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Coulomb effects in granular materials at not very low temperatures
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We consider effects of Coulomb interaction in a granular normal metal at not very low temperatures
suppressing weak localization effects. In this limit calculations with the initial electron Hamiltonian are re-
duced to integrations over a phase variable with an effective action, which can be considered as a bosonization
for the granular metal. Conditions of the applicability of the effective action are considered in detail and
importance of winding numbers for the phase variables is emphasized. Explicit calculations are carried out for
the conductivity and the tunneling density of states in the limits of layjgel and smallg<<1 tunneling
conductances. It is demonstrated for any dimension of the array of the grains that ag $heaionductivity
and the tunneling density of states decay with temperature exponentially. Atdafge conductivity also
decays with decreasing the temperature and its temperature dependence is logarithmic independent of dimen-
sionality and presence of a magnetic field. The tunneling density of stateg=fdr is anomalous in any
dimension but the anomaly is stronger than logarithmic in low dimensions and is similar to that for disordered
systems. The formulas derived are compared with existing experiments. The logarithmic behavior of the
conductivity at largeg obtained in our model can explain numerous experiments on systems with a granular
structure including some highz materials.
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I. INTRODUCTION After they are cut off the system is assumed to become a
conventional normal metal. Although granular systems with
The study of disordered systems attracts a lot of attentiorthe electron-electron interaction were not considered explic-
Even if the electron-electron interaction is neglected thdtly, it is generally expected that there should not be a quali-
problem is not simple. Nevertheless, by now a rather comtative difference between them and “just disordered” mate-
plete understanding for noninteracting systems exists. It i§ials. This is definitely true for systems without the electron-
well known that systems with one-dimensional geometryelectron interaction.
must be insulators for any week disorder. Two-dimensional Therefore, a recent experimental observaticame as a
systems are also believed to be localized, whereas thegirprise. In the experimehieasurements of conductivity of
should occur the Anderson metal-insulator transition ingranular Al-Ge thick films were performed and several inter-
three-dimensional disordered systems. This scenario h&sting effects have been discovered. These films consisted of
been formulated on the basis of scaling arguments long§ agd\l grains embedded in an amorphous Ge matrix. The size of
and has been checked by numerous methods including di@&n Al grain was about 120 A and the grains were at low
grammatic expansiofsind nonlineawr-model calculations ~ temperatures in a superconducting state.

(for a review, see, e.g., Ref).4 Destroying the superconducting pairing by a magnetic
At weak disorder, one obtains so called weak localizatiorfield up to 17 T the authors could study, in particular, prop-
corrections which are divergent in one-dimensidl) and erties of the normal state. Some features of the normal state
2D (in 2D they are logarithmic The infrared divergency is related to a negative magnetoresistance due to superconduct-

cut off either by the sample size or external frequency, or byng fluctuations have been discussed recéniyt another

the inverse inelastic time. Within the scaling theory the connusual observation remained unexplained.

crete mechanism of this cutoff does not matter. Due to the The authors of Ref. 7 found in some samples a peculiar

existence of the cutoffs flow diagrams stop at some pointemperature dependence of the conductivity. Samples that

when changing parameters such as the sample size or teftad a high room temperature resistivitfiis corresponds to a

perature. So, within this picture by increasing the temperaweak tunneling between the grajnshowed an exponential

ture one cannot expect anything except cutting the weak lodecay of the conductivity as a function of temperature. This

calization corrections. behavior is typical for insulators and has been interpreted in
If an electron-electron interaction is added additional cor-Ref. 7 in this way. Samples with larger intergranular cou-

rections discovered by Altshuler and Aroridxecome impor- ~ Plings did not show any exponential decay but the resistivity

tant. They are also logarithmically divergent in 2D but re-did not saturate at low temperatures and the authors de-

main convergent in 3D. For the systems with the electronscribed its temperature dependence by a power law

electron interaction one can also derive a progpemodef R-AT @ 1.1

and demonstrate the renormalizability. Within such an ap- N ’ '

proach the role played by the temperature is, as for the norwith «=0.117. Apparently, with such a small value @fa

interacting models, to cut the diverging infrared correctionslogarithmic temperature dependence
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R=A(1-alnT) (1.2 At lower temperature3 <gé one must take into account
low energy diffusion modes, and the system should be de-
scribed by a more complicated nonlineamodel containing

both the phaseg and matriceQ. Of course, in the limit
Both the power law dependen¢k. 1) and the logarithmic P b4 xQ

. .~ T—0 the AES functional is no longer applicable and the
dependenceél.2) were not expected from the theories of dis- ) yion of “quantum dissipation” loses its sense. In other

ordered metals. Although the logarithmic dependence ig,4s the “quantum dissipation” corresponds to a limit of
natural of 2D films, it is relevant to emphasize that the array, o very low temperatures for the system under consider-
of the grains was three dimensional and the behavior de;

tion.
scribed by Eqs(1.2) was observed at high magnetic fields. aton

This definitel lud ; . f the | thmi It is relevant to mention that the model of a granular metal
Is definitely exc udes an Interpretation o t, € .Oga”t mICmay roughly describe disordered systems with a low electron
or power law behavior in terms of weak localization correc-

. ical for 20256 concentration. One can imagine that in such systems elec-
tions typical for 2D: . " trons spend a long time in some kind of traps or puddles and
In this paper we try to explain the transition from the

. ) , tunnel between them with a small rate. Then, such a situation
exponential temperature behavior at sntatb the logarith-

ic d q fEd 2 ina that th . resembles the granular systems. A short account of the ideas
mic dependence o 1.2 assuming that the temperatgre IS of the present work has been presented in a recent paper.
not very low, which actually corresponds to the experiment

: The article is organized as follows. In Sec. Il we formu-
where the lowest temperature was around 0.3 K. We conmdeg g

[obtained by expansion of E¢lL.1) in «] could describe the
experimental data as well.

te the model and derive a free energy functional containing
a model of granular met_als at not very_low temperature andhpases. We discuss how one should integrate over the phases
demonstrate that changlng_ the dlmenS|or_1Iess tunneling co ccounting for winding numbers. In Sec. Il we consider
ductanceg one can h_a\_/e_ either exponential temper_atur_e de(':onductivity in the limit of large conductances>1 and
pendence of the resistivity at smaliks1 or the logarithmic

behavi > at | _ il be sh hat th | obtain the temperature behavitk.2). For calculations we
ne avpr(l. ) at argeg=1. It will be shown that the result ;sq 1oh the perturbation theory and renormalization group
IS appllcable for any dlmer}5|on_allty of the array of 9rains, tachniques. In Sec. IV we consider the tunneling density of
which contrasts usual logarithmic corrections due to mterfer-states in the limitg>1. The final result for a two-

ence effects typical for 2D only. dimensional array of grains, E(.9), has the same form as

Study of the regime of not very IOV.V temperatures O.f thethe corresponding formula for a disordered “homogeneous”
granular metals has startgd recently in Ref. 9 where it WaS atal. In Sec. V we consider the limit of smajk<1 and
demonstrated that the regime of the temperatures show how one can carry out summation over winding hum-

T>g6, (1.3 bers. Physical _quantities such as the conductivity and_ the
tunneling density of states are shown to be exponentially
where 6 is the mean level spacing, is clearly different from small in temperature. In Sec. VI we discuss the results and
the regime of lower temperatures. In this regime, well knownmake a comparison with the experiment.
weak localization effects are suppressed but, nevertheless,
the system may exhibit a nontrivial behavior.

Inequality (1.3) is written forg>1. In this limit, one can
study the model by summation of diagrams containing im- In the present work, we consider a simplified model
purity lines, as it has been suggested in Ref. 9. Nontrivialvhere metal grains form a regular lattice. The grains are
effects arise from a renormalization of the Coulomb interac-disordered due to impurities or irregular boundaries. Each
tion by impurities. Actually, a nontrivial behavior originates grain is separated from its nearest neighbors by tunneling
from the diagrams of the Altshuler-Aronov tybenodified  barriers. We assume that the main contribution to the macro-
for the granular system. Therefore, for lamg® 1 the theory  scopic resistivity of the granular system comes from the in-
presented in this paper is equivalent to the summation of theergranular tunneling.

