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Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation
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We investigate the ground-state properties of the spin-halfJ1-J2 Heisenberg chain with a next-nearest-
neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agree-
ment with the results of a recent bosonization analysis by Sarkar and Sen@Phys. Rev. B65, 172408~2002!#,
we find that for small frustration (J2 /J1) the system is in a Luttinger spin-fluid phase, with gapless excitations,
and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized
and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating
the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained
numerically from the study of the excitation spectrum.
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Asymmetric spin-half ladders have recently attrac
much theoretical interest1–5 due to possible experimental re
alizations in delafossite cuprates such as YCuO2.5 ~Ref. 6!
and the unusual physical effects that the asymmetry in
leg exchanges could introduce both in the ground-state
relations and in the properties of the excitation spectrum.
simplest and most transparent Hamiltonian representatio
these systems can be given in terms of frustrated (J1-J2)
spin-half Heisenberg chains with a spin-Peierls dimerizat
in the next-nearest-neighbor~NNN! interaction, namely,

Ĥ5(
i

$J1Ŝi•Ŝi 111J2@11~21! id#Ŝi•Ŝi 12%, ~1!

where J1 ,J2>0 are the nearest- and next-nearest-neigh
exchange couplings, respectively, and 0<d<1 is the bond
alternation parameter. In the following, all the energies
expressed in units ofJ1. For d50 the properties of the
model and the existence of a quantum phase transitio
(J2 /J1)c.0.241 are well established.7,8 Below the critical
point the system is in a Luttinger spin-fluid phase with
gapless spectrum, with no broken symmetry, and a fi
spin-wave velocity. Spin correlations are characterized b
power-law decay defined by the same exponent of the p
Heisenberg chain (J250). In the regime of strong frustra
tion, instead, the ground state is spontaneously dimeri
twofold degenerate, and adiabatically connected to
Majumdar-Gosh exact solution forJ2 /J150.5,9,10 with ex-
ponentially decaying spin correlations.

The effect of the bond alternation on the NNN interacti
has been recently investigated using field-theoret
approaches1,2 with remarkable disagreement in the conc
sions. In fact, Chen and collaborators1 using bosonization
and a renormalization-group analysis claimed that in
limit of small frustration the asymmetry in the NNN integra
destabilizes the isotropic Heisenberg fixed point, leading
new phase with gapless excitations and vanishing spin-w
velocity. On the other hand, with a similar bosonization a
proach Sarkar and Sen2 found that bond alternation repre
0163-1829/2003/67~17!/172404~4!/$20.00 67 1724
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sents an irrelevant perturbation in the regime of small fr
tration. In this paper, using conformal field theory we sho
that the NNN spin-Peierls operator, i.e., the one associa
with the alternation in the NNN exchange,

ÔNNN5(
l

~21! lŜl•Ŝl 12 , ~2!

represents indeed an irrelevant perturbation for the Heis
berg chain in the regime of weak frustration. Furthermo
using a Lanczos diagonalization technique we find that in
dimerized phase the effect of the bond alternation is to
duce the spin gap leading therefore to a slight enhancem
with d of the critical value (J2 /J1)c for the fluid-dimer tran-
sition. Finally, we present an accurate numerical determ
tion of the shift introduced by the bond alternation on t
phase boundary between the Luttinger and the dimeri
phases. A preliminary account of this work was already p
sented in Ref. 11.

In general, the relevance of the operator~2! for the Lut-
tinger fixed point can be determined by calculating its sc
ing dimensionX. This can be defined in terms of the siz
dependence of its generalized susceptibility

xO5
2

L
^c0uÔ~E02Ĥ!21Ôuc0&}L2(12X), ~3!

where L is the number of sites of the ring, so thatX,1
characterizes a relevant operator.12 Here uc0& represents the
unperturbed Luttinger ground state. The calculation ofX can
be done by identifying the quantum numbers$j% ~referenced
to the ground state with energyE0) of the intermediate state
u j & appearing in the Lehmann representation ofxO .12 In fact,
in a conformally invariant field theory, the scaling dimensi
X of a given operator is related to the finite-size correctio
of the energy of the lowest intermediate eigenstateu j & by

DE~L !5Ej~L !2E0~L !52pvsX/L, ~4!
©2003 The American Physical Society04-1
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wherevs is the spin-wave velocity. In the case of the NN
operator~2!, the quantum numbers of the intermediate sta
referenced to the ground state, are the total spinŜ50, mo-
mentumk5p, and even parity under spatial reflectionl
→L2 l ), R51. In all cases, the only difference with th
nearest-neighbor~NN! spin-Peierls operator,

ÔNN5(
l

~21! lŜl•Ŝl 11 , ~5!

