PHYSICAL REVIEW B 67, 174410(2003

Scalar chiral ground states of spin ladders with four-spin exchanges
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We show that scalar chiral order can be induced by four-spin exchanges in the two-leg spin ladder, using the
spin-chirality duality transformation and matrix-product ansatz. Scalar-chiral-ordered states are found to be
exact ground states in a family of spin ladder models. In this scalar chiral phase, there is a finite energy gap
above the doubly degenerate ground states angxaZ, < Z, symmetry is fully broken. It is also shown that
the SU4)-symmetric model, which is self-dual under the duality transformation, is on a multicritical point
surrounded by the staggered dimer phase, the staggered scalar chiral phase, and the gapless phase.
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[. INTRODUCTION states iii) the ground states have long-range staggered sca-
lar chiral order and exponentially decaying spin correlations,
Recently, four-spin exchange interactions have been a@nd(iv) a Z,XZ,XZ, symmetry is fully broken. It is also
tracting interest in spin ladder models and spin-orbital modfound that the phase boundary of the scalar chiral phase
els, because these interactions in fact appear in maripuches the S4)-symmetric point and the Sd)-symmetric
system$8 and can induce exotic ground stated’ Various ~ model is on a multicritical point surrounded by the staggered
types of four-spin interactions appear associated with diverséimer phase, the staggered scalar chiral phase, and the gap-
mechanisms, e.g., cyclic-exchange proce&$e8,Coulomb  less phase.
repulsion between doubly degenerate orbitamd spin- This paper is organized as follows. The model Hamil-
phonon couplings. Though two-leg antiferromagnetictonian is given in the next subsection. In Sec. Il, we summa-
Heisenberg spin ladders show a rung-singlet ground state aritfe the duality transformation and its application to the
have an energy gap between the ground state an@resent model. In Sec. Ill, it is shown that a scalar chiral
excitations?! it was revealed that four-spin exchanges canstate is the exact ground state in a parameter region of the
induce a gapped staggered dinter spin-Peierlsphasé'!  model Hamiltonian. The nature of the scalar chiral phase is
and a gapless phase® around the S)-symmetric point  discussed. In Sec. IV, we discuss the phase diagram around
and that a gapped phase with a dominant vector chiralitfhe SU4)-symmetric point and find that the $4) model is
correlation also appeat§?l’ on a multicritical point. Finally in Sec. V we conclude with a
Very recently, Lachli et all” numerically found a new discussion. The appendix contains a unitary description of
scalar chiral phase in the two-leg spin-1/2 ladder with four-the duality transformation.
spin cyclic exchange. Scalar chiral states, in which both the
time-reversal and parity symmetries are broken, had been Model Hamiltonian
discussed in the context of anyon superconducfi¢ftyand
the anomalous Hall effeéf;?°but realization of scalar chiral
order in SU2)-symmetric systems had been difficult and a
challenging problem. A scalar chiral order due to the four-
spin cyclic exchange was first proposed on the triangular H=312 (S Sy+1t+ S Sy41) T2 Suy )
lattice for magnetism of solid¢He films?2” though finite- ! !
size system analysis could not find evidence for such order-
ing, instead showing spin-liquid ground stat&4® Study of +Jd2| (S11"S2)+1TS2)"S1)+1)
spin ladders with four-spin exchanges is expected to clarify
the possibility of exotic magnetism induced by the four-spin
interactions. +Jrr2| (S11-S2)(S1) 41" S2)+1)
In this paper, we study the two-leg spin-1/2 ladder with
four-spin exchanges, whose Hamiltonian is given in the next
subsection, and give a rigorous example of a scalar chiral +Ju2| (s1)-S1)+1)(S2)" Sz +1)
ground state. In our analysis, the spin-chirality duality trans-
formation we introduced in Ref. 16 plays an important role.
A new class of models that have an exact ground state with +Jdd2| (St S2)+1)(S2) " S1j+1)- 1)
scalar chiral order are constructed by the means of matrix-
product ansatz. The scalar chiral phase has the followin@his Hamiltonian includes a variety of mode($) Four-spin
nature:(i) the ground states are doubly degener@igthere  cyclic-exchange modeWhen four-spin exchange constants
is a finite energy gap between ground states and exciteshtisfy J,=J,=—Jq44, the four-spin terms describe the

