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Coulomb effects in granular materials at not very low temperatures

K. B. Efetov1,2 and A. Tschersich1
1Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

2L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
~Received 13 February 2003; published 30 May 2003!

We consider effects of Coulomb interaction in a granular normal metal at not very low temperatures
suppressing weak localization effects. In this limit calculations with the initial electron Hamiltonian are re-
duced to integrations over a phase variable with an effective action, which can be considered as a bosonization
for the granular metal. Conditions of the applicability of the effective action are considered in detail and
importance of winding numbers for the phase variables is emphasized. Explicit calculations are carried out for
the conductivity and the tunneling density of states in the limits of largeg@1 and smallg!1 tunneling
conductances. It is demonstrated for any dimension of the array of the grains that at smallg the conductivity
and the tunneling density of states decay with temperature exponentially. At largeg the conductivity also
decays with decreasing the temperature and its temperature dependence is logarithmic independent of dimen-
sionality and presence of a magnetic field. The tunneling density of states forg@1 is anomalous in any
dimension but the anomaly is stronger than logarithmic in low dimensions and is similar to that for disordered
systems. The formulas derived are compared with existing experiments. The logarithmic behavior of the
conductivity at largeg obtained in our model can explain numerous experiments on systems with a granular
structure including some high-Tc materials.
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I. INTRODUCTION

The study of disordered systems attracts a lot of attent
Even if the electron-electron interaction is neglected
problem is not simple. Nevertheless, by now a rather co
plete understanding for noninteracting systems exists. I
well known that systems with one-dimensional geome
must be insulators for any week disorder. Two-dimensio
systems are also believed to be localized, whereas t
should occur the Anderson metal-insulator transition
three-dimensional disordered systems. This scenario
been formulated on the basis of scaling arguments long a1

and has been checked by numerous methods including
grammatic expansions2 and nonlinears-model calculations3

~for a review, see, e.g., Ref. 4!.
At weak disorder, one obtains so called weak localizat

corrections which are divergent in one-dimension~1D! and
2D ~in 2D they are logarithmic!. The infrared divergency is
cut off either by the sample size or external frequency, or
the inverse inelastic time. Within the scaling theory the co
crete mechanism of this cutoff does not matter. Due to
existence of the cutoffs flow diagrams stop at some po
when changing parameters such as the sample size or
perature. So, within this picture by increasing the tempe
ture one cannot expect anything except cutting the weak
calization corrections.

If an electron-electron interaction is added additional c
rections discovered by Altshuler and Aronov5 become impor-
tant. They are also logarithmically divergent in 2D but r
main convergent in 3D. For the systems with the electr
electron interaction one can also derive a propers model6

and demonstrate the renormalizability. Within such an
proach the role played by the temperature is, as for the n
interacting models, to cut the diverging infrared correctio
0163-1829/2003/67~17!/174205~15!/$20.00 67 1742
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After they are cut off the system is assumed to becom
conventional normal metal. Although granular systems w
the electron-electron interaction were not considered exp
itly, it is generally expected that there should not be a qu
tative difference between them and ‘‘just disordered’’ ma
rials. This is definitely true for systems without the electro
electron interaction.

Therefore, a recent experimental observation7 came as a
surprise. In the experiment7 measurements of conductivity o
granular Al-Ge thick films were performed and several int
esting effects have been discovered. These films consiste
Al grains embedded in an amorphous Ge matrix. The size
an Al grain was about 120 Å and the grains were at l
temperatures in a superconducting state.

Destroying the superconducting pairing by a magne
field up to 17 T the authors could study, in particular, pro
erties of the normal state. Some features of the normal s
related to a negative magnetoresistance due to supercon
ing fluctuations have been discussed recently8 but another
unusual observation remained unexplained.

The authors of Ref. 7 found in some samples a pecu
temperature dependence of the conductivity. Samples
had a high room temperature resistivity~this corresponds to a
weak tunneling between the grains! showed an exponentia
decay of the conductivity as a function of temperature. T
behavior is typical for insulators and has been interpreted
Ref. 7 in this way. Samples with larger intergranular co
plings did not show any exponential decay but the resistiv
did not saturate at low temperatures and the authors
scribed its temperature dependence by a power law

R5AT2a, ~1.1!

with a50.117. Apparently, with such a small value ofa a
logarithmic temperature dependence
©2003 The American Physical Society05-1
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R5A~12a ln T! ~1.2!

@obtained by expansion of Eq.~1.1! in a] could describe the
experimental data as well.

Both the power law dependence~1.1! and the logarithmic
dependence~1.2! were not expected from the theories of d
ordered metals. Although the logarithmic dependence
natural of 2D films, it is relevant to emphasize that the ar
of the grains was three dimensional and the behavior
scribed by Eqs.~1.2! was observed at high magnetic field
This definitely excludes an interpretation of the logarithm
or power law behavior in terms of weak localization corre
tions typical for 2D.2,5,6

In this paper we try to explain the transition from th
exponential temperature behavior at smallg to the logarith-
mic dependence of Eq.~1.2! assuming that the temperature
not very low, which actually corresponds to the experime7

where the lowest temperature was around 0.3 K. We cons
a model of granular metals at not very low temperature
demonstrate that changing the dimensionless tunneling
ductanceg one can have either exponential temperature
pendence of the resistivity at smallg&1 or the logarithmic
behavior~1.2! at largeg*1. It will be shown that the resul
is applicable for any dimensionality of the array of grain
which contrasts usual logarithmic corrections due to inter
ence effects typical for 2D only.

Study of the regime of not very low temperatures of t
granular metals has started recently in Ref. 9 where it w
demonstrated that the regime of the temperatures

T@gd, ~1.3!

whered is the mean level spacing, is clearly different fro
the regime of lower temperatures. In this regime, well kno
weak localization effects are suppressed but, neverthe
the system may exhibit a nontrivial behavior.

Inequality~1.3! is written for g@1. In this limit, one can
study the model by summation of diagrams containing
purity lines, as it has been suggested in Ref. 9. Nontriv
effects arise from a renormalization of the Coulomb inter
tion by impurities. Actually, a nontrivial behavior originate
from the diagrams of the Altshuler-Aronov type5 modified
for the granular system. Therefore, for largeg@1 the theory
presented in this paper is equivalent to the summation of
Altshuler-Aronov diagrams. However, we use an effect
phase functional, which gives us an opportunity to consi
not only the first order in the Coulomb interaction but to
into higher orders by writing renormalization group equ
tions.

If the tunneling conductance is not very large,g&1, the
inequality ~1.3! should be replaced by the inequality

T@d. ~1.4!

In the limit g&1, it is not possible to get any results b
summation of conventional diagrams and one should use
phase functional. A very important result of Ref. 9 is that
the limit of not very low temperatures, Eqs.~1.3!, ~1.4!, the
phase functional has a form similar to that suggested by A
begaokar, Eckern, and Scho¨n ~AES! long ago10 for a descrip-
tion of quantum dissipation11 in metals.
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At lower temperaturesT&gd one must take into accoun
low energy diffusion modes, and the system should be
scribed by a more complicated nonlinears model containing
both the phasesf and matricesQ. Of course, in the limit
T→0 the AES functional is no longer applicable and t
notion of ‘‘quantum dissipation’’ loses its sense. In oth
words, the ‘‘quantum dissipation’’ corresponds to a limit
not very low temperatures for the system under consid
ation.

It is relevant to mention that the model of a granular me
may roughly describe disordered systems with a low elect
concentration. One can imagine that in such systems e
trons spend a long time in some kind of traps or puddles
tunnel between them with a small rate. Then, such a situa
resembles the granular systems. A short account of the id
of the present work has been presented in a recent pape12

The article is organized as follows. In Sec. II we form
late the model and derive a free energy functional contain
phases. We discuss how one should integrate over the ph
accounting for winding numbers. In Sec. III we consid
conductivity in the limit of large conductancesg@1 and
obtain the temperature behavior~1.2!. For calculations we
use both the perturbation theory and renormalization gr
techniques. In Sec. IV we consider the tunneling density
states in the limit g@1. The final result for a two-
dimensional array of grains, Eq.~4.9!, has the same form a
the corresponding formula for a disordered ‘‘homogeneo
metal. In Sec. V we consider the limit of smallg!1 and
show how one can carry out summation over winding nu
bers. Physical quantities such as the conductivity and
tunneling density of states are shown to be exponenti
small in temperature. In Sec. VI we discuss the results
make a comparison with the experiment.

II. CHOICE OF THE MODEL. PHASE FUNCTIONAL.

In the present work, we consider a simplified mod
where metal grains form a regular lattice. The grains
disordered due to impurities or irregular boundaries. Ea
grain is separated from its nearest neighbors by tunne
barriers. We assume that the main contribution to the ma
scopic resistivity of the granular system comes from the
tergranular tunneling.

