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Dielectric, piezoelectric, and elastic properties of the Rochelle salt NaKC4H4O6"4H2O: A theory
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We modify the conventional Mitsui model by including the terms related to piezoelectric coupling with shear
strain«4. The static and dynamic dielectric, piezoelectric, and elastic characteristics of a Rochelle salt crystal
are calculated. It is shown that taking into account piezoelectric effects yields a correct temperature behavior
of the relaxation times and the dynamic dielectric permittivity of the Rochelle salt in the vicinity of the
transition points.
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I. INTRODUCTION

It is generally accepted that the Rochelle salt~double
sodium-potassium tartrate NaKC4H4O6•4H2O) has two Cu-
rie points. The ferroelectric phase exists in a rather nar
temperature interval fromTC15255 K to TC25297 K.
Spontaneous polarization is directed along thea axis; it is
accompanied by a spontaneous shear strain«4. A unit cell of
Rochelle salt contains four formula units.

According to the classical concepts, based on struct
data of Frazeret al.,1 the phase transitions in the Roche
salt are pure order-disorder ones. The ferroelectric polar
tion used to be attributed to rotation of hydroxyl groups
tartrate complexes OH5 between two equilibrium position
~see Ref.2!. Each cell presumably contains four dipoles; t
potential barrier between two equilibrium orientations of
dipole is asymmetric. The dipoles form two copenetrat
sublattices, with local potentials which are the mirror refle
tions of each other. Therefore, even though in each subla
dipoles are always ordered~nonzero sublattice polarization!,
the total polarization at certain temperatures can be abs
These assumptions form the Mitsui model,3 usually used for
the description of the Rochelle salt.

The actual situation is far more complicated, and
mechanism of the phase transitions in the Rochelle salt
mains rather obscure. More recent neutron scattering
indicate that the OH5 hydroxyl groups do not perform an
orientational motion and therefore play little role in the pha
transition, at least in deuterated Rochelle salt.4,5 Furthermore,
experimental facts suggest that the phase transitions in R
elle salt are displacive6,7 ones or of mixed order-disorde
and displacive type.8,9 According to x-ray scattering
experiments,10 spontaneous polarization in the Rochelle s
is created by cooperative displacements of tartrate molec
and water molecules in a frame of K and Na ions. Recen
Hlinka et al.,11 based on their x-ray diffraction data, pro
posed that it is the order-disorder motion of OH9 and OH10
groups, coupled with the displacive vibrations of OH8
groups, that is responsible for the phase transitions in
Rochelle salt, as well as for the spontaneous polarization
far which atoms perform the order-disorder motion has
been definitively established.

Whichever atoms of the Rochelle salt play the role
ordering units, there is little doubt that their motion shou
0163-1829/2003/67~17!/174112~12!/$20.00 67 1741
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be described within the Mitsui model.3 This model can ex-
hibit several types of temperature behavior. Depending
the values of its parameters, it can undergo, for instanc
single second order phase transition into the ferroelec
phase~observed in RbHSO4), two second order phase tran
sitions ~Rochelle salt!, etc.

Static dielectric properties of Rochelle salt have been
tensively studied within the Mitsui model by Vaks,12 Zekset
al.,13 Mori,14 Kalenik,15 and others. Spontaneous polarizati
and static dielectric permittivity of pure and deuterat
Rochelle salt have been calculated.

Within the same model Zekset al.,13,16 Mori,14 and Lev-
itskii and co-workers17–19 explored the relaxation dynamic
of the Rochelle salt. The temperature dependence of the
laxation times and dynamic permittivity in the Rochelle s
was calculated. It was obtained, however, that the relaxa
time, exhibiting a critical slowing down at the Curie point
actually diverges at these points, whereas experiments20 in-
dicate that it should be large but remain finite. An infini
relaxation time yields a zero contribution of the orderi
system to the permittivity and, thereby, an incorrect theo
ical temperature dependence of the permittivity near the
rie points. Zekset al.13,16 calculated relaxation times for th
Mitsui model with tunneling~sometimes included into con
sideration in order to describe the isotopic effects in Roch
salt! and showed that the increase in the tunneling integ
does not have much effect on the dynamic properties. T
incorrect behavior persists even when using a higher-or
two-particle cluster approximation19 for the short-range in-
teractions.

It should be noted that the problem of the incorrect te
perature dependence of the relaxation times and dyna
permittivity near the Curie points is absent in a nonpiez
electric RbHSO4, usually described by the same model. He
the inverse relaxation times and the contribution of the
dering subsystem to the dynamic permittivity~both theoreti-
cal and experimental! indeed vanish at the Curie point.21–24

A remedy to the above mentioned problem seems ob
ous. It is well known that the Rochelle salt is one of t
strongest piezoelectrics. The piezoelectricity splits the st
permittivities of clamped and free crystals. At the frequen
of the measuring electric field above the frequency of
piezoelectric resonance, a clamped dielectric permittivity
the crystal is measured. A simple Mitsui model does n
©2003 The American Physical Society12-1
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distinguish between the free and clamped permittivities;
fact, the relaxation times and dynamic permittivity at hi
frequencies calculated within its framework correspond t
free crystal. Instead, like the static dielectric permittivity o
clamped crystal, the relaxation times calculated for
clamped crystal should be finite at the Curie points.

