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Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method
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We report the experiments and procedures to successfully record and reconstruct coherent diffraction pat-
terns at sub-10-nm resolution from noncrystalline samples by using synchrotron x rays with a wavelength of 2
A. By employing the oversampling phasing method, we studied the quality of image reconstruction of experi-
mental diffraction patterns as a function of the oversampling r@iparameter to characterize the oversam-
pling degree& We observed that the quality of reconstruction is strongly correlated with the oversampling ratio,
which is in good agreement with theory. When the oversampling ratio is around 5 or larger, the reconstructed
images with high quality were obtained. When the oversampling ratio is less than 5, the images became noisy.
When the oversampling ratio is very close to or less than 2, the images were extremely noisy and barely
recognizable. We believe these results will be of importance to the experiments of imaging nanocrystals and
noncrystalline samples using coherent x-ray, electron, or neutron diffraction.
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[. INTRODUCTION the experimental instrument and the procedures to obtain
high-quality diffraction patterns from noncrystalline samples
X-ray crystallography is a well-established and widely using coherent x rays are discussed. Section IV describes the
used technique to determine the three-dimensidi3al) reconstruction of a high-quality image of a noncrystalline
structures of crystalline materials at atomic resolution. Thesample at 7-nm resolution, and the results of how the quality
large number of unit cells inside a crystal produces stron@f image reconstruction depends on the oversampling ratio.
and discrete Bragg peaks, which facilitates data acquisitiofronclusions are presented in Sec. V.
but imposes the well-known “phase problem.” When a
sample is noncrystalline, the diffraction patterns become Il. THE OVERSAMPLING METHOD
weak and continuous, which makes the data acquisition more
challenging. However, such a continuous diffraction pattern, ;
can be sampled at a spacing finer than the Bragg peak fre-
quency(i.e., oversamples Although it was suggested early
that oversampling a diffraction pattern may provide phase |F(kxaky1kz)|
information!? it was not until recently that a theory was i
roposed to explain the oversampling phasing method and .
Eon?irmed by copmputer simulatioqﬁ‘.p P ’ = 2 Z Z p(x,y,z)e*m i rkyimeiezing,
. h . . x=0 y=0 z=0
The first experimental demonstration of using the over-
sampling method _to image noncr.ystalline samp_les was car- ke=0,...)—1, k,=0,...m—1, k,=0,...n—
ried out in 1999 Since then, a variety of applications of this Y
methodology have been pursued, ranging from imaging thavhere|F(ky .k, k)| is the magnitude of the Fourier trans-
shapes of Au nanocrystals to theoretical studies of the potedorm of the sample, antl m, andn are the size of the sam-
tial of imaging single biomolecules using x-ray free-electronpling array inx, y, andz directions, respectively. According
lasers~1°In this paper, we describe the detailed experimentdo Eq. (1), the phase problem becomes how to solve
and procedures to record and reconstruct coherent diffractiom(x,y,z) from a series of nonlinear equations. When
patterns at sub-10-nm resolution. Furthermore, we studied(X,y,z) is real, the number of unknown variablgs., the
the phase retrieval of experimental diffraction patterns as aoxel number of the 3D array samplingx,y,z)] is Imn,
function of the oversampling ratio, and the results are inand the number of independent equationisris/2 due to the
agreement with theory. centrosymmetry of the diffraction pattern. Whe(x,y,z) is
The paper is organized as follows. In Sec. Il, the basiccomplex, the number of unknown variables becomliesr®
theory of the oversampling method is reviewed. In Sec. lll,and the number of independent equationsnis. In either

When a coherent beam of x rays illuminates a sample
th an electron density gf(x,y,z), the diffraction pattern,
sampled at the Bragg peak frequency, is expressed as

