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Quantum virial expansion approach to thermodynamics of “He adsorbates
in carbon nanotube materials: Interacting Bose gas in one dimension
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| demonstrate thatHe adsorbates in carbon nanotube materials can be treated as one-dimensional interact-
ing gas of spinless bosons for temperatures below 8 K and for coverages such that all the adsorbates are in the
groove positions of the carbon nanotube bundles. The effects of adsorbate-adsorbate interactions are studied
within the scheme of the virial expansion approach. The theoretical predictions for the specific heat of the
interacting adsorbed gas are given.
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[. INTRODUCTION namics of adsorbed gas is thoroughly discussed. Section VI
concludes the paper and summarizes the main results of the
The adsorption of gases in nanotube-based materials hggesent work.
been recently a subject of considerable interest and many
theoretical and experimental studies focused on this phenom-1l. BEHAVIOR OF ISOLATED “He ATOMS ADSORBED
enon have been reportéd? The interest in the subject ON THE SURFACE OF A BUNDLE OF SWCNT'’s
stems partially from the possibility to use these materials as

efficient gas containers for hydrogen storagénother rea- ing the preferable adsorption sites for He atoms in SWCNT

son for th_e_ interest_is that the na_notube materials provide fhaterials, the experimental informatiof combined with
very specific potential-energy environment for the gas atomg,q theoretical consideratiohd? suggests that individual He
and molecules. In particular, the nature of this environment ig;;oms are predominantly adsorbed in the groove positions on
such that it reduces the effective dimensionality ofthe SWCNT's bundle surface. If the number of He atoms
adsorbatés’ which at sufficiently low temperatures behave agsorbed in the sample is very large, then one can expect that
as one-dimensiondllD) gases. This provides an excellent the He atoms will also occupy other positions on the bundle
opportunity to study the interactions in the 1D gas. The probsurface. This point is discussed in Sec. Ill.
lem of N particles interacting mutually via binary interaction  Quantum states ofHe atoms adsorbed in the groove po-
potentials in one dimension has been thoroughly investigatesitions of an infinitely long bundle made 010,10
in the literature and there exist exact quantum and classicWCNT'’s have been discussed in Ref. 9. It was found that
solutions for very specific functional forms of the interaction the low-energy part of théHe excitation spectrum exhibits a
potential*~" The aim of this paper is to investigate a real- typical 1D behavior with characteristic £ singularities
istic system in which the adsorbate atom®lecule$ inter-  present in the density of stateg(,E). The density of states
act with a relatively complicated binary potential that is at-does not exhibit gaps which is a consequence of the neglect
tractive at large and repulsive at short interadsorbat®f the corrugation of the carbon nanotube. In this approxi-
separation$® mation there are no potential barriers for the adsorbate mo-
The outline of this paper is as follows. In Sec. Il, the tion along the groove. The severeness of this approximation
behavior of a single atom adsorbed on the surface of and its influence on the results presented is discussed in Sec.
bundle of single-wall carbon nanotubé8WCNT’s) is dis- V. In Fig. 1, the low-energy part of théHe density of states
cussed. The range of temperatures in which the isolated agher unit length of the groove is presented, which was calcu-
sorbates exhibit effective one-dimensional behavior is distated as described in Ref. 9, i.e., the three-dimensional
cussed for*He atoms. In Sec. Ill the calculation of a second Schralinger equation was numerically solved to yield the
virial coefficient for the interacting gas in one dimension iscomplete set of bound states. As can be seen in Fig. 1, all the
briefly outlined. A fully quantal approach is followed since excitations with energies between22.7 meV and—18.88
the gas of interest is composed 6He atoms for which meV pertain to essentially one-dimensioftdle atoms. The
quantum effects are essential. In Sec. IV the specific heat @fxcitations in this regime of energies represent the activated,
adsorbed He gas is predicted and the effects of He-He intefree motion of*He atoms along the groove characterized by
actions are discussed. The results obtained are compared1D wave vectorK, (the y axis is oriented along the
with those for exactly solvable mod&ts® and qualitative groove, as discussed in Ref. 9. The transverse prdiil¢he
agreement is found. The calculation of specific heat in comxz plane, perpendicular to the groove direcliaf the “He
bination with experiments, some of them quite recentlywave function is the same for all these excitations and can be
reported:®?°is expected to yield additional insight into the represented by a narrow, Gaussian-like 2D funcfsee Fig.
thermodynamics of the adsorbed gas. In Sec. V, the influencé(a) in Ref. 9.
of the corrugation of the nanotub@vhich is neglected in At —18.88 meV, another band of states becomes avail-
Secs. II-1\} and sample inhomogeneities on the thermody-able to the isolated adsorbates. In this band, the transverse

Although there is still ongoing discussibrt*°concern-
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FIG. 1. Density of states per unit length of the groove of a single
“He atom adsorbed in the groove of a bundle madg16£10
SWCNT’s. The low-energy portion of the density of states is dis-
played.

