
2q), since several ‘‘intrin-

sic’’ choices to reduce one parameter to zero exist, as
picted in Fig. 1. On the plane with the axes denoted as$Bk

1q%
and $Bk

2q% all possible values of the two corresponding p
rameters for each pair (k,uqu) can be represented by a circ
with the radius given byuvkqu ~see Fig. 1!. Although the
magnitudes ofBk

2q (Im Bkq) corresponding to points~2! and
~4! are of the same value, they differ in sign. Hence poi
~2! and ~4! represent alternative ‘‘intrinsic’’ choices (Bk

1q

[0 andBk
2q.0) and (Bk

1q[0 andBk
2q,0), respectively.

Similarly, points ~1! and ~3! correspond to the prevailing
choiceBk

2q[0, but two alternative ‘‘intrinsic’’ choices exist
namely, Bk

1q.0 and Bk
1q,0, respectively. All alternative

choices satisfy the conservation criteria. Thesecondquestion
concerns the uniqueness of the pair (Bk

1q ,Bk
2q) selected for

the reduction of one component to zero. In the cases
which more than one pair (Bk

q ,Bk
2q) exists, more ‘‘extrinsic’’

choices of the rankk is available for reduction of the param
eterBk

2q ~or Bk
1q—as an ‘‘intrinsic’’ choice! to zero. This is

the case for trigonal II~two pairs!, monoclinic ~six pairs!,
and triclinic symmetries~12 pairs!. What criteria are to be
adopted in selecting a particular pair? Each particular cho
results in a physically equivalent CFP data set, yet the va
of CFP’s are completely different. Examples of such cor
lated CFP data sets may be found, e.g., in Refs. 22 and
The current practice in this regard is an arbitrary choice
Bk

2q[0 with the lowestk. This is the most widely used
choice, although no specific justification or advantage is
fered. Thethird question concerns the mutual correlation b
tween the alternative data sets obtained in approach R.
the nonzero CFP’s obtained from fitting using approach
properly mutually correlated or do various parameters bel
to disparate~i.e., uncorrelated! areas in the multidimensiona
CFP space, each of which corresponding to a specific ch
of the CF parameter reduced to zero? A possible way
verify that the values in a given fitted CFP data set are pr
erly correlated would be to carry out a number of fittin
~say, i 51 –N) including all CFP’s, as in approach C, an
check the mutual correlation between data sets by pro
transformations37 f i /Oz. The rotational invariants and
normsdefined in Eqs.~4!–~7! are then helpful to assess th
likelihood of the nonzero CFP’s being properly mutually co
related within a given CFP data set as well as with other d
sets.

In view of the properties discussed above, the widespr
interpretations of the CF parameter sets obtained using
proach R, which imply, e.g., that the ‘‘parameters~are! given
0-10
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in the axis system with one component of the pair of para
eters with1q and2q ~usually2q) set to zero’’ or that ‘‘a
rotation has been carried out to bring one CF parameter
zero,’’ are, in fact, incorrect. This interpretation assumes i
plicitly that such a transformation can be done, i.e., the an
of rotation around the symmetry axis, for which the lat
condition is satisfied, can be determined. In fact, howe
this angle cannot be determined from fitting the experime
energy levels. No particular orientation of the coordina
axes can be assigned to the CFP’s determined in approac
since as stated in corollary 2 the quantities that can be
perimentally measured are the conserved quantities, i.e.
first-order quantities (Bk

0), the second-order quantities d
fined in Eqs.~11! and ~12!, and higher-order quantities~see
theorem 1 and conjecture 1!. For monoclinic~and triclinic!
symmetry cases more such circles such as those in Fig.
cones such as those in Fig. 2 are needed to represen
magnitudes and the relative signs of the CF paramet
Hence, more equivalent points such~1! and~3! as well as~2!
and ~4! can be found in the ‘‘circles’’ ~Fig. 1! or ‘‘ cones’’
~Fig. 2! corresponding to approach R for these very lo
symmetry cases. A similar ‘‘circular’’ phenomenon has bee
encountered in the CF analysis within the5D approximation
for 3d4 and 3d6 ions81 for axial type-II symmetry case
without the deeper realization that it is a consequence
Noether’s theorem. The ground-state phase diagrams81 for
tetragonal II and trigonal II symmetries indicate defin
circles for the corresponding wave functions, thus satisfy
the relationships between the CFP’s stipulated by Noeth
theorem.

