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Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation
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We investigate the ground-state properties of the spin-half, Heisenberg chain with a next-nearest-
neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agree-
ment with the results of a recent bosonization analysis by Sarkar anfP8gs. Rev. B35, 172408(2002],
we find that for small frustrationJ, /J;) the system is in a Luttinger spin-fluid phase, with gapless excitations,
and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized
and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating
the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained
numerically from the study of the excitation spectrum.
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Asymmetric spin-half ladders have recently attractedsents an irrelevant perturbation in the regime of small frus-
much theoretical intereS due to possible experimental re- tration. In this paper, using conformal field theory we show
alizations in delafossite cuprates such as Ygu@Ref. §  that the NNN spin-Peierls operator, i.e., the one associated
and the unusual physical effects that the asymmetry in thaith the alternation in the NNN exchange,
leg exchanges could introduce both in the ground-state cor-
relations and in the properties of the excitation spectrum. The . o
simplest and most transparent Hamiltonian representation of Omn=> (-1)'§-§ 5, 2
these systems can be given in terms of frustrat&dJf) '
spin-half Heisenberg chains with a spin-Peierls dimerizatio

"Yepresents in n irrelevan rturbation for the Heisen-
in the next-nearest-neighb@INN) interaction, namely, epresents indeed an irrelevant perturbation for the Heise

berg chain in the regime of weak frustration. Furthermore,
using a Lanczos diagonalization technique we find that in the
72[:2 {3,551+, [1+(-1)'8]5-5.,}, (1)  dimerized phase the effect of the bond altgrnation is to re-
i duce the spin gap leading therefore to a slight enhancement

) with & of the critical value {,/J,). for the fluid-dimer tran-

whereJ;,J,=0 are the nearest- and next-nearest-neighbogjiion Finally, we present an accurate numerical determina-

exchange couplings, respectively, ang8<1 is the bond oy of the shift introduced by the bond alternation on the
alternation parameter. In the following, all the energies ar‘?)hase boundary between the Luttinger and the dimerized

expressed in units 0d;. For §=0 the properties of the ,aqes A preliminary account of this work was already pre-
model and the existence of a quantum phase transition nted in Ref. 11.

(3,/31)¢=0.241 are well establishéd Below the critical In general, the relevance of the operat@ for the Lut-

point the system is in a Luttinger spin-fluid phase with agnger fixed point can be determined by calculating its scal-

gapless spectrum, with no broken symmetry, and a finitg 4" gimensionX. This can be defined in terms of the size
spin-wave velocity. Spin correlations are characterized by Yependence of its generalized susceptibility
power-law decay defined by the same exponent of the pure

Heisenberg chainJ,=0). In the regime of strong frustra- >
tion, instead, the ground state is spontaneously dimerized, xo=r{o|O(Eg—H) 20| ) > L2A~X), (3)
twofold degenerate, and adiabatically connected to the L

Majumdar-Gosh exact solution fak,/J;=0.52% with ex- _ , _
ponentially decaying spin correlations. where L is the number of sites of the ring, so thAt 1

The effect of the bond alternation on the NNN interactioncharacterizes a relevant operatoHere | yo) represents the
has been recently investigated using field-theoreticaynPerturbed Luttinger ground state. The calculatioX afn
approachés with remarkable disagreement in the conclu- € done by identifying the quantum numbéjis(referenced
sions. In fact, Chen and collaboratbrssing bosonization 10 the ground state with energ,) of the intermediate states
and a renormalization-group analysis claimed that in thd) appearing in the Lehmann representatioygf ™ In fact,
limit of small frustration the asymmetry in the NNN integrals in & conformally invariant field theory, the scaling dimension
destabilizes the isotropic Heisenberg fixed point, leading to & Of @ given operator is related to the finite-size corrections
new phase with gapless excitations and vanishing spin-wavéf the energy of the lowest intermediate eigenstatey
velocity. On the other hand, with a similar bosonization ap-
proach Sarkar and Serfiound that bond alternation repre- AE(L)=Ej(L)—Eq(L)=2mvXIL, (4
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whereuvg is the spin-wave velocity. In the case of the NNN  Clearly, the excitations of Eq7) do not exhaust the full
operator(2), the quantum numbers of the intermediate statesenergy spectrum of the Luttinger model because, on top of
referenced to the ground state, are the total §#0, mo-  them, the usual boson spectrum is also present:
mentumk= 7, and even parity under spatial reflectioh (

—L—1), R=1. In all cases, the only difference with the

— t
nearest-neighboiNN) spin-Peierls operator, Ek“*”% IKlayay. (12
(‘)NN:E (_1)|‘3.é|+1, (5  where al is a boson field defined in terms @ (x) and
|