FIG. 2. Ratio of the number dfHe atoms in the lowest 1D band
and the total number ofHe atoms Ny/N) as a function of tem-
perature and for three different linear densities. Thick full line:
N/L=0.011/A. Thick dashed linéd/L=0.11/A. Thick dotted line:

) 4 ) ) ] N/L=0.21/A. Two thin dotted lines represent the 0.99 and 0.95
profile of the *He wave function is different from the gjues of the ratio.

ground-state profilgsee Fig. 4b) in Ref. 9|. As discussed in
Ref. 9, the population of highdexcited bands causes tran- w
sition from the effectively 1D behavior dfHe atoms to 2D, Ng= Lf 0o(E)f(E,T)dE, (5)
and eventually, 3D behavior. Er

For the purposes of this work, it is sufficient to note thatonce the chemical potential has been determined from Eq.
the separation between the lowest 1D band and the first exs).
cited band is quite large8.82 me\f which immediately sug- In Fig. 2, | plot the ratioN,/N as a function of tempera-
gests that the higher bands are poorly populated in a signifture and for three different linear densities of adsorbates,
cant range of temperatures. The width of this temperaturg n=N/L. From this figure one can conclude that tian-
range can be evaluated from the known density of states. Th@teracting “He gas can be treated as effectively being 1D
total density of states can be represented as a sum of thgr temperatures smaller than about 8(k3 K) since for

lowest band density of statego(E), and the density of these temperatures more than 9895% of “He atoms oc-
states representing all other transverse excitatiggs, cupy the lowest-energy band.

E)= E)+g,(E). 1
9(E)=0o(E) +0a(E) @ I1l. VIRIAL EXPANSION APPROACH TO TREATING
The lowest band density of states per unit length of the THE INTERACTING GAS IN ONE DIMENSION

groove is given by
The approach to be presented here assumes that all the

2m 1 O(E—Ep) adsorbed atoms are in the groove positions on the bundle
go(E)= Ton = (2 surface. Thus, the approach cannot be applied to the situa-
heem JE-Er tions where the number of adsorbates is so large that other

where the mass of the adsorbataris Ep=—22.7 meV is positions on the bundle ;urface bec_:omg occupied by the ad-
the ground-state energy, ardl is the Heaviside function. sorbates. One coulld envisage the situation where a very large
The total number of adsorbate, is given by nu_mber of atoms is adsorbed on the bundle surface. From
this phase, one could get to the phase where all the adsor-
% bates are exclusively in the groove positions by desorbing all
N= LJ g(E)f(E,T)dE, (3)  the atoms which are not in groove positions. These atoms are
Er more weakly bound than those in the grodvead will de-
where L is the total length of the groove, and the Bose-sorb from the sample at lower temperatures. This fact en-
Einstein distribution function is given by ables the experimental realization of the 1D phase of interest
to this work. Similar arguments can be applied to 1D heavy
adsorbate phases studied in Ref. 12.
E—v» ' ) The virial expansion approach to treating the imperfect
exr{ W) - (interacting quantum gas is well knowh23and in this sec-

B tion it will be only briefly outlined with reference to a quan-
Here,kg is the Boltzmann constant,is the temperature, and tum gas in one dimension. The basic idea of the virial ex-
v is the chemical potential. The number of adsorbates in th@ansion approach is to represent the so-called gas spreading
lowest bandN,, can be calculated as pressureg, as a power series of the gas dengity,

f(E,T)=
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® particles. It is easy to shdw 23that the partition function for
,84):2 B,(L,8)n'. (6) one 1D spinless particle is given by
=1
Here, B=1/kgT and coefficientsB, are the virial coeffi- lehl (12)
cients. The virial coefficients can be obtained by comparing A

the. expansion.of the gas spreading pressure in the POWEI ore) is the thermal wavelength, = \27A28/m. Since |
series of fugacityz=exp(5v), consider“He atoms, the consideration of spinless particles