Altshuler-Aronov diagrams. However, we use an effective The Hamiltonian describing the model is chosen as
phase functional, which gives us an opportunity to consider

Il. CHOICE OF THE MODEL. PHASE FUNCTIONAL.

not only the first order in the Coulomb interaction but to go H=Hy+H+H,, (2.1)
into higher orders by writing renormalization group equa- R
tions. whereH,, is the one-electron Hamiltonian of isolated grains

If the tunneling conductance is not very larges 1, the including disorder within the grains
inequality (1.3) should be replaced by the inequality

. V2
T> 4. (1.4) Ho=f t//*(r)(—ﬁwLU(r))z/f(r)dr,

In the limit g<1, it is not possible to get any results by
summation of conventional diagrams and one should use the
phase functional. A very important result of Ref. 9 is that inb
the limit of not very low temperatures, Eq4.3), (1.4), the y
phase functional has a form similar to that suggested by Am-

begaokar, Eckern, and SaheAES) long agd® for a descrip- He= > t lAﬂlAﬁa'j , (2.2
tion of quantum dissipatidhin metals. ij,a.a’ “

hereU(r) is a random potential.
The tunneling of the electrons between the grains is given
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where the summation is performed over the states’ of We calculate the conductivity(w) using the Kubo for-
each grain(spin is conservedand over neighboring grains  mula and making an analytical continuation from Matsubara
andj. The possibility to tunnel from the state to an arbi-  frequenciesiQ,=2#inT to real frequencies».* Within
trary statea’ of other grains introduces an additional disor- this formalism the conductivityr(w) can be written in the
der resulting in a finite tunnel conductance. form

The term|:|C in Eqg. (2.2) describes the charging energy

o(w)

Y -CRN . 42

S CoIN. ia B
He=7 EU: NiCy ;- @3 I Ef drif dre' K q(ri— 1y, 7) :
23 ! 0 Q= —iwt+s
In Eq. (2.3),
(2.9
N:f f/;*(r»)z:/;(r-)dr—ﬁ (2.4) wherea is a vector connecting the centers of neighboring

' e grainsi andi+a, a=|a|, andd is the dimensionality of the

array.

is the excess number of electrons in ille grain, N is the

dimensionless local potential, ai®} is the capacitance ma-

trix. The integration over in Egs.(2.1), (2.4) is performed K __(r, i)

over the grain with the coordinat®f the center and includes .

summation over the spin. = (1,1 1 7)— €28,y 8;8(7)(Hi(7)+H.c), (2.6
Equation(2.3) describes the long-range part of the Cou-

lomb interaction in the limit of weak disorder inside the

grains and has been used in many wdfks a review, se¥). A A

In principle, one could consider also a superconducting or Mo (rinrj37) = —(T o1, 1) (1},0)), 2.7)

magnetic part of the interaction within the dot but we assumeyq

that the grains are in the normal state. The long range part of

the Coulomb interaction, Eq2.3), describes the classical . . .

charging energy. This interaction can lead to the Coulomb HA(D= 2 ticaithmisa( Do (7). 2.9

blockade and to insulating macroscopic properties of the sys- e’

tem of the grains. L The abbreviation H.c. means a Hermitian conjugation.
Calculatlo_ns with the Hamiltoniahl, Eqs.(z.l, 2.3, can  The tunneling current operatd?ra(ri ,7) entering Eq.(2.7)
be replaced in a standard way by computation of a functionglyyas the standard form
integral over anticommuting fieldg(r;, 7).
Although the model described by Ed&.1, 2.3 contains Jr)=ie(A2—H.c) 2.9
only the long range part of the Coulomb interaction, it is still at R '
very complicated, because at very low temperatures interfeifhe first term in Eq(2.6) corresponds to a “paramagnetic”
ence becomes very important and one has to consider aontribution whereas the second one is of a “diamagnetic”
interplay of localization and interaction effects. One could doorigin.
this either using diagrammatic expansidns writing a non- In order to reduce the calculation of physical quantities to
linear o-model® Both methods allow one to consider the a computation of correlation functions with the AES action
limit of large tunneling conductanceg and the results are we decouple the interaction term, E@.3), by integration
strongly dependent on the dimensionality. However, the beever an additionaV;(7)
havior, Eq.(1.2) or (1.2) was not predicted for 3D in any of 5
these works. e S R.CIR
The model, Eqs(2.1), (2.3), becomes simpler if the tem- ex 2 4 i
peratureT is not very low such that low energy diffusion
modes are damped. As it was discussed in a recent . . —
publication? the granular metal can be well described at tem- ~ — f exp( _'Z f Lo (ri )ib(ri, T)dri = N]Vi(T)dT)
peraturesT>g4d, where § is the mean level spacing in a
single grain, by the Ambegaokar-Eckern-ScheAES)!° 1
functional of the free energy. =1, this condition should Xexp — 2e? .2 d7Vi(7)CyjVj(7)
be replaced byr> §. The limit of not very low temperatures :
not only simplifies the consideration but is interesting on itsanq then, following Refs. 15,9, remove this field fréig by
own because it leads to an unusual behavior of physicghe gauge transformation
guantities and is easily accessible experimentally. In particu-
lar, we will see that changing the tunneling c_onductagce W(r,, r)—e O y(r ), e(r)=Vi(r). (2.11
one may have a crossover from the exponential temperature
dependence of the resistivity to the logarithmic behaviorThis is not a trivial procedure, because the new fielgér)
(1.2. should obey, as before, the fermionic boundary condition

The functionK 45 In EqQ. (2.5 can be written as

where

DV  (2.10
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ri,7)=—y(ri, 7+ ), =1T. 2.1 1(R +i
v ) WrTtB). B 212 f(p)=(—sf In coshgz—_l_p—ln coshzi_l_ dé¢, (2.17
Let us forget for a while about the tunneling between the -R

grains an_d explain how one can proceed for the HamiltoniahereR is an energy in the rangB<R<eg. If p satisfies
H, of a single grain. N _ the inequality(2.14 we can deform the contour of integra-
Due to the boundary condition, E(.12), the fieldVi(7)  {jon when integrating with the first term in E¢2.17 and
cannot be completely removed frob, and this should be integrate first along the straight line-R,—R—ip), then
done approximately. The field;(7) can be represented as a along (—R—ip, R—ip) and, at last, alongR—ip, R). The

sum of a statid/; part and periodic functioV;(7) integral over the second segment cancels the second term in
the integrand in Eq(2.17) and we come to the result
~ B
Vi(T):VOi+Vi(T)! J Vi(T)dT:O. (213) p2
0 f(p)z—ﬁ. (21&

The static pari/,, can still be arbitrary and we rewrite it as . )
Using Egs.(2.16), (2.18 we can understand easily that the

Voi=2nTk+p;, —aT<p<aT, (2.14  main contribution in integrals ovelp comes from p
~(T8)Y2<T. Therefore, in the limiT> § the variablep can
whereki=0,£1,%2,... . safely be put to zero in all calculations and we come to a

If we neglectedp; we would be able to remow¥(7)  phase free energy functional containing only the phases
from Hgy. In this case we would use, instead of the phase%(T)’ Eq.(2.15. We see from this argument that introducing

¢(7) from Eq.(2.11), the phases(7) defined as the “winding numbers’k;, Egs.(2.15, (2.14), is unavoid-
_ able. The opposite limiT< 4 is more difficult and is not
di(7)=di(7)+ 27Tk, (2.19  considered in the present paper.