The Hamiltonian describing the model is chosen as

Ĥ5Ĥ01Ĥt1Ĥc , ~2.1!

whereĤ0 is the one-electron Hamiltonian of isolated grai
including disorder within the grains

Ĥ05E c1~r !S 2
“

2

2m
1U~r ! Dc~r !dr ,

whereU(r ) is a random potential.
The tunneling of the electrons between the grains is gi

by

Ĥt5 (
i,j ,a,a8

t ij ĉa i
1 ĉa8 j , ~2.2!
5-2
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where the summation is performed over the statesa, a8 of
each grain~spin is conserved! and over neighboring grainsi
and j. The possibility to tunnel from the statea to an arbi-
trary statea8 of other grains introduces an additional diso
der resulting in a finite tunnel conductance.

The termĤc in Eq. ~2.1! describes the charging energy

Ĥc5
e2

2 (
ij

N̂iCij
21N̂j . ~2.3!

In Eq. ~2.3!,

N̂i5E ĉ1~r i!ĉ~r i!dr i2N̄ ~2.4!

is the excess number of electrons in theith grain, N̄ is the
dimensionless local potential, andCij is the capacitance ma
trix. The integration overr in Eqs.~2.1!, ~2.4! is performed
over the grain with the coordinatei of the center and include
summation over the spin.

Equation~2.3! describes the long-range part of the Co
lomb interaction in the limit of weak disorder inside th
grains and has been used in many works~for a review, see13!.
In principle, one could consider also a superconducting
magnetic part of the interaction within the dot but we assu
that the grains are in the normal state. The long range pa
the Coulomb interaction, Eq.~2.3!, describes the classica
charging energy. This interaction can lead to the Coulo
blockade and to insulating macroscopic properties of the
tem of the grains.

Calculations with the HamiltonianĤ, Eqs.~2.1, 2.3!, can
be replaced in a standard way by computation of a functio
integral over anticommuting fieldsc(r i ,t).

Although the model described by Eqs.~2.1, 2.3! contains
only the long range part of the Coulomb interaction, it is s
very complicated, because at very low temperatures inte
ence becomes very important and one has to conside
interplay of localization and interaction effects. One could
this either using diagrammatic expansions5 or writing a non-
linear s-model.6 Both methods allow one to consider th
limit of large tunneling conductancesg and the results are
strongly dependent on the dimensionality. However, the
havior, Eq.~1.1! or ~1.2! was not predicted for 3D in any o
these works.

The model, Eqs.~2.1!, ~2.3!, becomes simpler if the tem
peratureT is not very low such that low energy diffusio
modes are damped. As it was discussed in a rec
publication,9 the granular metal can be well described at te
peraturesT@gd, where d is the mean level spacing in
single grain, by the Ambegaokar-Eckern-Scho¨n ~AES!10

functional of the free energy. Ifg&1, this condition should
be replaced byT@d. The limit of not very low temperature
not only simplifies the consideration but is interesting on
own because it leads to an unusual behavior of phys
quantities and is easily accessible experimentally. In part
lar, we will see that changing the tunneling conductancg
one may have a crossover from the exponential tempera
dependence of the resistivity to the logarithmic behav
~1.2!.
17420
-

r
e
of

b
s-

al

l
r-
an
o

-

nt
-

s
al
u-

re
r

We calculate the conductivitys(v) using the Kubo for-
mula and making an analytical continuation from Matsub
frequenciesiVn52p inT to real frequenciesv.14 Within
this formalism the conductivitys(v) can be written in the
form

s~v!

5
iad22

v F(
j
E dr jE

0

b

dteiVntKaa~r i2r j ,t!G
Vn→2 iv1d

,

~2.5!

where a is a vector connecting the centers of neighbori
grainsi and i1a, a5uau, andd is the dimensionality of the
array.

The functionKaa8 in Eq. ~2.5! can be written as

Kaa8~r i ,r j ;t!

5Paa8~r i ,r j ;t!2e2daa8d ijd~t!^Ĥt i
a~t!1H.c.&, ~2.6!

where

Paa8~r i ,r j ;t!52^TtĴa~r i ,t!Ĵa8~r j,0!&, ~2.7!

and

Ĥt i
a~t!5 (

a,a8
t i1a,iĉa,i1a

1 ~t!ĉa8,i~t!. ~2.8!

The abbreviation H.c. means a Hermitian conjugatio
The tunneling current operatorĴa(r i ,t) entering Eq.~2.7!
takes the standard form

Ĵa~r i!5 ie~Ĥt i
a2H.c.!. ~2.9!

The first term in Eq.~2.6! corresponds to a ‘‘paramagnetic
contribution whereas the second one is of a ‘‘diamagne
origin.

In order to reduce the calculation of physical quantities
a computation of correlation functions with the AES acti
we decouple the interaction term, Eq.~2.3!, by integration
over an additionalVi(t)

expS 2
e2

2 (
ij

N̂iCij
21N̂j D

5E expS 2 i(
i
E @c* ~r i ,t!c~r i ,t!dr i2N̄#Vi~t!dt D

3expS 2
1

2e2 (
ij
E dtVi~t!CijVj~t!D DV ~2.10!

and then, following Refs. 15,9, remove this field fromĤ0 by
the gauge transformation

c~r i ,t!→e2 iw i(t)c i~r i ,t!, ẇ i~t!5Vi~t!. ~2.11!

This is not a trivial procedure, because the new fieldsca(t)
should obey, as before, the fermionic boundary condition
5-3
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c~r i ,t!52c~r i ,t1b!, b51/T. ~2.12!

Let us forget for a while about the tunneling between
grains and explain how one can proceed for the Hamilton
H0 of a single grain.

Due to the boundary condition, Eq.~2.12!, the fieldVi(t)
cannot be completely removed fromĤ0 and this should be
done approximately. The fieldVi(t) can be represented as
sum of a staticV0i part and periodic functionṼi(t)

Vi~t!5V0i1Ṽi~t!, E
0

b

Ṽi~t!dt50. ~2.13!

The static partV0 can still be arbitrary and we rewrite it a

V0i52pTki1r i , 2pT,r i,pT, ~2.14!

whereki50,61,62, . . . .
If we neglectedr i we would be able to removeVi(t)

from H0. In this case we would use, instead of the pha
w(t) from Eq. ~2.11!, the phasesf̃(t) defined as

f̃ i~t!5f i~t!12pTkit, ~2.15!

where2`,f i(t),`, f i(0)5f i(b). It is clear that mak-
ing the gauge transformation, Eq.~2.11!, with the phases
f̃ i(t) instead ofw i(t), preserves the antiperiodicity of th
c(t), Eq. ~2.12!.

The variabler i cannot generally be neglected. This ter
is not important only in the limitT@d. In order to estimate
its contribution we can calculate the partition functionZ(r) of
a single grain~normalized by the partition function of th
system without interaction!. Carrying out the summation
over the Matsubara frequencies«n and making the gauge
transformation with the phasesf̃(t), Eq. ~2.15!, we obtain

Z(r)5expf ~r!, ~2.16!

f ~r!5(
a

F ln cosh
ja1 ir

2T
2 ln cosh

ja

2TG2 iN̄r,

whereja is the energy of the statea ~the Fermi energy«F is
subtracted!.

The sum overa in Eq. ~2.16! extends over all states of th
grain. However, the contribution of the states far from t
Fermi energy must be compensated by the local potentialN̄.
As usual, an essential contribution comes from energie
the orderT in the vicinity of the Fermi energy. The linear i
r term in the functionf (r), Eq. ~2.16!, must be absent du
to the choice ofN̄.

A typical separation of the energy levelsja is of the order
of the mean level spacingd. At not very low temperatures
T@d, the sum overa can be replaced by a proper integr
over a continuous variablej

(
a

→ 1

dE dj

and we write the functionf (r) in the form
17420
e
n

s

of

f ~r!5
1

dE2R

R F ln cosh
j1 ir

2T
2 ln cosh

j

2TGdj, ~2.17!

whereR is an energy in the rangeT!R!«F . If r satisfies
the inequality~2.14! we can deform the contour of integra
tion when integrating with the first term in Eq.~2.17! and
integrate first along the straight line (2R,2R2 ir), then
along (2R2 ir, R2 ir) and, at last, along (R2 ir, R). The
integral over the second segment cancels the second ter
the integrand in Eq.~2.17! and we come to the result

f ~r!52
r2

2dT
. ~2.18!

Using Eqs.~2.16!, ~2.18! we can understand easily that th
main contribution in integrals overr comes from r
;(Td)1/2!T. Therefore, in the limitT@d the variabler can
safely be put to zero in all calculations and we come to
phase free energy functional containing only the pha
f̃(t), Eq.~2.15!. We see from this argument that introducin
the ‘‘winding numbers’’ki , Eqs. ~2.15!, ~2.14!, is unavoid-
able. The opposite limitT!d is more difficult and is not
considered in the present paper.