the well-known relevant perturbation, is the spatial-reflect
quantum number,R521. The finite-size corrections can b
computed either by a Bethe ansatz~for J2 /J150) or by
bosonization. According to the standard notation, at the L
tinger fixed point, the effective Hamiltonian describing sp
fluctuations is given by a free boson theory,13

HL5
vs

2 E dxH KP2~x!1
1

K
@]xF~x!#2J , ~6!

where vs is the spin velocity,F(x) is the spin-fluctuation
field, andP(x) is the conjugated moment. The dimensio
less coupling constantK is the key parameter of th
bosonization theory, whose value can be analytically de
mined atJ250 by comparing the low-lying excitation spec
trum of the Hamiltonian~6! with the Bethe ansatz solution o
the lattice model:K5(222 cos21l/p)21. Here 0<l<1 is
the coupling constant defining the easy-plane anisotropy
the spin-isotropic pointl51, leading toK51/2. The finite-
size corrections of the lowest excitation energies of t
Hamiltonian are given by14

En,m~L !2E0~L !5
2pvs

L S n2

4K
1Km2D . ~7!

For each pair of integersn and m (n5m50 being the
ground state!, a low-energy excited state with energyEn,m is
defined by choosing appropriate boundary conditions for
fields:

F~L !2F~0!5nAp, ~8!

E
0

L

dxP~x!52mAp. ~9!

Using the relation between the boson fields and the phys
electron operator ones, it was then derived in Ref. 13 thn
is thez component of the spin, whilem1n is the momentum
of the low-energy excitation in units ofp. Following this
work, it can be shown that the reflection symmetryR acts on
the fields as follows:

R †F~x!R52F~L2x!, ~10!

R †P~x!R52P~L2x!, ~11!

implying that the quantum numberm changes sign unde
spatial reflectionR, whereasn does not, and, therefore, th
ground state hasR51. For mÞ0, each pair6m leads to
two degenerate eigenstates with opposite reflectio
R561.
17240
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Clearly, the excitations of Eq.~7! do not exhaust the full
energy spectrum of the Luttinger model because, on top
them, the usual boson spectrum is also present:

Ek~L !5vs(
kÞ0

ukuak
†ak , ~12!

where ak
† is a boson field defined in terms ofF(x) and

P(x), which satisfiesR †ak
†R52a2k

† .
For both the spin-Peierls operators previously defined,

appropriate choices of quantum numbers aren50 ~i.e., Sz

50) andm5odd ~i.e., momentump). The two lowest ex-
citations with m561 and n50 can be combined to con
struct two states with defined reflection parity,R561. In
the spin-isotropic case,K51/2, the excitations with (m5
61, n50) and (m50, n561) are degenerate, the latte
ones corresponding to aR51 triplet ~the spatial reflection
does not changen). Therefore, the state withn50 andR
51 is theSz50 state of the triplet, and the remaining sta
with n50 andR521 has to be a singlet. Analogously, a
finite-m excitations withn50 are forbidden to be singlet
with R51 by the spin isotropy. In order to obtain a low
energy singlet excitation withR51, we have to combine the
m51 (R521) excitation with at least threeak

† bosons with
zero total momentum. In fact one boson cannot have z
momentum and two bosons cannot change the spa
reflection symmetry. The minimum energy of suc
a state is readily evaluated@with k15k252p/L, and
k352(k11k2)] as

DE~L !52pvs~K14!/L, ~13!

leading to the resultX5K14 for any operator with the sam
symmetries of the operator~2!.

Although the previous equation has been extracted in
isotropic case (l51), whereK51/2, it is indeed valid in
general for 0<l<1, as can be verified, analytically, in th
XY model ~i.e., at l50) or, numerically, forl,1 ~not
shown!. The reason is that, in the entire gapless regime,
low-energy excitations are described by Eqs.~7! and ~12!.
Notice that, forlÞ1, the total spin is no longer a goo
quantum number, nevertheless the parity under spin refl
tion @(Sx,Sy,Sz)→(2Sx,Sy,2Sz)# can still be used to labe
the low-lying states.

The previous analysis shows that the finite-size spect
of the Luttinger chain does not contain low-lying single
with k5p and even parity under spatial reflections, yieldi
to a critical exponentX.1 for the operator~2!, therefore
proving its irrelevance. This is also illustrated in Fig.
where we report exact diagonalization results in the we
frustration regime of the isotropic chain.15 However, we
stress that our conclusions follow directly from the bosoni
tion technique and represent an exact result for the isotro
spin-half Heisenberg chain.