B . Thus, in the limitT> &, we are able to remove the effec-
where = < ¢;(7) <0, $i(0)=i(p). Itis clear that mak- voltage V;(7) from the single grain Hamiltoniai,

ing the gauge transformation, E¢.11), with the phases . . ) :

~ ) ST which means removing the Coulomb interaction. However,
¢i(7) instead ofg;(7), preserves the antiperiodicity of the e phases enter now the tunneling Hamiltorign Expand-
(), Eq.(2.12. ing in the tunneling termH;, Eq. (2.2), up to the second

The variablep; cannot generally be neglected. This term grqer we obtain the AE$Ref. 10 actionSin the standard
is not important only in the limiT> 6. In order to estimate 5,y

its contribution we can calculate the partition functid of
a single grain(normalized by the partition function of the S=S.+$, (2.19
system without interaction Carrying out the summation
over the Matsubara frequencies and making the gauge

transformation with the phase&(7), Eq. (2.15, we obtain

whereS, describes the charging energy

1 B dei(7) deb;
Se==5 > drcijm H(7) (2.20
ZP =expf(p), (2.16 2e2 9 Jo dr  dr
£ +ip £ B andS; stands for tunneling between the grains
f(p)=>, Incosh“z—_l_—lncoshﬁ —iNp, - -
a B , ol Pi(T) = (")
Si=mg 2 drd7 a(7—7')sirt| ——————|.
whereé, is the energy of the staie (the Fermi energygg is li=jl=a Jo 2

subtractel (2.22)
The sum ovew in Eq.(2.16 extends over all states of the . .
grain. However, the contribution of the states far from the The functiona(7) in Eq. (2.21) has the form

Fermi energy must be compensated by the local poterﬁals a(r)=TYRgsinnTr+is)] 12

As usual, an essential contribution comes from energies of ) , ) .
the orderT in the vicinity of the Fermi energy. The linear in N EGs.(2.19—(2.21), i andj stand for coordinates of grains

p term in the functionf (p), Eq. (2.16, must be absent due anda is the diameter of a grain. The dimensionless conduc-
= ’ ’ tanceg is given by
to the choice oiN.

A typical separation qf the energy levels is of the order g= 2wv§t§, (2.22
of the mean level spacing. At not very low temperatures
T> &, the sum oveir can be replaced by a proper integral wheret; is the tunneling amplitude from grainto grainj
over a continuous variablg (spin is includedland v, is the density of states of noninter-
acting electrons.

1 Calculation of different averages with the functiorfal
2;« *gf d¢ Egs.(2.19—(2.22), implies integration over;(7) and sum-
mation overk;. At largeg>1, one can put alk;=0. How-
and we write the functiori(p) in the form ever, atg<1 one should sum over a and neglecting the
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contribution of the nonzero winding numbers leads to incor=>maxgé,s}, used for the derivation of Eq$2.19—(2.24),
rect results. We emphasize that the AES free energy fundsecausé > 6 for 2D and 3D graingthe charging energl..
tional can be derived under the assumption that the temper#s inversely proportional to size of the grain, whifeis in-
tures are not very low, Eq$1.3), (1.4), and is applicable in  versely proportional to its volume

this limit only. At lower temperatures one would have to take At temperature§ <E., calculations are possible only in
into account interference effedter the discreteness of the the limiting caseg>1 andg<1 and this will be done in the

levels in single grains.

Using the Kubo formulag2.5—(2.9), we can express also
the conductivity in terms of the phases(r). After simple
manipulations we represent the conductivitfw) as

ia27d

o(w)= (2.23

Q ——iw+d

B
f dre'™nK(7)
0

K(7)=(X5(m) = 2 (Xid 1X5(0)),

B
Xg(T)Zezwgfo d7'[8(7)—6(7 —7)]a(7)
X cog biira(T)— biiral0)],
s L -
X%(T):eﬂ-gfo a(T—7")SI i irao(7") = Piiral(7)]dT.

In Egs.(2.23, &;(7) = ¢i(7) — ¢;(7) for i andj standing for
neighboring grains and

-1
f exp(— S)D?j)) ,
(2.29

whereD ¢ implies both the functional integration ovei( 7)
and summation over the winding numbégs
Equations(2.19—-(2.24) represent the conductivity(w)
in a closed form in terms of a functional integral. The con-
tribution of the functionX,(7) originates from the diamag-
netic term[the second term in Eq2.6)], whereas the corre-
lation function(X;X;) comes from the paramagnetic term
I1, Eq.(2.7) [the first term in Eq(2.6)]. Although the model
described by Eqgs(2.19—(2.24) is simpler than the initial
model (2.1)—(2.3), explicit formulas can be written only in
limiting cases.
If the temperaturd is very high, T>E.~e?C;;*, where

()= [ ¢ ex-sp3

E. is the electrostatic energy of adding one electron to a

grain, fluctuations of the phaségsare negligible and one can

set =0 in the expressions foX; and X, in Egs. (2.23.
Then, we obtain easily the conductivity

go=e%ga®" "

(2.25

Equation (2.25 describes the classical conductivity of the
granular metal without the Coulomb interaction and show
that at temperatures exceedify charging effects are not
important.

In the opposite limitT<E,, transport in the granulated

system has much more interesting characteristics. This in-

equality can be compatible with the inequality

subsequent sections. The same acBpkqgs.(2.19—(2.21),

was used in Ref. 16, and a metal-insulator transition has been
predicted in a 2D array of tunnel junctions. However, the
authors of Ref. 16 did not calculate the conductivity but dis-
cussed properties of the partition function. For laggthey

did not account for phase fluctuations properly which, as we
show here, are responsible for the behayio®). Moreover,

we find a transition in any dimensionality.

IIl. CONDUCTIVITY IN THE METALLIC REGIME
AT G>1

A. Perturbation theory

In the limit of large conductanceg>1, the tunneling
term(2.21) suppresses large fluctuationsef It is clear that
all nonzero winding numberk; can be neglected. Account-

ing for nonzerdk; (as well as variations dl;) would lead to
contributions of order exp{g), which can be neglected in
any expansion in fy. At the same time, the phase fluctua-
tions can change considerably the classical regufe5),
even in the limitg>1. Let us understand first the role of the
fluctuations within a perturbation theory ingl/The zeroth

order of the perturbation theofsll phasesp are set to zerno
gives for the conductivity the classical resui}, Eq. (2.25.
In order to consider higher orders we expand the ac8on
Egs.(2.19—(2.2)), in ¢.

The quadratic par$, of the actionSwill serve as the bare
action in the perturbation theory we want to develop now.
Keeping terms of the second ordergnin Egs.(2.19—-(2.21)
and performing Fourier transformation in both coordinates of
the grains and the imaginary time we reduce the acidm
the form

So=Tq2n banCand—q-n- (3.

Ggn=wi[4E(q)]+2g|w,| > (1-cosg-a), (3.2

whereE(q) =e?/[2C(q)] andC(q) is the Fourier transform
of the capacitance matri€; (q are quasimomenta for the
array of the grains One should sum in Ed3.1) overd unit
lattice vectorsa, whered is the dimensionality of the array.
If we kept only quadratic inp terms in the actiors but
did not expand the functioK,, Eq.(2.23, we would reduce

She correlation functiof X,,(Q,)) to the form

<Xg(9n)>0: Wezg foﬁa( 7—)(1_ eiQnT)e—éa(T)dT’
(3.3
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~ dq ga . w,r order terms of the expansion of the actiSnEgs. (2.19—
G (n=4Ta >, —ansinz—sinz—”, (2.21), in ¢ as well as the contribution of the correlation
wp=0 ) (2m) 2 2 function (X;X,), Eq.(2.23. Taking into account these con-
(34  tributions can be performed writing an expansion for the
Where<. . '>O means a\/eraging over the pha%g\”th the COI’ldUCtiVity in powers of :U The first three terms'(l) of
actionS,, Eq.(3.1), andw,=2mn. What remains to be done the expansion of the conductivity ingdl/icoming from the
in order to calculate the contributiot) to the conductivity ~ function(X;(w))o, Eg.(3.6) can be written as
is to compute the integral in Eq3.3) for the Matsubara
frequenciesQ), and make the analytical continuatidn,
— —lw+ 8. As it is clear from Eqs(3.2), (3.4), the function

G,(7) contains large logarithms IgE.7) and essentiat are

9E
T

9E
T

(3.9

2
)
+2In

cVog=1-a In(

of the order 1T. Therefore, we may calculate the integral for and we want to find now contribut_io_ns Qf the order upto
coming from({X;X,) and those originating fron$,, where

G,(7) with a logarithmic accuracy. Neglecting thef term S, contains terms of ordes* in the actionS, Egs. (2.19—

in G, Eq.(3.2), we reduce Eq(3.4) to the form 2.21.