It is thus obvious that taking into account the piezoelec
effects within the Mitsui model can be fruitful. Also, a m
croscopic theory of the piezoelectric and elastic propertie
the Rochelle salt is still missing. The aim of this work is
verify the usefulness of this approach.

II. DIELECTRIC, ELASTIC, PIEZOELECTRIC, AND
THERMAL CHARACTERISTICS OF FERROELECTRICS

WITH ASYMMETRIC DOUBLE-WELL POTENTIAL

We consider a two-sublattice piezoelectric order-disor
type system with an asymmetric double-well potential. W
start with the conventional Mitsui model and modify it b
taking into account the shear strain«45«yz , which is either
spontaneous in the ferroelectric phase or induced by pie
electric coupling with an external electric fieldE1 applied
along the ferroelectric axisa.

The model states that the phase transitions are cause
the motion of certain dipoles in asymmetric double-well p
tentials with two different constants for the interaction b
tween dipoles of the same sublattice and of different sub
tices. We consider a system without tunneling, assuming
the isotopic effect in the Rochelle salt is due to changes
the interaction constants. The relative unimportance of t
neling effects here is indicated by the relaxational chara
of dielectric dispersion in a pure undeuterated Rochelle s
The model Hamiltonian then reads

Ĥ5
N

2
vc44

E0«4
22Nve14

0 «4E12
N

2
vx11

«0E1
2

2
1

2 (
qq8

(
f f 851

2

Rqq8~ f f 8!
sq f

2

sq8 f 8
2

2D(
q

S sq1

2
2

sq2

2
D

2~m1E122c4«4!(
q

(
f 51

2
sq f

2
. ~2.1!

The three first terms in Eq.~2.1! represent the elastic
piezoelectric, and electric energies attributed to a host lat
in which potential the quasispin move~with the ‘‘seed’’ elas-
tic constantc44

E0 , the coefficient of piezoelectric stresse14
0 ,

and dielectric susceptibilityx11
«0); v[ v̄kB is the unit cell

volume. In the fourth term in Eq.~2.1! Rqq8(11)5Rqq8(22)
5Jqq8 and Rqq8(12)5Rqq8(21)5Kqq8 are the potentials o
interaction between quasispins belonging to the same an
different sublattices, respectively. The quantityD describes
the asymmetry of the double-well potential;m1 is the effec-
tive dipole moment. The last term in the Hamiltonian is
additional internal field produced by piezoelectric coupli
with the shear strain«4 ; c4 is the so-called deformationa
potential.
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To derive the additional field one should start from a ge
eral microscopic term of the

H85(
q f

(
nk

(
iab

iCf k
ab~qn!Dq f

a iunk
b ~2.2!

type, usually appearing in Hamiltonians of the piezoelec
order-disorder type systems, which take into account io
vibrations of a host lattice.12,25 This term describes a piezo
electric interaction of the dipole momentsDq f

a attributed to
the ordering pseudospin system with components of the io
displacements (i 5t) or rotation (i 5r ) vectors iunk

a . The
components of the dipole moments directed along the axi
spontaneous polarization are related to the pseudospin op
tors Dq f

x ;sq f . In centrosymmetric crystalsiCf k
a (qn)50.

Here the indicesnk denote thekth atom in thenth unit cell.
We can separate a uniform lattice deformation«ab ~spon-

taneous or induced by external stress! from relative displace-
ments of crystal sublatticesick

a :

iunk
a 5(

g
«agRnk

0g1 ick
a1 i ũnk

a , ^ i ũnk
a &50. ~2.3!

Additional condition for ick
a is an equation for new equilib

rium ionic coordinates,25 obtained in the mean field approx
mation

v(
ag

idag;b
k «ag1 (

ak8 i 8

i i 8Dab
kk8~0! ick8

a
2(

f a

iCf k
ab~0!^D f

a&

50,

where i i 8Dab
kk8(0)5(n

ii 8Fab(nn8
kk8 ) is the dynamic matrix of

the crystal, andidag;b
k8 5(1/v)(nk

tiFab (nn8
kk8 ) Rnk

0g ~see a si-
milar derivation for the case of KD2PO4 systems25!. This
equation is equivalent to the condition that the final Ham
tonian should not contain terms linear ini ũnk

a .
Taking into account only the shear strain«45«yz , we

arrive at the final expression for the additional field

H852c4«4(
q f

sq f

2
,

consistent with the system symmetry. Analogous fields
duced by piezoelectric coupling with spontaneous sh
strain «6 have been obtained also for the KD2PO4 type
ferroelectrics,25,26 and enabled a quantitative description
temperature behavior of elastic and piezoelectric characte
tics of those crystals.26

Hereinafter we restrict our analysis to within the me
field approximation. Performing an identity transformation

sq f5h f1~sq f2h f !, h f5hq f5^sq f& ~2.4!

and neglecting the quadratic fluctuations, we rewrite the
tial Hamiltonian as
2-2
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Ĥm5
N

2
vc44

E0«4
22Nve14

0 «4E12
N

2
vx11

«0E1
21

N

8
J~h1

21h2
2!

