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Scalar chiral ground states of spin ladders with four-spin exchanges
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We show that scalar chiral order can be induced by four-spin exchanges in the two-leg spin ladder, using the
spin-chirality duality transformation and matrix-product ansatz. Scalar-chiral-ordered states are found to be
exact ground states in a family of spin ladder models. In this scalar chiral phase, there is a finite energy gap
above the doubly degenerate ground states and aZ23Z23Z2 symmetry is fully broken. It is also shown that
the SU~4!-symmetric model, which is self-dual under the duality transformation, is on a multicritical point
surrounded by the staggered dimer phase, the staggered scalar chiral phase, and the gapless phase.
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I. INTRODUCTION

Recently, four-spin exchange interactions have been
tracting interest in spin ladder models and spin-orbital m
els, because these interactions in fact appear in m
systems1–8 and can induce exotic ground states.9–17 Various
types of four-spin interactions appear associated with dive
mechanisms, e.g., cyclic-exchange processes,18–20 Coulomb
repulsion between doubly degenerate orbitals,1 and spin-
phonon couplings. Though two-leg antiferromagne
Heisenberg spin ladders show a rung-singlet ground state
have an energy gap between the ground state
excitations,21 it was revealed that four-spin exchanges c
induce a gapped staggered dimer~or spin-Peierls! phase9–11

and a gapless phase11–15 around the SU~4!-symmetric point
and that a gapped phase with a dominant vector chira
correlation also appears.16,17

Very recently, La¨uchli et al.17 numerically found a new
scalar chiral phase in the two-leg spin-1/2 ladder with fo
spin cyclic exchange. Scalar chiral states, in which both
time-reversal and parity symmetries are broken, had b
discussed in the context of anyon superconductivity22,23 and
the anomalous Hall effect,24,25but realization of scalar chira
order in SU~2!-symmetric systems had been difficult and
challenging problem. A scalar chiral order due to the fo
spin cyclic exchange was first proposed on the triangu
lattice for magnetism of solid3He films,26,27 though finite-
size system analysis could not find evidence for such or
ing, instead showing spin-liquid ground states.28,29 Study of
spin ladders with four-spin exchanges is expected to cla
the possibility of exotic magnetism induced by the four-sp
interactions.

In this paper, we study the two-leg spin-1/2 ladder w
four-spin exchanges, whose Hamiltonian is given in the n
subsection, and give a rigorous example of a scalar ch
ground state. In our analysis, the spin-chirality duality tra
formation we introduced in Ref. 16 plays an important ro
A new class of models that have an exact ground state
scalar chiral order are constructed by the means of ma
product ansatz. The scalar chiral phase has the follow
nature:~i! the ground states are doubly degenerate,~ii ! there
is a finite energy gap between ground states and exc
0163-1829/2003/67~17!/174410~8!/$20.00 67 1744
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states,~iii ! the ground states have long-range staggered
lar chiral order and exponentially decaying spin correlatio
and ~iv! a Z23Z23Z2 symmetry is fully broken. It is also
found that the phase boundary of the scalar chiral ph
touches the SU~4!-symmetric point and the SU~4!-symmetric
model is on a multicritical point surrounded by the stagge
dimer phase, the staggered scalar chiral phase, and the
less phase.

This paper is organized as follows. The model Ham
tonian is given in the next subsection. In Sec. II, we summ
rize the duality transformation and its application to t
present model. In Sec. III, it is shown that a scalar chi
state is the exact ground state in a parameter region of
model Hamiltonian. The nature of the scalar chiral phase
discussed. In Sec. IV, we discuss the phase diagram aro
the SU~4!-symmetric point and find that the SU~4! model is
on a multicritical point. Finally in Sec. V we conclude with
discussion. The appendix contains a unitary description
the duality transformation.

Model Hamiltonian

The Hamiltonian of the two-leg spin-1/2 ladder with e
tended four-spin exchange interactions is defined as

H5Jl(
l

~s1,l•s1,l 111s2,l•s2,l 11!1Jr(
l

s1,l•s2,l

1Jd(
l

~s1,l•s2,l 111s2,l•s1,l 11!

1Jrr(
l

~s1,l•s2,l !~s1,l 11•s2,l 11!

1Jll(
l

~s1,l•s1,l 11!~s2,l•s2,l 11!

1Jdd(
l

~s1,l•s2,l 11!~s2,l•s1,l 11!. ~1!