T 2 1—codw,r) As_ concerns a contribution cpmjng from .the correlation
- n"’ (3.5 function (X;X;), the first nonvanishing term is of the order
dg o>o0 o o? and it does not contain powers of ¢fi./T). So, we ne-
glect the function{X,X;) and concentrate on the contribu-
tion to the function(X,(w)) coming from the anharmonic
artS, of the actionS It is clear from a power counting that
_higher order terms of the expansion®tead to contributions
containing higher powers af and we do not consider them

Gy(7)

In Eqg. (3.5 one should sum over positive Matsubara fre-
guencies up to the cutotb,~gE;. Equation(3.5 shows a
remarkable independence of the result on the structure of t
lattice. The only information about the lattice is the param
eter d entering Eq.(3.5). For the cubic lattice considered
here,d is the dimensionality of the array. However, for an now. _ . . .
arbitrary lattice the parametdris equal to the one half of the The 'OWeS‘ or der contrl_butlon coming ro8) is obtained
coordination number. What is also important, there are ndY averaging with the actioBy, Eq. (3.1), of a product of a
“infrared” divergencies in the integral ovey in any dimen- term ¢° taken fror_n the expansion 0fz, Eq.(2.23, andS,.
sionality including 2D and 1D. This is specific for the con- /A PTOPer expression can be written as
ductivity. We will see later that the tunnelling density of
statesy i_s sensitive_ to the di_mension_ality in the same ap- < 2 fﬁfﬁfﬁdrdrldﬂ(emnf—1)a(7-)a(71—7-1)
proximation due to infrared divergencies. ira Jo Jo Jo

As we are performing the calculations with the logarith-

mic accuracy, we may replaceby 1/T in the functionG,
and calculate the remaining integral ovein Eq. (3.3) ig-

X[ it ag,i(7) = bivag.i(0)]?

noring the dependence of the functi@y on 7. Then, we X[ b1 1 ai (7))~ i +ai(TD]*) (3.9
obtain 0
T \a After Fourier transforming the phases in both coordinates
(Xo(w))o=—1i wezg( 5 ) , (3.6  and time we can average easily with the aciBnEq.(3.1).
9% Then, Eq.(3.9) is reduced to the form
where
= -1 1213 GE. n,Gq,n,l@M—12 ]| [e'9a-1]2
a=(2mgd) "L, (3.7 a,w,qlE,qz,cb 2,.n,Ga, 0, 211 |

This form of the correlation functiofX,(w)) would lead 8
to the power law dependence of the conductivity on tempera- X f (e"—1)|e Tem—1|2a(71)dT
ture of the form of Eq(1.1). A similar result has been ob- 0
tained for the voltage dependence of the conductance of a 8 _
single junction in a model with an electromagnetic xf |1—e'®“n17
environment”8 If Eq. (1.1) were the final result of our 0

calculations we could argue that, in the model under consid-

eration, fluctuations of the phases and, hence, of the voltagégte.gg?ls OXerT Cg;fas'¥hbel CS.ICUIatfd byt'changlngt t'o' tTe
in the grains are equivalent to fluctuations in the electromag\-/arla esz=exp( 7). The la Ice integrations are trvial
netic environment of the workd:1 In other words, each &S well and we come to the contribution to the conductivity

(2) i
grain would be considered as surrounded by an effective méZ coming from Eq.(3.9
dium of other grains and the voltage fluctuations of the me-

|2]1—e'“n2|2a(7)d . (3.10

2
dium would lead to the power lal.1). /o= — o2 1 —_ “_mz(gEC)_
However, Eq.(3.6), is not the final result yet because we 0 ny>ny,>0 N1N; 2 T
have to calculate also the contribution coming from higher (3.11
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Adding the contributionss®) and o® we obtain for the The functiong;,, is not equal to zero in an interval of the

conductivity o in the limit «—0 frequencies & w<w., while the functionqsi(j(l), is finite in
the interval\ o, < w<w;, Where\ is in the interval G<A
[o] = <1. Integrating in the expression for the partition function
o=0p|1l—aln T (3.12
Z=f exp—S)D¢
We see that the terms of the ordefin?(gE./T) in ¢* and >

(2) _ —
o’ cancel each other and the accuracy of Ej12 ex over the functionq&i(j(l), we come to a new actio8 with the

ceedsa In(gE./T). We emphasize again that, in this approxi- i . )
mation, there is no dependence on the structure of the Iattic%:tr?;f tﬁg;.ctﬁ)Ubsﬂtui??erErg.s(&ig dlrr;tt(i)c Iizqio()&}r?iewreateir)\(
of the grains except that the dimensionalione half of the P 0) : % up q By grating
coordination numbgrd enterse, Eq. (3.7). However, this over ¢, is straightforward and we obtain !\nth the logarith-
property holds only for contributions of the type mic accuracy a renormalized effective actign
a"In"(gE./T). Terms with lower powers of logarithms de- Y
pend on the structure of the lattice in a more 2complicated S =2mg 2 f f drdr a(7—1')
way. The cancellation of the terms of the ordein?(gE./T) li-7=1 Jo Jo
when calculatingo, Eq. (3.12, is not accidental and we ,
want to demonstrate this within a renormalization group ir2 $i (1)~ #ii(7) ¢

X Si 1 , (3.19
(RG) scheme. 2 2mgd

whereé=—In\.
B. Renormalization group We see from EQq(3.195 that the form of the action is
In order to sum up the logarithmic corrections to the con-éProduced for any dimensionality of the lattice of the
ductivity we use RG arguments suggested for a onedrains. This allows us to write immediately the following
dimensional inverse squadéY model long ag® and used 'énermalization group equation
later in a number of work®’-?*We assume that the tunnel

conductance is larggg>1 and therefore we use the phases (?g_(g)z — i (3.16
¢ neglecting the winding numbers. As the starting functional 2 2md

we take the tunneling actio® The solution of Eq(3.16) is simple. Neglecting the Coulomb

interaction in the actiors;, Eq. (3.13), is justified only for
_ B (B , , energies smaller thagE, and this energy is the upper cutoff.

S‘_Trg“,%:a JO jo drdr’a(r=1") Then the renormalized conductang€T) takes the form
[ Pi(1)— (") _ 1  9E
X sir? - | (3.13 g(T)=g >d In T (3.17

This action contains the conductarg;avhich determines the and we come to Eq3.12 for conductivity. Both the quan-

conductivityo. The charging parg. is not important for the t|t|?Es degen(dsc;r%the t&mpeija_turti Iogarltlhm|cally. imati
renormalization group because it determines only the upper quation(s.1/) IS obtained in th€ one 'oop approximation

cutoff of integrations over frequencies. In the lifit-0 the and shoulql be valid so long as the effective conduptance
function « is proportional to ¢— )2 and the action is g(T) remains much larger than 1. Therefore, E8.12 is

dimensionless. also more than a result of the perturbation theory and is valid

Following standard RG arguments we want to find how®" ?/@0>1/9. This gives the necessary condition for the
the form of the actionS, changes under changing cutoffs. applicability of Egs.(3.12, (3.17)

Generally speaking, it is not guaranteed that after integrating 1—(27dg) !n(gE,/T)>1/g. (3.18
over the phaseg in an interval of frequencies one comes to ¢
the same function S?ﬂs in the action. The form of the func- However, the Conditi0m3_18) is not sufficient for the ap-

tional may change, which would lead to a functional renor-pjicability of Egs.(3.12), (3.17) because the AES action may
malization group. In the present case appearance of terme used only in the limit

sirf2¢, sif4¢, etc., is not excluded and, indeed, they are
generated in many loop approximations of the RG. Fortu- T>gé. (3.19

nately, the one loop approximation is simpler and the renorif h q he i f1h .
malization in this order results in a change of the effective the conductancg or the size of the grains are not very
coupling constang only. large the condition(3.19 can become stronger than Eg.