@
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case, the number of unknown variables is twice the numbetomeslmn, while the number of unknown variables remains
of equations, and the phase information cannot be uniquelimn. For complexp(x,y,z), both the number of independent
retrieved from the diffraction pattern without other equations and the number of unknown variables drar2
information®* In either case, there are as many independent equations as
When the diffraction pattern is sampled at a frequency olunknown variables. When the sampling frequency is finer
3/2 finer than the Bragg peak frequency, the magnitude of théhan3/2, the number of independent equations is more than
Fourier transform becomes the number of unknown variables, ap¢x,y,z) can in prin-
“1 me1n-1 ciple be direﬁtly .so(;ved from the series of equatiSrIISnc_e
may argue that it does not guarantee a unique solution to
[Fky.ky k)| = Xzo Zto ;o p(X.y.2) have more equations than unknown variables. Mathemati-
cally, it has been shown that the multiplicity of the solution is
rare in two- and three-dimensional cad®s.
Oversampling a diffraction pattern at a spacing finer than
the Bragg peak frequency corresponds to surrounding the
_ 351 _ _ 35 electron density of the sample with a non-density region. The
k=0, 321-1, ky=0,... 32m-1, @ finer the sampling frequency, the larger the no-density re-
k.=0 32n-1 gion. To characterize_ the qversamp_ling degree, a concept
o ' called the oversampling raticr) was introduced to define
For realp(x,y,z), the number of independent equations be-the oversampling degrée

x @2milked! (321) +kyyl (32m) +k,2/ (32n)] ,

_ (volume of electron density regio(volume of no-density region
B (volume of electron density regipn '

o

()

When p>2 (corresponding to the sampling frequency the CCD and the sample is determined by
>3/2), the no-density region is larger than the electron den-

sity region, and the phase information can in principle be L_ﬂ

directly retrieved using an iterative algorithtfi’'8 Note Oa X

that the discussion above only deals with the Fraunhofer ap-
proximation (i.e., far-field diffraction. In the Fresnel ap- and
proximation(i.e., near-field diffractiopn the phase problem is Jo
intrinsically different and a potential approach is to use the -
transport of intensity methot.

for a 2D sample with size ofiXa

8/c for a 3D sample with size oaxaxa/’

4

where is the x-ray wavelength andly the pixel size of the
CCD detector. The CCD detector is a deep depletion and
The experiments reported herein were carried out using adirect illumination detector with 11521242 pixels and a
undulator beamline at SPring?8.An imaging instrument pixel size of 22.5%22.5 um. The estimated quantum effi-
was mounted at a distance of 59 m from the center of theiency of the CCD detector is about 77% ®A x rays. The
undulator. Figure 1 shows the schematic layout of the chamECD detector was mounted on a motorizedY stage and
ber. The first element inside the chamber was au#0pin-  could be shifted+25.4 mm in bothX and Y directions for
hole mounted on an in-vacuum motorized stage. Amrecording higher-resolution diffraction patterns. In front of
L-shaped guard slit, placed 25.4 mm downstream of the pinthe CCD detector was a beam stop to block the direct beam
hole, was used to eliminate the scattering from the edge of
the pinhole. The combination of the pinhole and the 743 mm 12.7 mm ﬂ_zs'mm
L-shaped guard slit generated three clean quadrants and or

I1l. EXPERIMENT

noisy quadrant on the detector. The diffraction patterns in the

noisy quadrant were recovered by using the centrosymmetr

of the diffraction patterns, which is due to the fact that the H Sample | | Pinhole :U X-rays
electron density of samples is usually real in the hard-x-ray| [ Corner

region. At a distance of 12.7 mm away of theshaped guard \;B”m stop

slit was a sample holder, which can rotate samples in 360° Photodiode

for recording 3D diffraction patterns. A charge-coupled de-
vice (CCD) detector was placed downstream of the sample FIG. 1. Schematic layout of the experimental instrument used
holder at a distance of 743 mm. The distang® between for the recording of the coherent x-ray diffraction patterns.
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and a photodiode to align the pinhole, theshaped guard slit
and the sample. All the elements were in vacuum with a
pressure of-10 © Torr.

The oversampling method is strongly correlated with the
coherence of the incident x rays. Since oversampling a dif-
fraction pattern corresponds to surrounding the structure of a
sample with a no-density region, the coherence length of the
incident beam should be larger than the overall size of the
sample and the no-density region. The higher the oversam-
pling degree, the finer of the correspondingly features of the
diffraction pattern have to be recorded faithfully, and hence
the larger the coherence length of the incident beam needs to
be. The required spatial and temporal coherence of the inci-
dent x rays are related to the oversampling degree by

)\>Oa Ags A .
o ar A=z0x ®)

whered is a desired resolution, ani@ the divergence or
convergence angle of the incident x rays. Based on £&9s.

the required coherence for this setup was estimated to be
N/ AXN>943 andA §<1.5x 10" ° rad for a desired resolution

of 7 nm. At the SPring-8 beam line, a($11) double crystal
was used to achieve the temporal coherencexbh\
~75002° While the vertical spatial coherence of the undula-
tor beam was better than that required, the needed horizontal
spatial coherence was achieved by placing a AB0slit at a
distance of 27 m upstream of the instrument.

