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Dielectric, piezoelectric, and elastic properties of the Rochelle salt NaK1,044H,0: A theory

R. R. Levitskii! I. R. Zachek T. M. Verkholyak! and A. P. Moina
Lnstitute for Condensed Matter Physics, 1 Svientsitskii Street, Lviv, UA-79011, Ukraine
°National University “Lvivs'ka Politekhnika,” 12 Bandera Str., Lviv, UA-79013, Ukraine
(Received 20 June 2002; revised manuscript received 18 November 2002; published 28 May 2003

We modify the conventional Mitsui model by including the terms related to piezoelectric coupling with shear
straing,. The static and dynamic dielectric, piezoelectric, and elastic characteristics of a Rochelle salt crystal
are calculated. It is shown that taking into account piezoelectric effects yields a correct temperature behavior
of the relaxation times and the dynamic dielectric permittivity of the Rochelle salt in the vicinity of the
transition points.
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[. INTRODUCTION be described within the Mitsui mod&IThis model can ex-
hibit several types of temperature behavior. Depending on
It is generally accepted that the Rochelle s@ouble the values of its parameters, it can undergo, for instance, a
sodium-potassium tartrate Nald,0q-4H,0) has two Cu- single second order phase transition into the ferroelectric
rie points. The ferroelectric phase exists in a rather narrovyphase(observed in RbHSE), two second order phase tran-
temperature interval fromT;;=255K to T-,=297 K.  sitions(Rochelle salt etc.

Spontaneous polarization is directed along #axis; it is Static dielectric properties of Rochelle salt have been ex-
accompanied by a spontaneous shear strair unit cell of  tensively studied within the Mitsui model by VaksZekset
Rochelle salt contains four formula units. al.,® Mori,** Kalenik 1® and others. Spontaneous polarization

According to the classical concepts, based on structuradnd static dielectric permittivity of pure and deuterated
data of Frazeet al.! the phase transitions in the Rochelle Rochelle salt have been calculated.
salt are pure order-disorder ones. The ferroelectric polariza- Within the same model Zekat al.'>® Mori,** and Lev-
tion used to be attributed to rotation of hydroxyl groups ofitskii and co-worker¥'~° explored the relaxation dynamics
tartrate complexes QHbetween two equilibrium positions of the Rochelle salt. The temperature dependence of the re-
(see Ref.2 Each cell presumably contains four dipoles; thelaxation times and dynamic permittivity in the Rochelle salt
potential barrier between two equilibrium orientations of awas calculated. It was obtained, however, that the relaxation
dipole is asymmetric. The dipoles form two copenetratingtime, exhibiting a critical slowing down at the Curie points,
sublattices, with local potentials which are the mirror reflec-actually diverges at these points, whereas experirfeints
tions of each other. Therefore, even though in each sublatticgicate that it should be large but remain finite. An infinite
dipoles are always orderddonzero sublattice polarizatipn relaxation time yields a zero contribution of the ordering
the total polarization at certain temperatures can be absergystem to the permittivity and, thereby, an incorrect theoret-
These assumptions form the Mitsui modeisually used for ical temperature dependence of the permittivity near the Cu-
the description of the Rochelle salt. rie points. Zekset al*!® calculated relaxation times for the

The actual situation is far more complicated, and theMitsui model with tunneling(sometimes included into con-
mechanism of the phase transitions in the Rochelle salt resideration in order to describe the isotopic effects in Rochelle
mains rather obscure. More recent neutron scattering datal) and showed that the increase in the tunneling integral
indicate that the OHhydroxyl groups do not perform any does not have much effect on the dynamic properties. This
orientational motion and therefore play little role in the phasencorrect behavior persists even when using a higher-order,
transition, at least in deuterated Rochelle $3Furthermore,  two-particle cluster approximatiohfor the short-range in-
experimental facts suggest that the phase transitions in Rockeractions.
elle salt are displacif¢ ones or of mixed order-disorder It should be noted that the problem of the incorrect tem-
and displacive typ&° According to x-ray scattering perature dependence of the relaxation times and dynamic
experiments? spontaneous polarization in the Rochelle saltpermittivity near the Curie points is absent in a nonpiezo-
is created by cooperative displacements of tartrate moleculedectric RbHSQ), usually described by the same model. Here
and water molecules in a frame of K and Na ions. Recentljthe inverse relaxation times and the contribution of the or-
Hlinka et al.}* based on their x-ray diffraction data, pro- dering subsystem to the dynamic permittivityoth theoreti-
posed that it is the order-disorder motion of Q&hd OH, cal and experimentpindeed vanish at the Curie poifit.2*
groups, coupled with the displacive vibrations of ©OH A remedy to the above mentioned problem seems obvi-
groups, that is responsible for the phase transitions in theus. It is well known that the Rochelle salt is one of the
Rochelle salt, as well as for the spontaneous polarization. Sstrongest piezoelectrics. The piezoelectricity splits the static
far which atoms perform the order-disorder motion has nopermittivities of clamped and free crystals. At the frequency
been definitively established. of the measuring electric field above the frequency of the