1
N

4
Kh1h22(

q
FE~1!

sq1

2
2E~2!

sq2

2
G , ~2.5!

whereJ5(qJqq8 andK5(qKqq8 are the Fourier transform
of the interaction constants atq50, whereasE(1) andE(2)
are the local fields acting on theqth quasispin in the first and
second sublattices, respectively

E~1!5
1

2
Jh11

1

2
Kh21D22c4«41m1E1 ,

E~2!5
1

2
Jh21

1

2
Kh12D22c4«41m1E1 . ~2.6!

Single-particle distribution functions of quasispins are

h15tanhF J̃

4T
h11

K̃

4T
h21

D̃

2T
2

c̃4

T
«41

m̃1E1

2T
G ,

h25tanhF J̃

4T
h21

K̃

4T
h12

D̃

2T
2

c̃4

T
«41

m̃1E1

2T
G , ~2.7!

whereJ̃5J/kB , K̃5K/kB , etc.
Introducing ferroelectric and antiferroelectric ordering p

rameters

j5
1

2
~h11h2!, s5

1

2
~h12h2!,

we obtain

j5
sinhg

coshg1coshd
, s5

sinhd

coshg1coshd
, ~2.8!

where

g5bS J1K

2
j22c4«41m1E1D ,

d5bS J2K

2
s1D D .

A trivial solution j50 (h152h2) at E150 yields zero
macroscopic polarization at nonzero sublattice polarizatio

The piezoelectric, elastic, and dielectric characteristics
Rochelle salt can be derived from the thermodynamic po
tial g1E(s4 ,T,E1):

g1E

NkB
5

1

2
v̄c44

E0«4
22 v̄e14

0 «4E12
1

2
v̄x11

«0E1
21

1

4
~ J̃1K̃ !j2

1
1

4
~ J̃2K̃ !s222T ln 22T ln cosh

1

2
~g1d!

2T ln cosh
1

2
~g2d!2 v̄s4«4 . ~2.9!
17411
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Here s4 is the shear stress conjugate to the strain«4. In
numerical calculationss450.

The conditions

1

v̄
S ]g1E

]«4
D

E1 ,s4

50,
1

v̄
S ]g1E

]E1
D52P1 ~2.10!

yield

s45c44
0E«42e14

0 E112
c4

v̄
j,

P15e14
0 «41x11

0eE11
m1

v
j. ~2.11!

The second derivatives of thermodynamic potential~2.9!
are the coefficient of the piezoelectric stress,

e145S ]P1

]«4
D

E1

5e14
0 2bc4

m1

v
f 1~j,s!, ~2.12!

the clamped static dielectric susceptibility

x11
« 5S ]P1

]E1
D

«4

5x11
«01

bm1
2

2v
f 1~j,s!, ~2.13!

and the elastic constant at constant field

c44
E 5S ]s4

]«4
D

E1

5c44
E02

2bc4
2

v
f 1~j,s!, ~2.14!

Inverting relations~2.11!, we can express the strain«4 and
field E1 in terms of the polarization and stress and then fi
the coefficient of the piezoelectric strain

d145S ]P1

]«4
D

E1

5d14
0 1

s44
E0m18bc4

v
f 2~j,s!, ~2.15!

the dielectric susceptibility of a free crystal,

x11
s 5S ]P1

]E1
D

s4

5x11
s01

b~m18!2

2v
f 2~j,s!, ~2.16!

and the elastic compliances44
E

s44
E 5S ]«4

]s4
D

E1

5s44
E01~s44

E0!2
2bc4

2

v
f 2~j,s!. ~2.17!

Here

f 1~j,s!5

r1
K̃2 J̃

4T
@r224j2s2#

F12
K̃1 J̃

4T
rGF11

K̃2 J̃

4T
rG1

K̃22 J̃2

T
j2s2

,

2-3
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f 2~j,s!5

r1
K̃2 J̃

4T
@r224j2s2#

@12rz#F11
K̃2 J̃

4T
rG1z

K̃2 J̃

T
j2s2

,

r512j22s2, z5
K̃1 J̃

4T
1

2

v̄

c̃4
2

T
s44

E0 ,

s44
E05

1

c44
E0

, d14
0 5

e14
0

c44
E0

,

x11
s05x11

«01e14
0 d14

0 , m18522c̃4d14
0 1m1 .

The rest of the piezoelectric and elastic characteristics
be expressed via those found above: the elastic consta
constant polarization,

c44
P 5S ]s4

]«4
D

P1

5c44
E 1e14h14, ~2.18!

the constant of piezoelectric stress,

h1452S ]E1

]«4
D

P1

5
e14

x11
«

, ~2.19!

and the constant of piezoelectric strain,

g145S ]E1

]s4
D

P1

5
d14

x11
s

. ~2.20!

The temperature of the second order phase transition is
termined from the condition that the dielectric susceptibil
of a free crystalx11

s diverges atT→TC1 andT→TC2,

t̄ c
02~12s2!50.

Using Eq.~2.16!, we get

1

t̄ c
0

5cosh2S 2
ā

t̄ c
0
s1

b̄

t̄ c
0D ~2.21!

or

cosh2S 2
K̃2 J̃

4TC
s 1

D

2TC
D 5

K̃1 J̃

4TC
1

2c̃4
2s44

E0

v̄TC

.

Here we introduced the dimensionless variablesā, b̄, and
t̄ 0:

ā5

1

4
~K̃2 J̃!

1

4
~K̃1 J̃!1

2

v̄
c̃4

2s44
E0

,

17411
n
at

e-

b̄5
2D̃

1

4
~K̃1 J̃!1

2

v̄
c̃4

2s44
E0

,

t̄ 05
T

1

4
~K̃1 J̃!1

2

v̄
c̃4

2s44
E0

. ~2.22!