The Hamiltonian of the two-leg spin-1/2 ladder with ex-
tended four-spin exchange interactions is defined as
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cyclic-exchange interactich. (I) SU(2)xSU(2) model  the transformation, the fully polarized spin stfte| 1), is
When the parameters satisfy=Jy=J,,= Jqq=0, the Hamil- ~ transformed to|1)s)|1),, where|a),, (a=1,| and u
tonian has an SU(ZSU(2) symmetry. This model was =1,2) denotes the spin state operatedsyy, and |a)s,
studied extensively as the SU(BU(2) spin-orbital model. (|a)t,) is the pseudospin state operated$y(T)), respec-
It was revealed that whed, >0 the ground state has a stag- tively. By applyingS;” andT, to[1)s,|1)r,, all pseudospin
gered dimer(or spin-Peierls ordef'° for 4J,>J, and is  states in dual space can be constructed in the forms
gaples¥*for —J,=<4J,<J,. (lll) SU(4) modelAs a spe-

cial case of model I, the Hamiltonian has an @V [Dsil D=1l 2,
symmetry*30 at 4J,=J,, which was exactly solved by the imla
Bethe ansat?. sl ===l D2t Dul e,
2
Il. DUALITY -
A. Duality transformation |l>S,I|T>T,I:f(H)l,IH)Z,I_i|l>1,I|T>2,I),
Let us begin with the spin-chirality duality transforma-
tion, which we developed in Ref. 16. We introduced the du- [ DsilDra=1Dul )2y (6)
ality transformation defining new spin-1/2 pseudospin operaysing eigenstates for the total spin on each rung, one finds
tors that this transformation corresponds to a gauge transforma-
1 tion of the singlet bond stats),— —i|s),, while it keeps the
=_(S+S) =S XSy, 2) triplet states invariant. See also Appendix for further argu-
S=5 (St %)~ XS, oS,
1 L o
T = E(Su +5))+5 XSy, (3) B. Duality in the model Hamiltonian

We now apply the transformation to the mod&) and
which obey the commutation relations of spins and satisfyconsider the duality relation in parameter space. Under this
(SM2=(T{?=1/4fora=x, y, or z. Inthe same way, the duality transformation, the total form of the Hamiltoniéb
original spinss;; ands,, are expressed in terms 8f andT, remains invariant, but the couplings change. The couplings
in the forms s;;=3(§+T)+S§XT, and 5,;=3(S+T,)  of the dual Hamiltoniar are given by
—S§XT,. In the appendix, we show that this transformation

derives from a unitary operatod ., in the form § 3=3;, I.=3,
=U,.8 Ul , and T\=U_;»5,,UT .. Since the following L L
relations hold, j|=§(3|+3d)+ §(‘]”_‘]dd),
St =5+T,
~ 1 1
S — S =25 X T, Ja=5 (It Ja) = g (Jn—Jua),
=28 X5 =§ T,

~ 1
) In=2(9=Ja) + 5 (It Jaa),
this transformation exchanges theé\ype spin and vector
chirality degrees of freedom on the same rung. As an ex- _ 1
ample of the duality, one can show that the transformation of Jo= —2(J—Jy) + §(J||+Jdd)- (7)
the dimer(or spin-Peierls operator

To see the mapping in the parameter space, we rewrite the

Op()=s1)S1j+1— %21 S +1 (49 Hamiltonian(1) in the form

leads to the scalar chiral operator
H=Jr2 Sl,I'SZ,I+‘]rrE| (St S2)(S1y+17S20+1)
Osd )= (st %)) (S1+1X S +1)