I1(x), which satisfiesk TafR=—a',.
the well-known relevant perturbation, is the spatial-reflection For both the spin-Peierls operators previously defined, the
quantum numbeiR= — 1. The finite-size corrections can be appropriate choices of quantum numbers are0 (i.e., S*
computed either by a Bethe ansdfor J,/J;=0) or by =0) andm=odd (i.e., momentumm). The two lowest ex-
bosonization. According to the standard notation, at the Lutcitations withm==1 andn=0 can be combined to con-
tinger fixed point, the effective Hamiltonian describing spinstruct two states with defined reflection pariB==1. In
fluctuations is given by a free boson '[he(]_'):f‘y7 the spin-isotropic caseK=1/2, the excitations withrh=
+1, n=0) and (n=0, n=*x1) are degenerate, the latter
ones corresponding to R=1 triplet (the spatial reflection
does not change). Therefore, the state with=0 andR

. . . . _ . =1 is theS*=0 state of the triplet, and the remaining state
wherevs is the spin velocity,®(X) is the spin-fluctuation ;. =0 andR=—1 has to be a singlet. Analogously, all

field, andl1(x) is the conjugated moment. The dimension-finite m excitations withn=0 are forbidden to be singlets

less coupling constanK is the key parameter of the un p—1 by the spin isotropy. In order to obtain a low-

bosonization theory, whose value can be analytically detergo oy singlet excitation witR= 1, we have to combine the
mined atJ,=0 by comparing the low-lying excitation spec-

LA ; . m=1 (R=—1) excitation with at least thr@“: bosons with

trum of the Hamiltoniar{6) with the Bethe ansatz solution of 7610 tgtal mor)nentum In fact one boson cannot have zero
. _ _ 71 71 . .

the Iattlce_ modelK = (2 2 cos Nm) . Here OsA=<11is . Ipomentum and two bosons cannot change the spatial-
the co_up_lmg constant defining the easy-plane anisotropy: ke ction symmetry. The minimum energy of such
the spin-isotropic poink =1, leading _toK_=1/2. Th_e finite- .a state is readily evaluate@with k,=k,=2#/L, and
size corrections of the lowest excitation energies of thlsk = —(k;+ky)] as e '
Hamiltonian are given by 8 1R

m=5 dx(KHz(X)+%[an>(x>]2 - ®

27mvg( N2 )
Enm(L)—Eq(L)= 1 — +Km

(@)

) AE(L)=2mvy(K+4)/L, (13)

leading to the resulk=K+ 4 for any operator with the same
For each pair of integers and m (n=m=0 being the symmetries of the operat¢p).

ground statg a low-energy excited state with energy , is Although the previous equation has been extracted in the
defined by choosing appropriate boundary conditions for thésotropic case X=1), whereK=1/2, it is indeed valid in
fields: general for B=A<1, as can be verified, analytically, in the
XY model (i.e., at A=0) or, numerically, forA<1 (not
®(L)—P(0)=n\m, (8)  shown. The reason is that, in the entire gapless regime, the
) low-energy excitations are described by EGA. and (12).
f dxH(x)=2m\/;. 9) Notice that, forA#1, the total spin is no longer a good
0 quantum number, nevertheless the parity under spin reflec-

tion [(S*,9,S° —5,9,—59)] can still be used to label
Using the relation between the boson fields and the physiche IE)(vv—Iying s)t;és. )]

electron operator ones, it was then derived in Ref. 13mhat 1o previous analysis shows that the finite-size spectrum
is thez.component of the spin, whika+n is the momentum ¢ yhe | yttinger chain does not contain low-lying singlets

of the low-energy excitation in units of. Following this it k= 7 and even parity under spatial reflections, yielding
work, it can be shown that the reflection symmeRyacts on 4 5 critical exponentX>1 for the operator(2), therefore
the fields as follows: proving its irrelevance. This is also illustrated in Fig. 1,
+ _ _ where we report exact diagonalization results in the weak
RIPOIR==D(L=x), 10 ¢ustration regime of the isotropic chath.However, we
RII(X)R=—TI(L—x), (11) ;tress tha; our conclusions follow directly from the bo_sonizal—
tion technique and represent an exact result for the isotropic
implying that the quantum numben changes sign under spin-half Heisenberg chain.
spatial reflectioriR, whereasn does not, and, therefore, the  The irrelevance of the NNN spin-Peierls perturbation in
ground state haR=1. Form#0, each pair=m leads to the regime of weak frustration can be also confirmed numeri-
two degenerate eigenstates with opposite reflectiongally from the Lanczos calculation of the associated general-
R==*1. ized susceptibility. As explained in Ref. 16, this can be done
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FIG. 1. Size scaling of the gap of the lowest eigenvalues of the 0.242 :///&M/-’"///

isotropic spin-halfl;-J, chain withS*=0, k= 7r, even parity under ’ %

spin reflections, andR=*1 under lattice reflectionsd,/J;=0 E | A ]