To derive the RG equation we represent the phase (3.18).'Then, at lower temperatures one should takg into ac-
the form count interference effects and, depending on the dimension-
ality d of the array, both metal and insulating states are pos-
0), sible. In contrast, Eqs(3.12, (3.17, are valid in any
b= PijoT Dijw- (3.19  dimensionality.
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Actually, in the main approximation the acti®contains cludes summation over the winding numbkys The princi-
only the phase differences;(7) that can be considered as pal value of the integral over is implied in Eq.(4.3).
variables on sites of a lattice dual to the original one. These Calculation of DOS is quite different from that for the

sites are not qoupled in this a_pproximation with each Othef:onductivity because E@4.3) contains the phasgﬁ(q.) cor-
and this explains why we obtained the same results as thoggsponding to the grairi but not the phase differences
for one contact. Taking into account the charging en&gy Zbij(r). This can lead to a nontrivial dependence of the final
Eqg. (2.20, couples the sites and the structure of the Iattlceresult on the dimensionalitgt of the lattice
may become important in next orders of the renormalization In the limit of largeg>1 we expand as' when calculating
group equations. the conductivity, the functional, E s 2.19-(2.2), in
One can check that the contribution coming from the COr-y (7). If d=3 gﬁe should expar?d i¢0(|7_') (bétk?)ﬂfeiacj:)tiors
relator of the function, in Eqs.(2.23) contain; additiongl a#d the exponential in Ed4.3). The reason is the same as
p_owelrs_ of 1¢ a_nd can be rr]\eglﬁcted n lthepr(nz)a(un e_lppEroxma-for calculation of the conductivity: all terms of the expansion
tion. Itis very 'f.“p"”a’),t that the corre atg 1 1.> 'T as. give additional logarithms and there is no reason to keep in
(2.23 representing the “paramagnetic contribution” contains o 4 ction only quadratic terms and at the same time not to
a summation ovey, which corresponds to the zero quasimo- expand the exponential in E@L.3). Therefore in the 3D case

menltéjm. of the funcnorjf(. Kﬁepmg Xy Ilnegrv\;cerrlw;shmqﬁ one can expect logarithmic corrections to the tunneling den-
\k/)vou gl|<ve zero even | anf armonic tzrms h ouid have sity of states with coefficients depending on the structure of
een taken into account. If we carried out the computationg |atice. Making analytical continuation onto real energies

for a single grain the contribution from th&X,X;) would ' \ve can write the tunneling density of stategs) in 3D in
not be smaller than that coming fro(X,). the main approximation as
It is very important to note that we use the linear response

theory for the calculation of the conductivity assuming that

the external electric field is homogeneous. This contrasts cal- va(e)= VoTJ
culation of the conductance for a single contact. In our cal- 0
culations we do not obtain a contribution to the conductivitywhere

corresponding to the inelastic cotunneling known for single

dots?® This is natural because in the problem considered the

ienT

SinWTT[l_G(T)]dT’ (4.4

d

wnT
) : . - _ d c2%n
inelastic cotunnelling can occur only through the entire sys- G(r)=2Ta w2>0 (ZW)dansmz 2 (4.5
tem. This would lead to contributions exponentially small in "
the size of the system. andGg, is given by Eq.(3.2). . o
Calculating the sum ovew,, with the logarithmic accu-
IV. TUNNELING DENSITY OF STATES AT G>1 racy and making the analytical continuation we obtain

The tunneling density of statéBOS) v;(¢) in the graini
can be introduced in a standard way through the retarded v3(e)=ro
single particle Green functioﬁ;{?(s) with both the coordi-
nates in the graim. As we use here the imaginary time rep- Where
resentation we calculate first the temperature Green function 33
Gi(7) at Matsubara frequencies,= 7 T(2n+1). This leads A:f a“dq 1 @7

to a functionz;(e,,) (2m)? 1— a
Ea: (1—cosq-a)

1_

, (4.6

A ( 9E.
47g In max(T,s))

vilen)=—m lf d7e'“n"Gi(7). (4.2) Equation(4.6) shows that the density of stateg(e) of
_ _ _ the 3D array of the grains has a logarithmic dependence on
The DOSv;(&) can be found by the analytical continuation temperature like the conductivity, Eq. (3.12. However, in
- contrast to the latter, E@4.7) is valid only if the logarithmic
vi(e)=Imlvi(en)|s ——ie+sl- (4.2 term is much smaller than 1.
. ) ~ The situation is more interesting in one and two dimen-
Followmg the same procedure as the one used in the previjgnal systems. In this cases the integral ayén Eq. (4.7)
ous sections we perform the gauge transformat@il),  formally diverges, which means that one should take into

reducing the calculation to integration over the phag€s).  sccount theo? term in the functiorG,, Eq.(3.2). This term

As a result, we obtain for the functio}](sn) cuts the infrared divergency in the integral owgbut one
: obtains in the density of states a stronger singularity,ih
~ en’ N than the one in 3D, Eq4.6).
Vi(sn)_VOTfo d7 oo (exp—ilei(7) = ¢i(0)]}), Fortunately, this makes the calculation even easier and

4.3 allows us to obtain explicit results in the nonperturbative
] ) regime when the DOS considerably deviates fregn This
where the symbo{- - -) means as before averaging with the simpilification is due to the fact that the strongest singularities
actionS, Egs.(2.19—(2.21) and integration ovekp;(7) in-  come from the expansion ig;(7) of the exponential in Eq.
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(4.3). The anomalous contributions originating from snwall  for the correction to the conductivitg8.12). This is quite
arise in the expansion aof; but cancel each other in the natural because at not very low temperatures weak localiza-
contributions coming from expansions ith;(7) = ¢;(7) tion corrections are suppressed but the Altshuler-Aronov cor-
— ¢;(7) in the actionS;, Eq.(2.21). Therefore, expanding in  rections still give important contributions. Actually, the func-
¢ij(7) one obtains usual logarithmic contributions of thetion Iwanq, Eq. (3.2), is just the Coulomb propagator
type[g In(gE./T)]", which allows us to keep in the actidh screened by the electron-electron interaction. In other words,

only quadratic ing;(7) terms. the theory developed in the previous sectionsgerl start-
Then the integration ovep(7) in Eg. (4.3) can easily be ing from the AES action is another way of calculation of the
carried out and we obtain for the low dimensions Altshuler-Aronov corrections for the granular systems. These
calculations could be performed diagrammatically, although

B e'en” establishing the nonperturbative results for both the conduc-
v(e)= VOTJO snaT, XA G(n]dr. (48 tivity (3.17 and the DOS4.9) would be considerably more
difficult. Clearly, the actionS described by Eqgs(2.19-
It is clear that the singularity in the exponent in E4.8) is  (2.21) may not be used at zero temperature and the dissipa-
stronger than logarithmic and this justifies the approximatiortion resulting from this action is not a zero temperature
used in the derivation. effect.

In the most interesting case of a 2D array of the granules If the tunnel conductancg becomes of the order of 1 or
both the summation over the frequencies and integratiosmaller diagrammatic expansions are no longer helpful and
over the momentg give logarithms and we come to the final calculations without the phase functional, E@&19—(2.21),
result are hardly possible. In this regime a proper account of non-

zero winding numbek; is very important. In the next section
we show how calculations can be carried out in the limit of
(4.9 weak coupling constang<<1.

9E. )
maxe,T)) |’

(&) ! In
vole)=rpgexm — n
2 0 16m2g

Equation(4.9) is valid down to max¢,T)~gé when the de-
scription in terms of the phase functiong| Egs. (2.19—
(2.2, is still applicable. Equation(4.9) perfectly agrees A. Phase correlation function
with the corresponding result obtained long ago for disor-
dered films using a replica model® This result was repro-
duced for disordered films in a number of subsequen
publicationg®~2° using different approaches. The strong
anomaly in the exponent in E¢4.9) is due to the fact that
the one_particle Green function is not gauge invar?aﬁhe fable to consider the model for arbitragy we restrict our-
singularity is formed by almost pure gauge fluctuations o elves with the limit of smal<1.

the electric fields. Gauge-invariant characteristics such ad .
conductivity are not influenced by such fluctuations and We will see that the temperature dependence of both the

therefore are less anomalous. conductivity and the DOS becomes exponential in this limit.