IV. RESULTS AND DISCUSSION (b)

With the instrument described above, we have recorded
diffraction patterns from a noncrystalline sample by using . " .
coherent x rays with a wavelength of 2 A. The sample, made b \
of Au, consists of a single layered pattern with a size of .‘
2.5x2x0.1 um and was supported by a silicon nitride mem- .

2

L
brane window, which is transparent to x rays. Figufe)2 -
shows a scanning electron microsco8EM) image of the o meean «7nm _
sample. In order to obtain a high-resolution diffraction pat- Line scan through P R
tern, we shifted the CCD detector in bothand Y directions e T P ;
to record a set of diffraction patterns at different resolution . =
and then tiled them together. Figuré2shows a diffraction ‘o
pattern with 2002000 pixels and a resolution of 7 nm at
the edge. The exposure time of the diffraction pattern is ———
about 50 min with an unfocused undulator beamline. Since e
the beam stop was used to block the direct beam, the diffrac- (©)

tion pattern has a missing data area at the center with a size
of 60x60 pixels?* We filled in the missing data area by a
patch of the diffraction pattern calculated from a soft-x-ray
microscopy image of the sampie® _ _ -
To retrieve the phase information from oversampled dif- FIG. 2. The re(_:ordlng and recor_lstructlon ofa dlffractl_on pattern
fraction patterns, an iterative algorithm has been used 0f(om a noncrystalline sample by using coherent x-rays with a wave-

. S . . . length of 2 A.(a) A SEM image of a noncrystalline sample made of
Whlph thejth iteration C(.mSIStS of the following seven StelJs'Au. (b) A high-resolution diffraction patteriia 20002000 pixel
(i) A temporary Fourier transform was calculated by

array) recorded from the samplglisplayed in a logarithmic scale
(c) The structure of the sample reconstructed fr@mnin which a

, ke ko) line scan through an edge shown in the inset demonstrates the reso-
Fi(kkay’kz)z|Fexpl(kx’ky'kz)|e<P'_l 2 (6) lution of 7 nm.
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where ¢; _1(ky Ky ,k,) represents the phases of the Fourier

transform at the j(—1)th iteration andFefky.ky k,)| is XVENS lp{ (x,y,2)]
the measured magnitude of the Fourier transform. y= = , (7)
(i) ¢{(0,0,0), the phase cF_fj (O,Q,O), was set to 0 due to (c—1) > |p]-’(x,y,z)|
the centrosymmetry of the diffraction pattern. x,y.2eS
(iii) A temporary electron density)j’(x,y,z), was com-
puted from Fj’(kx,ky,kz) by using an inverse fast Fourier
transform(FFT). where S is the finite support and represents the averaged
(iv) To monitor the convergence of process, a normalizecerror per pixel that is independent of the oversampling ratio.
error function(y) was used in each iteration (v) A new electron density was obtained by
pi(X,Y,2) if (x,y,2)eS and pj(x,y,z)=0
Pj(X,y'Z): (8)

pi-1(%Y,2) = Bp{(x,y,2) if (xy,2)&S or p{(x,y,z)<0

where B8, a constant to adjust the convergence process, wasf the reconstructed images is comparable to that of Fig.

set to 0.9 in all the reconstructions. 3(b). We continued to reduce the sampling frequency of the
(vi) A new Fourier transformF;(k, .k, ,k,), was calcu- diffraction pattern to an 11321132 pixel array, correspond-

lated from the new electron density pf(x,y,z) by using ing to o=3 for the same finite support. We have carried out

FFT. five reconstructions with different initial random phase sets.
(vii) The phase sefp;(k, kK, ,k;), was used for the next While the reconstructed images are recognizable, they are
iteration. noisy, as Fig. &) shows. Finally, the diffraction pattern of