Thus, in the limitT@d, we are able to remove the effec
tive voltageVi(t) from the single grain HamiltonianH0,
which means removing the Coulomb interaction. Howev
the phases enter now the tunneling HamiltonianHt . Expand-
ing in the tunneling termHt , Eq. ~2.2!, up to the second
order we obtain the AES~Ref. 10! action S in the standard
form

S5Sc1St , ~2.19!

whereSc describes the charging energy

Sc5
1

2e2 (
ij
E

0

b

dtCij

df̃ i~t!

dt

df̃ j~t!

dt
~2.20!

andSt stands for tunneling between the grains

St5pg (
u i2 j u5a

E
0

b

dtdt8a~t2t8!sin2S f̃ ij ~t!2f̃ ij ~t8!

2
D .

~2.21!

The functiona(t) in Eq. ~2.21! has the form

a~t!5T2$Re@sin~pTt1 id!#21%2.

In Eqs.~2.19!–~2.21!, i and j stand for coordinates of grain
anda is the diameter of a grain. The dimensionless cond
tanceg is given by

g52pn0
2t ij

2 , ~2.22!

where t ij is the tunneling amplitude from graini to grain j
~spin is included! andn0 is the density of states of noninte
acting electrons.

Calculation of different averages with the functionalS,
Eqs.~2.19!–~2.21!, implies integration overf i(t) and sum-
mation overki . At largeg@1, one can put allki50. How-
ever, atg&1 one should sum over allki and neglecting the
5-4
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contribution of the nonzero winding numbers leads to inc
rect results. We emphasize that the AES free energy fu
tional can be derived under the assumption that the temp
tures are not very low, Eqs.~1.3!, ~1.4!, and is applicable in
this limit only. At lower temperatures one would have to ta
into account interference effects9 or the discreteness of th
levels in single grains.

Using the Kubo formulas~2.5!–~2.9!, we can express als
the conductivity in terms of the phasesf̃ i(t). After simple
manipulations we represent the conductivitys(v) as

s~v!5
ia22d

v F E
0

b

dteiVntK~t!G
Vn→2 iv1d

, ~2.23!

K~t!5^X2
a~t!&2(

i
^X10

a ~t!X1i
a ~0!&,

X2
a~t!5e2pgE

0

b

dt8@d~t!2d~t82t!#a~t8!

3cos@f̃ i,i1a~t8!2f̃ i,i1a~0!#,

X1i
a ~t!5epgE

0

b

a~t2t8!sin@f̃ i,i1a~t8!2f̃ i,i1a~t!#dt8.

In Eqs.~2.23!, f̃ ij (t)5f̃ i(t)2f̃ j(t) for i andj standing for
neighboring grains and

^•••&5E ~••• !exp~2S!Df̃S E exp~2S!Df̃ D 21

,

~2.24!

whereDf̃ implies both the functional integration overf(t)
and summation over the winding numberski .

Equations~2.19!–~2.24! represent the conductivitys(v)
in a closed form in terms of a functional integral. The co
tribution of the functionX2(t) originates from the diamag
netic term@the second term in Eq.~2.6!#, whereas the corre
lation function ^X1X1& comes from the paramagnetic ter
P, Eq. ~2.7! @the first term in Eq.~2.6!#. Although the model
described by Eqs.~2.19!–~2.24! is simpler than the initial
model ~2.1!–~2.3!, explicit formulas can be written only in
limiting cases.

If the temperatureT is very high,T@Ec;e2Ci j
21 , where

Ec is the electrostatic energy of adding one electron to
grain, fluctuations of the phasesf̃ are negligible and one ca
set f̃50 in the expressions forX1 and X2 in Eqs. ~2.23!.
Then, we obtain easily the conductivity

s05e2ga22d. ~2.25!

Equation ~2.25! describes the classical conductivity of th
granular metal without the Coulomb interaction and sho
that at temperatures exceedingEc charging effects are no
important.

In the opposite limitT!Ec , transport in the granulate
system has much more interesting characteristics. This
equality can be compatible with the inequalityT
17420
-
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n-

@max$gd,d%, used for the derivation of Eqs.~2.19!–~2.24!,
becauseEc@d for 2D and 3D grains~the charging energyEc
is inversely proportional to size of the grain, whiled is in-
versely proportional to its volume!.

At temperaturesT&Ec , calculations are possible only i
the limiting casesg@1 andg!1 and this will be done in the
subsequent sections. The same actionS, Eqs.~2.19!–~2.21!,
was used in Ref. 16, and a metal-insulator transition has b
predicted in a 2D array of tunnel junctions. However, t
authors of Ref. 16 did not calculate the conductivity but d
cussed properties of the partition function. For largeg they
did not account for phase fluctuations properly which, as
show here, are responsible for the behavior~1.2!. Moreover,
we find a transition in any dimensionality.

III. CONDUCTIVITY IN THE METALLIC REGIME
AT Gš1

A. Perturbation theory

In the limit of large conductancesg@1, the tunneling
term ~2.21! suppresses large fluctuations off. It is clear that
all nonzero winding numberski can be neglected. Account
ing for nonzeroki ~as well as variations ofN̄i) would lead to
contributions of order exp(2g), which can be neglected in
any expansion in 1/g. At the same time, the phase fluctu
tions can change considerably the classical result~2.25!,
even in the limitg@1. Let us understand first the role of th
fluctuations within a perturbation theory in 1/g. The zeroth
order of the perturbation theory~all phasesf̃ are set to zero!,
gives for the conductivity the classical results0, Eq. ~2.25!.
In order to consider higher orders we expand the actionS,
Eqs.~2.19!–~2.21!, in f.

The quadratic partS2 of the actionSwill serve as the bare
action in the perturbation theory we want to develop no
Keeping terms of the second order inf in Eqs.~2.19!–~2.21!
and performing Fourier transformation in both coordinates
the grains and the imaginary time we reduce the actionS to
the form

S05T(
q,n

fq,nGq,n
21f2q,2n , ~3.1!

Gq,n
215vn

2/@4E~q!#12guvnu(
a

~12cosq•a!, ~3.2!

whereE(q)5e2/@2C(q)# andC(q) is the Fourier transform
of the capacitance matrixCij (q are quasimomenta for th
array of the grains!. One should sum in Eq.~3.1! overd unit
lattice vectorsa, whered is the dimensionality of the array

If we kept only quadratic inf terms in the actionS but
did not expand the functionX2, Eq. ~2.23!, we would reduce
the correlation function̂X2a(Vn)& to the form

^X2
a~Vn!&05pe2gE

0

b

a~t!~12eiVnt!e2G̃a(t)dt,

~3.3!
5-5
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G̃a~t!54Tad (
vn.0

E dq

~2p!d
Gqnsin2

q•a

2
sin2

vnt

2
,

~3.4!

where ^•••&0 means averaging over the phasesf with the
actionS0, Eq.~3.1!, andvn52pn. What remains to be don
in order to calculate the contributionX2

(0) to the conductivity
is to compute the integral in Eq.~3.3! for the Matsubara
frequenciesVn and make the analytical continuationVn
→2 iv1d. As it is clear from Eqs.~3.2!, ~3.4!, the function
G̃a(t) contains large logarithms ln(gEct) and essentialt are
of the order 1/T. Therefore, we may calculate the integral f
G̃a(t) with a logarithmic accuracy. Neglecting thevn

2 term
in Gq,n

21 , Eq. ~3.2!, we reduce Eq.~3.4! to the form

G̃a~t!5
T

dg (
vn.0

vc 12cos~vnt!

vn
. ~3.5!

In Eq. ~3.5! one should sum over positive Matsubara fr
quencies up to the cutoffvc;gEc . Equation~3.5! shows a
remarkable independence of the result on the structure o
lattice. The only information about the lattice is the para
eter d entering Eq.~3.5!. For the cubic lattice considere
here,d is the dimensionality of the array. However, for a
arbitrary lattice the parameterd is equal to the one half of the
coordination number. What is also important, there are
‘‘infrared’’ divergencies in the integral overq in any dimen-
sionality including 2D and 1D. This is specific for the co
ductivity. We will see later that the tunnelling density
statesn is sensitive to the dimensionality in the same a
proximation due to infrared divergencies.

As we are performing the calculations with the logarit
mic accuracy, we may replacet by 1/T in the functionG̃a
and calculate the remaining integral overt in Eq. ~3.3! ig-
noring the dependence of the functionG̃a on t. Then, we
obtain

^X2~v!&052 ive2gS T

gEc
D a

, ~3.6!

where

a5~2pgd!21. ~3.7!