To calculate the thermal characteristics of the Roche
salt we use the free energy

f 5g1E1 v̄P1E11 v̄s4«4 . ~2.23!

The specific heat of the quasispin subsystem of the Roch
salt at constant stresss4 then reads

DCs52TS dS

dTD
s

5q4
P1 ,«41qj

«4pj
s41qs

«4ps
s41q4

pa4 ,

~2.24!

where

q4
P1 ,«45TS ]S

]TD
P1 ,«4

5RF ~g21d2!
r

2
22gdjsG ,

qj
«45TS ]S

]j D
«4 ,T

5
v

m1
R

J̃1K̃

4
@2gr12djs#,

qs
«45TS ]S

]s D
«4 ,T

5
v

m1
R

J̃2K̃

4
@2dr12gjs#,

q4
P15TS ]S

]«4
D

P1 ,T

5Rc̃4@gr22djs#,

S is the molar entropy,

S

R
52 ln 21 ln cosh

1

2
~g1d!1 ln cosh

1

2
~g2d!2gj2ds,

anda4 is the coefficient of the thermal expansion:

a45S ]«4

]T D
s4

5
2p41h14pj

«4

c44
E

. ~2.25!

Rather cumbersome expressions forp4 andpj
«4 are given in

the Appendix. The pyroelectric coefficient reads

p4
s452S ]P1

]T D
s4

52~pj
«41e14a4!. ~2.26!

III. RELAXATION DYNAMICS

Dynamic properties of the system with Hamiltonian~2.1!
are studied within the Glauber method.27 For a complete sta-
tistical description of a quasispin subsystem dynamics,
2-4
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needs to know the probabilitiesP$ . . . ,sq f , . . . % that the
quasispins are in the state$ . . . ,sq f , . . . % at time t. It is
assumed that the time dependence of this probability fu
tion is given by the master equation27

d

dt
P$ . . . ,sq f , . . . %

52(
q

wq$ . . . ,sq f , . . . %P$ . . . ,sq f , . . . %

1(
q

wq$ . . . ,2sq f , . . . %P$ . . . ,2sq f , . . . %.

~3.1!

Herewq$ . . . ,sq f , . . . % is the probability that, due to a con
tact with a heat reservoir, theq f th quasispin flips from the
statesq f to the state2sq f within the unit time. It is assumed
that the heat reservoir is always in equilibrium, or that th
exists a mechanism which returns it to equilibrium su
ciently fast. The functionwq$ . . . ,sq f , . . . % should have the
form ensuring a transition from the stochastic model to
equilibrium configuration described by Hamiltonian~2.1!.

From the detailed balancing condition at equilibrium

wq f$ . . . ,sq f , . . . %

wq f$ . . . ,2sq f , . . . %
5

P0$ . . . ,2sq f , . . . %

P0$ . . . ,sq f , . . . %

@hereP0$ . . . ,sq f , . . . % is the equilibrium distribution func-
tion, being proportional to the Maxwell-Boltzmann fact
exp(2bĤ)] the expression for the spin flopping probabili
wq f$ . . . ,sq f , . . . % follows:

wq f$ . . . ,sq f , . . . %5
1

2a F12sq f tanh
1

2
bEq fG . ~3.2!

The parametera describes the time scale on which all tra
sitions in the system take place,Eq f denotes the operato
field acting on theq f-th spin; in the mean field approxima
tion the fields are given by Eq.~2.6!.

To solve the master equation is quite a complicated ta
Fortunately, we may considerably simplify it, by looking n
for the probability functionP( . . . ,sq f , . . . ), but for the ex-
pectation values of spins products

K)
f

sq fL 5(
$s%

)
f

sq fP$ . . . ,sq f , . . . ,t%

~the sum is carried out over the all 2N system configura-
tions!. The equations for such expectation values follo
from the master equation and from Eq.~3.2!:

2a
d

dt K)f
sq fL 5(

f K)
f 8

sq f8F12sq f tanh
1

2
bEq fG L .

The sum here is carried out only over the spins that occu
the product) f 8 .

Within this approach, the system of equations for t
time-dependent single-particle distribution functions is o
tained as
17411
c-

e

e

k.

in

e
-

2a
d

dt
j5j2

1

2 S tanh
1

2
~g1d!1tanh

1

2
~g2d! D ,

2a
d

dt
s5s2

1

2 S tanh
1

2
~g1d!2tanh

1

2
~g2d! D .

~3.3!

At small deviations of the system from equilibrium, w
can presentj ands as the sums of two terms each: equili
rium functions and their deviations from the equilibrium va
ues:

j5 j̃1j t , s5s̃1s t . ~3.4!

An essential point of the derivation is that the strain«4 is
assumed to be time independent, which is the case abov
piezoelectric resonance frequency. In a rather wide temp
ture range, provided the deviations from equilibrium a
small, we can expand the system~3.3! coefficients into Tay-
lor series inj t , s t , andEt up to the linear terms. The system
then splits into two groups of systems: one for the equil
rium functions@this system coincides with Eq.~2.8!# and one
for their fluctuation parts:

2a
d

dt
j t5a11j t1a12s t1

m1E1

2T
a1 ,

2a
d

dt
s t5a21j t1a22s t1

m1E1

2T
a2 . ~3.5!