By using the iterative algorithm with a random phase setrig. 2(b) was converted to a 924924 pixel array, which
as an initial input and a 2.5&.06 um square as the finite corresponds tar=2 for the same finite support. We have
support (which corresponds tar=9.4), we recovered the carried out five reconstructions, and the reconstructed images
phase information for the diffraction pattern shown in Fig.are extremely noisy and barely recognizable, shown in Fig.
2(b). Figure Zc) shows the reconstructed image with a reso-3(d).
lution of 7 nm, in which both the shapes of individual nano-  Figure 4 shows the normalized error function versus the
structures and the variation of the electron density inside théeration number in which curves b, ¢, andd correspond to
nanostructures are visible. We performed five more reconthe reconstructions of Figs(a&, 3(b), 3(c), and 3d), respec-
structions with different initial random phase sets and theively. By comparing curves, b, andc, one can see that the
detailed features in the reconstructed images were consistemormalized error function indeed indicates the quality of the
We then studied the quality of image reconstruction as aeconstructions. An interesting observation is that curve d
function of the oversampling rati@r). We first converted the converged to a number smaller than that in curagels, and
diffraction pattern of Fig. th) to a 14601460 pixel array c. This is because, whea is less than or very close to 2,
by binning pixels where we assumed that each pixel has there are no unique phase sets in the diffraction pattern. Al-
finite area and the pixel value is uniformly distributed insidethough the algorithm converged to a phase set which is a
the area. The new diffraction pattern has the same spatiablution to the equations, it is actually an incorrect phase set.
resolution, but a lower oversampling ratio of=5 for a The results of the studies agree with the theoretical expla-
2.53x2.06-um finite support. By using a random phase setnation illustrated in Sec. Il. When the oversampling ratiis
as an initial input, we reconstructed the electron density ofmuch larger than 2, the number of equations is far more than
the sample after about 2000 iterations, shown in Fi@).3 the number of unknown variables. This redundancy makes it
The white area in Fig. @) represents the no-density region, easier to retrieve the phase information directly from the dif-
which is due to the oversampling of the diffraction pattern,fraction pattern. However, whea approaches 2, there is
and the square in dotted line shows the finite support. Welight difference between the theory and the results of the
carried out four more trials with different random initial studies. From theory, we concluded that, as longras2,
phase sets, and the reconstructed images were consistent dhdre is a unique phase set available from the diffraction
successful, while the iteration number varied in each caseattern itself. However, the studies of the experimental dif-
We further reduced the sampling frequency of the diffractionfraction pattern showed that, whenis close to 2, the recon-
pattern of Fig. 2b) to a 1308<1308 pixel array, which cor- structed image becomes quite noisy. We believe this is due to
responds tar=4 for the same 2.582.06-um finite support. (i) the noise in the experimental diffraction pattern dnd
Figure 3b) shows a reconstructed image with the qualitythe algorithm becoming trapped in a local minimum instead
inferior to that of Fig. 8a). We have performed four more of converging to the global minimum. With the presence of
trials with different initial random phase set, and the qualitynoise in the diffraction pattern, the intensity points with low
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() (d)

FIG. 3. Phase retrieval of an experimental diffraction pattern as a function of the oversamplingrat#® A reconstructed image with
o=5 where the white area represents the no-density region, and the square in dotted line is the finite supp2r0®&3. (b) A
reconstructed image with=4. Note that the white area becomes small@rA reconstructed image witbr=3. (d) A reconstruction image
with o=2.

signal-to-noise ratio are somewhat smeared out, which actu- V. CONCLUSIONS

ally reduces the number of indepe_ndent _equations. Secondly, Using coherent x rays with a wavelength of 2 A from a
when the number of unknown variables is close to the NUMgy nchrotron undulator beamline and a specially designed in-
ber of independent equations, the algorithm is very easilitryment, we have measured high quality continuous diffrac-
trapped in a local minimum instead of the globe minimum.tion patterns from a noncrystalline sample. By employing the
This has been observed in our previous studies of phase rgversampling phasing method, a coherent diffraction pattern
trieval as a function ofo using simulated diffraction has been successfully converted to a real space image with a
patterns’ resolution of 7 nm. By studying the quality of image recon-
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0.10 less than 2, the reconstructions were not successful at all.

Although these studies were carried out using a 2D x-ray
diffraction pattern, we believe the results can in principle be
generally extended to 2D and 3D coherent diffraction imag-
ing using x-rays, electrons or neutrons.
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