Whichever atoms of the Rochelle salt play the role ofpiezoelectric resonance, a clamped dielectric permittivity of
ordering units, there is little doubt that their motion shouldthe crystal is measured. A simple Mitsui model does not
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distinguish between the free and clamped permittivities; in To derive the additional field one should start from a gen-
fact, the relaxation times and dynamic permittivity at higheral microscopic term of the

frequencies calculated within its framework correspond to a

free crystal. Instead, like the static dielectric permittivity of a _ _

clamped crystal, the relaxation times calculated for a H'=2 > > 'Cif(qnDg;'ufy 2.2
clamped crystal should be finite at the Curie points. qf nk lef

It is thus obvious that taking into account the piezoelectric N - . .
effects within the Mitsui model can be fruitful. Also, a mi- type, usually appearing in Hamiltonians of the piezoelectric

croscopic theory of the piezoelectric and elastic properties O?rder-disorder type systems, which take into account ionic
P y OTIhe piezog : - PORETUES Oy, ations of a host latticE?® This term describes a piezo-
the Rochelle salt is still missing. The aim of this work is to

verify the usefulness of this approach. electric interaction of 'ghe dipole rr?omerﬂ:vﬁf attributed to
the ordering pseudospin system with components of the ionic
displacementsiEt) or rotation (=r) vectors'up.. The

Il. DIELECTRIC, ELASTIC, PIEZOELECTRIC, AND components of the dipole moments directed along the axis of
THERMAL CHARACTERISTICS OF FERROELECTRICS spontaneous polarization are related to the pseudospin opera-
WITH ASYMMETRIC DOUBLE-WELL POTENTIAL tors Dgg~og¢. In centrosymmetric crystalsCf,(qn)=0.

Here the indicesk denote thekth atom in thenth unit cell.

We consider a two-sublattice piezoelectric order-disorder We can separate a uniform lattice deformatiop, (Spon-
type system with an asymmetric double-well potential. We n Q7 (Sp

start with the conventional Mitsui model and modify it by taneousfor mdulcedbbly e_xteiergz.il stiefsem relative displace-

taking into account the shear straip=e,,, which is either ments of crystal sublattices :

spontaneous in the ferroelectric phase or induced by piezo-

electric coupling with an external electric field; applied ia _ Oy, ina iTa i~Ma\ _

along the ferroelectric axia. u“k_zy SayRakt Gt Une, (Und=0. (23
The model states that the phase transitions are caused by

the motion of certain dipoles in asymmetric double-well po-Additional condition for‘cﬁ‘ is an equation for new equilib-

tentials with two different constants for the interaction be-rium ionic coordinate€® obtained in the mean field approxi-

tween dipoles of the same sublattice and of different sublatmation

tices. We consider a system without tunneling, assuming that

the isotopic effect in the Rochelle salt is due to changes in A o .

the interaction constants. The relative unimportance of tun-v>, 'd%. e+ > 1'D¥(0)'cy, - > 'Cf(0)(Df)

neling effects here is indicated by the relaxational character “” ki’ fa

of dielectric dispersion in a pure undeuterated Rochelle salt. =0,

The model Hamiltonian then reads

kk'

o) is the dynamic matrix of

where ''D¥S(0)=3 1" @, 4(

A= gvcffsﬁ—Nve(1)484E1—gvxi(1)Ei the crystal, andd';y;ﬁz(llv)Enk"CDQB(E';,) RYY (see a si-
milar derivation for the case of KfPO, system&). This
equation is equivalent to the condition that the final Hamil-

) tonian should not contain terms linear in?, .

Taking into account only the shear straip=e¢,,, we
arrive at the final expression for the additional field

2
1 ag Tqrfr U-q O-q
LIS S Rt fet s [T T
22 & Rl 5 Aq(z 2

2
Tqf
—(m1E1—24e4) 2, Zl Tq- (2.1
a0 ’ Oqf
H :2111484% >
The three first terms in Eq2.1) represent the elastic,

piezoelectric, and electric energies attributed to a host latticegnsistent with the system symmetry. Analogous fields in-
in which potential the quasispin movwith the “seed” elas-  duced by piezoelectric coupling with spontaneous shear
tic constantcyy , the coefficient of piezoelectric stres§,,  strain &4 have been obtained also for the KPO, type
and dielectric susceptibilitys9); v=vkg is the unit cell ferroelectricg>?® and enabled a quantitative description of
volume. In the fourth term in Eq2.1) Ry (11)=R,q(22)  temperature behavior of elastic and piezoelectric characteris-
=Jqq andRyq (12)=Ryq (21)=Kq are the potentials of tics of those crystal® _ o

interaction between quasispins belonging to the same and to Hereinafter we restrict our analysis to within the mean
different sublattices, respectively. The quantitydescribes field approximation. Performing an identity transformation
the asymmetry of the double-well potential; is the effec-

tive dipole moment. The last term in the Hamiltonian is an oqt=ni+(0qr—11), 5= nq1={0qs) (2.9
additional internal field produced by piezoelectric coupling

with the shear strair,; ¢, is the so-called deformational and neglecting the quadratic fluctuations, we rewrite the ini-
potential. tial Hamiltonian as
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N os N , Here o, is the shear stress conjugate to the strajn In
SuxuELtg (71t 72) numerical calculations,=0.
The conditions