This form of the correlation function̂X2(v)& would lead
to the power law dependence of the conductivity on tempe
ture of the form of Eq.~1.1!. A similar result has been ob
tained for the voltage dependence of the conductance
single junction in a model with an electromagne
environment.17,18 If Eq. ~1.1! were the final result of our
calculations we could argue that, in the model under con
eration, fluctuations of the phases and, hence, of the volta
in the grains are equivalent to fluctuations in the electrom
netic environment of the works.17,18 In other words, each
grain would be considered as surrounded by an effective
dium of other grains and the voltage fluctuations of the m
dium would lead to the power law~1.1!.

However, Eq.~3.6!, is not the final result yet because w
have to calculate also the contribution coming from high
17420
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he
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order terms of the expansion of the actionS, Eqs. ~2.19!–
~2.21!, in f as well as the contribution of the correlatio
function ^X1X1&, Eq. ~2.23!. Taking into account these con
tributions can be performed writing an expansion for t
conductivity in powers of 1/g. The first three termss (1) of
the expansion of the conductivity in 1/g coming from the
function ^X2(v)&0, Eq. ~3.6! can be written as

s (1)/s0512a lnS gEc

T D1
a2

2
ln2S gEc

T D ~3.8!

and we want to find now contributions of the order up toa2

coming from^X1X1& and those originating fromS4, where
S4 contains terms of orderf4 in the actionS, Eqs.~2.19!–
~2.21!.

As concerns a contribution coming from the correlati
function ^X1X1&, the first nonvanishing term is of the orde
a2 and it does not contain powers of ln(gEc /T). So, we ne-
glect the function̂ X1X1& and concentrate on the contribu
tion to the function^X2(v)& coming from the anharmonic
partS4 of the actionS. It is clear from a power counting tha
higher order terms of the expansion ofS lead to contributions
containing higher powers ofa and we do not consider them
now.

The lowest order contribution coming fromS4 is obtained
by averaging with the actionS0, Eq. ~3.1!, of a product of a
termf2 taken from the expansion ofX2, Eq. ~2.23!, andS4.
A proper expression can be written as

K (
i1 ,a1

E
0

bE
0

bE
0

b

dtdt1dt18~eiVnt21!a~t!a~t12t18!

3@f i1a0 ,i~t!2f i1a0 ,i~0!#2

3@f i11a,i1
~t1!2f i11a,i1

~t18!#4L
0

. ~3.9!

After Fourier transforming the phases in both coordina
and time we can average easily with the actionS0, Eq. ~3.1!.
Then, Eq.~3.9! is reduced to the form

12T3 (
a,v,q1 ,q2 ,q3

Gq1 ,n1

2 Gq2 ,n2
ueiq1a021u2 )

i 51,2
ueiqia21u2

3E
0

b

~eiVnt21!ue2 ivn1t21u2a~t!dt

3E
0

b

u12eivn1tu2u12eivn2tu2a~t!dt. ~3.10!

Integrals overt can easily be calculated by changing to t
variablesz5exp(2piTt). The lattice integrations are trivia
as well and we come to the contribution to the conductiv
s (2) coming from Eq.~3.9!

s (2)/s052a2 (
n1.n2.0

1

n1n2
52

a2

2
ln2S gEc

T D .

~3.11!
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Adding the contributionss (1) and s (2) we obtain for the
conductivitys in the limit v→0

s5s0F12a lnS gEc

T D G . ~3.12!

We see that the terms of the ordera2ln2(gEc /T) in s (1) and
s (2) cancel each other and the accuracy of Eq.~3.12! ex-
ceedsa ln(gEc /T). We emphasize again that, in this appro
mation, there is no dependence on the structure of the la
of the grains except that the dimensionality~one half of the
coordination number! d entersa, Eq. ~3.7!. However, this
property holds only for contributions of the typ
anlnn(gEc /T). Terms with lower powers of logarithms de
pend on the structure of the lattice in a more complica
way. The cancellation of the terms of the ordera2ln2(gEc /T)
when calculatings, Eq. ~3.12!, is not accidental and we
want to demonstrate this within a renormalization gro
~RG! scheme.

B. Renormalization group

In order to sum up the logarithmic corrections to the co
ductivity we use RG arguments suggested for a o
dimensional inverse squareXY model long ago19 and used
later in a number of works.20–24 We assume that the tunne
conductance is large,g@1 and therefore we use the phas
f neglecting the winding numbers. As the starting functio
we take the tunneling actionSt

St5pg (
u i2 j u5a

E
0

bE
0

b

dtdt8a~t2t8!

3sin2S f ij ~t!2f ij ~t8!

2 D . ~3.13!

This action contains the conductanceg, which determines the
conductivitys. The charging partSc is not important for the
renormalization group because it determines only the up
cutoff of integrations over frequencies. In the limitT→0 the
function a is proportional to (t2t8)22 and the action is
dimensionless.

Following standard RG arguments we want to find h
the form of the actionSt changes under changing cutoff
Generally speaking, it is not guaranteed that after integra
over the phasesf in an interval of frequencies one comes
the same function sin2f in the action. The form of the func
tional may change, which would lead to a functional ren
malization group. In the present case appearance of te
sin22f, sin24f, etc., is not excluded and, indeed, they a
generated in many loop approximations of the RG. For
nately, the one loop approximation is simpler and the ren
malization in this order results in a change of the effect
coupling constantg only.

To derive the RG equation we represent the phasef in
the form

f ij v5f ij v
(0)1f̄ ij v . ~3.14!
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The functionf ij v is not equal to zero in an interval of th
frequencies 0,v,vc , while the functionf ij v

(0) is finite in
the intervallvc,v,vc , wherel is in the interval 0,l
,1. Integrating in the expression for the partition functio

Z5E exp~2St!Df

over the functionf ij v
(0) we come to a new actionS̄ with the

cutoff lvc . Substituting Eq.~3.14! into Eq. ~3.13! we ex-
pand the actionSt up to terms quadratic inf ij v

(0) . Integrating
overf ij v

(0) is straightforward and we obtain with the logarith

mic accuracy a renormalized effective actionS̃t

S̃t52pg (
u i2 j u51

E
0

bE
0

b

dtdt8a~t2t8!

3sin2S f ij ~t!2f ij ~t8!

2 D S 12
j

2pgdD , ~3.15!

wherej52 ln l.
We see from Eq.~3.15! that the form of the action is

reproduced for any dimensionalityd of the lattice of the
grains. This allows us to write immediately the followin
renormalization group equation

]g~j!

]j
52

1

2pd
. ~3.16!

The solution of Eq.~3.16! is simple. Neglecting the Coulomb
interaction in the actionSt , Eq. ~3.13!, is justified only for
energies smaller thangEc and this energy is the upper cutof
Then the renormalized conductanceg(T) takes the form

g~T!5g2
1

2pd
ln

gEc

T
~3.17!

and we come to Eq.~3.12! for conductivity. Both the quan-
tities depend on the temperature logarithmically.

Equation~3.17! is obtained in the one loop approximatio
and should be valid so long as the effective conducta
g(T) remains much larger than 1. Therefore, Eq.~3.12! is
also more than a result of the perturbation theory and is v
for s/s0@1/g. This gives the necessary condition for th
applicability of Eqs.~3.12!, ~3.17!

12~2pdg!21ln~gEc /T!@1/g. ~3.18!

However, the condition~3.18! is not sufficient for the ap-
plicability of Eqs.~3.12!, ~3.17! because the AES action ma
be used only in the limit

T@gd. ~3.19!

If the conductanceg or the size of the grains are not ver
large the condition~3.19! can become stronger than E
~3.18!. Then, at lower temperatures one should take into
count interference effects and, depending on the dimens
ality d of the array, both metal and insulating states are p
sible. In contrast, Eqs.~3.12!, ~3.17!, are valid in any
dimensionality.
5-7
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Actually, in the main approximation the actionSt contains
only the phase differencesf ij (t) that can be considered a
variables on sites of a lattice dual to the original one. Th
sites are not coupled in this approximation with each ot
and this explains why we obtained the same results as t
for one contact. Taking into account the charging energySc ,
Eq. ~2.20!, couples the sites and the structure of the latt
may become important in next orders of the renormalizat
group equations.

One can check that the contribution coming from the c
relator of the functionsX1 in Eqs.~2.23! contains additional
powers of 1/g and can be neglected in the main approxim
tion. It is very important that the correlator^X1X1& in Eqs.
~2.23! representing the ‘‘paramagnetic contribution’’ contai
a summation overj, which corresponds to the zero quasim
mentum of the functionK. Keeping inX1 linear terms inf
would give zero even if anharmonic terms inS would have
been taken into account. If we carried out the computat
for a single grain the contribution from thêX1X1& would
not be smaller than that coming from̂X2&.