T (81X %)) (Syy+1+ S2+0)- ) +HWD (814 (Syys1+ S +1)+ X2 {(S1)-8141)
[ [
It is known that a group of two-leg ladders with four-spin
interactions shows the staggered dimer order in the ground  X(Sy;-Sy;41)+(S1-Sy+1)(Spy+1-S2))}
state’"!! The above duality relation hence shows that their
dual models have the staggered “scalar chiral” order in the v _ ) _ +A(s X
ground state. We will discuss these models in Secs. Il E| (S8 (S1y+17 %14 0) T 4(S X S))
and IV.
We now consider the transformation of the spin states on % +7 _ ) _
rungs. Since the total spin on each rung is conserved under (Sui+1X )} 2| (S~ %)- (Su417 %)
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—4(s1; X)) - (S1+1X Sy +1) ) (8)

1. _
= 5{'U1|S>|— \/§U+|t+1>|+ V20 [t_ 1)+ oty }
where

(12

1 1
W=3(J+Jg), X= E(JII"_Jdd)y

2 Here|s), and|t,), are, respectively, the singlet and triplet

states of théth rung, 2N is the total number of rungq, is

1 1 the 2X2 unit matrix, ando, are the Pauli matrices. This
Y= 16017 da + (A= o), form of the MP state can be obtained by the duality transfor-
mation of the MP state discussed by Kolezhuk and
1 1 Mikeskal®
Z== 76" Jad + 7 (I = Jo). 9)

Wim(U) =tr{gy(U)ga( —u) - - - Gon—1(U)Gon( — W)},
Straightforward calculations show that the duality transfor- (13
mation maps the parametersJ,J,,W,X,Y,Z) to
(3;,3,W,X,Y,—2); the transformation changes only the
couplingZ of the last term to-Z, but leaves the other terms 1
]ngz”j‘gftihggeb;i”gft‘i’_g'f"“l) ‘s, thus, self-dual at the st g,(u)= Z{u1]s) — V20 [t )i+ V20|t + oltoh}.

where

(14)
Ji—Jag—4(3—Jg) =0. (10 _
o o It was shown that for several models this MP stéitg,, (u)
The parameter space of the Hamiltonian has six dimensionsg the exact ground state with a staggered dimer orden At
in total, and the self-dual surface divides the parameter space and u==, the two states¥y(u) and ¥yy(u) are
into two regionSZ>_O andZ<0. It should be remarked that equiva|ent, which means that each\BB(o) and\lfo(oc) is
the SU4)-symmetric model (&=Jy, J;=J4=Jr=J4e=0)  self-dual. W,(0) and¥() are, respectively, an Affleck-
exists on the self-dual surface. Duality around this specifikennedy-Lieb-Tasaki(AKLT) staté? and a rung-singlet

model will be discussed in Sec. IV. state. For 8<u<o, however,W(u) and ¥y, (u) are or-
thogonal in the limitN— oo,
C. U(1) summetry in the self-dual models SinceW¥(u) (0<u<e) has the staggered dimer order,

Here we describe a @) symmetry in the self-dual mod- W¥,(u) has the staggered scalar chiral order because of the

els. Consider a continuous transformation with the followingduality relation. Using the technique developed by riper
unitary operator et al,>>" one can evaluate the scalar chiral correlation in

Wo(u),

2

u9=f|[ exif(sy -~ ).
. (19

(Osd)Osd(m))=(=1)'~™

2 2
This is a continuous extension of the duality transformation (u™+3)

(see Appendixand it c_ontlnuously transforms the dimer op- ¢ l—=m|>1 in the limit N—o and show spontaneous
erator to the scalar chiral one. One can show that the Hami Sreakdown of the chiral symmetr
tonian is invariant under this transformation ldgHU =1 y y
for arbitrary 6 if Z=0. Thus the self-dual models are isotro-
. . . . 12u
pic under the continuous rotation with the generaigs, | (Osd)=(-1)'—5—>
-S;, Whereas the term of the Hamiltoniar(8) lowers the (u“+3)~.
symmetry. _ .
y 4 One can also evaluate thdty(u) has no dimer correlation
I1l. MODELS WITH EXACT SCALAR CHIRAL
GROUND STATES

In this section, we discuss an exact scalar chiral groundn the same way, the spin and vector chiral correlations are
state of the Hamiltoniafil) with the periodic boundary con- Obtained as
dition. To obtain the ground stat&;, we use matrix-product

(Op(1)Op(m))=0.