~ N
Hm—EvCﬂ)si Nve(1)4s4E1—

N Oq
tgKkmm=2 E<1)71—E<2)— (2.5 l(aglE) l(&glE)
_ =\ e, o =0 ={3g,]~ Py (2.10
whereJ=3%,J,q andK =2 K4 are the Fourier transforms 194
of the interaction constants g&=0, wherea€(1) andE(2) yield
are the local fields acting on tlggh quasispin in the first and
second sublattices, respectively "

_ OE 0
04=Cyz84— €141 +2=¢,
v

1 1
E(L)=5dm+5

> Kot A—2¢pe,+piEy,

M1
1 1 Pi=eleqat+ xYE + € (2.11)
E(2)= 2972t §K771_A_2¢/484+M1E1- (2.6

The second derivatives of thermodynamic poten{2ad)
Single-particle distribution functions of quasispins are are the coefficient of the piezoelectric stress,

i L Ko 3T, B

JP4
Tt et T T et T | €14= E) =69, 3‘/’4 1(§ o), (2.12
E;
3J K X U, mE the clamped static dielectric susceptibility
m=tanh o=t = m o T et ——|,
4T 4T 2T T 2T
~ ~ g _ a_Pl 50+B 1 21
whereJ=J/kg, K=K/kg, etc. X11= JE1) =X11 f1(¢0), (2.13
Introducing ferroelectric and antiferroelectric ordering pa-
rameters and the elastic constant at constant field
B 1 B 1 I ,8¢
&= 5(771+772): 0—5(771_7]2), 054:(54 :CEA? 4 f,(&0), (2.14
. 4/ g,
we obtain

_ ) Inverting relations(2.11), we can express the strain, and
_ sinhy o sinhé 2.9 field E, in terms of the polarization and stress and then find
coshy+coshés’ coshy+coshés’ ' the coefficient of the piezoelectric strain

P Saai1 B

where
14:(E> =d84+— 2(€,0), (219
=1

J+K
y=8 > E—2¢ueat iy,
the dielectric susceptibility of a free crystal,

J-K
5:,8<_0'+A . Py B(u1)?
2 x‘ﬁ:(a—El =X+, o), (210
A trivial solution £€=0 (,=—1,) at E;=0 yields zero 7
macroscopic polarization at nonzero sublattice polarizations?nd the elastic compl|anc£4

The piezoelectric, elastic, and dielectric characteristics o

Rochelle salt can be derived from the thermodynamic poten- Jes ,6’¢4
tial 9104, T,Ey): SE4=(£> s T (S34)° fo(é,0). (217
1 1 e
91 — —
WZEUCEESE_UEE484E1 20)(1?'52“L (+K)¢ Here
1. -, 1 K-13
Z(J K)o“—2TIn 2—Tlncosh§(y+5) p+F[p2—4§20'2]
fi(é,0)= ——= ~ = ,
TIncoshe (y— 8)— e 2.9 . LS PRt L Sty
ncos 2('y )—v0T4E,. (2.9 — TP + 2T P + T &o
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K-J _ 2R
T[PZ“‘foz] b= ,
+——p|+{—= %07
[1=pl)| 1+ o |+ i &0
— T
R+3 2 7 t (2.22
p=1-&-0? (=—— 4 gE0 —K+J+ ~2_E0
' 4T T 44 ( ) _¢4544
1 e24 To calculate the thermal characteristics of the Rochelle
S44= "Ep> d(ffﬁ, salt we use the free energy
44 Caq B B
f=gietvP1E1tvose,. (2.23
_ _ 97 0
Xll X11+e14d14' 1= = 20adigt The specific heat of the quasispin subsystem of the Rochelle

The rest of the piezoelectric and elastic characteristics ¢
be expressed via those found above: the elastic constant at

ﬁalt at constant stress, then reads

dS '€ € (o)
AC"=—T(dT) =0y " APy A e,

constant polarization,
Jdo (2.29
P 4 E
Can=| =] =czteihia, 2.1
44 ( 584) o s 218 where
the constant of piezoelectric stress, Pi.e S
P q,' AZT(O"_T)p (Y2 +8%)5 —2ydéa
By €14 e
hi=—|-—- == (2.19 ~ -
€4 P, X11 e JS v J+K
ai=T|=z| =R -[—yp+26¢a],
and the constant of piezoelectric strain, T
JE d . IS J-K
Ou=|—| =—. (2.20 q;‘—T(—) =—R—[ dp+2yéal,
‘9‘74 X11 Tgpm M1

The temperature of the second order phase transition is de-
termined from the condition that the dielectric susceptibility

of a free crystaly7, diverges aff =T, andT— T,
—(1—0?)=0.