Here we use the notations

a11512
J̃1K̃

T

12coshg coshd

~coshg1coshd!2
,

a125
J̃2K̃

T

sinhg sinhd

~coshg1coshd!2
,

a215
J̃1K̃

T

sinhg sinhd

~coshg1coshd!2
,

a22512
J̃2K̃

T

12 coshg coshd

~coshg1coshd!2
,

a15
4~12coshg coshd!

~coshg1coshd!2
,

a25
4 sinhg sinhd

~coshg1coshd!2
.

At Et50 from Eqs.~3.5! we obtain a uniform differential
equation forj t :

j̈ t2K1j̇ t1K0j t50. ~3.6!

HereK15a111a22, K05ua
a11

a
a12 u. Its general solution reads
21 22

2-5
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j t5C1
t exp~2t/t1!1C2

t exp~2t/t2!, ~3.7!

where Cf
t are constant coefficients, andt f are relaxation

times

t1,2
215

1

2
$K16AK1

224K0%. ~3.8!

Solving the nonuniform system of equations~3.5!, we ob-
tain @the electric field isEt5E0 exp(ivt)]

j t5(
f 51

2

Cf
t exp~2t/t f !1

ivK (1)1K (0)

~ iv!22 ivK11K0

m1Et

2kBT
,

whereK (1)52a1 , K (0)52ua22

a12
a2

a1u.
The complex dielectric permittivity then reads

«118 ~v!5«`1
4px1

11~vt1!2
1

4px2

11~vt2!2
,

«119 ~v!5
4px1vt1

11~vt1!2
1

4px2vt2

11~vt2!2
. ~3.9!

where

x1,25
bm1

2

2v
t1t2

t22t1
~7K (1)6t1K (0)!. ~3.10!

IV. DISCUSSION

A. Fitting procedure

All the subsequent calculations refer to the undeutera
Rochelle salt. For the numerical description of the abo
calculated dielectric, piezoelectric, elastic, thermal, and
laxational characteristics, we need to set the values of
following theory parameters: interaction potentials in t
same and in different sublatticesJ̃ and K̃; the asymmetry
parameterD̃, deformational potentialc̃4; effective dipole
momentm1; the quantitya that sets a time scale of dynam
processes in the system; the ‘‘seed’’ elastic constantc44

E0 ,
dielectric susceptibilityx11

s0 , the coefficient of the piezoelec
tric strain,d14

0 ; and the unit cell volumev.
The number and temperatures of the second order p

transitions in the considered system are governed by the
mensionless parametersā and b̄ @Eq. 2.21!#. A thorough
study of the phase diagram of the conventional Mitsui mo
has been recently presented elsewhere24,28 ~also see Ref. 12!.
Several new regions in the diagram~missed in the earlier
studies12 of the model! were revealed, where the syste
without tunneling can undergo up to four different pha
transitions. Inclusion of the piezoelectric effects into t
model does not affect the topology of the phase diagram
only renormalizes the parametersā and b̄.

In the (ā, b̄) phase diagram of the model,24,12 only a
single line corresponds to the Rochelle salt. Two second
der phase transitions occur along this line, and the ratio
17411
d
e
-
e

se
i-

l

d

r-
of

the transition temperatures coincides with that observed
perimentally in the Rochelle salt:TC1/TC25255/297'0.86.

On loweringā and b̄ along this line, the maximum value
of j between the two Curie points increases. At some po
however, a third phase transition of the first order into
ferroelectric phase emerges atT'0 K, in addition to the
known transitions atTC1 and TC2. The temperature of the
third transition increases on further decreasing ofā and b̄.
There is some experimental evidence that such a trans
indeed takes place in Rochelle salt at a temperature aro
212 K ~see Ref. 29 and references therein!, but in the present
paper we restrict our consideration to the commonly
cepted case of two phase transitions.

In order to obtain the best description of the spontane
polarization~see below! we choose the values ofā50.295
and b̄50.648 corresponding to the terminating point of t
Rochelle salt line, where the maximum value ofj is the
largest, and the system still undergoes only two second o
phase transitions. Knowing the dimensionless temperat
tC
0 of the two transitions, we can unambiguously findJ̃,K̃,

andD̃ from Eqs.~2.22!, provided the parametersc̃4 andc44
E0

are chosen. The deformation potentialc̃4 and the seed elasti
constantc44

E0 can be found by fitting the theoretical temper
ture dependence of the elastic constant to the experimen30

one. Hence, checking several trial values ofc̃4 andc44
E0 , we

find J̃,K̃, andD̃.
As a result,J̃5797.36 K, K̃51468.83 K,D̃5737.33 K,

c̃452760 K, andc44
E0512.831010 dyn/cm2.

The effective dipole momentm1 is set by fitting to the
experimental values20 of the static dielectric permittivity of a
clamped crystal at the transition points. In the subsequ
calculations, we consider the momentm1 to be a slightly
decreasing function of temperature

m15@2.5210.0066~2972T!#310218esu cm

The value ofa51.7310213 c21 is obtained by fitting the
theoretical value of«118 (n,T) at n52.5 GHz at the upper
Curie point to the experimental one.20 The ‘‘seed’’ quantities
x11

s050.363 andd14
0 51.931028 esu/dyn are taken to b

equal to the experimental values ofx11
s ~Ref. 31! and d14

~Ref. 32! at T.320 K.
The unit cell of the considered model contains onlytwo

ordering units. Following the usual practice of assuming t
the actual unit cell of the Rochelle salt crystal containsfour
dipoles ~one per molecule!, we should set the value of th
model unit cell volumev to be half of the crystal unit cel
volume. Using the data of Ref. 33 we have

v50.5219@110.00013~T2190!#310221 cm3.