Extension of the considerations of the algebraic symm
try, carried out so far for the four cases of CF Hamiltonia
invariant under continuous rotational symmetry about a s
cific axis,20–22 to triclinic symmetry requires computation o
a horrendously large number of complicated higher-order
variant combinations appearing in the characteristic equa
of a CF Hamiltonian. If one resorts to these involved co
putations then perhaps the algebraic symmetry approach
also provide additional invariants to those identified for t
higher-symmetry cases. Nevertheless all general aspects
conclusions discussed in Sec. IV apply also triclinic symm
try. Additional aspects specific for CF Hamiltonians of t
clinic symmetry are discussed in the next section.

V. CONSERVED QUANTITIES VS ROTATIONAL
INVARIANTS AND MOMENTS OF CF HAMILTONIANS

As discussed in Sec. IV Noether’s theorem~theorem 1!
asserts that there must exist conserved quantities for tric
symmetry cases as well. Unlike in the case of high
symmetry CF Hamiltonians invariant only under continuo
rotational symmetry about a specific axis, triclinic CF Ham
tonians are invariant under an arbitrary rotation of the co
dinate system, which, in general, can be given by the th
Euler angles~a, b, g!. The second-order rotational invar
ants, namely, the CF invariantsSk and the normsNk of the
ZFS parameters34–40 defined in Sec. III for triclinic symme-
try, as well as the related quantities, i.e., the CF stren
parameters,29–33,41–53acquire deeper meaning in view of No
17442
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ether’s theorem. These quantities are nothing else but c
binations of the conserved quantities of the first-order (Bk

0)
and second-order (Bk

q) ones of type~i!. Since thenth mo-
ments of CF Hamiltonians, Eq.~8!, can be expressed42,53 in
terms of the second-order (Sk) and higher-order rotationa
invariants, hence, in turn, the former quantities are also
lated to the conserved quantities stipulated by Noeth
theorem. The first-order moment in Eq.~9! is itself a con-
served quantity, which ensures the conservation of the CF
Bk

0 as stipulated by Noether’s theorem stated in Sec. IV B
Another way of looking at the rotational invariantsSk and

the normsNk for triclinic symmetry defined in Eqs.~4!–~7!
is to consider the CFP’s for a givenk52, 4, and 6, as a
multidimensional vectorBk5$Bk

2k ,...,Bk
0,...,Bk

k%, i.e., (2k
11)55, 9, and 13, respectively. In analogy to the interp
tation used for a limited~two-dimensional! subspace in Eq.
~11!, the quantitiesNk as well asSk @apart from the numeri-
cal constant used in Eq.~6!# thus have the meaning of th
length of the vectorBk .

Due to the ascent in symmetry method, the second-o
rotational invariants and the CF strength parameters as
as the norms of the ZFS parameters, defined in Eqs.~4!–~7!
for triclinic symmetry, can be generalized to the cases
which some CF~or ZFS! parameters must be exactly zero,
required for higher symmetries than triclinic. Thus, one o
tains similarly these second-order quantities as the sum
the squares of the individual first- and second-order@type~i!#
conserved quantities. Hence, the quantitiesSk andNk can be
also applied to any higher-symmetry case and not only
triclinic symmetry.

To illustrate the relationship between the CF rotation
invariants and the conserved quantities stipulated by N
her’s theorem, we consider hexagonal~types II and I! and
cubic symmetries dealt with in Ref. 53. For hexagonal
symmetry, thez axis is along the hexagonal axis or directio
while thex andy axes are in the plane perpendicular to thz
axis with the direction of thex ~y! axis arbitrary in this plane.
With this choice of thez-axis direction, there are in total five
CFP’s permissible by group theory, i.e., using the comp
form in the Wybourne notation, Eq.~2!, we have the nonzero
CFP’s:53 B20, B40, B60 ~real ones!, andB66 andB6-6 ~com-
plex ones!. The arbitrariness of the direction of thex andy
axes will induce the existence of an infinite number of C
data sets corresponding to an arbitrary rotation around tz
axis. Hence, the invariance of certain combinations of CF
exists. In view of the findings presented in Sec. IV, the
sults given for hexagonal symmetry53 need reinterpretation
The second-order rotational invariants of the second, fou
and sixth rank for hexagonal symmetry were given53 ~in the
notation used here!, respectively, as

~S2!25~B20!
2/5, ~S4!25~B40!