It is very important to note that we use the linear respo
theory for the calculation of the conductivity assuming th
the external electric field is homogeneous. This contrasts
culation of the conductance for a single contact. In our c
culations we do not obtain a contribution to the conductiv
corresponding to the inelastic cotunneling known for sin
dots.25 This is natural because in the problem considered
inelastic cotunnelling can occur only through the entire s
tem. This would lead to contributions exponentially small
the size of the system.

IV. TUNNELING DENSITY OF STATES AT Gš1

The tunneling density of states~DOS! n i(«) in the graini
can be introduced in a standard way through the retar
single particle Green functionGii

R(«) with both the coordi-
nates in the graini. As we use here the imaginary time re
resentation we calculate first the temperature Green func
Gii(t) at Matsubara frequencies«n5pT(2n11). This leads
to a functionñ i(«n)

ñ i~«n!52p21E dtei«ntGii~t!. ~4.1!

The DOSn i(«) can be found by the analytical continuatio

n i~«!5Im@ ñ i~«n!u«n→2 i«1d#. ~4.2!

Following the same procedure as the one used in the pr
ous sections we perform the gauge transformation~2.11!,
reducing the calculation to integration over the phasesf i(t).
As a result, we obtain for the functionñ i(«n)

ñ i~«n!5n0TE
0

b

dt
ei«nt

sinpTt
^exp$2 i @f̃ i~t!2f̃ i~0!#%&,

~4.3!

where the symbol̂•••& means as before averaging with th
action S, Eqs. ~2.19!–~2.21! and integration overf̃ i(t) in-
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cludes summation over the winding numberski . The princi-
pal value of the integral overt is implied in Eq.~4.3!.

Calculation of DOS is quite different from that for th
conductivity because Eq.~4.3! contains the phasesf̃ i(t) cor-
responding to the graini but not the phase difference
f̃ ij (t). This can lead to a nontrivial dependence of the fin
result on the dimensionalityd of the lattice.

In the limit of largeg@1 we expand, as when calculatin
the conductivity, the functionalS, Eqs. ~2.19!–~2.21!, in
f ij (t). If d53 one should expand inf(t) both the actionS
and the exponential in Eq.~4.3!. The reason is the same a
for calculation of the conductivity: all terms of the expansi
give additional logarithms and there is no reason to keep
the action only quadratic terms and at the same time no
expand the exponential in Eq.~4.3!. Therefore in the 3D case
one can expect logarithmic corrections to the tunneling d
sity of states with coefficients depending on the structure
the lattice. Making analytical continuation onto real energ
« we can write the tunneling density of statesn3(«) in 3D in
the main approximation as

n3~«!5n0TE
0

b ei«nt

sinpTt
@12G~t!#dt, ~4.4!

where

G~t!52Tad (
vn.0

E ddq

~2p!d
Gqnsin2

vnt

2
~4.5!

andGqn is given by Eq.~3.2!.
Calculating the sum overvn with the logarithmic accu-

racy and making the analytical continuation we obtain

n3~«!5n0F12
A

4pg
lnS gEc

max~T,«! D G , ~4.6!

where

A5E a3d3q

~2p!3

1

(
a

~12cosq•a!

. ~4.7!

Equation~4.6! shows that the density of statesn3(«) of
the 3D array of the grains has a logarithmic dependence
temperature like the conductivitys, Eq. ~3.12!. However, in
contrast to the latter, Eq.~4.7! is valid only if the logarithmic
term is much smaller than 1.

The situation is more interesting in one and two dime
sional systems. In this cases the integral overq in Eq. ~4.7!
formally diverges, which means that one should take i
account thev2 term in the functionGqn , Eq.~3.2!. This term
cuts the infrared divergency in the integral overq but one
obtains in the density of states a stronger singularity in«,T
than the one in 3D, Eq.~4.6!.

Fortunately, this makes the calculation even easier
allows us to obtain explicit results in the nonperturbati
regime when the DOS considerably deviates fromn0. This
simplification is due to the fact that the strongest singularit
come from the expansion inf i(t) of the exponential in Eq.
5-8
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COULOMB EFFECTS IN GRANULAR MATERIALS AT . . . PHYSICAL REVIEW B 67, 174205 ~2003!
~4.3!. The anomalous contributions originating from smalq
arise in the expansion off i but cancel each other in th
contributions coming from expansions inf ij (t)5f i(t)
2f j(t) in the actionSt , Eq. ~2.21!. Therefore, expanding in
f ij (t) one obtains usual logarithmic contributions of t
type @g ln(gEc /T)#n, which allows us to keep in the actionS
only quadratic inf ij (t) terms.

Then the integration overf(t) in Eq. ~4.3! can easily be
carried out and we obtain for the low dimensions

n~«!5n0TE
0

b ei«nt

sinpTt
exp@2G~t!#dt. ~4.8!

It is clear that the singularity in the exponent in Eq.~4.8! is
stronger than logarithmic and this justifies the approximat
used in the derivation.

In the most interesting case of a 2D array of the granu
both the summation over the frequencies and integra
over the momentaq give logarithms and we come to the fin
result

n2~«!5n0 expF2
1

16p2g
ln2S gEc

max~«,T! D G . ~4.9!

Equation~4.9! is valid down to max(«,T);gd when the de-
scription in terms of the phase functionalS, Eqs. ~2.19!–
~2.21!, is still applicable. Equation~4.9! perfectly agrees
with the corresponding result obtained long ago for dis
dered films using a replicas model.6 This result was repro-
duced for disordered films in a number of subsequ
publications26–29 using different approaches. The stron
anomaly in the exponent in Eq.~4.9! is due to the fact tha
the one particle Green function is not gauge invariant.6 The
singularity is formed by almost pure gauge fluctuations
the electric fields. Gauge-invariant characteristics such
conductivity are not influenced by such fluctuations a
therefore are less anomalous.

The applicability of Eq.~4.9! not only for disordered films
but also for the granular systems at not very low tempe
tures shows that the result is very robust. In contrast,
dependence of the conductivity on temperature, Eqs.~3.12!–
~3.17!, cannot be used for very low temperatures or dis
dered ‘‘homogeneous systems.’’ The formal reason for t
difference is quite clear: the main contribution to the cond
tivity comes from momentaq;a21, whereas the main con
tribution to the density of states comes from smallq!a21.
The latter limit is not sensitive to the structure of the syst
at short distances.

The coefficient in front of ln2 is somewhat different than
that of the recent work.29 This is because we assumed th
E(q) remains finite in the limit ofq→0 ~there is a screening
in the system!. In the integral overq in Eqs. ~4.5!, ~3.2!,
essential (qa)2 were of the order ofv/gEc . In contrast, if
one starts with a nonscreened 2D Coulomb interactionV0
52pe2/q, the essentialq are proportional tov and this
increases the coefficient by the factor of 2.

The first term of the expansion of the exponential in E
~4.9! is just the Altshuler-Aronov correction generalized
the case of the granular metal.5 Of course, the same is tru
17420
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for the correction to the conductivity~3.12!. This is quite
natural because at not very low temperatures weak loca
tion corrections are suppressed but the Altshuler-Aronov c
rections still give important contributions. Actually, the fun
tion uvnuGq , Eq. ~3.2!, is just the Coulomb propagato
screened by the electron-electron interaction. In other wo
the theory developed in the previous sections forg@1 start-
ing from the AES action is another way of calculation of t
Altshuler-Aronov corrections for the granular systems. The
calculations could be performed diagrammatically, althou
establishing the nonperturbative results for both the cond
tivity ~3.17! and the DOS~4.9! would be considerably more
difficult. Clearly, the actionS described by Eqs.~2.19!–
~2.21! may not be used at zero temperature and the diss
tion resulting from this action is not a zero temperatu
effect.

If the tunnel conductanceg becomes of the order of 1 o
smaller diagrammatic expansions are no longer helpful
calculations without the phase functional, Eqs.~2.19!–~2.21!,
are hardly possible. In this regime a proper account of n
zero winding numberki is very important. In the next sectio
we show how calculations can be carried out in the limit
weak coupling constantsg!1.

V. WEAK COUPLING BETWEEN THE GRAINS

A. Phase correlation function

Study of the granular system described by the actionS,
Eqs.~2.19!–~2.23!, for an arbitrary conductanceg is difficult.
The logarithmic behavior~3.17! describes the conductivity
of the granular system at sufficiently largeg*1. Equations
~4.6!–~4.9! are also applicable only in this limit. Not bein
able to consider the model for arbitraryg, we restrict our-
selves with the limit of smallg!1.