B. Static dielectric properties

Theoretical dependence of spontaneous polarizationP1 of
the Rochelle salt is presented in Fig. 1. The obtained cu
for P1(T) is somewhat asymmetric becausem1 is taken as a
decreasing function of temperature. Even though we ch
2-6
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those values of the parametersā and b̄ that yield the maxi-
mum values ofj and P1, the theoretical value of the spon
taneous polarization is about 10% smaller than the exp
mental one. Later we shall discuss the ways to improve
agreement.

In Fig. 2 we show the calculated theoretical temperat
dependences of inverse static dielectric susceptibilities
free (x11

s )21 and clamped (x11
« )21 Rochelle salt crystals. As

one can see, the value of the effective dipole momentm1
chosen via two experimental points for dynamic clamp
susceptibility at Curie temperatures, also provides a goo
to the inverse free susceptibility in the upper paraelec
phase. It should be noted that the temperature behavior o
inverse susceptibility in this phase is essentially non-line
and the Curie-Weiss law here is a very poor approximati

In the low temperature paraelectric phase the theore
line noticeably deviates from most of experimental points
the free susceptibility. As will be shown below, a simil
deviation also takes place for the other static and dyna
characteristics. While for piezoelectric and dielectric ones
could improve the agreement between theory and experim
by assuming a fancier temperature dependence of the e

FIG. 2. Temperature dependence of inverse static dielectric
ceptibility of a free crystal:@j ~Ref. 31!, m ~Ref. 36!, l ~Ref. 35!,
d ~Ref. 37!, . ~Ref. 38!, 1 ~Ref. 39!# and a clamped crystal@h
~Ref. 20!, s ~Ref. 40!, L ~Ref. 35!, n ~Ref. 41!, and, ~Ref. 42!#.

FIG. 1. Temperature dependence of spontaneous polarizatios

~Ref. 34!; j ~Ref. 31!; andL ~Ref. 35!.
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tive dipole momentm1 ~say, with bends at the Curie points!,
the discrepancy for the elastic constantc44

E , which does not
depend onm1, would persist. So far we have no solution
this problem.

In the ferroelectric phase, the frequency dispersion of
electric susceptibility is observed43 in the region below 1
kHz. This dispersion is attributed to the domain wa
motion43 or to the processes of domain polarization switc
ing coupled to heat diffusion.44 Experimental points43 for the
low-frequency dynamics in the Rochelle salt along with t
theoretical line for a single-domain crystal are shown in F
3. Increasing the frequency up to 1 kHz suppresses
dispersion43; this frequency is then considered as a hig
frequency limit of this dynamics, where the domain effec
are no longer essential. The theoretical single domain line
best the points for 1 kHz, which also confirms the doma
origin of the low-frequency dynamics.

C. Dynamic permittivity

Let us consider now the high-frequency relaxational pro
erties of the Rochelle salt. In order to find out to what exte
the experimental data of different sources for the dynam
permittivity «11* (n,T) agree, we plot the frequency depe
dences of these quantities at two temperatures in each o
three phases~see Figs. 4!. The presented graphs reveal th
relaxational dispersion of dielectric permittivity in the Roc
elle salt. As one can see, the data of Refs. 20 and 46
agree fairly well and are sufficiently well described by t
presented theory. Perceptible deviation is observed for ra
outdated data of Ref. 41, where the frequency curve
«118 (n,T) in the dispersion region is shifted to lower freque
cies compared to the experimental points obtained in su
quent measurements. This indicates that the relaxation
obtained in Ref. 41 is much lower than in other papers.

In Fig. 5 we depict the calculated temperature depende
of the inverse relaxation timest1

21 and t2
21 along with the

values oft1
21 obtained from the analysis of experiment

s-

FIG. 3. Low-frequency dynamics of the inverse dielectric su
ceptibility as a function of temperature at different frequenc
~Hz!: j, 0; d, 1; m, 10; ., 80; s, 1000. Experimental points ar
taken from Ref. 43. The solid line is a theoretical inverse sta
dielectric susceptibility of a free crystal.
2-7
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FIG. 4. The frequency dependence of the real and imaginary parts of dynamic dielectric permittivity at different temperaturesT ~K!: ~a!
235, ~b! 245, ~c! 265, ~d! 285, ~e! 305, and~f! 315. Experimental points are taken fromj ~Ref. 20!, s ~Refs. 45 and 49!, 1 ~Ref. 50!, .

~Ref. 51!, d ~Ref. 41!, l ~Ref. 46!, 3 ~Ref. 47!, L ~Ref. 48!, n ~Ref. 38!, and, ~Ref. 52!.
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data20,41,46–48for «11* (n,T). The recent data of Refs. 20, an
46–48 are well described by the presented theory.