The applicability of Eq(4.9) not only for disordered films This means that increasing the tunneling amplitude at a fixed

but also for the granular systems at not very low tempera:r we go from the almost metallic regime to an insulating

tures shows that the result is very robust. In contrast, th&"e-: This can be achlevgd expgrlmentally .changlng the cou-
dependence of the conductivity on temperature, Ej42— pling betwgen the grains while measuring at the same
(3.17, cannot be used for very low temperatures or disor_temperatur :

dered “homogeneous systems.” The formal reason for this Cf:alculgtlon of dphystlrc]alfquatntltlels. E’;t sm?jKl czag .be
difference is quite clear: the main contribution to the conducPerormed expanding the functional integralin £2.24) in

vty comes from momentaa ', whereas the main con- €N PR, SR SR EHET SRR SRR
tribution to the density of states comes from snupda 1. . i )
y the function(X,(7)) in Eq.(2.23). As concerns the tunneling

The latter limit is not sensitive to the structure of the system .
at short distances. density of states we can use as before(Bd). In the lowest

The coefficient in front of 1A is somewhat different than order one can completely negle${ in the both formulas.

that of the recent work® This is because we assumed thatThen' the calculation of the DO@".?’) reduces to computa-

E(qg) remains finite in the limit ofj— 0 (there is a screening tion of the phase correlation functidii(7)

in the system In the integral overg in Egs. (4.5, (3.2,

essential n:la)_2 were of the order otw/gE;. In c_ontrast,. if H(q-):<exp{_i[(}i(ﬂr)_ggi(())]pS , (5.2

one starts with a nonscreened 2D Coulomb interactign ¢

=2me?/q, the essential] are proportional tow and this -

increases the coefficient by the factor of 2. where the phaseg;(r) are introduced in Eq(2.19, S; is
The first term of the expansion of the exponential in Eq.9iven by Eq.(2.20 and the averaging should be performed

(4.9 is just the Altshuler-Aronov correction genera”zed to with this functional. As concerns the conductivity, we need a

the case of the granular mefaDf course, the same is true slightly different correlation functiod ()

V. WEAK COUPLING BETWEEN THE GRAINS

Study of the granular system described by the acBpn
gs.(2.19-(2.23, for an arbitrary conductanagis difficult.
he logarithmic behaviof3.17) describes the conductivity
of the granular system at sufficiently large=1. Equations
(4.6)—(4.9) are also applicable only in this limit. Not being
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TT( )= il () — where Z, is the normalization factor that can be obtained
H(m)=(exp =il y(m) = ¢y(0) s, ®2 putting 7=0 in the integral in the second line of E(5.8)
The phase correlation functiol (7) is somewhat simpler and Dx=II;dx;. Summation over all integersy; for all
and let us show in detail how to calculate it. A proper modi-grains is implied. The integration ove should be per-
fication forf1(7) is simple. formed in the infinite limits and the integral in E(5.8) can
The computation of the average in E§.1) can be per- be easily calculated. Substituting the result of the integration
formed using two different methods. A more straightforwardinto EQ. (5.6) and using Eq.(5.7) we find for the phase

way of calculating is to use the definition @f(7), Eq. correlation functionl1(7)

(2.15, which allows us to represent the actiSpas
H(T):Z_lexq— BiiT)

Se=Sc[ ]+ Scl kI, (5.3
» exr{ -2 2mmByi— B2, Bymam; |,
SI81=+ S i 6, (5.4 " k .

L PIT g & Pinn vy ' (5.9
where allm; are integers and is the normalization coeffi-

SKI=T#2Y k(B Yk, (5.5  cient[II1(0)=1]. The quantityB; in Eq. (5.9 is the charg-
! ing energy of an extra electron in a grdifn an otherwise

where _neutral system v_vithout exqitations. T_he necessary periodicity
in 7 of the functionII(7) with the periodg is evident from
e? . Eqg. (5.9. The final result for the phase correlation function
Bjj=—5 (C j. I1(7), Eq. (5.9, is essentially different from Eq5.7) ob-

tained by neglecting the contribution of nonzero winding
Writing Egs. (5.4), (5.5 we neglected integration over the numbers. The exponent contains only linear 7interms,
variablesp; from Eq.(2.14). As we have discussed in Sec. I, which contrasts E(5.7).
in the limit T>4§ the main contribution comes from Actually, the form of Eq.(5.9) is absolutely natural and
~(T8)¥2 and we can simply put in all expressiops=0. can be obtained using the standard quantum mechanical for-
Using Egs(5.3—(5.5 one can carry out integration over the malism instead of calculating the functional integrals in Eq.
phase¢ and summation over the winding numbers sepa<{5.1). Within this formalism velocities in the action in the
rately. The phase correlation functidh( 7) can be written as  functional integral should be replaced by the corresponding
momentum operators in the Hamiltonian. So, instead of hav-
_ TRy o ing the derivativesi¢/d7 in the actionS;, Eqg. (2.20, one
M(n) = (XA =il (1)~ SO ]} o it ka'TT)>(k5' g Wwould have to write the operatords. The presence of
' winding numbers in the action introduces periodicity. As a

Integrating over the phasg;() we obtain for 6<7<p. result, the corresponding angle variablésin the Hamil-
tonian formulation should be taken in the interf/@)27] and
(exp{—i[ &i(7)— #i(0)]}) y=exd — Bi(7—T7)]. all wave functions of the Hamiltonian must be periodicgin

(5.7 with the period 2r.
_ _ _ As the result, the calculation of the phase correlation

quJ«'cl'[I0ﬂ(5-723 was used for the functiohl(7) in many  functionIl(7), Eq.(5.1), reduces to calculation of quantum
previous works However, Eq(5.7) is not the final result - achanical averages with the effective Hamiltonfag
because the functiohl(7), Eq. (5.6), contains the second
average and, in addition to integrating ov&(7), one must
sum over the winding numbeis. Ho=> B:nn . n=—idldd: 5.1

Calculation of the second average in H§.6) can be ef §u: iPiPy P i (510

erformed using the Poisson formula
P using ! a where the “angles’; vary between 0 and2. The correla-

o o " tion functionII(7) can be written in the form
> f(2mk)= x > e'™Xf(x)dx
k=—o 2 =—

aa m oo} — 00 R ~ ~ ~ ~
H(T):<efl(¢i(f)*¢i(0))>ﬁeﬁ' oi(7)=eHei h.e ™ Hef”,
for any functionf(x). As a result, we rewrite the second (5.11

average in Eq(5.6) as .
In order to calculate the average with; in Eq. (5.1

. _ T one should find eigenfunctionk, ., of the HamiltoniarH
_ . =71 . (B~ 1. 9 {n} eff s
(expl = 2miki7T) =2 {%‘} ex;{ 45 X(B i Eqg. (5.10. These eigenfunctions have the simple form
+i; xj(mj—TTaij))Dx, (5.9 W=11 explini#), (5.12)
I
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wheren; are integers. Calculating the matrix elements enter- _ _
ing Eq.(5.11) and performing summation over all states with vi(e)=ivg
the weight exp{ E;}/T), whereE,,,, are eigenenergies of the

Hamiltonianﬂeﬁ, Eqg. (5.10, we come to Eq(5.9). 1 .
The operatorg; and ¢; are conjugate to each other with Xz {%} ex _ﬁ% kak'm'_Z't; MiBi | |

the commutator

expl—ent)

1—2TfO dtsinr(rth) sin(tB;)

(5.19

[;,i L bi]=—i. Now the analytical continuation can be done easily. Taking

the imaginary part of the function according to Eq(4.2

Therefore we can alternatively write the operatggsas ¢; ~ and using the integral

=0/ dp;. The eigenvalues of the operajgrare integers. The

IS a
operator expfig¢) acts as du= ztanhz

o Sinh7ru 2 2

J'w sinau 1

exp=id)f(p)=expFaldp)f(p)=Ff(p=1). (5.13  we obtain for the density of stateqe)

This gives another convenient way of calculation of the

quantum mechanical averages. v(e)
The use of the Hamiltonian formalism for calculation of e

functional integrals over the phageof the superconducting

order parameter has been suggested in an earlier work on

granulated superconductaf®within this approach the effec- e+B;— 2§k: my By

tive HamiltonianA ¢, Eq. (5.10, was derived for the opera- X|n
tor p of the number of Cooper pairs and the phase correlation
functionIl(7), Eq.(5.9), has been obtained. As concerns the
normal metals the correct form of the phase correlation func- —e+B;+ 22 My By
tionII(7), Eq.(5.9), has been written for the first time in our +n K ’
previous papel? T

The present consideration demonstrates explicitly that aG here
counting for the winding numbers leads to the charge quan-
tization. The functionl1(7), Eq. (5.2), can be calculated in
the same way and can be written as %: mBm,

Z= exp| - ——— (5.17
{mg T

> mBym,
q

=71 expl - ————
Vo {;k} P T

T

(5.1

f(7)=2exp —B%r)
and

X exp( —; 27mM(Byi+a— Bki)_:BJZIle mm f,

{m}

n(x)=
(5.14 e*+1

h a_ is th ¢ is the Fermi distribution function. In Eq&5.16), (5.17) sum-
whereBi=B;+ B ai+a=Biira=Birai IS the energy of an  a4i6n over all positive and negative integeg should be
electron-hole excitation between neighboring graarsj performed.