1 o suffices. As shown by the authors of Ref. 21, the spin de-
Bd=—InQ(z,B,L)= 2 by(L,B)Z (7) grees of freedom can be considefdgdheeded after the spin-
L =1 less problem has been solved. In the problem of spinless
with the expansion in Eq(6). b, is theIth cluster integral particles (antsymmetrization of the wave function is per-

obtained as the coefficient in the power-series expansion C]Iplrlmeddsolely in th%coor:dinat_e zpace. Al ?>f<predssions which
the logarithm of the grand partition functio®, in terms of oflow do not consider the spin degrees of ireedom.

fugacity. Since the grand partition function is given by _For the calculation of the second virial coefficies,
given by Eq.(10), one needs to calculate the partition func-

* tion for two-interacting particles. This is an easy task when
Q(z,L,B)zE Z(L,B)Z, (8)  the corrugation of the nanotubes can be neglected, since in
1=0 that case the interacting two-body problem can be reduced to

Wherezl are the quantum partition functions fbpartic|e5, free motion of the center of mass and the relative motion

the formulas for cluster integrals can be obtained by compartepresenting a particle of reduced mass m/2 in an exter-

ing the expansions in EqS?) and(s) The genera| form dﬁl nal potential2.1‘24 The motion of the center-of-mass can be

is given in Ref. 21. For the first two cluster integrals one hagepresented by a wave function for the free particle of mass
2m, expﬂkch)/\/E, wherek,, is the wave vector of the

A center-of-mass motion and is the center-of-mass coordi-
b= T’ nate,Y=(y,+YV,)/2. The relative motion can be described
by a wave function of relative coordinatgsy,—Yy,, which
1_, is denoted byé.(y), and which satisfies the 1D Scliinger
Zy= 52 equation
b2: —L . (9) ﬁZ 5
Eliminating z from Eqs.(6) and(7) by expressing it in terms 2u d_yz + U(M)] Eely) = €cte(y)- 13

of linear densityn yields the relation between the virial co-
efficients and cluster integrals. Using E€), one can obtain  The binary potential representing an interaction between the
the relations between virial coefficients and quantum partitwo gas particles is denoted by|y|)=v(]y,—Y-|). The set
tion functions. Explicitly, for the first and second virial co- Of “relative” quantum states is denoted Kg}. This set con-
efficient one has sists of a finite number of bound states denotedlidy and
the continuum of states which can be numbered according to
Bi=1, the wave vectok associated with the motion of the particle
with reduced mass in the region where the interaction van-
1 z ishes(largey). The energy of the quantum std® is de-
(10 noted by e.. Relative wave functions behave in the
asymptotic regimey—«) as

The quantum expression for the partition functionMof

. X . o 1
particles in one dimension is &(y)— ——=simky+ 7(K)],
T
z:fd Ay S WE(yy (19
N Y1 YNZ.( (Y1 Yn) £(y)—0.
xXexd —BH(P1, - - - PNsY1s - oY) ] The 1D phase shifts, which are nonvanishing due to the pres-
ence of the interaction potential are denoted by;(k).
XV (Y1, - Yn), 1 The partition function for the twaoninteractingparticles

N, represent 1D momenta and [v(]y])=0] in one dimension can be calculated without in-

voking Y andy coordinates. Its form results solely from the
requirement of thgantjsymmetrization of the total wave
function. Explicitly,

wherep; andy;, i=1,...
coordinates of thé\ gas particles, respectively. The dynam-
ics of N gas particles is described by the Hamiltonian

H(py, - --PNsY1s - - - YN)- A complete set of quantum

states describing\ particles is denoted bya}. The wave 72 L

functions ¥, are assumed to be properly normalized and 7O _"1, (15)
symmetrized according to the statistics satisfied by the gas 22 22\
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where the uppélower sign is for a spinless bosdfermion)  space He-He interactidii. In the case of interest to this
gas. The second virial coefficient for tmeninteractinggas  work, the two He atoms are surrounded by two SWCNT's

is thus and the polarization induced in the SWNCT’s will modify
the He-He interaction. While the polarization-induced effects
B(O):_L (16) on the binary potential can be calculated for atoms phys-