Using Eq.(2.16), we get

P1_
s (‘984

0S ~
— =Ryl yp—206¢0],
Pl,T
Sis the molar entropy,
S 1 1
—=21In2+In cosh5(7+ S)+In coshi(y— 85)— yé— b0,

and «, is the coefficient of the thermal expansion:

1 ol b
t:° =C0S TO +t_—0 (2.21) )
¢ ¢ ¢ (0784) —Pathyp, 229
or Ap=\| —~+ = = . .
a [ 054
cosf?l — K-3 +i K43 255 Rather cumbersome expressions figrand p;* are given in
4T at. ¢ 2Tc 4T vTC ' the Appendix. The pyroelectric coefficient reads
. . . . e - 3P1 R
%t.are we introduced the dimensionless variatded, and pJi=— ( (ﬂ_) _ —(p§4+e14a4). (2.26
. Oy
1. .
Z(K_J) Ill. RELAXATION DYNAMICS
a= , Dynamic properties of the system with Hamiltonigh1)
_(K+J)+_l/j‘21352 are studied within the Glauber meth®/dFor a complete sta-
tistical description of a quasispin subsystem dynamics, one
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needs to know the probabilitieB{. .. ,o4, ...} that the d 1 1 1
quasispins are in the stafe..,oq,...} at timet. It is —agré=&— 5| tanh; (y+ ) +tanh; (y—9) |,
assumed that the time dependence of this probability func-
tion is given by the master equatfon d 1 1
d —ago=o— 5 tanhz(y-i-é)—tanhi(y—(?)).
mP{...,aqf,...} (3.3
At small deviations of the system from equilibrium, we
= —Z Wol .. .wogt, - fPL . oges -} can present and o as the sums of two terms each: equilib-
q rium functions and their deviations from the equilibrium val-
ues:

+2 Wl — gt - IPL L —agr, ~ _
q E=¢+ ¢, o=o+to;. (3.9

3D An essential point of the derivation is that the strainis

Herewq{. gt - .} is the probability that, due to a con- assumed to be time independent, which is the case above the
tact with a heat reservoir, thgfth quasispin flips from the piezoelectric resonance frequency. In a rather wide tempera-
statec s to the state- o within the unit time. It is assumed ture range, provided the deviations from equilibrium are
that the heat reservoir is always in equilibrium, or that theresmall, we can expand the systét3) coefficients into Tay-
exists a mechanism which returns it to equilibrium suffi- lor series iné;, o, andE, up to the linear terms. The system
ciently fast. The functiow,{. .. ,o4¢, ...} should have the then splits into two groups of systems: one for the equilib-
form ensuring a transition from the stochastic model to thgium functionsfthis system coincides with E2.8)] and one
equilibrium configuration described by Hamiltoniéh 1). for their fluctuation parts:

From the detailed balancing condition at equilibrium

d m1Eq
Warl o Ogrs o} Pl om0} e s anst Aot S ay,
qu{...,_O'qf,...}— Po{...,()'qf,...} d E
[herePql . ..,04¢, ...} is the equilibrium distribution func- - aaat:aﬂgﬁazzoﬁ %az. (3.5

tion, being proportional to the Maxwell-Boltzmann factor

exp(—BH)] the expression for the spin flopping probability Here we use the notations
Wgtl .+ - ,0gs, - . .} follows: o
J+K 1--coshycoshs

1 1 ap=1- T 2
12T N/ %a 1—aqftanh§,6'qu . (3.2 (coshy+ coshd)
The parametew describes the time scale on which all tran- J-K sinhysinhs
sitions in the system take placBy; denotes the operator a12= " 2
field acting on thegf-th spin; in the mean field approxima- (coshy+ cosho)
tion the fields are given by Eg2.6). ~ ) )

To solve the master equation is quite a complicated task. a _J+K sinhysinhs
Fortunately, we may considerably simplify it, by looking not AT (coshy+coshs)?’
for the probability functiorP(. .. ,o4s, .. .), but for the ex-
pectation values of spins products . J-K 1- coshycoshs

Ap=1—

T (coshy+coshé)?’
{o}

(the sum is carried out over the alfN2system configura-
tions). The equations for such expectation values follow
from the master equation and from Hg.2):

d
_aa<]__f[ o'qf> :Z <];[ O'qf/
] _ ) At E;=0 from Egs.(3.5) we obtain a uniform differential
The sum here is carried out only over the spins that occur iBquation foré, :
the productily, .

<H O'qf>:E H G'qu{. .. ,O'qf, A ,t}
4(1— coshy coshé)

a, = ,
Y (coshy+ coshs)?

4 sinhy sinhé
a2: .
> . (coshy-+coshé)?

1
1—-0ys tanhz,Bqu

Within this approach, the system of equations for the & — Ky &+ Ko&=0. (3.6)
time-dependent single-particle distribution functions is ob-
tained as HereK,;=ay;+ay,, K0=|Zi?222. Ilts general solution reads
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3.7

where C{ are constant coefficients, ang are relaxation
times

&=Clexp(—t/ 1)+ Clexp( —t/7y),

1
lezlzz{Kli\/Kf—4Ko}.

Solving the nonuniform system of equatia3s5), we ob-
tain [the electric field isE,=Ey exp(wt)]

(3.9

2

i wK® KO E
&=, Clexp(—t/m)+ fa
f=1

(iw)2—iwK,+Kgy 2KeT’

whereK(M=—a,, KO=— |Z;§ 22 .