As one can see, taking into account the piezoelectric
fect has successfully solved the problem encountered by
conventional theories – incorrect temperature dependenc
relaxation times near the Curie points. The theoretical te
perature curve oft1

21(T) obtained here has twofinite
minima at the transition points, as opposed to vanishing
the the inverse relaxation time obtained within the Mits

FIG. 5. Temperature dependence of the inverse relaxa
times:d ~Ref. 46!, s ~Ref. 47!, j ~Ref. 20!, L ~Ref. 48!, andm

~Ref. 41!.
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model that does not take into account the piezoelec
effect.13 The second relaxation timet2 is two orders smaller
thant1 and does not exhibit any critical behavior. Moreove
the corresponding weightx2 @Eq. ~3.10!# is different from
zero only in the ferroelectric phase~this can be easily veri-
fied analytically! and even in this phase it is five orde
smaller thanx1. Therefore, the dielectric relaxation in th
system is of Debye character, and its temperature behavi
determined byt1 andx1 only.

Below we present the theoretical temperature dep
dences of«11* (n,T) along with the experimental points o
Refs. 20~Fig. 6!, 47 ~Fig. 7!, and 46~Fig. 8!. The dielectric
permittivity «118 (n,T) has two extrema at the transition poin
TC2 and TC1: maxima at lower frequencies@«118 (n,TC1)
.«118 (n,TC2)# whose magnitudes decrease with increas
frequency; atn.4 GHz narrow minima of«118 (n,T) emerge
within the broad peaks aroundTC1 andTC2.

A fair quantitative description of experimental data is o
tained, especially in the upper paraelectric phase. Note
the correct temperature behavior of the relaxation times
the vicinity of the Curie points yields correct behavior of th
dynamic dielectric permittivity. However, we again notice
deviation from experimental data in the lower paraelec
phase.

n

2-8
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FIG. 6. The temperature dependence of the real and imaginary parts of the dynamic dielectric permittivity at different frequn
~GHz!: s, 2.5; d, 3; n, 3.9; m, 5.1; ,, 7.05; ., 8.25; (, 9.45; h, 11.96;j, 12.95. Solid lines are theoretical results; the symbols
experimental points taken from Ref. 20.
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D. Elastic and piezoelectric properties

Let us now examine how the developed model descri
the temperature behavior of the elastic and piezoelec
characteristics of the Rochelle salt associated with the st
«4. In Fig. 9 we present the theoretical temperature dep
dence of the elastic constants at constant fieldc44

E and at
constant polarizationc44

P . The calculated elastic constantc44
P

is almost temperature independent in all phases. On the
trary, the elastic constantc44

E strongly depends on tempera
ture, approaching zero at the Curie points. The results of
theoretical calculations forc44

E agree well with the data of al
measurements in the high-temperature paraelectric phase
with the data of Refs. 53 and 54, and 30 in the ferroelec
phase.

The theoretical rates of decrease ofc44
E as the temperature

approaches the Curie points are the same in both paraele
phases. However, the experimental data indicate that this
is somewhat larger in the low-temperature paraelectric ph

FIG. 7. The temperature dependence of the real and imagi
parts of the dynamic dielectric permittivity at different frequenc
n ~GHz!: d, 1; n, 2; j, 2.5; L, 3; h, 4.5; m, 7; ., 8.25. Experi-
mental points are taken from Ref. 47.
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than in the high-temperature phase – we again obtain a
viation from the experiment in the low-temperatu
paraphase.

The temperature dependences of the piezoelectric cha
teristics of Rochelle salt are shown in Figs. 10–13. The c
culated coefficient of piezoelectric straind14 sharply in-
creases as temperature approaches the transition points
diverges atT5TCf . The temperature dependence ofe14 is
weaker than that ofd14; at the transition pointse14 has only
finite maximum values. The constants of piezoelectric str

ry FIG. 8. The temperature dependence of the real part of
dynamic dielectric permittivity at different frequenciesn ~GHz!: j,
1; d, 2; m, 3; ., 4.5; L, 10. Experimental points are taken from
Ref. 46.
2-9
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h14 and piezoelectric straing14 hardly change with tempera
ture and, therefore, are called ‘‘true’’ piezoelectric consta
of a crystal.

The obtained curved14(T) agrees well with the data o
Refs. 42, and 44,55–57, and can be described by the C
Weiss law withB somewhat larger than those presented
Ref. 34. The coefficientse14, h14, andg14 are usually recal-
culated via the measured values ofd14, x11

s , andc44
E . Fig-

ures 11–13 contain ‘‘experimental’’ points obtained fro
such calculations. The theoretical results fore14 agree fairly
well with the points obtained in Refs. 35, 42, and 57 but n
in Ref. 37. Overall, more recent experimental data are be
described by the presented theory. At any rate, the devia
of the theory from experiment does not exceed dispersio
experimental points from different sources.

FIG. 9. Temperature dependence of elastic constant at con
field c44

E @3 ~Ref. 30!, n ~Ref. 53!, L ~Ref. 54!, s, 1/s44
E ~Ref. 35!,

,, 1/s44
E ~Ref. 42! h c44

P 2e14h14 ~Refs. 37 and 57!# and constant
polarizationc44

P @m ~Ref. 53!, j ~Ref. 37!, L ~Ref. 34!, d 1/s44
E

1e14h14 ~Ref. 35!, . 1/s44
E 1e14

2 /x11
« ~Ref. 42!#.