(MP) states. We start from the following ansatz: < V= > 1 u’-1 1=m
Sil Sil,m = Sil,lsg,m == 2 2 2 ’
~ ~ ~ ~ +3 -1 +3
Wo() =tr{Gy(W)Ga( —U) - - Ton- (W Gon(— W)}, (1D) (U3 =1 u 19
whereu is a real variable and
3 u? 1—g2\Im
iuls)+|t —+/2|t X @ X = ,
§|(U)=% |Shi+]to), | e (X 82)) “(SymX S2m) ) YT e
V2[t_q) iuls)—Ito), 17)
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for a=x, y, or z. The spin and vector chiral correlation 2]

lengths are equal and given ki, '= £, =In{(u’+3)/|u? Jo=73 Jn=Jda=0, (19
—1J}, whereas the scalar chiral correlation does not have any

exponentially decaying term. with J>0, the ground states are given W¥g(u) with arbi-

By the duality transformation of the MP-solvable modelstrary uand highly degenerate. Note that this model is equiva-
presented by Kolezhuk and Mikeskaye find that the MP  lent to the “multicritical model” in Ref. 10 and self-dual
state (11) is an exact ground state of the following three under the duality transformation. The scalar chiral model
classes of models. One can prove that the stiageis a  (18), thus, connects with the checkerboard-dimer model at
ground state in these models, reducing a local Hamiltoniaithis special parameter point. At this phase boundary, both
h, 111 on thelth and (+ 1)th rungs to a positive semidefinite one magnon and a pair of scattering solitons have energy
form (h;.1—Eg)=0, where H==h,,;, and showing gaps in the staggered dimer state, as discussed by Kolezhuk
that ', has zero eigenenergy in the reduced Hamiltonian agnd Mikeskal® However, because of the(l) symmetry in
(h11+1—E0)gg+1=0. The reader who is interested in the this model, the generatay |- s, can create gapless collec-

method of proofs should refer to Ref. 10. tive (Goldstong modes, which are singlet bound states of
(A) Scalar chiral modelsFor a family of models two magnons. In fact, one can show that the following trial
state becomes gapless a=0, 7 ({=—-1) and p

~8J(2-3y) _4J(1-y) =7/2 ({=1):

|\P0(p)>sb:§|: ezmlTr[ iljl Goi—1(1) 0 (—1)gP (1)
J(8—9y) 3 16J )
T3 a_2y’ N"3a_3u)’ B _ )
3(4—3y) 3(4-3y) KT — T gZi_l(l)gm(_l)],
J.=0, J —ﬂ (19)
= U, dd_4—3y’ gisb,i(l): Z‘ Ua§2|—1(1)0a§2|(—1)]§2|+1(1)

with 0<y<1 andJ>0, the ground states are doubly degen- _ _ ~
erate and given by (1) andW¥y(—1). The ground-state +§92|—1(1){E o O (—1) oYz +1(1)
energy per rung i€y=—3J/4. This model is dual to the “
“checkerboqrd—dimer model” given in Ref. 10, whi'ch has a(C) Model with two second-order phase boundari€sr a
staggered dimer order, and hence from the duality reIaﬂorpam”y of models
the present model belongs to the scalar chiral phase. Excita-
tions of the staggered dimer phase were studied by varia- J
tional trial states® numerical calculations; and field- Ji=—J,==(u?—1)(u?+3),
theoretical analyse'S~'° These studies concluded that 6
excitations have a finite energy gap. In fact, extending the
arguments by Knab&;*® we can prove the finiteness of the J=—(
energy gap in the checkerboard-dimer model dual to the 48
model (18) with y=2/3 and in a finite region around this
point. From the duality we conclude that, in the scalar chiral J J
phase, there is a finite energy gap between the ground states J"=1—2(5u2+3)(u2+3), Jdd:é(u4_6u2_3)'
and excited states. The analysis in the dual mddetiicates (20)
that, aty=1, the present system enters the fully polarized . )
ferromagnetic phase through a first-order transition. FurthefVith arbitrary u, the ground states aréo(u) and W
more, we can extend the parameter space which has the exdct Y): Aand t2he ground-state energy per rung bg=
scalar chiral ground state. Fge=2/3, the dual Hamiltonian —J(7U”+22u°+19)/64. The model ai=1 is equivalent to
has an SU(2X SU(2) symmetry and the Hamiltonian is the mtO)deI (18 at y=2/3. The arguments for the dual
written as a product of projection operatorsJ(a)s(s,, modef? lead to_ Fhe conclusion that the mod20) undergoes
-S141+3/4) (S 141+ 3/4). Then one can construct the a phas_e transition to the Haldane phaselalo_and to the
model with the exact scalar chiral ground state by generalifUng-singlet phase ai=<. Both of the transitions are of
zation of projection operatdtsand the duality transforma- S€cond order and accompanied with vanishing of energy
tion. gaps for solitons.