—i. As the array of the grains is regular we omit the sub- Te fynctiony(e) is even in the energy and approaches
s~,cr|pt5|,j when writing the corielatlon functionH(7) and 1 iy the limits T—o or || —o0. At low temperaturesT
LI(7). The functionslI(7) andII(7) allow us to calculate <B;,|¢| and|e|<B; the main contribution comes from the

the tunneling density of states and the conductivity usingyround state configuration when afi,=0. In this limit we
Egs.(4.3 and(2.23. obtain

B. Tunneling density of states atg<1 v(e) _ > ex;{ _ E) COSh;, (5.18
Substituting Eq(5.9) into Eq. (4.3) we have to calculate Yo T

the remaining integral over and perform the analytical con- \hereB=B;;. Equation(5.18 demonstrates that there is a

tinuatione,— —ie+ 4. Itis convenient to shift the contour gap in the density of states and this gap is equal to the single

of the integration and integrate first along the Iinei@, electron Charging energy of the grain_ Of course, @16)

then along {,i+ g), and finally along {*+,8). The  corresponds to a fixed chemical potential in the grain, which

integral over the second segment vanishes and we reduce thgans that the grain is not completely isolated and there are

function v(e,), Eq. (4.3, to the form processes that keep the chemical potential fixed.
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One can easily generalize E.16) to the case when an w0
additional voltage is present in each grain. Writing the effec- o=0y 1—277Tf dt
tive chemical potential; of a graini as 0

sin(th‘)ciam) ,
(5.20

sink (7 Tt)

Mi=M+2Z N;B; where
: =z exP(‘ﬁE kakIml>
we can generalize Eq5.16) by replacing everywheren, {my} N
—m,+Ny. If N is randomly distributed over the grains one
should carry out an additional averaging over this variable. ><cos( 2t My (By i+a— Bxi)
This is beyond the scope of the present paper. k

To the best of our knowledge, E€5.16 has not been 7 s given by Eq(5.17) and o, is the classical conductivity,
written before, although it clearly follows from the “ortho- Eq. (2.25). Calculation of the integral overin Eq. (5.20 can
dox theory” of the Coulomb blockad®. The latter can be easily be performed using the formula
seen from the fact that the one particle gagtof the Hamil-
tonian, Eq.(2.1) commutes with the ternH., Eq. (2.3), f”d usin(au)
describing the charging energy. This means that in the ab-
sence of tunneling between the grains the charging energy
should be simply added to the Fermi energy for noninteract-

. (521

1
=—[1-f(a)], (5.22

0 usinf?(rru) 2m

(a—l)e 3+e 2

ing particles. Equatiof5.16) clearly corresponds to this pic- f(a)=2 ,
ture. For an arbitrary configuratiojm,} of charges on the (1-e®)?
grains the energy of adding one electitmle) to a grain is and we obtain finally
equal to
=092 1D, exg — mBym

Btzg m,By . T=00 {%} P( ﬁ% kB |)
We see that just this energy enters the Fermi distribution xf| 8| B2+ 22 M(By it _Bki)) . (5.23
functions in Eq.(5.16 shifting the Fermi energy. The expo- ' K e

nential in Eq.(5.16) is the weight for the configuration of the

charges in the system and two Fermi functions describe con- \\e see from Eq(5.23 that, in order to get an explicit
tributions of electrons and holes. Although the direct deriva'expression for the conductivity, one should sum again over
tion “in the electron language” would be simpler, the presenty|| charge configurationgln Eq. (5.23 the conductivity is
calculation demonstrates explicitly how the phase functionat|cyjated between the grainandi+a).

S, EQ.(2.20, works. We emphasize that without the SUm-  The |imit of high temperature¥ exceeding the charging
mation over the winding numbers the correct result could Nognergies can be obtained using the propef®)— 1 when

be (and has not begrobtained. a—0. In this limit we come tar= o, which demonstrates
. that as soon as the Coulomb energy is not important the
C. Conductivity at g<1 transport is described by the Drude formula.

Calculation for the conductivity can be performed in the _In the opposite limit,T<B, the main contribution in Eq.
same way as for the tunneling density of states. It is impor{5.23 comes from charge configurations with the lowest
tant that in the limitg<1 the main contribution comes from charging energies. For the calculation of the conductivity we
the termX, in Eq. (2.23. The contribution coming from the @IS0 need the asymptotics of the functibfa) in the limit
term X, is of higher order ing and we neglect it. Then, the @—. In this limit we may write this function as
Fourier transformed response functi&{Q,), Eq. (2.23,
takes the form f(a)=2aexp —a). (5.29

1—expiQ, 7).~ As when calculating the tunneling density of states, we
WH(T% (5.19 consider first the contribution of the ground state configura-
tion with all m;=0. However, in contrast to the tunneling
where, again, the principal value of the integral should belensity of states, this configuration gives not necessarily the
taken. main contribution because it contains a large en@fpf a
Shifting the contour of integration overin the same way dipole consisting of an additional electron in the graand
as it has been done when calculating the tunnelling densitg hole in the grairi+a (or vice versa The energy of this
of states we can perform the analytical continuat@dy  dipole is equal to B if we neglect nondiagond;; . If non-
—io+ 4. In the limit of small frequencies we expand the diagonal component8; are not equal to zero the dipole
integral inw. The first nonvanishing term is linear immand  energy is smaller but we assume that it is larger than the
we reduce the formulas for the conductivity using Eqs. charging energy of one electr@ Physically, this contribu-
(2.23, (2.25 to the form tion corresponds to transport in a completely neutral grains.

B
K(Qn)zzweZgTzf dr
0
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In order to contribute to the current an electron must jumpany magnetic field, which distinguishes it from the weak
from one grain to another. However, this costs an energyocalization correction. The logarithm in Eg8.12, (3.17
which is just the dipole energ{. So, the contribution is not just a small correction and these formulas are appli-
of the ground state configuration can be estimated asable until the conductance becomes of order urityis
exp(—BYT) and we want to show that a larger contribution important that the conductivity and not the resistivity is lin-
exists. ear in the logarithm of the temperatyre.

The most efficient process contributing to the current is In contrast to the conductivity, the tunneling density of
when an additional charge exists in a grain but all otheistatesv(¢) is dependent on the dimensionaliyof the sys-
grains are neutral. Then, jumping from grain to grain costdéem in a nontrivial way in the limig>1. In 3D it has a
no energy. As such a configuration is not the ground statdpgarithmic correction, Eq4.6), but is described by a more
the probability to have this state is proportional to expcomplicated formuld4.9) in 2D. This formula is well known
(—B/T). However, the overall contribution to the conductiv- for disordered film&?® where it was obtained within the
ity is in this case larger becau8e<B?. o-model approach. We see that the same formula is valid for

This picture clearly follows from Eq5.23. Two configu-  the granular metal at not very low temperatures and it can be
rations give the main contribution @ in Eq. (5.23. We can  obtained withouio models.
put m=1 atk=i andm=0 for all k#i or m,=—1 for In the limit of a low coupling between the grains both the
k=i+a and m,=0 for all k#i+a. In both the cases the tunneling density of states and the conductivity are exponen-
argument of the functiofiin Eq. (5.23 is equal to zero and tially small, Egs.(5.18), (5.29. This is due to a finite charg-

we obtain for the conductivity at low temperatures ing energy arising when the electron tunnels from one to
another grain. Although the results in the limit of vanishing

are rather simple, it was important to derive them from the
AES phase functional with a proper summation over the

Equation(5.25 shows that in the limit of small couplings winding numbers. This way of calculations is very close to
between the graing the macroscopic conductivity is expo- the one suggested previously for granular superconpll_ﬁors.
nentially small in temperature. This is a typical example ofln Some experimentshe dependence of the conductivity on
an activation process. temperature is described not by the activation type formulas