) : > S 0241 o 1 . C L
(circles, 0.1 (triangles, and 0.2(crossek Lines are guides for the 0 0.001 0.002 0.003
eye. 1/12

. I . . FIG. 3. Upper panel: singlgiopen dots and triplet(full dots)
by adding to the Hamiltonian the considered perturbatlongalos versusl, /3, for 5=1.0 andL =12 (triangles, 18 (squarek

70 and then computing the ground-state energy per sit@nq 24 (circles. The arrow indicates the extrapolated value of
e(n) for a few values ofy in order to estimate numerically 3,73, at the level crossing. Lines are guides for the eye. Lower
x=—d%(7)/d 7}2|,,:0 as the [limit x=Ilim, o2[e;  panel: size scaling a,/J; at the level crossing foffrom below)
—e(7)]/ 5% For instance, for the 28-site chain a3/J; =0, 0.2, 0.4, 0.6, 0.8, 0.9, and 1.0. Lines are quadratic fits.
=0.1, this procedure givegyy=6.4 andyyw=10°, for
]Eggt l}lnl\cliiggtistgt SIE'; ri:sgssgpgﬁtﬁg srsitpeenﬁtl;/oel); -Il\_lrll\'lsl\rluque. By extrapolating the finite-size data according to the

7 _ 2 4 H
dimerization is more than six orders-of-magnitude smaller‘a)(pec'[ed lavt A(L) =A.. +a/L*+b/L", we have obtained

than the response to the standard NN dimerization. the 6 dependence of the thermodynamic gap, which is shown

Entering the regime of strong frustration, the effect of thell the same figure. Our results are in good agreement with
NNN alternation is to reduce the spin gapas it is shown in the variational calculation of Refs. 1, 3, and 10, and indicate

Fig. 2 atJ,/J;=0.5. As has been already pointed dtat a 8% spin-gap reduction from the Majumdar-Gosh model for
the Majumdar-Gosh pointJ,/J,=0.5) the presence of the =0 (A=0.235) to the so-called saw-tooth chain @+ 1

NNN spin-Peierls dimerization does not alter the ground{A=0.216)

state manifold which is spanned by the two well-known The reduction of the spin gap in the dimerized phase in-
dimerized states, with enerdy,= —3/8N, independent of duced by the NNN bond alternation leads to an increase of
8. Nevertheless, the excited states are not known exactly dhe critical value §,/J,). for the fluid-dimer transition. As
that we have calculated the spin gap using the Lanczos tecleriginally suggested by Castilla and collaboratbtsthe
phase boundary between the two phases can be calculated
very accurately by exploiting the change in the excitation
spectrum occurring at the critical point. In fact, below the
critical point the system displays quasi-long-range antiferro-
magnetic order: in this case, gapless excitations are obtained
by creating low-energy spinons both in triplépatially

0.3 T

0.28

< 026 ever) and single{spatially odd states, the former having the
I lowest energy on finite size. In the dimerized phase, instead,
024 | the triplet excitations acquire a gap so that the ground state
remains twofold degenerate in the singlet sector, leading to
L. 0oy L the dimerized ground state which breaks the translational
0.22 |- 0 02505075 1 invariance. As a result, the critical coupling,(J,). can be

P L |
0 0.002

0.004
1/12

Ll determined by performing a size scaling of the valyéJ;
0.006 where the level crossing between the low-lying singlet and
triplet occurs(see Fig. 3. With this technique, using exact
FIG. 2. Size scaling of the triplet gap a3/J,=0.5 for 5=0  diagonalizations up to 30 sites, it is easy to obtain very ac-
(full circles), 0.25(square} 0.5 (triangles, 0.75(crosse and 1.0 ~ curate determinations of the critical valué,(J,).. For in-
(empty circleg. Lines are quadratic fits. Inset: thermodynamic gapstance, in absence of NNN bond alternation, we obtain a
versusé obtained by extrapolatiofstars and dashed linand with  critical value J,/J,). in agreement with previously given
the variational approach of Refs. 1, 3, and(&0ntinuous ling estimate$:'® The resulting phase boundary for the fluid-
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O L B L B L B L nearest-neighbor spin-Peierls dimerization on the ground
state of the spin-half;-J, Heisenberg chain, using confor-
mal field theory and exact diagonalization. We have found
that, despite the conclusions of a recent study based on
bosonization and renormalization-group approachéise
bond alternation represents an irrelevant perturbation in both
the regime of strong and weak frustration. In particular, as
predicted by Sarkar and Sénthe perturbation does not
change the nature of the excitation spectrum, leading only to
a weak reduction of the triplet gap in the dimerized phase,
and, therefore, to a slight enhancement of the critical value
FIG. 4. Critical J,/J; ratio for the fluid-dimer transiton (J2/J1)c associated to the fluid-dimer transition.
Versuss.
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