The complex dielectric permittivity then reads

ep(w)=ge,+ 4TX Amxe
1 ” 1+(w7'1)2 1+(w7‘2)2'
" daywT  ATXL0TH
1+(wmy) 1+(wTy)
where
—BM% 7172 FTKW+ - k() 3.1
Xlz_%ﬁ“ * 7 KWY). (3.10

IV. DISCUSSION

A. Fitting procedure

All the subsequent calculations refer to the undeuterate
Rochelle salt. For the numerical description of the abov
calculated dielectric, piezoelectric, elastic, thermal, and re-
laxational characteristics, we need to set the values of the

e
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the transition temperatures coincides with that observed ex-
perimentally in the Rochelle salfic1/Tc,=255/297%0.86.

On loweringa andb along this line, the maximum value
of ¢ between the two Curie points increases. At some point,
however, a third phase transition of the first order into a
ferroelectric phase emerges at=0 K, in addition to the
known transitions afl; and Tc,. The temperature of the

third transition increases on further decreasingaadnd b.
There is some experimental evidence that such a transition
indeed takes place in Rochelle salt at a temperature around
212 K (see Ref. 29 and references thejebut in the present
paper we restrict our consideration to the commonly ac-
cepted case of two phase transitions.

In order to obtain the best description of the spontaneous

polarization(see below we choose the values @f=0.295
andb=0.648 corresponding to the terminating point of the
Rochelle salt line, where the maximum value &fis the
largest, and the system still undergoes only two second order
phase transitions. Knowing the dimensionless temperatures
t2 of the two transitions, we can unambiguously i,
andA from Egs.(2.22, provided the parameters, andcgy

are chosen. The deformation potentjaland the seed elastic
constantcEf can be found by fitting the theoretical tempera-
ture dependence of the elastic constant to the experiniéntal
one. Hence, checking several trial valuesjafandcty, we
find J,K, andA.

As a resultJ=797.36 K,K=1468.83 K,A=737.33 K,
Ya=—760 K, andci)=12.8x 10" dyn/cn?.

The effective dipole moment, is set by fitting to the
experimental valué$ of the static dielectric permittivity of a
alamped crystal at the transition points. In the subsequent

calculations, we consider the moment to be a slightly
decreasing function of temperature

w1=[2.52+0.0066297—T)]x 10 *esu cm

following theory parameters: interaction potentials in the

same and in different sublatticdsand K; the asymmetry

parameterA, deformational potentialy,; effective dipole

The value ofa=1.7x10 3 ¢~ ! is obtained by fitting the
theoretical value ofe1,(»,T) at v=2.5 GHz at the upper

momentu,; the quantitya that sets a time scale of dynamic Curie point to the experimental 0R&The “seed” quantities

processes in the system; the “seed” elastic constigt,

X{f=0.363 anddg4=1.9>< 10 8 esu/dyn are taken to be

dielectric susceptibility 7Y, the coefficient of the piezoelec- equal to the experimental values gf; (Ref. 3) anddy,

tric strain,d(1)4; and the unit cell volume.

(Ref. 32 at T>320 K.

The number and temperatures of the second order phase The unit cell of the considered model contains ot
transitions in the considered system are governed by the dprdering units. Following the usual practice of assuming that

mensionless parametess and b [Eq. 2.21]. A thorough

study of the phase diagram of the conventional Mitsui modefj

has been recently presented elsewfe?also see Ref. 12

Several new regions in the diagrafmissed in the earlier

studie$? of the model were revealed, where the system
without tunneling can undergo up to four different phase
transitions. Inclusion of the piezoelectric effects into the
model does not affect the topology of the phase diagram and

only renormalizes the parametexsandb.
In the (@, b) phase diagram of the mod&t!? only a

the actual unit cell of the Rochelle salt crystal contdims
ipoles (one per molecule we should set the value of the
model unit cell volumev to be half of the crystal unit cell
volume. Using the data of Ref. 33 we have

v=0.52191+0.00013T—190)]x 10 2! cn?.

B. Static dielectric properties

Theoretical dependence of spontaneous polariz&tioof
the Rochelle salt is presented in Fig. 1. The obtained curve

single line corresponds to the Rochelle salt. Two second orfor P,(T) is somewhat asymmetric becayse is taken as a
der phase transitions occur along this line, and the ratio oflecreasing function of temperature. Even though we chose
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0.10}
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0.05¢ 240 250 260 270 280 290 300 T(K)

0.00 FIG. 3. Low-frequency dynamics of the inverse dielectric sus-

240 260 280 300 T (K) ceptibility as a function of temperature at different frequencies
(Hz): 1, 0;@, 1; A, 10;V, 80; O, 1000. Experimental points are
FIG. 1. Temperature dependence of spontaneous polariz&tion: taken from Ref. 43. The solid line is a theoretical inverse static
(Ref. 34; W (Ref. 3); and ¢ (Ref. 35. dielectric susceptibility of a free crystal.

those values of the paramet&sandathat yield the maxi-  tive dipole momenj, (say, with bends at the Curie poihts
mum values off and P, the theoretical value of the spon- the discrepancy for the elastic constaf, which does not

taneous polarization is about 10% smaller than the exXperigepend onu,, would persist. So far we have no solution to
mental one. Later we shall discuss the ways to improve thg,ig problem.