2/9,

~S6!25$uB60u212uB66u2%/13. ~14!

On the other hand, as discussed in Sec. IV for this conti
ous symmetry case the following conserved quantities ex
the first-order ones,B20, B40, and B60, and only one
second-order one, which has the meaning of the length of
0-11
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C. RUDOWICZ AND J. QIN PHYSICAL REVIEW B67, 174420 ~2003!
vectorv665$2uB66u2%1/2[$2(ReB66)
212(ImB66)

2%1/2. Only
these conserved quantities can be determined by fitting
experimental energy-level structure. In approach R, ImB66 is
set to zero and the second-order conserved quantity beco
uv66u5$2(ReB66)

2%1/2. Comparing the second-order rot
tional invariants in Eq.~14! with the conserved quantitie
~the IC’s! defined in Sec. IV B, it turns out that the secon
and fourth-rank rotational invariants in Ref. 53 are equiv
lent, to, within a multiplicative factor, the first-order con
served quantities stipulated by Noether’s theorem. T
second-order rotational invariant53 of the sixth rank in Eq.
~14! is a sum of the squares of the individual first-order co
served quantity and the second-order type-i conserved q
tity defined in Sec. IV. Obviously a sum as well as a prod
of conserved quantities are themselves conserved quant

One important invariant quantity has not yet been
counted for in the approach used in Ref. 53, namely,B60.
Taking this into account, it turns out that all nine third-ord
rotational invariants vk(k1k2k3) derived for hexagona
symmetry53 can be resolved into simple combinations of p
mary invariants. A question arises as to which, if any, of su
combinations carry a piece of information that may be use
for fitting and interpretation of CF spectra. Assuming that,
principle, both magnitudes and signs of the first-order c
served quantitiesB20, B40, andB60, can be independently
determined, none of the third-order rotational invariant53

vk(k1k2k3) carries a piece of such information. In practic
however, it may be useful to incorporate into the fitting pr
cedure a constraint arising from one of the third-order ro
tional invariants53 vk(k1k2k3), namely, vk(246)
5sq rt(5/143)B20B40B60, since it fixes the relative signs o
the three CFP’s each being independently a first-order c
served quantity. All other eight quantitiesvk(k1k2k3) in Ref.
53 can be resolved into simple combinations of primary
variants and appear to play no useful role.

A similar reinterpretation applies also to the rotational
variants derived in Ref. 53 for cubic symmetry. All the ‘‘qu
dratic moments,’’ i.e., the second-order rotational invarian
as well as the third- and fourth-order rotational invarian
are functions of only three first-order conserved quanti
B20, B40, andB60. It should be emphasized that it does n
matter which numerical coefficients are associated with
combinations, either sums or products, of primary invarian
Hence, the painstaking derivation53 of the involved numeri-
cal coefficients, e.g., of the typedk(k1k2k3k4) in the expres-
sions for the fourth-order rotational invarian
v4(k1k2k3k4 ;k)5dk(k1k2k3k4)(B40)

m(B60)
n could be

avoided since they do not introduce any new physical inf
mation.