(B) Model at a phase boundary between the scalar chiral N total, five phases appear in the MP-solvable models

and staggered dimer phase y=0 of the mode(18), i.e. discussed above and in Ref. 10. Some of the phase transi-
"7 tions between them actually happen in the parameter space

of the solvable models. These are summarized in Fig. 1.
3= :ﬂ 3= The nature of the scalar chiral phase is summarized as
R follows: (1) the ground states are doubly degenerg®,

J
3u%+5)(u?+3), Jd=§u2,
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: dual IV. AROUND THE SU (4)-SYMMETRIC POINT

T Using the duality relation, we discuss the phase diagram

around the Si3h)-symmetric point and show that this S
vw‘ symmetric point is a multicritical point.
Scalar A. SU(2) XSU(2) spin ladders
f"/d' chiral We start from two SU(2XSU(2) spin ladders. One
Rung singlet
| 1st

SU(2) X SU(2) spin ladder is model Il. Here we consider the
caseJ;=0. ForJ;/J;=1/4, this model is SY) symmetric
and exactly solvable by the Bethe ansatz, and the ground
state is gapless criticdl. For J,/J,>1/4, the ground state
has a finite gap and a staggered dimer ot8&whereas for
0=<J,/J,=<1/4 the ground state is gapless and criti¢at®
FIG. 1. Schematic picture of five phases and phase transition§he total Hamiltonian can be divided into the part of the
that appear in MP-solvable models. Phase transitions occur along§U(4) model, (J,=4J, with fixed J;) and the perturbation
arrows. The number attached to each arrow denotes the order of thein the form
phase transition. Black circleMC) denotes the multicritical point
(19). The scalar chiral phase is dual to the staggered dimer phase, H' =Hy+\V,
while Haldane, rung-singlet, and ferromagnetic phases are self-dual.

Staggered |
dimer J»&d

Ist

there is a finite energy gap between the ground states and 7'fonlZ {(sys1y+1t S S2041)
excited states, an@3) the ground states have long-range
staggered scalar chiral order and exponentially decaying spin +4(sy)-S1+1)(S2y- S2p+1) )

correlations.
It is also easy to show that the string order, which was
originally found in the Haldane staté&>°exists in the scalar V= El (S1)-S1)+1)(S2) " S21+1), (22
chiral state¥o(u). The expectation value is given by
whereh=—4J, +J, andJ, is fixed. Renormalization group
k=1 analysis concluded that if the paramelelis negative, the
(Si“,j+S§,j)H explim(sy)+83)) (STt Sg,k)> perturbationV is relevant and leads to a generation of a
=) staggered dimer order with a finite spin gap, and if the cou-
=4/(u?+3)? (21 pling parameter is positive, this perturbation is irrelevant and
keeps the ground state gapléds'®
for a=x, y or z. We note that the staggered dimer state Applying the spin-chirality duality transformation to Eq.
Ym(u) also has exactly the same expectation value of th€22), one obtains the dual Hamiltonian
string order because the string operator is invariant under the
duality transformation. This string order implies that a hid- 7-l’=H0+ AV,
denZ,XZ, symmetry is spontaneously broken in the ground
state?®® This hidden symmetry was foufftf! by applying a - 1
nonlocal unitary transformatiod and one can find that this V=3 §|: (S1)-S1p+1F 521 S041) 8 Z (S5 Spy+1
symmetry exists also in the Hamiltonidf). It should be
noted that thisZ,XZ, symmetry is independent of thé, 1
chiral symmetry associated with the scalar chirality, since the TSyt 5 EI: (S11-S11+1)(S2)° Sy +1)
scalar chiral operator after the nonlocal unitary transforma-
tion UOsU ! has the corresponding, X Z, symmetry. In 1
finite systems with open boundary conditions, the scalar chi- +t3 El (S11-S2)+1)(S2) " S1)+1)- (23
ral MP ground states in fact have eightfold degeneracy asso-

