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Direct evidence of the discontinuous character of the Kosterlitz-Thouless jump
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It is numerically shown that the discontinuous character of the helicity modulus of the two-dimensional
model at the Kosterlitz-Thoule$KT) transition can be directly related to a higher-order derivative of the free
energy without presuming arg/ priori knowledge of the nature of the transition. It is also suggested that this
higher-order derivative is of intrinsic interest in that it gives an additional characteristic of the KT transition
which might be associated with a universal number akin to the universal value of the helicity modulus at the
critical temperature.
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[. INTRODUCTION modulus remains continuous in the thermodynamic limit.
The correctness of the discontinuous character of the jump
The Kosterlitz-ThoulesgKT) transition has attracted a has in practice only been verified from simulations in more
steady interest since its discovéryThis is both because its indirect ways which make use of additional KRE predictions
unusual characteristic properties and its applicability to manyor the KT transition like, e.g., that the leading size depen-
systems with two-dimensional2D) character, like, e.g., dence of_tfl(g helicity modulus at the critical temperature is
superfluid/superconducting fildsThe critical properties are logarithmic. . , _
given by Kosterlitz’s renormalization equatiodkRE).* A~ Thus one may ask if there exists a more direct way of
key characteristic feature is the discontinuous universal sunferring from simulations that there is a discontinuous jump,
perfluid jump to zero at the transitiGriThe generic model v_\/lthout resortlng_ tq more |nd_|rect methods which use addi-
for the KT transition is the two-dimension®lY model and in  tional KRE predictions. In this paper we show that such a
this case the discontinuous jump is associated with the heli¢ghore direct way does indeed exist. . _
ity modulus®! The 2D XY model has been the subject of Oura}pproach is baseq on the ca}IcuIatlon .ofa higher-order
very many computer simulations directed at verifying or dis_cprrelanon f_u_nctlon. This correlation function appears to
proving the various characteristics of the KT transition asdive an additional and somewhat unexpected characteristic
given by KRE® Although the general consensus is that thefeature of the KT transition. We speculate that this feature
2D XY model does indeed undergo a KT transition, there
have also been claims from simulations that the predictions
from KRE may not be entirely correét. In particular, these
earlier works have been focused on the question whether o 08
not the divergence of the correlation lendtiihen the tran-
sition is approached from aboyés governed by an essential
singularity, as predicted by KRE, or by a conventional .
power-law singularity. Some evidence for the latter possibil- 2
ity was found in Refs. 7 and 8. Alternatively, in Ref. 6 it was 04
argued that the divergence is given by an essential singularit
which is not entirely consistent with KRE. All this reflects

1

06

the difficulty of verifying the precise nature of the transition 02t
through computer simulatiorys.
Similarly, it is difficult to directly verify from simulations 0 . : : .
that there is a discontinuous jump in the helicity modulus as 0 02 04 06 08
predicted by KRE. The reason for this is illustrated in Fig. 1: T

Simulations can only be performed on a finite system, result- 15 1 Helicity modulus(Y) for the 2D XY model for lattice

ing in the helicity modulus as a continuous function withoutgj,es) — 4 to 4. The transition is signaled by a rapid decrease of
any singularity. As seen in Fig. 1 the drop at the transitionye pelicity modulus in the vicinity of =1 as temperature is in-
gets steeper and steeper as the system size is increased. H@¥ased. This decrease becomes sharper with increasiiige
ever, the size dependence is shown to be rather weak. Coggestion is whether or not this rapid decrease develops into a dis-
sequently, although numerical results like those presented igontinuous jump from a finite positive value to zero as predicted by
Fig. 1 for the helicity modulus are consistent with a discon-the Kosterlitz-Thouless scenario. The data are consistent with such
tinuous jump for an infinite system size, one cannot on this scenario, but on the basis of this type of data alone one cannot
evidence alone, exclude the possibility that the helicityrule out that the helicity modulus instead goes continuously to zero.
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might be associated with a universal number akin to the uni- L2 26
versal value of the helicity modulus at the critical tempera- (L2Y )= —4(Y)+3|(e)— —( —(Y)? +F<S4>'
ture.
(€)
Il. MODEL In the following, we will measure these two correlation func-

, , , tions,(Y) and(Y,), in standard MC simulations to demon-
The 2DXY model on a square lattice of the siz&XL is  girate the existence of a discontinuous jump of the helicity
defined by the Hamiltonian modulus to zero at the phase transition.