agreement.
In Fig. 2 we show the calculated theoretical temperatur |

dependences of inverse static dielectric susceptibilities %Hz This dispersion is attributed to the domain wall
oy—1 e\—1 .
free (x1 and clamped t3,) = Rochelle salt crystals. As motiorf"® or to the processes of domain polarization switch-

one can see, the value of the effective dipole moment ing coupled to heat diffusioff: Experimental poinfs for the

chosen via two experimental points for dynamic clampe o .
L ) . w-frequency dynamics in the Rochelle salt along with the
susceptibility at Curie temperatures, also provides a good fi ) ) . ) -
eoretical line for a single-domain crystal are shown in Fig.

to the inverse free susceptibility in the upper paraelectrict | . he f 1 kH h
phase. It should be noted that the temperature behavior of t ncreasing the frequency up to Z suppresses the

inverse susceptibility in this phase is essentially non-linear |sperS|oﬁ3;. this frequency is then considered as a high-
and the Curie-Weiss law here is a very poor approximation/régquency limit of this dynamics, where the domain effects
In the low temperature paraelectric phase the theoretic£€ NO Ionggr essential. The thgoreﬂcal smg.le domain line f|ts
line noticeably deviates from most of experimental points for2€St the points for 1 kHz, which also confirms the domain
the free susceptibility. As will be shown below, a similar Origin of the low-frequency dynamics.
deviation also takes place for the other static and dynamic
characteristics. While for piezoelectric and dielectric ones we
could improve the agreement between theory and experiment
by assuming a fancier temperature dependence of the effec- Let us consider now the high-frequency relaxational prop-
erties of the Rochelle salt. In order to find out to what extent
1/)(11 the experimental data of different sources for the dynamic
0.20 permittivity e7,(v,T) agree, we plot the frequency depen-
] dences of these quantities at two temperatures in each of the
three phases$see Figs. # The presented graphs reveal the
relaxational dispersion of dielectric permittivity in the Roch-
elle salt. As one can see, the data of Refs. 20 and 46—48
agree fairly well and are sufficiently well described by the
presented theory. Perceptible deviation is observed for rather
outdated data of Ref. 41, where the frequency curve for
£1,(v,T) in the dispersion region is shifted to lower frequen-

In the ferroelectric phase, the frequency dispersion of di-
ectric susceptibility is observé&tlin the region below 1

C. Dynamic permittivity

0.16
0.12

0.08

0.04

[l 1

000 46 280 260 270 280 290 300 310 TX) cies compared to the experimental points obtained in subse-

guent measurements. This indicates that the relaxation time
Qbtained in Ref. 41 is much lower than in other papers.
ceptibility of a free crystalf M (Ref. 31, A (Ref. 36, ¢ (Ref. 39, In Fig. 5 we depict the calculated temperature dependence
® (Ref. 37, ¥ (Ref. 38, + (Ref. 39] and a clamped crystar] ~ Of the inverse relaxation times; * and 7, * along with the

FIG. 2. Temperature dependence of inverse static dielectric su

1

(Ref. 20, O (Ref. 40, ¢ (Ref. 39, A (Ref. 41, andV (Ref. 42)]. values of r; = obtained from the analysis of experimental
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FIG. 4. The frequency dependence of the real and imaginary parts of dynamic dielectric permittivity at different tempecéturées
235, (b) 245, (c) 265, (d) 285, (e) 305, and(f) 315. Experimental points are taken frdih(Ref. 20, O (Refs. 45 and 49 + (Ref. 50, ¥
(Ref. 51, @ (Ref. 41), & (Ref. 46, X (Ref. 47, ¢ (Ref. 48, A (Ref. 38, andV (Ref. 52.

datg®*14=*8or ¢* (v,T). The recent data of Refs. 20, and model that does not take into account the piezoelectric
46-48 are well described by the presented theory. effect!® The second relaxation tims, is two orders smaller

As one can see, taking into account the piezoelectric efthanr; and does not exhibit any critical behavior. Moreover,
fect has successfully solved the problem encountered by thi#e corresponding weight, [Eq. (3.10] is different from
conventional theories — incorrect temperature dependence agro only in the ferroelectric phagthis can be easily veri-
relaxation times near the Curie points. The theoretical temfied analytically and even in this phase it is five orders
perature curve ole’l(T) obtained here has twdinite smaller thany,. Therefore, the dielectric relaxation in this
minima at the transition points, as opposed to vanishing oystem is of Debye character, and its temperature behavior is

the the inverse relaxation time obtained within the Mitsuidetermined byr; and x; only.
Below we present the theoretical temperature depen-

11-1 (10" rz"(louc'l) dences ofgfl(v,T) alqng with the e>_<perimenta| .points. of
0 0 Refs. 20(Fig. 6), 47 (Fig. 7), and 46(Fig. 8). The dielectric
.. permittivity £1,(»,T) has two extrema at the transition points
Tc, and Tep: maxima at lower frequenciebe (v, Tcy)
7.6/\ P >e14(v,Tep)] whose magnitudes decrease with increasing
4l — frequency; atv>4 GHz narrow minima ot ,(v,T) emerge
within the broad peaks arouni:; and Te,.
72| A fair quantitative description of experimental data is ob-
S . tained, especially in the upper paraelectric phase. Note that

the correct temperature behavior of the relaxation times in
the vicinity of the Curie points yields correct behavior of the
FIG. 5. Temperature dependence of the inverse relaxatioglynamic dielectric permittivity. However, we again notice a

s s - 7.0 ‘ s :
240 260 280 300 T (K) 240 260 280 300 T (K)

times: @ (Ref. 49, O (Ref. 47), B (Ref. 20, ¢ (Ref. 48, andA
(Ref. 41).

deviation from experimental data in the lower paraelectric
phase.