This Hamiltonian includes a variety of models:~I! Four-spin
cyclic-exchange model. When four-spin exchange constan
satisfy Jrr5Jll52Jdd, the four-spin terms describe th
©2003 The American Physical Society10-1
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cyclic-exchange interaction.2 ~II ! SU(2)3SU(2) model.
When the parameters satisfyJr5Jd5Jrr5Jdd50, the Hamil-
tonian has an SU(2)3SU(2) symmetry. This model wa
studied extensively as the SU(2)3SU(2) spin-orbital model.
It was revealed that whenJll.0 the ground state has a sta
gered dimer~or spin-Peierls! order9,10 for 4Jl.Jll and is
gapless12–15 for 2Jll<4Jl<Jll . ~III ! SU(4) model. As a spe-
cial case of model II, the Hamiltonian has an SU~4!
symmetry11,30 at 4Jl5Jll , which was exactly solved by th
Bethe ansatz.31

II. DUALITY

A. Duality transformation

Let us begin with the spin-chirality duality transform
tion, which we developed in Ref. 16. We introduced the d
ality transformation defining new spin-1/2 pseudospin ope
tors

Sl[
1

2
~s1,l1s2,l !2s1,l3s2,l , ~2!

T l[
1

2
~s1,l1s2,l !1s1,l3s2,l , ~3!

which obey the commutation relations of spins and sat
(Sl

a)25(Tl
a)251/4 for a5x, y, or z. In the same way, the

original spinss1,l ands2,l are expressed in terms ofSl andT l
in the forms s1,l5

1
2 (Sl1T l)1Sl3T l and s2,l5

1
2 (Sl1T l)

2Sl3T l . In the appendix, we show that this transformati
derives from a unitary operatorUp/2 in the form Sl

5Up/2s1,lUp/2
† and T l5Up/2s2,lUp/2

† . Since the following
relations hold,

s1,l1s2,l5Sl1T l ,

s1,l2s2,l52Sl3T l ,

22s1,l3s2,l5Sl2T l ,

this transformation exchanges the Ne´el-type spin and vecto
chirality degrees of freedom on the same rung. As an
ample of the duality, one can show that the transformation
the dimer~or spin-Peierls! operator

OD~ l !5s1,l•s1,l 112s2,l•s2,l 11 ~4!

leads to the scalar chiral operator

OSC~ l !5~s1,l1s2,l !•~s1,l 113s2,l 11!

1~s1,l3s2,l !•~s1,l 111s2,l 11!. ~5!

It is known that a group of two-leg ladders with four-sp
interactions shows the staggered dimer order in the gro
state.9–11 The above duality relation hence shows that th
dual models have the staggered ‘‘scalar chiral’’ order in
ground state. We will discuss these models in Secs.
and IV.

We now consider the transformation of the spin states
rungs. Since the total spin on each rung is conserved u
17441
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the transformation, the fully polarized spin stateu↑&1,l u↑&2,l is
transformed tou↑&S,l u↑&T,l , where ua&m,l (a5↑,↓ and m
51,2) denotes the spin state operated bysm,l , and ua&S,l
(ua&T,l) is the pseudospin state operated bySl (T l), respec-
tively. By applyingSl

2 andTl
2 to u↑&S,l u↑&T,l , all pseudospin

states in dual space can be constructed in the forms

u↑&S,l u↑&T,l5u↑&1,l u↑&2,l ,

u↑&S,l u↓&T,l5
e2 ip/4

A2
~ u↑&1,l u↓&2,l1 i u↓&1,l u↑&2,l),

u↓&S,l u↑&T,l5
eip/4

A2
~ u↑&1,l u↓&2,l2 i u↓&1,l u↑&2,l),

u↓&S,l u↓&T,l5u↓&1,l u↓&2,l . ~6!

Using eigenstates for the total spin on each rung, one fi
that this transformation corresponds to a gauge transfor
tion of the singlet bond stateus& l→2 i us& l , while it keeps the
triplet states invariant. See also Appendix for further arg
ments.

B. Duality in the model Hamiltonian

We now apply the transformation to the model~1! and
consider the duality relation in parameter space. Under
duality transformation, the total form of the Hamiltonian~1!
remains invariant, but the couplings change. The coupli
of the dual HamiltonianH̃ are given by

J̃r5Jr , J̃rr5Jrr ,

J̃l5
1

2
~Jl1Jd!1

1

8
~Jll2Jdd!,

J̃d5
1

2
~Jl1Jd!2

1

8
~Jll2Jdd!,

J̃ll52~Jl2Jd!1
1

2
~Jll1Jdd!,

J̃dd522~Jl2Jd!1
1

2
~Jll1Jdd!. ~7!