We will see that the temperature dependence of both
conductivity and the DOS becomes exponential in this lim
This means that increasing the tunneling amplitude at a fi
T we go from the almost metallic regime to an insulati
one. This can be achieved experimentally changing the c
pling between the grains while measuring at the sa
temperature.7

Calculation of physical quantities at smallg!1 can be
performed expanding the functional integral in Eq.~2.24! in
the tunneling partSt , Eq. ~2.21!, of the action. When calcu
lating conductivity the main contribution comes again fro
the function^X2(t)& in Eq. ~2.23!. As concerns the tunneling
density of states we can use as before Eq.~4.3!. In the lowest
order one can completely neglectSt in the both formulas.
Then, the calculation of the DOS~4.3! reduces to computa
tion of the phase correlation functionP(t)

P~t!5^exp$2 i @f̃ i~t!2f̃ i~0!#%&Sc
, ~5.1!

where the phasesf̃ i(t) are introduced in Eq.~2.15!, Sc is
given by Eq.~2.20! and the averaging should be perform
with this functional. As concerns the conductivity, we need
slightly different correlation functionP̃(t)
5-9
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P̃~t!5^exp$2 i @f̃ ij ~t!2f̃ ij ~0!#%&Sc
. ~5.2!

The phase correlation functionP(t) is somewhat simpler
and let us show in detail how to calculate it. A proper mo
fication for P̃(t) is simple.

The computation of the average in Eq.~5.1! can be per-
formed using two different methods. A more straightforwa
way of calculating is to use the definition off̃ i(t), Eq.
~2.15!, which allows us to represent the actionSc as

Sc5Sc@f#1Sc@k#, ~5.3!

Sc@f#5
T

4 (
n,i,j

f invn
2~B21! ijf jÀn , ~5.4!

Sc@k#5Tp2(
ij

ki~B21! ijkj , ~5.5!

where

Bij 5
e2

2
~C21! ij .

Writing Eqs. ~5.4!, ~5.5! we neglected integration over th
variablesr i from Eq.~2.14!. As we have discussed in Sec. I
in the limit T@d the main contribution comes fromr
;(Td)1/2 and we can simply put in all expressionsr50.
Using Eqs.~5.3!–~5.5! one can carry out integration over th
phasef and summation over the winding numbers se
rately. The phase correlation functionP(t) can be written as

P~t!5^exp$2 i @f i~t!2f i~0!#%&f^exp~22p ik itT!&k .
~5.6!

Integrating over the phasef i(t) we obtain for 0,t,b.

^exp$2 i @f i~t!2f i~0!#%&f5exp@2Bii~t2Tt2!#.
~5.7!

Equation~5.7! was used for the functionP(t) in many
previous works.16,15However, Eq.~5.7! is not the final result
because the functionP(t), Eq. ~5.6!, contains the second
average and, in addition to integrating overf i(t), one must
sum over the winding numberski .

Calculation of the second average in Eq.~5.6! can be
performed using the Poisson formula

(
k52`

`

f ~2pk!5
1

2p (
m52`

` E
2`

`

eimxf ~x!dx

for any function f (x). As a result, we rewrite the secon
average in Eq.~5.6! as

^exp~22p ik itT!&k5Zx
21(

$mi%
E expS 2

T

4 (
jl

xj~B21! jlxl

1 i(
j

xj~mj2tTd ij ! DDx, ~5.8!
17420
-

-

where Zx is the normalization factor that can be obtain
putting t50 in the integral in the second line of Eq.~5.8!
and Dx5) idxi . Summation over all integersmi for all
grains is implied. The integration overxi should be per-
formed in the infinite limits and the integral in Eq.~5.8! can
be easily calculated. Substituting the result of the integrat
into Eq. ~5.6! and using Eq.~5.7! we find for the phase
correlation functionP(t)

P~t!5Z21exp~2Biit!

3(
$mj%

expS 2(
k

2tmkBki2b(
k,l

BklmkmlD ,

~5.9!

where allmj are integers andZ is the normalization coeffi-
cient @P(0)51#. The quantityBii in Eq. ~5.9! is the charg-
ing energy of an extra electron in a graini in an otherwise
neutral system without excitations. The necessary periodi
in t of the functionP(t) with the periodb is evident from
Eq. ~5.9!. The final result for the phase correlation functio
P(t), Eq. ~5.9!, is essentially different from Eq.~5.7! ob-
tained by neglecting the contribution of nonzero windi
numbers. The exponent contains only linear int terms,
which contrasts Eq.~5.7!.

Actually, the form of Eq.~5.9! is absolutely natural and
can be obtained using the standard quantum mechanica
malism instead of calculating the functional integrals in E
~5.1!. Within this formalism velocities in the action in th
functional integral should be replaced by the correspond
momentum operators in the Hamiltonian. So, instead of h
ing the derivatives]f/]t in the actionSc , Eq. ~2.20!, one
would have to write the operators]/]f. The presence of
winding numbers in the action introduces periodicity. As
result, the corresponding angle variablesf in the Hamil-
tonian formulation should be taken in the interval@0,2p# and
all wave functions of the Hamiltonian must be periodic inf
with the period 2p.

As the result, the calculation of the phase correlat
function P(t), Eq. ~5.1!, reduces to calculation of quantum
mechanical averages with the effective HamiltonianĤeff

Ĥeff5(
ij

Bij r̂ ir̂ j , r̂ i52 i ]/]f i , ~5.10!

where the ‘‘angles’’f i vary between 0 and 2p. The correla-
tion functionP(t) can be written in the form

P~t!5^e2 i (f̂ i(t)2f̂ i(0))&Ĥeff
, f̂ i~t!5eĤefftf ie

2Ĥefft.
~5.11!

In order to calculate the average withĤeff in Eq. ~5.11!
one should find eigenfunctionsC$n% of the HamiltonianĤeff ,
Eq. ~5.10!. These eigenfunctions have the simple form

C$n%5)
i

exp~ in if i!, ~5.12!
5-10
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whereni are integers. Calculating the matrix elements en
ing Eq.~5.11! and performing summation over all states w
the weight exp(2E$n% /T), whereE$n% are eigenenergies of th
HamiltonianĤeff , Eq. ~5.10!, we come to Eq.~5.9!.

The operatorsr̂ i andf i are conjugate to each other wit
the commutator

@ r̂ i ,f i#52 i .

Therefore we can alternatively write the operatorsf̂ i as f̂ i
5]/]r i . The eigenvalues of the operatorr i are integers. The
operator exp(6if̂) acts as

exp~6 i f̂ ! f ~r!5exp~7]/]r! f ~r!5 f ~r61!. ~5.13!

This gives another convenient way of calculation of t
quantum mechanical averages.

The use of the Hamiltonian formalism for calculation
functional integrals over the phasef of the superconducting
order parameter has been suggested in an earlier wor
granulated superconductors.30 Within this approach the effec
tive HamiltonianĤeff , Eq. ~5.10!, was derived for the opera
tor r of the number of Cooper pairs and the phase correla
functionP(t), Eq. ~5.9!, has been obtained. As concerns t
normal metals the correct form of the phase correlation fu
tion P(t), Eq.~5.9!, has been written for the first time in ou
previous paper.12

The present consideration demonstrates explicitly that
counting for the winding numbers leads to the charge qu
tization. The functionP̃(t), Eq. ~5.2!, can be calculated in
the same way and can be written as

P̃~t!5Z21exp~2Bi
at!

3 (
$mk%

expS 2(
k

2tmk~Bk,i1a2Bki !2b(
j ,l

BjlmjmlD ,

~5.14!

whereBi
a5Bii1Bi1a,i1a2Bi,i1a2Bi1a,i is the energy of an

electron-hole excitation between neighboring grainsa5 j
2 i. As the array of the grains is regular we omit the su
scripts i,j when writing the correlation functionsP(t) and
P̃(t). The functionsP(t) and P̃(t) allow us to calculate
the tunneling density of states and the conductivity us
Eqs.~4.3! and ~2.23!.

B. Tunneling density of states atg™1

Substituting Eq.~5.9! into Eq. ~4.3! we have to calculate
the remaining integral overt and perform the analytical con
tinuation«n→2 i«1d. It is convenient to shift the contou
of the integration and integrate first along the line (0,i`),
then along (i`,i`1b), and finally along (i`1b,b). The
integral over the second segment vanishes and we reduc
function ñ i(«n), Eq. ~4.3!, to the form
17420
r-

on

n

-

c-
n-

-

g

the

ñ i~«!5 in0F122TE
0

`

dt
exp~2«nt !

sinh~pTt!
sin~ tBii !

3Z21(
$mi%

expS 2b(
kl

mkBklml22i t(
k

mkBki D G .
~5.15!