= _JE CO{ ¢|1—9 9 1 r,] ‘A, (1) Ill. STABILITY ARGUMENT
w Since the global minimum of the free energyA) corre-

whereJ is the coupling strengttset to unity from now oy ~ SPonds to zero twist, it follows that(0)<F(A). To lowest
the sum is over nearest-neighbor pairs separated by the digtders in theA expansion we have

placement;;=x ory (we set the lattice spacirg=1), and A2 4
the phase anglé, (0=<6,<27) at the lattice point satisfies F(A)=(Y)—=+(Y,)—
the periodicity 6; ;= 6, ;= 6;. For generality, we have 2
also included an externally imposed global twist across th
sample,A=(A,,A,), defined by that the summation of the
phase differencep;; along thex (y) direction equalsA,
(Ay). The partition functiorZ is given by

Shis means thatY')=0 since the lowest order nonvanishing
derivative of the free energy will always dominate for small
enoughA. However, it also implies that the next order de-
rivative (Y ,) likewise has to be=0 at anyT where (Y)
=0 in the thermodynamic limit. Our argument is then the
z=11 J' %efH/T ) simple observation thatY') cannot go continuously to zero
i at the transition temperaturg, if (Y,) at the same time
approaches a nonzero negative valug€ atBut, since(Y) is
and the free energy b¥#(A)=—TInZ The ground state indeed zero in the high-temperature phase, this means that if
corresponds to the configuration where all spins point in théY ,) approaches a negative valueTatthen the jump has to
same directiorti.e., all ¢;;=0) which means that the mini- be discontinuous. The point is, as we will show below, that
mum of the free energy correspondsite-0. From the sym-  the conclusion thafY,) is nonzero and negative &t can
metry in the Hamiltonian, all odd-order derivatives such asbe convincingly drawn from standard MC simulations.
dFIA|5—o and 93F/9A3|,_ vanish. Accordingly, in the
following we will from standard Monte Carl@MC) simula- IV. SIMULATION RESULTS
tions obtain the two first nonvanishing derivatives of the free
energy with respect t&A at A=0, i.e., the second-order Our simulation of the helicity modulus for 2D model is
modulus, usually called the helicity modulus(Y)  shown in Fig. 1 up to sizek=64. The conclusions which
=9?FI9A?|y—o, and the fourth-order modulug(Y,) can safely be drawn by analyzing the finite-size dependence
=9*FlaA* y—o, where(---) denotes the thermal average. of (Y) is that it is finite in the low-temperature phase and is
The former(the helicity moduluscan be expressed as zero in the high-temperature phase. Since this is well estab-
lished we will not discuss it further here. As mentioned in
Sec. |, the difficult part from a simulation aspect is to deter-
(Y)=(e)— ?<32>, mine how the helicity modulus approaches zeroTatin the
thermodynamic limit.

To this end we will use the stability argument given above
and instead focus on the size dependence of the correlation
function(L?Y,) (see Fig. 2 Figure 2a) shows tha{L?Y ,)

i 2 cog 0 — ;) vanishes in the high-temperature phase and goes to a nonzero
2 Ny !

where

negative value in the low-temperature phase as the system
size becomes larger. The interesting features is the divergent
dip. This occurs in the region where the helicity modulus for
i E sin(6,— 6;) finite L goes rapidly towards zero. Thus this singularity in
L2 (7 ' (L?Y,) can safely be associated with,. The conclusion
from Fig. 2a) is that(L?Y,) diverges aff for L—=, goes
and the sum is over all links in one direction. This means thato zero above, and goes to a negative nonzero value below.
(e) is the energy per link an¢k) is the average current per This conclusion is further supported by the fact that the half
link in one direction(here taken to be the direction. Note  width of the divergent dip decreases towards zero lfor
that (s)=0 by symmetry, in contrast to the current-current—o° as illustrated in the inset of Fig(&. The crucial point
correlation(s?) which measures the current fluctuation. Theis now what this divergence in the correlation function
fourth-order modulus can be expressed as (L?Y,) implies for (Y ,). This is shown in Fig. &), which
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FIG. 2. (a) The correlation functio{L?Y,). As seen this cor-

relation function is always negative or zero. In the higiphase it
approaches zero from below. In the |Gwphase it goes to finite

negative values, as is apparent from the data points somewhat be
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gives the result fol,=12. The inset in Fig. @) gives the
depth of the dip as a function of size. As is apparent from the
inset, the depth goes to a finite value in the thermodynamic
limit. Linear extrapolation in 1/ to L=« gives the value
0.130+0.005. Thus we conclude thaY ,) is indeed nega-
tive and nonzero precisely dt.. Using the stability argu-
ment in Sec. Il this means that the helicity modulus has to
be positive and nonzero preciselyTat. However, aboved .
the helicity modulus is zero from which follows that the
helicity modulus has to be discontinuousTat.

One may also note from Fig(ld that the position of the
minimum of the dip decreases towards lowewith increas-
ing L. However, the approach towards the known valug& of
(=~0.89) is rather slow making a precise determinatioi of
based onY,) data less advantageous.

V. FINAL REMARKS

We have shown that the discontinuous character of the
jump of the helicity modulus at the transition for the 20Y
model can be established from MC simulations of the fourth-
order modulus given by E@3). It seems very likely that the
singularity found here for the fourth-order modulus in case
of the 2D XY model is part of the general KT transition
scenario. Thus we suggest that it sometimes may be advan-
tageous to study the singularity of this 4th-order modulus in
simulations, when trying to determine if a transition for a
particular model is of KT type. It is also tempting to specu-
late that the finite value dfY ,)~ —0.130 atT. is associated
with a universal number, akin to the universal value of the
helicity modulus(Y)=2T_/.

low T=1. The most interesting feature is the divergent dip in the

vicinity of T=1. This divergence &, is the manifestation of the
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