To see the mapping in the parameter space, we rewrite
Hamiltonian~1! in the form

H5Jr(
l

s1,l•s2,l1Jrr(
l

~s1,l•s2,l !~s1,l 11•s2,l 11!

1W(
l

~s1,l1s2,l !•~s1,l 111s2,l 11!1X(
l

$~s1,l•s1,l 11!

3~s2,l•s2,l 11!1~s1,l•s2,l 11!~s1,l 11•s2,l !%

1Y(
l

$~s1,l2s2,l !•~s1,l 112s2,l 11!14~s1,l3s2,l !

•~s1,l 113s2,l 11!%1Z(
l

$~s1,l2s2,l !•~s1,l 112s2,l 11!
0-2
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24~s1,l3s2,l !•~s1,l 113s2,l 11!%, ~8!

where

W5
1

2
~Jl1Jd!, X5

1

2
~Jll1Jdd!,

Y5
1

16
~Jll2Jdd!1

1

4
~Jl2Jd!,

Z52
1

16
~Jll2Jdd!1

1

4
~Jl2Jd!. ~9!

Straightforward calculations show that the duality transf
mation maps the parameters (Jr ,Jrr ,W,X,Y,Z) to
(Jr ,Jrr ,W,X,Y,2Z); the transformation changes only th
couplingZ of the last term to2Z, but leaves the other term
invariant. The Hamiltonian~1! is, thus, self-dual at the sur
face defined byZ50, i.e.,

Jll2Jdd24~Jl2Jd!50. ~10!

The parameter space of the Hamiltonian has six dimens
in total, and the self-dual surface divides the parameter sp
into two regionsZ.0 andZ,0. It should be remarked tha
the SU~4!-symmetric model (4Jl5Jll , Jr5Jd5Jrr5Jdd50)
exists on the self-dual surface. Duality around this spec
model will be discussed in Sec. IV.

C. U„1… summetry in the self-dual models

Here we describe a U~1! symmetry in the self-dual mod
els. Consider a continuous transformation with the followi
unitary operator

Uu5)
l

exp@ iu~s1,l•s2,l2
1
4 !#.

This is a continuous extension of the duality transformat
~see Appendix! and it continuously transforms the dimer o
erator to the scalar chiral one. One can show that the Ha
tonian is invariant under this transformation asUuHUu

†5H
for arbitraryu if Z50. Thus the self-dual models are isotr
pic under the continuous rotation with the generator( ls1,l
•s2,l , whereas theZ term of the Hamiltonian~8! lowers the
symmetry.

III. MODELS WITH EXACT SCALAR CHIRAL
GROUND STATES

In this section, we discuss an exact scalar chiral gro
state of the Hamiltonian~1! with the periodic boundary con
dition. To obtain the ground stateC0, we use matrix-produc
~MP! states. We start from the following ansatz:

C0~u!5tr$g̃1~u!g̃2~2u!•••g̃2N21~u!g̃2N~2u!%, ~11!

whereu is a real variable and

g̃l~u!5
1

2 S iuus& l1ut0& l 2A2ut11& l

A2ut21& l iuus& l2ut0& l
D

17441
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2
$ iu1us& l2A2s1ut11& l1A2s2ut21& l1szut0& l%.

~12!

Here us& l and utm& l are, respectively, the singlet and tripl
states of thel th rung, 2N is the total number of rungs,1 is
the 232 unit matrix, andsm are the Pauli matrices. Thi
form of the MP state can be obtained by the duality transf
mation of the MP state discussed by Kolezhuk a
Mikeska,10

CKM~u!5tr$g1~u!g2~2u!•••g2N21~u!g2N~2u!%,
~13!

where

gl~u!5
1

2
$u1us& l2A2s1ut11& l1A2s2ut21& l1szut0& l%.

~14!

It was shown that for several models this MP stateCKM(u)
is the exact ground state with a staggered dimer order. Au
50 and u5`, the two statesC0(u) and CKM(u) are
equivalent, which means that each ofC0(0) andC0(`) is
self-dual.C0(0) and C0(`) are, respectively, an Affleck
Kennedy-Lieb-Tasaki~AKLT ! state32 and a rung-singlet
state. For 0,u,`, however,C0(u) and CKM(u) are or-
thogonal in the limitN→`.