The irrelevance of the NNN spin-Peierls perturbation
the regime of weak frustration can be also confirmed num
cally from the Lanczos calculation of the associated gene
ized susceptibility. As explained in Ref. 16, this can be do
4-2
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by adding to the Hamiltonian the considered perturbat
hÔ and then computing the ground-state energy per
e(h) for a few values ofh in order to estimate numericall
x52d2e(h)/dh2uh50 as the limit x5 limh→02@e0
2e(h)#/h2. For instance, for the 28-site chain atJ2 /J1
50.1, this procedure givesxNN.6.4 andxNNN.1026, for
the NN and NNN spin-Peierls operator, respectively. T
fact indicates that the response of the system to a N
dimerization is more than six orders-of-magnitude sma
than the response to the standard NN dimerization.

Entering the regime of strong frustration, the effect of t
NNN alternation is to reduce the spin gapD as it is shown in
Fig. 2 atJ2 /J150.5. As has been already pointed out,1,2 at
the Majumdar-Gosh point (J2 /J150.5) the presence of th
NNN spin-Peierls dimerization does not alter the groun
state manifold which is spanned by the two well-know
dimerized states, with energyE0523/8N, independent of
d. Nevertheless, the excited states are not known exactl
that we have calculated the spin gap using the Lanczos t

FIG. 1. Size scaling of the gap of the lowest eigenvalues of
isotropic spin-halfJ1-J2 chain withSz50, k5p, even parity under
spin reflections, andR561 under lattice reflections:J2 /J150
~circles!, 0.1 ~triangles!, and 0.2~crosses!. Lines are guides for the
eye.

FIG. 2. Size scaling of the triplet gap atJ2 /J150.5 for d50
~full circles!, 0.25~squares!, 0.5 ~triangles!, 0.75~crosses!, and 1.0
~empty circles!. Lines are quadratic fits. Inset: thermodynamic g
versusd obtained by extrapolation~stars and dashed line! and with
the variational approach of Refs. 1, 3, and 10~continuous line!.
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nique. By extrapolating the finite-size data according to
expected law,17 D(L)5D`1a/L21b/L4, we have obtained
thed dependence of the thermodynamic gap, which is sho
in the same figure. Our results are in good agreement w
the variational calculation of Refs. 1, 3, and 10, and indic
a 8% spin-gap reduction from the Majumdar-Gosh model
d50 (D50.235) to the so-called saw-tooth chain ford51
(D50.216).18

The reduction of the spin gap in the dimerized phase
duced by the NNN bond alternation leads to an increase
the critical value (J2 /J1)c for the fluid-dimer transition. As
originally suggested by Castilla and collaborators,19 the
phase boundary between the two phases can be calcu
very accurately by exploiting the change in the excitati
spectrum occurring at the critical point. In fact, below t
critical point the system displays quasi-long-range antifer
magnetic order: in this case, gapless excitations are obta
by creating low-energy spinons both in triplet~spatially
even! and singlet~spatially odd! states, the former having th
lowest energy on finite size. In the dimerized phase, inste
the triplet excitations acquire a gap so that the ground s
remains twofold degenerate in the singlet sector, leading
the dimerized ground state which breaks the translatio
invariance. As a result, the critical coupling (J2 /J1)c can be
determined by performing a size scaling of the valueJ2 /J1
where the level crossing between the low-lying singlet a
triplet occurs~see Fig. 3!. With this technique, using exac
diagonalizations up to 30 sites, it is easy to obtain very
curate determinations of the critical value (J2 /J1)c . For in-
stance, in absence of NNN bond alternation, we obtai
critical value (J2 /J1)c in agreement with previously given
estimates.8,19 The resulting phase boundary for the flui

e

FIG. 3. Upper panel: singlet~open dots! and triplet ~full dots!
gaps versusJ2 /J1 for d51.0 andL512 ~triangles!, 18 ~squares!,
and 24 ~circles!. The arrow indicates the extrapolated value
J2 /J1 at the level crossing. Lines are guides for the eye. Low
panel: size scaling ofJ2 /J1 at the level crossing for~from below!
d50, 0.2, 0.4, 0.6, 0.8, 0.9, and 1.0. Lines are quadratic fits.
4-3
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dimer transition is shown in Fig. 4, indicating that ford51
the critical value of the frustration ratio for the fluid-dime
transition is only increased by about 1%.

In conclusion, we have studied the effects of a ne

FIG. 4. Critical J2 /J1 ratio for the fluid-dimer transition
versusd.
n

et
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-

nearest-neighbor spin-Peierls dimerization on the gro
state of the spin-halfJ1-J2 Heisenberg chain, using confo
mal field theory and exact diagonalization. We have fou
that, despite the conclusions of a recent study based
bosonization and renormalization-group approaches,1 the
bond alternation represents an irrelevant perturbation in b
the regime of strong and weak frustration. In particular,
predicted by Sarkar and Sen,2 the perturbation does no
change the nature of the excitation spectrum, leading onl
a weak reduction of the triplet gap in the dimerized pha
and, therefore, to a slight enhancement of the critical va
(J2 /J1)c associated to the fluid-dimer transition.
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