174112-8
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150 °
125 [
100-
75 Y 2 N

50

25

260 280 300 T (K)

FIG. 6. The temperature dependence of the real and imaginary parts of the dynamic dielectric permittivity at different frequencies
(GH2): O, 25;@, 3; A, 3.9;A,5.1;V, 7.05;V¥, 8.25;0, 9.45;[1, 11.96;M, 12.95. Solid lines are theoretical results; the symbols are
experimental points taken from Ref. 20.

) ) L 1 ) 1 . N . 0 S )
220 240 260 280 300 T (K) 220 240

D. Elastic and piezoelectric properties than in the high-temperature phase — we again obtain a de-

Let us now examine how the developed model describe¥i@tion from the experiment in the low-temperature

the temperature behavior of the elastic and piezoelectrif@raPhase. , ,
characteristics of the Rochelle salt associated with the strain 1€ temperature dependences of the piezoelectric charac-

e4. In Fig. 9 we present the theoretical temperature depent_eristics of Rochelle salt are shown in Figs. 10-13. The cal-

dence of the elastic constants at constant figgland at culated coefficient of piezoelectric straih, sharply in-
constant polarization?,. The calculated elastic constarf, creases as temperature approaches the transition points and

is almost temperature independent in all phases. On the Corc]llverges afT="Tcy . The temperature dependenceeg is

trarv. the elastic constamﬁ stronaly depends on tempera- weaker than that ofl,4; at the transition points;, has only
4 ! 4 gly dep P finite maximum values. The constants of piezoelectric stress
ture, approaching zero at the Curie points. The results of the

theoretical calculations farf, agree well with the data of all !
measurements in the high-temperature paraelectric phase and € 11
with the data of Refs. 53 and 54, and 30 in the ferroelectric -
phase.

The theoretical rates of decreasecff as the temperature 200
approaches the Curie points are the same in both paraelectric
phases. However, the experimental data indicate that this rate
is somewhat larger in the low-temperature paraelectric phase

150
3 €
11 150 11
200 1251 100
150 100 5
7
100 ° 50 s .
50 ME 5
50 25 i ¢
0 1 . 1 " 1 " 1 "
o 1 1 1 1 1 1 il L
290 295 300 305 7 (K) %260 205 300 308 T (K) 290 295 300 305 T (K)

FIG. 7. The temperature dependence of the real and imaginary FIG. 8. The temperature dependence of the real part of the
parts of the dynamic dielectric permittivity at different frequencies dynamic dielectric permittivity at different frequenciesGHz): H,
v(GH2): @, 1; A, 2;,25;0,3;0,45;A,7;V,825. Experi- 1;@,2; A, 3;¥,45; ¢, 10. Experimental points are taken from
mental points are taken from Ref. 47. Ref. 46.
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10 2 4 2
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12 DI AN AN
I 4“4 1 160
10 |
. E
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1
FIG. 11. Temperature dependence of the coefficient of the pi-

00 T(K)
ezoelectric stresey,: [ (Ref. 37, A (Ref. 57, V (Ref. 42, O
FIG. 9. Temperature dependence of elastic constant at constafikef. 35, ¢ d,, -c§, (Refs. 33 and 44

field c§,[x (Ref. 30, A (Ref. 53, ¢ (Ref. 59, O, 1/sy, (Ref. 35,
V, 155, (Ref. 42 0O ¢k, —eysh14 (Refs. 37 and 5] and constant
polarizationc’, [A (Ref. 53, B (Ref. 37, ¢ (Ref. 34, @ 1/sf,
+eyhy, (Ref. 35, ¥ 1sE,+ €3/ x5, (Ref. 42].

E. Specific heat

Experimental data concerning the character of the anoma-

h,4 and piezoelectric straig,, hardly change with tempera- lies of the specific heat of a Rochelle salt in the vicinity of
ture and, therefore, are called “true” piezoelectric constantghe transition points are very controversial. The disagreement
of a crystal. is caused by a small magnitude of the anomalies of specific