SinceCKM(u) (0,u,`) has the staggered dimer orde
C0(u) has the staggered scalar chiral order because of
duality relation. Using the technique developed by Klu¨mper
et al.,33,34 one can evaluate the scalar chiral correlation
C0(u),

^OSC~ l !OSC~m!&5~21! l 2mF 12u

~u213!2G 2

, ~15!

for u l 2mu.1 in the limit N→` and show spontaneou
breakdown of the chiral symmetry

^OSC~ l !&5~21! l
12u

~u213!2.

One can also evaluate thatC0(u) has no dimer correlation

^OD~ l !OD~m!&50.

In the same way, the spin and vector chiral correlations
obtained as

^s1,l
a s1,m

a &5^s1,l
a s2,m

a &52
1

~u213!~u221!
S u221

u213
D u l 2mu

,

~16!

^~s1,l3s2,l !
a~s1,m3s2,m!a&5

u2

~u213!~u221!
S 12u2

u213
D u l 2mu

,

~17!
0-3
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for a5x, y, or z. The spin and vector chiral correlatio
lengths are equal and given byjs

215jvc
215 ln$(u213)/uu2

21u%, whereas the scalar chiral correlation does not have
exponentially decaying term.

By the duality transformation of the MP-solvable mode
presented by Kolezhuk and Mikeska,10 we find that the MP
state ~11! is an exact ground state of the following thre
classes of models. One can prove that the stateC0 is a
ground state in these models, reducing a local Hamilton
hl ,l 11 on thelth and (l 11)th rungs to a positive semidefinit
form (hl ,l 112E0)>0, where H5( lhl ,l 11, and showing
that C0 has zero eigenenergy in the reduced Hamiltonian
(hl ,l 112E0)glgl 1150. The reader who is interested in th
method of proofs should refer to Ref. 10.

~A! Scalar chiral models. For a family of models

Jr5
8J~223y!

3~423y!
, Jl5

4J~12y!

423y
,

Jd5
J~829y!

3~423y!
, Jll5

16J

3~423y!
,

Jrr50, Jdd5
24Jy

423y
, ~18!

with 0,y,1 andJ.0, the ground states are doubly dege
erate and given byC0(1) andC0(21). The ground-state
energy per rung isE0523J/4. This model is dual to the
‘‘checkerboard-dimer model’’ given in Ref. 10, which has
staggered dimer order, and hence from the duality rela
the present model belongs to the scalar chiral phase. Ex
tions of the staggered dimer phase were studied by va
tional trial states,10 numerical calculations,11 and field-
theoretical analyses.13–15 These studies concluded th
excitations have a finite energy gap. In fact, extending
arguments by Knabe,35,36 we can prove the finiteness of th
energy gap in the checkerboard-dimer model dual to
model ~18! with y52/3 and in a finite region around thi
point. From the duality we conclude that, in the scalar ch
phase, there is a finite energy gap between the ground s
and excited states. The analysis in the dual model10 indicates
that, aty51, the present system enters the fully polariz
ferromagnetic phase through a first-order transition. Furth
more, we can extend the parameter space which has the
scalar chiral ground state. Fory52/3, the dual Hamiltonian
has an SU(2)3 SU~2! symmetry and the Hamiltonian i
written as a product of projection operators (4J/3)( l(s1,l
•s1,l 1113/4)(s2,l•s2,l 1113/4). Then one can construct th
model with the exact scalar chiral ground state by gener
zation of projection operators37 and the duality transforma
tion.

~B! Model at a phase boundary between the scalar ch
and staggered dimer phases. At y50 of the model~18!, i.e.,

Jr5Jll5
4J

3
, Jl5J,
17441
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2J

3
, Jrr5Jdd50, ~19!

with J.0, the ground states are given byC0(u) with arbi-
trary u and highly degenerate. Note that this model is equi
lent to the ‘‘multicritical model’’ in Ref. 10 and self-dua
under the duality transformation. The scalar chiral mo
~18!, thus, connects with the checkerboard-dimer mode
this special parameter point. At this phase boundary, b
one magnon and a pair of scattering solitons have ene
gaps in the staggered dimer state, as discussed by Kole
and Mikeska.10 However, because of the U~1! symmetry in
this model, the generators1,l•s2,l can create gapless collec
tive ~Goldstone! modes, which are singlet bound states
two magnons. In fact, one can show that the following tr
state becomes gapless atp50, p (z521) and p
5p/2 (z51):

uC0~p!&sb
z 5(

l
e2iplTrH)

i 51

l 21

g̃2i 21~1!g̃2i~21!gl
sb,z~1!