2 +2\/§‘ isorbed on a crystalline surfaé®the analogous calculation

for the very specific geometry of the nanotube bundle is cer-
The superscript£0) in Egs. (15 and (16) indicate that the  tainly more difficult. It is interesting to note here, that Vidali
expressions correspond to the noninteracting quantum gagnd Colé® found that the measurements of specific heat of
As often noted in the “tera.tuf?é;Z3 the finite value of the He Over|ayers on graphﬁécan be more accurate|y repro-
BY coefficient for noninteracting quantum gas reflects thequced by the effective He-He potential which is 15% shal-
so-called statistical attraction for bosqmuagativeB(zo)] and  lower from the free-space He-He potential. They attribute
statistical repulsion for fermior[:r,.)ositiveB(O), see Eq(6)].  this effect to the screening of He-He interaction by the sub-
The expression foB(ZO) should be compared with E¢8.15 strate. The treatment of Vidali and Céievas also based on
of Ref. 21 which pertains to noninteracting gas in two di-quantum virial expansion. In another stifynore related to
mensions. the system considered here, the authors found that the inter-
The second virial coefficient can be calculated as action between two He atoms adsorbed in the interstitial
channels of SWCNT's has a well depth which is 28% shal-
) O 3 lower with respect to the free-space interaction. The groove
B,=B5 +)\\/§Z {exr — Bec']1—exp(— Bec)}, adsorption represents a situation which is “somewhere in
(17) between” the adsorption on planar graphite and in SWCNT's
interstitial channels.
whereel” is the set of “relative” energies for two noninter- |n the following calculations, the He-He interaction will
acting particles. Equatiofi7) has been obtained by perform- pe described by free-space potential suggested recently by
ing integration over the center-of-mass coordinate in the exjanzen and AziZ8 but | also consider the scaled potential
pression for the partition function of the two interacting obtained from the free-space interaction by simple multipli-
particles,Z, [Eq. (11)]. cation with a factor of 0.785. Thus, the scaled potential has a
The formula forB, which is convenient for numerical well depth which is 21.5% smaller from the well depth of the
implementation can be obtained by replacing the summatiofree-space potential. This number was obtained as a simple
over{c} in Eg. (17) with two summations, one going over the arithmetic mean of the well depth reductions found for ad-
bound states{b}, and the other over the continuum states,sorption on planar graph®and in interstitial channels of
{k}. One can pass from the sum over stdt@do the integral SWCNT's?® The assumed reduction of the well depth is
over the wave vectdk by introducing the density of states in quite close to the numerical estimate in Ref.(28%). The
k space, which can be obtained from the 1D phase shiftssxact value of the scaling factor used should not be taken too

7(k).?* | finally obtain seriously because the substrate-induced contributions to the
potential cannot be modeled by a simple scaling of the free-
_ ) oy _ _ space potentig The scaled potential was introduced simply
B2(B)=B37(B) A\/Ezb“ exp(— fev) to examine the effects of the details of interaction potential

on the thermodynamics of adsorbed gas. Additionally, to ob-
M2 (=dn(k) 2K tain the effective potential in one dimension, the 3D potential
B Tfo dk A~ 2u dk. (18 ghould be averaged over the 2D cross sections of the adsor-
bate probability densit$?** However, since the cross section
where the dependence of the virial coefficient on the temof the lowest band states is rather small, and in light of the
perature(or B) is emphasized. This formula is very similar uncertainties of the substrate-mediated forces, such a proce-
to the one obtained for 2D and 3D gases, although the nwdure has not been performed.

merical factorgsuch asy2) and units ofB, (in one dimen- SAPT1 potential supports one weakly bound state in one
sion, B, has units of length since the linear density has unitglimension, representing #He dimer with an energy oé,
of inverse lengthare different, depending on a dimensional- = —0.16 ueV. This state, being so weakly bound, is ex-

ity of the problem. It should also be noted that since thetremely extended in a relative coordind?e’ The-bound
problem involves only one dimension, one does not obtairstate energy in one dimension is significantly smaller then
azimuthal quantum numbers which occur in the treatments cthe one obtained by Siddon and Schick in a 2D treatrfient,
interacting gases in two and three dimensions as a consevhich is in accord with the existing literatut® The scaled
guence of the central symmetry of the binary potential. SAPT1 potential does not support bound states. The 1D
The evaluation of Eq(18) requires the calculation of 1D phase shifts and their derivatives with respect to the relative
phase shifts which depend on the binary potential,The  wave vector were calculated by numerically solving the
interaction between the two He atoms in the otherwise emptchralinger equation using an algorithm quite similar to the
space is known to great precisibhHowever, the effective one described in Ref. 32.
interaction between the two He atoms positioned in the vi- In Fig. 3, the calculated values of a second virial coeffi-
cinity of a third polarizable body is different from the free cient are presented. The full line corresponds to calculations
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2 ' | . | ' - | ' interaction potential. In the present calculation a similar ef-
I scaled SAPT1 ] fect is found in one dimension.