Of course, the exponential behavior of the physical quanbut by the function expfa/\T). This dependence may
tities, Eqs.(5.18), (5.25, was derived under the assumption originate from fluctuations of the charging energy of the
that all the grains are mesoscopically eq(taey have the grans.
same size and shape but may have small irregularities differ- Comparing Eqs(3.12, (4.6), (4.9) obtained in the limit
ent for different grains In real samples the shape and the9>1 with Egs.(5.18), (5.2 derived forg<1 we conclude
size may vary and qualitative estimates show that instead dhat there must be a considerable change of the temperature

the activation law a dependence of the type ex#l(\T) can  behavior of the physical quantities when changing the cou-
be more proper for this cas?. pling between the grains. Of course, this cannot be a sharp

transition because we consider the limit of finite tempera-
tures and cannot extrapolate the resultsTte0. However,
tuning the coupling experimentally at a given temperature
We studied effects of the Coulomb interaction on the con-one may see the change of the regimes that would look simi-
ductivity o and tunneling density of statege) of granular  lar to a “metal-insulator” transition. We emphasize that this
metals. Calculations with the Hamiltonian for interacting “transition” should occur in any dimension of the array of
electrons were reduced to calculation of functional integralghe grains.
with a phase action of a form proposed by Ambegaokar, It is not clear from the present consideration whether
Eckern, and Sche'® This action has been derived recently there should be a sharp transition from the metallic to the
for the granular systems microscopicallwhich allowed us insulator state at a critical valug, and this is a definitely
to clarify conditions for its applicability. These conditions, interesting problem for a further investigation. This problem
Egs. (1.3, (1.4), correspond to the limit of not very low is closely related to the question whether the activation en-
temperatures, such that weak localization effects are sugergy (Coulomb gapturns to zero or has a jump g&=g..
pressed. In the limit of large tunneling conductangethe The model of the granular metal may be used to describe
results obtained with AES functional correspond todisordered electron systems at low electron density. In such
Altshuler-Aronov correctior’sand could be calculated dia- systems electrons can spend a considerable time in traps or
grammatically(although this way of calculations would be “puddles”that can be due to strong fluctuations of a disorder
more complicated At smallerg nonzero winding numbers potential. Considering such systems with the model of a
become very important and we developed a proper schengranular metal may be a reasonable approximation. In this
of calculations. case, potential wells where electrons are trapped would cor-
Although the interference effects leading to localizationrespond to the grains in the model of the granular metal.
corrections are neglected at such temperatures, interesting The model considered in the present paper and the results
effects occur. In the limit of largg a logarithmic dependence obtained can be relevant to many experiments on different
of the conductivityo on temperature, Eq3.12), is obtained. materials. Of course, specially prepared granular metals such
Egs. (3.12, (3.17) are applicable in any dimension and at as those considered in Refs. 7,32,33 should be the first object

o=20yexp(—BI/T). (5.2

VI. DISCUSSION
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of the application of the theory developed. As the model and R=RyIn(Ty/T) (6.2
the results obtained are quite robust, one can expect that the
corresponding phenomena have been observed in the granu-
lar materials. which is close to Eq91.1), (1.2) if the temperature interval
This is really so and many experimental data can be exis not very large such that the variation of the resistivity is
plained in the framework of our model. First, let us make asmall. However, the law6.1), gave a good description for
comparison of our theory with experimental results of Ref. 7the temperature dependence of the resistivity in a very broad
on films made of Al grains embedded in an amorphous Geegion and the changing of the resistivity was not small. The
matrix. At low temperature superconductivity of in Al grains reason for the applicability of E¢6.1) in a so broad interval
was destroyed by a strong magnetic field. Depending on thgf temperatures is not clear because according to the results
coupling between the grairiextracted from the conductivity of the renormalization group analysis of Sec. Il not the re-
at room temperaturgshe samples of the experiméntere  gjstivity but the conductivity should obey E¢6.1). A more
macroscopically either in an insulating state with the tem-g eyl experimental study might clarify this question. Any-
perature dependence of the resistiRy exp@T"?) or in a way, the logarithmic behavior of Refs. 7,33 remained unex-

‘(‘jmetal(ljic';jone:[ Howevfr, the :jetsri]stivit)t/hof the metalli(éi state plained at all and our work is the first attempt to construct a
epended on temperature and the authors suggestédl.Bg. theory of this effectan explanation in terms of weak local-

to describe this dependence. As the exporefdr the “me- ization corrections or the Kondo effect can be excluded im-

tallic” sample Was_s_mall We may argue that Bg.2) should mediately because the logarithmic temperature dependence
not be worse for fitting the experimental data. Then, we can

estimate the exponemt without using fitting parameters. was observed also in very strong magnetic fields and the

The sample of the experimértiad the room temperature systems were three d_imensio)aal .
resistivity R,=7.3x10"2 ) cm. The diameter of the grains The unusual logarithmic behavior of the tyge.]) has

was 126-20 A, which allows, using the valug/e?=4.1 been' ob_f,erved not only in “standard” granular. systems but
X 1630, to estimate the dimensionless tunnel conductivity as!SC in highT¢ cuprates at very strong magnetic fields. The
g=0.7. If we putd=2 in Eq. (3.7) we obtain@=0.116, first observation of thlsgsdependence was do_n_e on unglerdoped
which would perfectly agree with the experimental vatue L8 -xSKCUQ, crystals™ The superconductivity in this ex-
=0.117 from Eq(1.1). However, everything is not so simple Periment was suppressed with pulsed magnetic fields of 61 T.
because the films used in Ref. 7 were rather thick and, at firdt was found that both the in-plane resistivjiy, and out-of-
glance, one should us#=3. This would change the result plane resistivityp, diverged logarithmically with decreasing
by 30% making the agreement less exciting. Neverthelesghe temperature. This means again that a 3D effect was ob-
the value ofd in Eq. (3.7) corresponds rather to the half of served in a very strong magnetic field and traditional expla-
the contacts of a single grain than to the real dimensionalitynations such as localization or Kondo effect could not clarify
Therefore the experimental value af indicates that either the situation.
the grains are not closely packed such that the typical num- In a subsequent publicatitha metal-insulator crossover
ber of contacts per grain is 4 or our calculation is too roughwas observed in the same material at a Sr concentration near
to provide a quantitative agreement with the experiniéré  optimum doping x=0.16). In underdoped samples bath,
value ofa, Eqg.(3.7), is based on the assumptigi>1 but  andp. showed no evidence of saturation at low temperatures
the experimental value af is of order 1. and diverged as the logarithm of the temperature. The au-
The resistivity of samples with a high room temperatureiqrs called this state “insulator” in contrast to the state at
reS|st|V|1t/y (@ weak coupling between the graitehaved as gk doping where the resistivity did not have a pronounced
exp@T""?) rather than obeying the activation law, §.25. dependence on the temperature. It was conjectured in Ref. 36

According to Ref. 32 this can be attributed to a variation ofy, , yhe logarithmic behavior they observed might be related

the size of the grains or of the local potential. However, 30 the one seen in the experimhon granular NbN. This

model considered in Ref. 32 is rather special because thv?/ould demand a phase segregation throughout the under-

distance between the grains and the tunneling amplitude wa sped regime of LSCO. However, as no explanation had

assumed to be related to the charging energy in a certai . o o
way. The law ex#TY?) is rather common for granular ma- begn given for the_logarlthm|c beha_mor in Ref. 33, no expla-
nation has been given to the experimént§either. We hope

terials with weak couplingsee also, e.g., Ref. 3and the .
reason for such an universality is still not clear. A randomthat our results for the model of the granular materials may

hopping conduction mechanism of Ref. 34 suggested foP® appglé:geble ‘to the experiments on the, LgSrCuO,
semiconductors can hardly be used for the granular metals¢rystals;>>which would mean that the underdoped crystals
A logarithmic dependence of the resistivity on tempera-nave a granular structure and the logarithmic behavior is due
ture has been observed in other granular materials. In Ref. 3® the Coulomb interaction. The transition to the metallic
a granular cermet consisting of NbN grains in a boron nitridestate of Refs. 35,36 would mean that at higher doping the
insulating matrix was studied. Again, at small coupling be-granularity disappears.
tween the grains the temperature dependence of the resistiv- The logarithmic dependence of the resistivity on tempera-
ity exp@TY?) was observed in a very broad interval of tem- ture has also been observed in many other experiments. For
peratures. The resistivity of samples with a strong couplingexample, in Ref. 37 this dependence was observed in granu-
between the grains was very well described by the law  lar Pb films. It was also observed in phase compounds of
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Nd,_,CeCuQ,_,, Ref. 38. In each case the reason for suchlocated in “puddles.” So, modeling the system in terms of a

a behavior was not clear. granular metal might be a reasonable approximation also in
An interesting conclusion has been made recently abouhis case.

the structure of a 2D gas in GaAs/AlGaAs heterostructures
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