3g̃2l 12~21! )
i 5 l 12

N

g̃2i 21~1!g̃2i~21!J ,

gl
sb,z~1!5H(

a
sag̃2l 21~1!sag̃2l~21!J g̃2l 11~1!

1zg̃2l 21~1!H(
a

sag̃2l~21!sag̃2l 11~1!J .

~C! Model with two second-order phase boundaries. For a
family of models

Jr52Jrr5
J

6
~u221!~u213!,

Jl5
J

48
~3u215!~u213!, Jd5

J

3
u2,

Jll5
J

12
~5u213!~u213!, Jdd5

J

6
~u426u223!,

~20!

with arbitrary u, the ground states areC0(u) and C0
(2u), and the ground-state energy per rung isE05
2J(7u4122u2119)/64. The model atu51 is equivalent to
the model ~18! at y52/3. The arguments for the dua
model10 lead to the conclusion that the model~20! undergoes
a phase transition to the Haldane phase atu50 and to the
rung-singlet phase atu5`. Both of the transitions are o
second order and accompanied with vanishing of ene
gaps for solitons.

In total, five phases appear in the MP-solvable mod
discussed above and in Ref. 10. Some of the phase tra
tions between them actually happen in the parameter sp
of the solvable models. These are summarized in Fig. 1.

The nature of the scalar chiral phase is summarized
follows: ~1! the ground states are doubly degenerate,~2!
0-4
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there is a finite energy gap between the ground states
excited states, and~3! the ground states have long-ran
staggered scalar chiral order and exponentially decaying
correlations.

It is also easy to show that the string order, which w
originally found in the Haldane state,38,39 exists in the scalar
chiral stateC0(u). The expectation value is given by

K ~s1,j
a 1s2,j

a !)
l 5 j

k21

exp$ ip~s1,l
a 1s2,l

a !%~s1,k
a 1s2,k

a !L
54/~u213!2 ~21!

for a5x, y or z. We note that the staggered dimer sta
CKM(u) also has exactly the same expectation value of
string order because the string operator is invariant under
duality transformation. This string order implies that a h
denZ23Z2 symmetry is spontaneously broken in the grou
state.40 This hidden symmetry was found40,41 by applying a
nonlocal unitary transformationU and one can find that thi
symmetry exists also in the Hamiltonian~1!. It should be
noted that thisZ23Z2 symmetry is independent of theZ2
chiral symmetry associated with the scalar chirality, since
scalar chiral operator after the nonlocal unitary transform
tion UOSCU

21 has the correspondingZ23Z2 symmetry. In
finite systems with open boundary conditions, the scalar
ral MP ground states in fact have eightfold degeneracy a
ciated with boundary spins and chirality. Thus, the hidd
Z23Z2 symmetry, as well as theZ2 chiral symmetry, is
spontaneously broken in the scalar chiral phase. Recent
different useful quantity z2N5^exp@(2pi/2N)( l 51

2N l (s1,l
z

1s2,l
z )#& was proposed,42 which detects the average numb

n of valence bonds between neighboring rungs
limN→`z2N5(21)n. In C0(u), the expectation value is es
timated as limN→`z2N521 for finite u. This is consistent
with the above valence bond picture, becausez2N is also
invariant under the duality transformation, andn51 in the
staggered dimer state.

FIG. 1. Schematic picture of five phases and phase transit
that appear in MP-solvable models. Phase transitions occur a
arrows. The number attached to each arrow denotes the order o
phase transition. Black circle~MC! denotes the multicritical poin
~19!. The scalar chiral phase is dual to the staggered dimer ph
while Haldane, rung-singlet, and ferromagnetic phases are self-
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IV. AROUND THE SU „4…-SYMMETRIC POINT

Using the duality relation, we discuss the phase diagr
around the SU~4!-symmetric point and show that this SU~4!-
symmetric point is a multicritical point.