VI. SUMMARY AND CONCLUSIONS

To the best of our knowledge, we have provided the fi
application of Noether’s theorem in the area of the crys
~ligand-! field ~CF/LF! theory. The present consideration
can be also applied to any generic Hamiltonian of the fo
H5S AImxIm(X), representing among others, also the ze
field splitting ~ZFS! Hamiltonians. Noether’s theorem ap
plies to Hamiltonians invariant under continuous rotatio
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symmetry, i.e., for the following cases: hexagonal
(C6 ,C3h ,C6h), tetragonal II (C4 ,S4 ,C4h), trigonal II
(C3 ,S6), monoclinic (C2 ,C1h ,C2h), and triclinic (Ci ,C1)
symmetries. The interrelationships between Noether’s th
rem and the algebraic symmetry of CF Hamiltonians
these symmetry cases have been investigated. This ha
abled formulation of two important statements: Theorem
and conjecture 1, which establish a direct link between
two concepts. Theorem 1 stipulates the existence of sev
conserved quantities, which by conjecture 1 are equivalen
the invariant combinations revealed by the algebraic sym
try considerations. Explicit forms of the conserved quan
ties, of the first and up to fourth order in CFP’s, have be
discussed for the CF Hamiltonians in question. Con
quently, several corollaries based on theorem 1 and con
ture 1 have been proposed. Corollary 1 establishes the
between the coefficients of the characteristic equations of
CF Hamiltonians and the conserved quantities. The con
quences of the invariance of CF Hamiltonians under conti
ous rotational symmetry, as stipulated by Noether’s theor
are encapsulated in corollaries 2–5.

Insight has been gained by looking at the canonical N
ether’s theorem from the point of view of the algebraic sy
metry. The ramifications of the present considerations p
vide a solid basis for interpretation of experimental C
parameter data sets appearing in the literature. The exis
three approaches to fitting experimental data, namely, c
plete ~C—all CF parameters!, reduced~R—one CF param-
eter set to zero!, and approximate~A—all imaginary compo-
nents of CF parameter neglected!, have been reconsidere
from the point of view of the conserved quantities stipulat
by Noether’s theorem. The considerations enable also
solve the longstanding problem, i.e., choosing the CF par
eters that can be determined from fitting the experimen
energy-level structure to the theoretical energy levels. T
rotational invariants and norms as well as the moments of
Hamiltonians used in the CF studies are discussed from
point of view of the conserved quantities stipulated by N
ether’s theorem. In order to illustrate the implications of N
ether’s theorem and to provide practical applications of th
rem 1, conjecture 1, and the resulting corollaries, t
specific cases are considered in detail. In this paper the r
tional invariants for hexagonal~types II and I! and cubic
symmetries are discussed. Their deeper meaning, hith
not realized in the literature, is elucidated. In a separ
paper26 the interpretation of CFP data sets for rare-earth io
in LiYF4 and structurally similar systems with tetragon
type-II (S4) symmetry are thoroughly reviewed and di
cussed. A detailed survey of the relevant examples ta
from the recent CF and superposition models as well as
EPR studies for various symmetry cases will be presen
elsewhere in the future.
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APPENDIX

The forms of the conserved quantities stipulated by No
her’s theorem~Sec. IV B! expressed in terms of the CF p
rameters in the Wybourne notation11,34 are as follows:
first order: B20, B40, B60, second order: ~i! uvkqu
5(2$ReBkq%

212$Im Bkq%
2)1/2 q.0, ~ii ! vkq•vk8q

5uvkquuvk8qu cos(b kq
k8q) q, q8.0.

Explicitly, the second-order conserved quantities of type~ii !
~Sec. IV B! are given by

vkq•vk8q5~ReBkqReBk8q1Im Bkq Im Bk8q!

5~$ReBkq%
21$Im Bkq%

2!1/2~$ReBk8q%
2

1$Im Bk8q%
2!1/2cos~bkq

k8q!
rn

-
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t-

or, alternatively, by the angle

bkq
k8q5arccos$~vkq•vk8q!/~ uvkquuvk8qu!%.

Specifically, for tetragonal type-II symmetry we obtain

uv4u5@2~$ReB44%
21@ Im B44#

2!#1/2,

uv64u5@2~$ReB64%
21$Im B64%

2!#1/2,

b44
645arccos„~ReB44ReB641Im B44 Im B64!/$@~ReB44!

2

1~ Im B44!
2#1/2@~ReB64!

21~ Im B64!
2#1/2%….

In the approach R, ImB44[0. In the approach A, ImB44
[0, ImB64[0.
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