The obtained curvel,,(T) agrees well with the data of heat that is not much larger than the dispersion of the ob-
Refs. 42, and 44,55-57, and can be described by the Curi¢ained data. There were reported positiv@®°(fast increase
Weiss law withB somewhat larger than those presented inin the lower paraelectric phase and a downward jump at the
Ref. 34. The coefficients,, hy4, andg,, are usually recal- transition point or negativé:®? (decrease and upward juinp
culated via the measured valuesdyf;, xJ;, andci,. Fig-  anomalies ofC” at the lower Curie point. At the upper Curie
ures 11-13 contain “experimental” points obtained from point a positive anomafy*>*~%?or no anomaly at &if (in
such calculations. The theoretical results éof agree fairly  |ess precise measurementgs found. The most recent data
well with the points obtained in Refs. 35, 42, and 57 but notshow positive anomalies at both transition points. The same
in Ref. 37. Overall, more recent experimental data are bett%eha\/ior is also predicted by the estimates made from the
described by the presented theory. At any rate, the deviatiogata of electrocaloric and piezocaloric measurem#fts.
of the theory from experiment does not exceed dispersion of Theoretical calculations yield two positive anomalies of
experimental points from different sources. the specific heat in a Rochelle salt. In Fig. 14 we plot the
temperature dependence of the contribution to the specific
heat from ordering quasispinsC’. This also agrees with
the previous calculations;?*®®where a similar temperature
dependence oAC? was obtained within a model that does
not take into account piezoelectric straip.

. d,, (107esu/dyn)

) s (10"dyn/esu)

10
° . v v
240 260 280 300 .T(K) o
FIG. 10. Temperature dependence of the coefficient of piezo- %40 2¢|50 2{30 360 T (K)

electric straind,,: @ (Ref. 55, A (Ref. 32, ¥ (Ref. 56, O (Ref.
37), O (Ref. 39, V (Ref. 42, A (Ref. 57, ¢ di;=B/(T—T¢y),
B=8.67x10%esu at T<307K and 5.1%10%esu at T
>307 K (Ref. 39.

FIG. 12. Temperature dependence of the constant of piezoelec-
tric stresshy,: O (Ref. 379, A (Ref. 57, O (Ref. 35, V ew /x5,
(Ref. 42, and ¢ (Ref. 34.
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(iii) To assume that the number of ordering units per ac-
tual unit cell of the Rochelle salt is 8 rather than 4, as is
usually taken now. This would halve the unit cell volume
entering the expressions for the polarization and dielectric
permittivity. To keep the raticpi/v equal to the value that
provides an agreement with the permittivity, we should de-
crease the effective dipole moment by a factor\@. The
ratio w4 /v entering the expression for spontaneous polariza-

tion is then increased by the same fact@®@. Varying also
am 260 2%0 300 T(K) the other parameter€or instance, we would not have to

choose thosd, K, etc. that yield a maximum possible value
FIG. 13. Temperature dependence of the constant of piezoele®f £) we can fit both polarization and susceptibility.

8. (10" cm’/esu)

70

60

50+

tric straingy,: A (Ref. 57, O (Ref. 39, V dy4/ X711+ €14014 (Ref. The above discussion is, of course, futile, until a structural
42), @ &,/P; (Refs. 58 and 31 study can definitively identify the elements of the Rochelle
salt structure that play the role of the ordering units. Impli-

V. CONCLUSIONS cations of these findings could involve, along with the above

mentioned simple change in the number of the ordering units

In the present paper we modified the Mitsui model forper unit cell, more drastic changes to the model and, possi-
Rochelle salt crystals by taking into account the piezoelectrigly, its extension to a four-sublattice one. Further experi-
effects. The modified model successfully describes the piezanental and theoretical studies of the Rochelle salt are thus
electric and elastic characteristics of the Rochelle salt. It alseequisite.
predicts a correct temperature dependence of the relaxation
times and dynamic dielectric permittivity near the Curie APPENDIX
points. Since the clamped and free permittivities are now
distinct, the relaxation times and dynamic dielectric permit-
tivity calculated for the clamped crystal case remain finite aspecific heafEq. (2.24] are

The quantitiesp‘gr4 and pg“ entering the expression for

these points.
An unresolved problem is to obtain a simultaneous fit to os_ M1 ‘9_5 —=p%+e.a

ARG ; ¢ aT P, T €,

spontaneous polarization in the ferroelectric phase and the v oy

second order dielectric and piezoelectric characteristics — the

permittivities and piezoelectric modules in the paraelectric wi [ do

. . . N - - Oy __ _1 _ _ &4

(antiferroelectri¢ phases with a single value of effective di- p, = ((ﬂ_) =pte,ay,

pole momeniju. We can think of the following approaches to v oy

this problem. where

(i) Take into account the electrostrictive forces.

(i) Extend the model from the order-disorder one to a doy, 1
. . . . . . o o Py
mixed displacive and order-disorder one, that is, to explicitly ps= (ﬁ) = ?q4 ,
take into account the coupling with the displacive lattice Pi.ey
modds), whose eigenvectors give rise to spontaneous polar-
. . T T
ization. ey P11 NiNio ey M1l N1iNp
PeT 0 NZN2o| Pr™ A NN
led
AC" (J/mol K) . .
3.2 o M1 1 N14N12 o M1 1 N11N14
L f v A N;4N221 o v A N21N;4 )

T__ Yp=20kc . sp-2yko

e 2T 2 2T

BI+K) B(K=1J)
Nyy=1-—7—p Np=—7)F—2¢0,

K+J K—=J
N21:¥2501 N22:1+ [%T)pl
2.2 1 1 1 !
220 240 260 280 300 T (K) NS=— Buup, Ni=— B2éc,
FIG. 14. Temperature dependencedt’. A=N11Ngp— NNy
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