A. SU„2…ÃSU„2… spin ladders

We start from two SU(2)3SU(2) spin ladders. One
SU~2! 3SU(2) spin ladder is model II. Here we consider t
caseJl>0. For Jl /Jll51/4, this model is SU~4! symmetric
and exactly solvable by the Bethe ansatz, and the gro
state is gapless critical.31 For Jl /Jll.1/4, the ground state
has a finite gap and a staggered dimer order,10–12whereas for
0<Jl /Jll<1/4 the ground state is gapless and critical.11–15

The total Hamiltonian can be divided into the part of t
SU~4! modelH0 (Jll54Jl with fixed Jl) and the perturbation
V in the form

H85H01lV,

H05Jl(
l

$~s1,l•s1,l 111s2,l•s2,l 11!

14~s1,l•s1,l 11!~s2,l•s2,l 11!%,

V5(
l

~s1,l•s1,l 11!~s2,l•s2,l 11!, ~22!

wherel[24Jl 1Jll andJl is fixed. Renormalization group
analysis concluded that if the parameterl is negative, the
perturbationV is relevant and leads to a generation of
staggered dimer order with a finite spin gap, and if the c
pling parameter is positive, this perturbation is irrelevant a
keeps the ground state gapless.13–15

Applying the spin-chirality duality transformation to Eq
~22!, one obtains the dual Hamiltonian

H̃85H01lṼ,

Ṽ5
1

8 (
l

~s1,l•s1,l 111s2,l•s2,l 11!2
1

8 (
l

~s1,l•s2,l 11

1s2,l•s1,l 11!1
1

2 (
l

~s1,l•s1,l 11!~s2,l•s2,l 11!

1
1

2 (
l

~s1,l•s2,l 11!~s2,l•s1,l 11!. ~23!

HereH0 is self-dual, andṼ is the perturbation dual toV. The
couplings ofH̃8, in total, are given as

J̃r5 J̃rr50,

J̃l5
1

2
Jl1

1

8
Jll , J̃d5

1

2
Jl2

1

8
Jll ,

J̃ll52Jl1
1

2
Jll , J̃dd522Jl1

1

2
Jll . ~24!
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From this transformation, one finds that the Hamiltonian~23!
has a hidden SU(2)3SU(2) symmetry, where generators a
given by( lSl

a and( lTl
a for a5x, y, or z. The duality trans-

formation leads to the case where, if the coupling param
l is negative, the perturbationṼ is relevant and induces
staggered scalar chiral order with a finite spin gap, and if
coupling parameter is positive, this perturbation is irrelev
and keeps the ground state gapless. Whenl52 8

3 Jl ~i.e.,
Jll5

4
3 Jl) , the modelH̃8equals to the scalar chiral model~18!

with y52/3 and as we have shown in Sec. III the exa
ground state has an energy gap and the scalar chiral ord

B. Phase diagram around the SU„4… point

We now discuss the phase diagram around the SU~4!-
symmetric point, and the two SU(2)3SU(2) models given
above, considering the following generalized Hamiltonian

H95H01l1V1l2Ṽ. ~25!

This Hamiltonian contains two kinds of perturbation to t
SU~4!-symmetric model. Because of the duality, pha
boundaries are symmetric with the linel15l2. The nature
of phases inl1.l2 is related to that inl1,l2 by the du-
ality transformation. The above consideration leads to a c
clusion that the SU~4!-symmetric point is a multicritical
point and surrounded by the staggered dimer phase, the
gered scalar chiral one, and the critical one. If the sca
chiral phase touches with the staggered dimer phase,
phase boundary between two phases must exist exactl
the self-dual linel15l2 ~see Fig. 2!. Because of the U~1!
symmetry, a rigorous theorem46 concludes that in genera
both orders disappear on the self-dual line and hence
transition between the scalar chiral and dimer phases is
ond order, but, if uniform susceptibility ofs1,l•s2,l diverges,
both orders can exist on this line. Note that the latter actu
happens in the model~19!. One plausible phase diagram

FIG. 2. Schematic possible phase diagram around the SU~4!-
symmetric point. The phase transition on the solid line is of sec
order and that on the dashed line is either first order or second o
Other phases might be inserted around the phase boundaries.
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shown in Fig. 2. Recently we have numerically studied t
phase diagram and obtained results consistent with
present conclusion.43