Now the analytical continuation can be done easily. Tak
the imaginary part of the functionñ according to Eq.~4.2!
and using the integral

E
0

` sinau

sinhpu
du5

1

2
tanh

a

2

we obtain for the density of statesn(«)

n~«!

n0
5Z21(

$mk%
expS 2

(
kl

mkBklml

T
D

3F nS «1Bii22(
k

mkBki

T
D

1nS 2«1Bii12(
k

mkBki

T
D G , ~5.16!

where

Z5 (
$mk%

expS 2

(
kl

mkBklml

T
D ~5.17!

and

n~x!5
1

ex11

is the Fermi distribution function. In Eqs.~5.16!, ~5.17! sum-
mation over all positive and negative integermk should be
performed.

The functionn(«) is even in the energy« and approaches
1 in the limits T→` or u«u→`. At low temperaturesT
!Bii ,u«u and u«u,Bii the main contribution comes from th
ground state configuration when allmi50. In this limit we
obtain

n~«!

n0
52 expS 2

B

TD cosh
«

T
, ~5.18!

whereB5Bii . Equation~5.18! demonstrates that there is
gap in the density of states and this gap is equal to the si
electron charging energy of the grain. Of course, Eq.~5.16!
corresponds to a fixed chemical potential in the grain, wh
means that the grain is not completely isolated and there
processes that keep the chemical potential fixed.
5-11
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One can easily generalize Eq.~5.16! to the case when an
additional voltage is present in each grain. Writing the eff
tive chemical potentialm i of a graini as

m i5m12(
j

NjBij

we can generalize Eq.~5.16! by replacing everywheremk
→mk1Nk . If Nk is randomly distributed over the grains on
should carry out an additional averaging over this variab
This is beyond the scope of the present paper.

To the best of our knowledge, Eq.~5.16! has not been
written before, although it clearly follows from the ‘‘ortho
dox theory’’ of the Coulomb blockade.31 The latter can be
seen from the fact that the one particle partĤ0 of the Hamil-
tonian, Eq. ~2.1! commutes with the termĤc , Eq. ~2.3!,
describing the charging energy. This means that in the
sence of tunneling between the grains the charging en
should be simply added to the Fermi energy for nonintera
ing particles. Equation~5.16! clearly corresponds to this pic
ture. For an arbitrary configuration$mk% of charges on the
grains the energy of adding one electron~hole! to a grain is
equal to

B62(
k

mkBki .

We see that just this energy enters the Fermi distribu
functions in Eq.~5.16! shifting the Fermi energy. The expo
nential in Eq.~5.16! is the weight for the configuration of th
charges in the system and two Fermi functions describe c
tributions of electrons and holes. Although the direct deri
tion ‘‘in the electron language’’ would be simpler, the prese
calculation demonstrates explicitly how the phase functio
Sc , Eq. ~2.20!, works. We emphasize that without the sum
mation over the winding numbers the correct result could
be ~and has not been! obtained.

C. Conductivity at g™1

Calculation for the conductivity can be performed in t
same way as for the tunneling density of states. It is imp
tant that in the limitg!1 the main contribution comes from
the termX2 in Eq. ~2.23!. The contribution coming from the
term X1 is of higher order ing and we neglect it. Then, th
Fourier transformed response functionK(Vn), Eq. ~2.23!,
takes the form

K~Vn!52pe2gT2E
0

b

dt
12exp~ iVnt!

sin2pTt
P̃~t!, ~5.19!

where, again, the principal value of the integral should
taken.

Shifting the contour of integration overt in the same way
as it has been done when calculating the tunnelling den
of states we can perform the analytical continuationVn
2 iv1d. In the limit of small frequenciesv we expand the
integral inv. The first nonvanishing term is linear inv and
we reduce the formulas for the conductivitys using Eqs.
~2.23!, ~2.25! to the form
17420
-

.

b-
gy
t-

n

n-
-
t
l

t

r-

e

ty

s5s0S 122pTE
0

`

dt
Tt

sinh2~pTt!
sin~ tBi

a!Ci
a~ t !D ,

~5.20!

where

Ci
a~ t !5Z21(

$mk%
expS 2b(

kl
mkBklmlD

3cosS 2t(
k

mk~Bk,i1a2Bki ! D , ~5.21!

Z is given by Eq.~5.17! ands0 is the classical conductivity
Eq. ~2.25!. Calculation of the integral overt in Eq. ~5.20! can
easily be performed using the formula

E
0

`

du
u sin~au!

sinh2~pu!
5

1

2p
@12 f ~a!#, ~5.22!

f ~a!52
~a21!e2a1e22a

~12e2a!2
,

and we obtain finally

s5s0Z21(
$mk%

expS 2b(
kl

mkBklmlD
3 f FbS Bi

a12(
k

mk~Bk,i1a2Bki ! D G . ~5.23!

We see from Eq.~5.23! that, in order to get an explici
expression for the conductivity, one should sum again o
all charge configurations.@In Eq. ~5.23! the conductivity is
calculated between the grainsi and i1a].

The limit of high temperaturesT exceeding the charging
energiesB can be obtained using the propertyf (0)→1 when
a→0. In this limit we come tos5s0, which demonstrates
that as soon as the Coulomb energy is not important
transport is described by the Drude formula.

In the opposite limit,T!B, the main contribution in Eq.
~5.23! comes from charge configurations with the lowe
charging energies. For the calculation of the conductivity
also need the asymptotics of the functionf (a) in the limit
a→`. In this limit we may write this function as

f ~a!.2a exp~2a!. ~5.24!

As when calculating the tunneling density of states,
consider first the contribution of the ground state configu
tion with all mi50. However, in contrast to the tunnelin
density of states, this configuration gives not necessarily
main contribution because it contains a large energyBi

a of a
dipole consisting of an additional electron in the graini and
a hole in the graini1a ~or vice versa!. The energy of this
dipole is equal to 2B if we neglect nondiagonalBij . If non-
diagonal componentsBij are not equal to zero the dipol
energy is smaller but we assume that it is larger than
charging energy of one electronB. Physically, this contribu-
tion corresponds to transport in a completely neutral gra
5-12
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In order to contribute to the current an electron must ju
from one grain to another. However, this costs an ene
which is just the dipole energyBi

a . So, the contribution
of the ground state configuration can be estimated
exp(2Bi

a/T) and we want to show that a larger contributio
exists.

The most efficient process contributing to the curren
when an additional charge exists in a grain but all ot
grains are neutral. Then, jumping from grain to grain co
no energy. As such a configuration is not the ground st
the probability to have this state is proportional to e
(2B/T). However, the overall contribution to the conducti
ity is in this case larger becauseB,Bi

a .
This picture clearly follows from Eq.~5.23!. Two configu-

rations give the main contribution tos in Eq. ~5.23!. We can
put mk51 at k5 i and mk50 for all kÞ i or mk521 for
k5 i1a and mk50 for all kÞ i1a. In both the cases the
argument of the functionf in Eq. ~5.23! is equal to zero and
we obtain for the conductivity at low temperatures

s52s0 exp~2B/T!. ~5.25!

Equation~5.25! shows that in the limit of small coupling
between the grainsg the macroscopic conductivity is expo
nentially small in temperature. This is a typical example
an activation process.

Of course, the exponential behavior of the physical qu
tities, Eqs.~5.18!, ~5.25!, was derived under the assumptio
that all the grains are mesoscopically equal~they have the
same size and shape but may have small irregularities di
ent for different grains!. In real samples the shape and t
size may vary and qualitative estimates show that instea
the activation law a dependence of the type exp(2A/AT) can
be more proper for this case.32

VI. DISCUSSION

We studied effects of the Coulomb interaction on the c
ductivity s and tunneling density of statesn(«) of granular
metals. Calculations with the Hamiltonian for interactin
electrons were reduced to calculation of functional integr
with a phase action of a form proposed by Ambegaok
Eckern, and Scho¨n.10 This action has been derived recen
for the granular systems microscopically,9 which allowed us
to clarify conditions for its applicability. These condition
Eqs. ~1.3!, ~1.4!, correspond to the limit of not very low
temperatures, such that weak localization effects are s
pressed. In the limit of large tunneling conductancesg the
results obtained with AES functional correspond
Altshuler-Aronov corrections5 and could be calculated dia
grammatically~although this way of calculations would b
more complicated!. At smaller g nonzero winding numbers
become very important and we developed a proper sch
of calculations.

Although the interference effects leading to localizati
corrections are neglected at such temperatures, intere
effects occur. In the limit of largeg a logarithmic dependenc
of the conductivitys on temperature, Eq.~3.12!, is obtained.
Eqs. ~3.12!, ~3.17! are applicable in any dimension and
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any magnetic field, which distinguishes it from the we
localization correction. The logarithm in Eqs.~3.12!, ~3.17!
is not just a small correction and these formulas are ap
cable until the conductance becomes of order unity.~It is
important that the conductivity and not the resistivity is li
ear in the logarithm of the temperature.!