ciated with boundary spins and chirality. Thus, the hiddenygrayy is self-dual, and” is the perturbation dual tv. The
Z,XZ, symmetry, as well as th&, chiral symmetry, is couplings off(', in total, are given as
spontaneously broken in the scalar chiral phase. Recently, & ' '

different useful quantity zoy=(exd(2mi/2N)S M, 1(s], ~ ~
+s§’|)]) was proposed? which detects the average number

n of valence bonds between neighboring rungs as 1
limy_eZon=(—1)". In ¥y(u), the expectation value is es- J==
timated as liy_,..zony=—1 for finite u. This is consistent 2
with the above valence bond picture, becauasg is also
invariant under the duality transformation, ane-1 in the
staggered dimer state.

[ocl i

~ 1
Jirs Jd=§~]l_ gJu ,

~ 1 ~ 1
J||:2J|+ EJ” f Jdd:_2J|+ EJ” . (24)
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shown in Fig. 2. Recently we have numerically studied this
phase diagram and obtained results consistent with the
present conclusiof?

gapless
phase V. DISCUSSION
" staggered
“dimer phase Q/SU(4) A In this paper we have shown a rigorous example of scalar

chiral ground states in S@) spin ladders with four-spin ex-

changes. The exact duality relation is the keystone of our
theory. Our results demonstrated that four-spin exchanges
can actually induce the scalar chiral long-range order. The

Q
§\ hirali scalar chiral phase extends to a wide parameter region and
\sca ar chirality touches with the SU4)-symmetric point. Previously, a scalar
: %se \ chiral phase was numerically found in the four-spin cyclic-
& \\\\\ exchange model on the two-leg laddéin their phase dia-
gram, the scalar chiral phase appears next to the staggered

FIG. 2. Schematic possible phase diagram around thehsu dimer phase and the phase boundary indeed exists on the
symmetric point. The phase transition on the solid line is of second€lf-dual point® J,/J=1/2. This situation in the vicinity of
order and that on the dashed line is either first order or second ordghe self-dual point shows a resemblance to that around the
Other phases might be inserted around the phase boundaries.  self-dual line §;=X\,<0) in Fig. 2. Our recent numerical

study of the Hamiltoniar{1) indicates that the scalar chiral
From this transformation, one finds that the Hamilton28  phase we found in this paper extends to the four-spin cyclic
has a hidden SU(2§ SU(2) symmetry, where generators are exchange case and that two phases belong to the same one.
given by=§" andZ T for a=X, y, orz The duality trans- We have shown that the $4)-symmetric model is self-
formation leads to the case where, if the coupling parametegual under the spin-chirality duality transformation. We here
\ is negative, the perturbatio¥i is relevant and induces a note that this statement holds for the @Uspin-orbital mod-
staggered scalar chiral order with a finite spin gap, and if thels on arbitrary lattices. Recently ) spin-orbital models
coupling parameter is positive, this perturbation is irrelevanion two-dimensional latticé$ and on laddefS have been
and keeps the ground state gapless. WRen—3J; (i.e.,  studied and it was discussed that a plaquette ordering may
J,=1%J)), the modelH' equals to the scalar chiral moddlB)  appear in the ground state. On a four-site plaquette, the
with y=2/3 and as we have shown in Sec. Ill the exactSU(4) singlet state is the unique ground state and therefore it
ground state has an energy gap and the scalar chiral ordemmust be self-dual under the duality transformation. We hence

conclude that plaquette ordering is also self-dual.