V. DISCUSSION

In this paper we have shown a rigorous example of sc
chiral ground states in SU~2! spin ladders with four-spin ex
changes. The exact duality relation is the keystone of
theory. Our results demonstrated that four-spin exchan
can actually induce the scalar chiral long-range order. T
scalar chiral phase extends to a wide parameter region
touches with the SU~4!-symmetric point. Previously, a scala
chiral phase was numerically found in the four-spin cycl
exchange model on the two-leg ladder.17 In their phase dia-
gram, the scalar chiral phase appears next to the stagg
dimer phase and the phase boundary indeed exists on
self-dual point16 J4/J51/2. This situation in the vicinity of
the self-dual point shows a resemblance to that around
self-dual line (l15l2,0) in Fig. 2. Our recent numerica
study of the Hamiltonian~1! indicates that the scalar chira
phase we found in this paper extends to the four-spin cy
exchange case and that two phases belong to the same

We have shown that the SU~4!-symmetric model is self-
dual under the spin-chirality duality transformation. We he
note that this statement holds for the SU~4! spin-orbital mod-
els on arbitrary lattices. Recently SU~4! spin-orbital models
on two-dimensional lattices44 and on ladders45 have been
studied and it was discussed that a plaquette ordering
appear in the ground state. On a four-site plaquette,
SU~4! singlet state is the unique ground state and therefo
must be self-dual under the duality transformation. We he
conclude that plaquette ordering is also self-dual.

Last, we discuss the universality classes of phase tra
tions. The phase transitions into the scalar chiral phase
naturally in the same universality class as the dual transiti
into the staggered dimer phase. For example, since the p
transition between the rung-singlet phase and the stagg
dimer phase belongs to thec53/2 SU(2)2 criticality,9 we
conclude that the transition between the scalar chiral ph
and the rung-singlet phase also belongs to the same
Since the two-dimensional Ising model is related to thec
51/2 criticality, this c53/2 criticality can be plausibly re-
garded as a consequence of theZ23Z23Z2 symmetry
breaking.
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APPENDIX: UNITARY OPERATOR FOR DUALITY
TRANSFORMATION

In this appendix, we show that the duality transformati
~2! and ~3! corresponds to a unitary transformation of tw
spins on rungs. The unitary operator is given by

Uu5)
l

exp@2 iuPl~s!#

5)
l

exp@ iu~s1,l•s2,l2
1
4 !# ~A1!

with u5p/2, wherePl(s) denotes the projection operato
onto the singlet state on thel th rung. Since the generator
transformed ass1,l•s2,l5(s1,l1s2,l)

2/223/4, this unitary
conserves the total spin on each rung. Note that the gene
of this unitary is a summation of SU~4! generatorss1

as2
a(a

5x,y,z) and hence the SU~4! symmetric model is naturally
invariant under this transformation.

Let us demonstrate the unitary transformation of spins
is convenient to reduce the unitary operator to the form

Uu5)
l

@11~12e2 iu!~s1,l•s2,l2
1
4 !#, ~A2!

where we have used the relation@Pl~s!#2 5 Pl~s!. Using
the following commutation relations

@s1,l•s2,l , s1,l1s2,l #50, ~A3!

@s1,l•s2,l , s1,l2s2,l #52is1,l3s2,l , ~A4!
ys

S

an

, T

17441
tor

It

@s1,l•s2,l , s1,l3s2,l #52
i

2
~s1,l2s2,l !, ~A5!

and the unitary relationUuUu
†51, one can perform the uni

tary transformation of spins in the forms

Uu~s1,l1s2,l !Uu
†5s1,l1s2,l , ~A6!

Uu~s1,l2s2,l !Uu
†5cosu~s1,l2s2,l !22sinu ~s1,l3s2,l !,

~A7!

Uu~s1,l3s2,l !Uu
†5

1

2
sinu ~s1,l2s2,l !1cosu ~s1,l3s2,l !.

~A8!

Whenu5p/2, we obtain the original duality transformatio

Sl5Up/2s1,lUp/2
† , ~A9!

T l5Up/2s2,lUp/2
† . ~A10!

From the form of the unitary operator, it is clear that th
unitary corresponds to a gauge transformation of the sin
bond state

Uuus& l5e2 iuus& l , ~A11!

Uuutm& l5utm& l , ~m521,0,1!. ~A12!

Whenu5p/2, one obtains the relation~6! from

us&S,l us8&T,l5Up/2us&1,l us8&2,l ~A13!

for s (s8)5↑,↓.
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