In contrast to the conductivitys, the tunneling density of
statesn(«) is dependent on the dimensionalityd of the sys-
tem in a nontrivial way in the limitg@1. In 3D it has a
logarithmic correction, Eq.~4.6!, but is described by a more
complicated formula~4.9! in 2D. This formula is well known
for disordered films6,29 where it was obtained within the
s-model approach. We see that the same formula is valid
the granular metal at not very low temperatures and it can
obtained withouts models.

In the limit of a low coupling between the grains both th
tunneling density of states and the conductivity are expon
tially small, Eqs.~5.18!, ~5.25!. This is due to a finite charg
ing energy arising when the electron tunnels from one
another grain. Although the results in the limit of vanishingg
are rather simple, it was important to derive them from t
AES phase functional with a proper summation over
winding numbers. This way of calculations is very close
the one suggested previously for granular superconducto30

In some experiments7 the dependence of the conductivity o
temperature is described not by the activation type formu
but by the function exp(2a/AT). This dependence ma
originate from fluctuations of the charging energy of t
grains.32

Comparing Eqs.~3.12!, ~4.6!, ~4.9! obtained in the limit
g@1 with Eqs.~5.18!, ~5.25! derived forg!1 we conclude
that there must be a considerable change of the tempera
behavior of the physical quantities when changing the c
pling between the grains. Of course, this cannot be a sh
transition because we consider the limit of finite tempe
tures and cannot extrapolate the results toT50. However,
tuning the coupling experimentally at a given temperat
one may see the change of the regimes that would look s
lar to a ‘‘metal-insulator’’ transition. We emphasize that th
‘‘transition’’ should occur in any dimension of the array o
the grains.

It is not clear from the present consideration wheth
there should be a sharp transition from the metallic to
insulator state at a critical valuegc and this is a definitely
interesting problem for a further investigation. This proble
is closely related to the question whether the activation
ergy ~Coulomb gap! turns to zero or has a jump atg5gc .

The model of the granular metal may be used to desc
disordered electron systems at low electron density. In s
systems electrons can spend a considerable time in trap
‘‘puddles’’ that can be due to strong fluctuations of a disord
potential. Considering such systems with the model o
granular metal may be a reasonable approximation. In
case, potential wells where electrons are trapped would
respond to the grains in the model of the granular metal.

The model considered in the present paper and the re
obtained can be relevant to many experiments on differ
materials. Of course, specially prepared granular metals s
as those considered in Refs. 7,32,33 should be the first ob
5-13
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of the application of the theory developed. As the model a
the results obtained are quite robust, one can expect tha
corresponding phenomena have been observed in the g
lar materials.

This is really so and many experimental data can be
plained in the framework of our model. First, let us make
comparison of our theory with experimental results of Ref
on films made of Al grains embedded in an amorphous
matrix. At low temperature superconductivity of in Al grain
was destroyed by a strong magnetic field. Depending on
coupling between the grains~extracted from the conductivity
at room temperatures! the samples of the experiment7 were
macroscopically either in an insulating state with the te
perature dependence of the resistivityR;exp(a/T1/2) or in a
‘‘metallic’’ one. However, the resistivity of the metallic stat
depended on temperature and the authors suggested Eq.~1.1!
to describe this dependence. As the exponenta for the ‘‘me-
tallic’’ sample was small we may argue that Eq.~1.2! should
not be worse for fitting the experimental data. Then, we
estimate the exponenta without using fitting parameters.

The sample of the experiment7 had the room temperatur
resistivity R057.331023 V cm. The diameter of the grain
was 120620 Å, which allows, using the value\/e254.1
3103V, to estimate the dimensionless tunnel conductivity
g50.7. If we put d52 in Eq. ~3.7! we obtaina50.116,
which would perfectly agree with the experimental valuea
50.117 from Eq.~1.1!. However, everything is not so simpl
because the films used in Ref. 7 were rather thick and, at
glance, one should used53. This would change the resu
by 30% making the agreement less exciting. Neverthel
the value ofd in Eq. ~3.7! corresponds rather to the half o
the contacts of a single grain than to the real dimensiona
Therefore the experimental value ofa indicates that either
the grains are not closely packed such that the typical n
ber of contacts per grain is 4 or our calculation is too rou
to provide a quantitative agreement with the experiment@the
value ofa, Eq. ~3.7!, is based on the assumptiong@1 but
the experimental value ofg is of order 1#.

The resistivity of samples with a high room temperatu
resistivity ~a weak coupling between the grains! behaved as
exp(a/T1/2) rather than obeying the activation law, Eq.~5.25!.
According to Ref. 32 this can be attributed to a variation
the size of the grains or of the local potential. However
model considered in Ref. 32 is rather special because
distance between the grains and the tunneling amplitude
assumed to be related to the charging energy in a ce
way. The law exp(a/T1/2) is rather common for granular ma
terials with weak coupling~see also, e.g., Ref. 33! and the
reason for such an universality is still not clear. A rando
hopping conduction mechanism of Ref. 34 suggested
semiconductors can hardly be used for the granular met

A logarithmic dependence of the resistivity on tempe
ture has been observed in other granular materials. In Re
a granular cermet consisting of NbN grains in a boron nitr
insulating matrix was studied. Again, at small coupling b
tween the grains the temperature dependence of the res
ity exp(a/T1/2) was observed in a very broad interval of tem
peratures. The resistivity of samples with a strong coupl
between the grains was very well described by the law
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R5R0 ln~T0 /T! ~6.1!

which is close to Eqs.~1.1!, ~1.2! if the temperature interva
is not very large such that the variation of the resistivity
small. However, the law~6.1!, gave a good description fo
the temperature dependence of the resistivity in a very br
region and the changing of the resistivity was not small. T
reason for the applicability of Eq.~6.1! in a so broad interval
of temperatures is not clear because according to the re
of the renormalization group analysis of Sec. III not the
sistivity but the conductivity should obey Eq.~6.1!. A more
careful experimental study might clarify this question. An
way, the logarithmic behavior of Refs. 7,33 remained un
plained at all and our work is the first attempt to construc
theory of this effect~an explanation in terms of weak loca
ization corrections or the Kondo effect can be excluded
mediately because the logarithmic temperature depend
was observed also in very strong magnetic fields and
systems were three dimensional!.

The unusual logarithmic behavior of the type~6.1! has
been observed not only in ‘‘standard’’ granular systems
also in high-Tc cuprates at very strong magnetic fields. T
first observation of this dependence was done on underdo
La22xSrxCuO4 crystals.35 The superconductivity in this ex
periment was suppressed with pulsed magnetic fields of 6
It was found that both the in-plane resistivityrab and out-of-
plane resistivityrc diverged logarithmically with decreasin
the temperature. This means again that a 3D effect was
served in a very strong magnetic field and traditional exp
nations such as localization or Kondo effect could not clar
the situation.

In a subsequent publication36 a metal-insulator crossove
was observed in the same material at a Sr concentration
optimum doping (x.0.16). In underdoped samples bothrab

andrc showed no evidence of saturation at low temperatu
and diverged as the logarithm of the temperature. The
thors called this state ‘‘insulator’’ in contrast to the state
high doping where the resistivity did not have a pronounc
dependence on the temperature. It was conjectured in Re
that the logarithmic behavior they observed might be rela
to the one seen in the experiment33 on granular NbN. This
would demand a phase segregation throughout the un
doped regime of LSCO. However, as no explanation h
been given for the logarithmic behavior in Ref. 33, no exp
nation has been given to the experiments35,36either. We hope
that our results for the model of the granular materials m
be applicable to the experiments on the La22xSrxCuO4

crystals,35,36 which would mean that the underdoped cryst
have a granular structure and the logarithmic behavior is
to the Coulomb interaction. The transition to the metal
state of Refs. 35,36 would mean that at higher doping
granularity disappears.

The logarithmic dependence of the resistivity on tempe
ture has also been observed in many other experiments.
example, in Ref. 37 this dependence was observed in gr
lar Pb films. It was also observed in phase compounds
5-14
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Nd22xCexCuO42y , Ref. 38. In each case the reason for su
a behavior was not clear.

An interesting conclusion has been made recently ab
the structure of a 2D gas in GaAs/AlGaAs heterostructu
where a metal-insulator transition was observed.39 Measur-
ing the local electronic compressibility the authors fou
thatthe metallic phase was homogeneous in space, whic
natural. In contrast, the system becomes spatially inhomo
neous as it crosses into the insulating phase. The struc
seen in the insulating state indicates that the electrons w
a

d-

g,

nd

D.

17420
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located in ‘‘puddles.’’ So, modeling the system in terms o
granular metal might be a reasonable approximation als
this case.
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