FIG. 10. Temperature dependence of the coefficient of pie
electric straind14: d ~Ref. 55!, m ~Ref. 32!, . ~Ref. 56!, h ~Ref.
37!, s ~Ref. 35!, , ~Ref. 42!, n ~Ref. 57!, L d145B/(T2TC2),
B58.6731025 esu at T,307 K and 5.1731025 esu at T
.307 K ~Ref. 34!.
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E. Specific heat

Experimental data concerning the character of the ano
lies of the specific heat of a Rochelle salt in the vicinity
the transition points are very controversial. The disagreem
is caused by a small magnitude of the anomalies of spe
heat that is not much larger than the dispersion of the
tained data. There were reported positive29,59,60~fast increase
in the lower paraelectric phase and a downward jump at
transition point! or negative61,62 ~decrease and upward jump!
anomalies ofCs at the lower Curie point. At the upper Curi
point a positive anomaly29,59–62 or no anomaly at all63 ~in
less precise measurements! was found. The most recent da
show positive anomalies at both transition points. The sa
behavior is also predicted by the estimates made from
data of electrocaloric and piezocaloric measurements.64,65

Theoretical calculations yield two positive anomalies
the specific heat in a Rochelle salt. In Fig. 14 we plot t
temperature dependence of the contribution to the spe
heat from ordering quasispinsDCs. This also agrees with
the previous calculations,19,24,66where a similar temperatur
dependence ofDCs was obtained within a model that doe
not take into account piezoelectric strain«4.

ant

-

FIG. 11. Temperature dependence of the coefficient of the
ezoelectric stresse14: h ~Ref. 37!, n ~Ref. 57!, , ~Ref. 42!, s

~Ref. 35!, L d14 •c44
E ~Refs. 33 and 44!.

FIG. 12. Temperature dependence of the constant of piezoe
tric stressh14: h ~Ref. 37!, n ~Ref. 57!, s ~Ref. 35!, , e14/x11

«

~Ref. 42!, andL ~Ref. 34!.
2-10
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V. CONCLUSIONS

In the present paper we modified the Mitsui model
Rochelle salt crystals by taking into account the piezoelec
effects. The modified model successfully describes the pie
electric and elastic characteristics of the Rochelle salt. It a
predicts a correct temperature dependence of the relaxa
times and dynamic dielectric permittivity near the Cu
points. Since the clamped and free permittivities are n
distinct, the relaxation times and dynamic dielectric perm
tivity calculated for the clamped crystal case remain finite
these points.

An unresolved problem is to obtain a simultaneous fit
spontaneous polarization in the ferroelectric phase and
second order dielectric and piezoelectric characteristics –
permittivities and piezoelectric modules in the paraelec
~antiferroelectric! phases with a single value of effective d
pole momentm. We can think of the following approaches
this problem.

~i! Take into account the electrostrictive forces.
~ii ! Extend the model from the order-disorder one to

mixed displacive and order-disorder one, that is, to explic
take into account the coupling with the displacive latti
mode~s!, whose eigenvectors give rise to spontaneous po
ization.

FIG. 13. Temperature dependence of the constant of piezoe
tric straing14: n ~Ref. 57!, s ~Ref. 35!, , d14/x11

« 1e14d14 ~Ref.
42!, d «4 /P1 ~Refs. 58 and 31!.

FIG. 14. Temperature dependence ofDCs.
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~iii ! To assume that the number of ordering units per
tual unit cell of the Rochelle salt is 8 rather than 4, as
usually taken now. This would halve the unit cell volumev
entering the expressions for the polarization and dielec
permittivity. To keep the ratiom1

2/v equal to the value tha
provides an agreement with the permittivity, we should d
crease the effective dipole moment by a factor ofA2. The
ratio m1 /v entering the expression for spontaneous polari
tion is then increased by the same factorA2. Varying also
the other parameters~for instance, we would not have t
choose thoseJ̃, K̃, etc. that yield a maximum possible valu
of j! we can fit both polarization and susceptibility.

The above discussion is, of course, futile, until a structu
study can definitively identify the elements of the Roche
salt structure that play the role of the ordering units. Imp
cations of these findings could involve, along with the abo
mentioned simple change in the number of the ordering u
per unit cell, more drastic changes to the model and, po
bly, its extension to a four-sublattice one. Further expe
mental and theoretical studies of the Rochelle salt are t
requisite.

APPENDIX

The quantitiespj
s4 and ps

s4 entering the expression fo
specific heat@Eq. ~2.24!# are

pj
s45

m1

v S ]j

]TD
s4

5pj
«41eja4 ,

ps
s45

m1

v S ]s

]TD
s4

5ps
«41esa4 ,

where

p45S ]s4

]T D
P1 ,«4

5
1

T
q4

P1 ,

pj
«45

m1

v
1

D UN1
TN12

N2
TN22

U, ps
«45

m1

v
1

D UN11N1
T

N21N2
TU,

ej5
m1

v
1

D UN1
«4N12

N2
«4N22

U , es5
m1

v
1

D UN11N1
«4

N21N2
«4U ,

N1
T52

gr22djs

2T
, N2

T52
dr22gjs

2T
;

N11512
b~J1K !

4
r, N125

b~K2J!

4
2js,

N215
b~K1J!

4
2js, N22511

b~K2J!

4
r,

N1
«52bc4r, N2

«52bc42js,

D5N11N222N12N21.

c-
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