B. Phase diagram around the S\4) point Last, we discuss the universality classes of phase transi-
tions. The phase transitions into the scalar chiral phase are
naturally in the same universality class as the dual transitions
into the staggered dimer phase. For example, since the phase
transition between the rung-singlet phase and the staggered

H"=Ho+ Ny V+ NV, (25) dimer phase belongs t(_)_the= 3/2 SU(2) criticality,? we
conclude that the transition between the scalar chiral phase
This Hamiltonian contains two kinds of perturbation to theand the rung-singlet phase also belongs to the same one.
SU(4)-symmetric model. Because of the duality, phasesjnce the two-dimensional Ising model is related to the
boundaries are symmetric with the ling=X\,. The nature  —1/2 criticality, thisc=3/2 criticality can be plausibly re-

of phases il\; >\, is related to that il; <\, by the du-  garded as a consequence of tAgxZ,XZ, symmetry
ality transformation. The above consideration leads to a conyreaking.

clusion that the SU}-symmetric point is a multicritical
point and surrounded by the staggered dimer phase, the stag-
gered scalar chiral one, and the critical one. If the scalar
chiral phase touches with the staggered dimer phase, the
phase boundary between two phases must exist exactly on We would like to thank K. Kubo and H. Tsunetsugu for
the self-dual linex;=X\, (see Fig. 2 Because of the (1)  stimulating discussions, and L. Balents for useful comments.
symmetry, a rigorous theoréfconcludes that in general This work was supported by the Ministry of Education, Cul-
both orders disappear on the self-dual line and hence theire, Sports, Science and TechnologlEXT) of Japan
transition between the scalar chiral and dimer phases is sethrough Grants-in-Aid Nos. 13740201, 1540362, and
ond order, but, if uniform susceptibility af |- s, diverges, 14740241. T.M. acknowledges the kind hospitality of the
both orders can exist on this line. Note that the latter actuallyyukawa Institute of Kyoto University, where this research
happens in the mod€lL9). One plausible phase diagram is was partially performed.

.

We now discuss the phase diagram around thé€4gU
symmetric point, and the two SU(X)SU(2) models given
above, considering the following generalized Hamiltonian:
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APPENDIX: UNITARY OPERATOR FOR DUALITY i
TRANSFORMATION [S1-S200 S11X8]= = 5(S1= %), (A5)

In this appendix, we show that the duality transformation
(2) and (3) corresponds to a unitary transformation of two
spins on rungs. The unitary operator is given by

and the unitary relatiot) ,U}=1, one can perform the uni-
tary transformation of spins in the forms

Ug(s+SDUL=s1+5), (A6)

U,= —igP
’ Hexp{ ORI Ug(S1—S2)Uh=cosb(s, | — ;) —2sin6 (s, X 53 ),
(A7)

=H exdif(s, S~ 1)1 (A1)

1
UH(Sl,IXSZ,I)UIIZESine(Sl,I_SZ,I)+COS‘9(SL,IXSZ,I)-
with 6= 7/2, whereP,(s) denotes the projection operator
onto the singlet state on théh rung. Since the generator is (A8B)
transformed as;l,,-szy|=(slv|+szv|)2/2—3/4, this unitary When 6= /2, we obtain the original duality transformation
conserves the total spin on each rung. Note that the generator +
of this unitary is a summation of S¥) generators;'s;(« S=Uz281Uzp, (A9)
=X,Y,z) and hence the S¥) symmetric model is naturall
inva)rliar)lt under this transform;tion. g Ti=Um25,U s (A10)
Let us demonstrate the unitary transformation of spins. Iffrom the form of the unitary operator, it is clear that this
is convenient to reduce the unitary operator to the form  unitary corresponds to a gauge transformation of the singlet
bond state

Uf):]._l.[ [1+(l_eiig)(sl,l'32,l_%)]a (A2) U0|s>|=e“9|s)|, (A11)

where we have used the relatipR,(s)]?> = P,(s). Using Ugltehi=Itm),  (m=-1,0,1). (A12)
the followi tati lati . .
© foflowing commtutation refafions When 8= /2, one obtains the relatioi®) from
‘S, + =0, A3 , ,
(S-S st 2] (A3) lo)silo ) ri=Umplo)ilo )z, (A13)

(S-S0, SLI—S2,]=2i8 X5y, (A4)  foro (0')=1,].
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