IV. SPECIFIC HEAT OF ADSORBED “He GAS

The specific heat of interacting quantum gas can be cal-
culated from the set of virial coefficienté?®| assume that
the dominant contribution to the specific heat comes from the
second virial coefficient. Thus, the results are applicable to a
restricted range of adsorbate concentrations and tempera-
tures. The range of validity of this approximation can be
estimated from a calculation of higher virial coefficients,
which is a difficult task, or from direct comparison with ex-
periments, as has been done fbte adsorbates on graphite
in Refs. 21 and 36. Experiments dealing primarily with the
specific heat of adsorbates in carbon nanotube materials have
FIG. 3. Second virial coefficient for 1BHe gas as a function of not been reported ye_t and those which _d_etected the signature
temperature. Full line: Quantum calculation with the SAPT1 poten-Of the adsorbed gas in the ove_r_all specific heat of the sample
tial. Dashed line: Quantum calculation with the scaled SAPT1 po-Were .focg%ad on the specific heat of clean nanotube
tential (see text Inset: Phase-shift derivativedn(k)/dk, corre- materlallsl. o . .
sponding to the SAPT1 potentidull line) and the scaled SAPT1 The isosteric specific heat is glvenzhs
potential(dashed ling

c 1 ,d°B,

Nk 2 g
with the He-He potential suggested in Ref. (BAPTY), B dg

while the dashed line corresponds to calculations using the¢he second term in Eq19) can be calculated from E¢L9)
scaled SAPT1 potential. The behavior of the second viriahg

coefficient with temperature is qualitatively similar to the

(19

one obtained fofHe adsorbates on graphit2D problem in 2d2|32 1 Syl )
Ref. 21. There is, however, one important difference. The8 a3 =n\y2 16 2 TG -BA(S T,
ideal gas termBg, reflecting the purely quantum effect of (20

gas statistics, decays with temperature/a# in one dimen-
sion, and as T7 in two dimensior?! Thus, the approach of a Where
second virial coefficient to its classical value as the tempera-
ture increases is slower in one than in two dimensions. In the S,= E eh exp( — Beyp), (21)
inset of Fig. 3 the derivatives of the phase shiftg(k)/dk, b
are plotted as a function of relative wave vedtoNote that
the phase-shift derivatives become negative and nearly con- 1 ( R2\" [ pndn(k) 12k*B

: . g ly=—|5— f kZ”—exp(— )dk. (22)
stant for large relative energigsvave vectors This is a "o\ 2,
consequence of a strongly repulsive potential at short dis- . . . .
tancesthard corg. Note also that the phase shifts of the two | N€ expression for the term in E(0) representing a devia-
potentials are very different for small wave vectors, and thudion of the speuﬂc h_eat from its |degl vgl&where the in-
one could expect that the two potentials produce quite differiéradsorbate interactions are neglegieddifferent from the
ent thermodynamical quantities. However, the very differen€COésponding expression one would obtain in a 2D treat-
behavior of the phase shifts is a consequence of the fact thgient- The 2D expressiéhdoes not contain a term propor-
the SAPT1 potential supports a weakly bound state where nal t.o)\ and'lndependent of the mteradsqrbate |nt'eract|on
the scaled SAPT1 potential does not. Thus, in the evaluatioROtentiall1/16 in Eq.(20)]. The reason for thl(so;g that in two
of Eq. (18) one has to properly account for the bound statedimensions, thoe noninteracting value®f, B3 is propor-
which exists in the case of the SAPT1 potential. This “extra” tional to 8 [BS”=—\?%/4],%" and therefore, its second de-
term for the SAPT1 potential makes the thermodynamicalivative with respect to vanishes. In the 1D cas@%’
quantities derived from the two potentials quite similar, al-= 3 [see Eq(16)] andd?B{)/dB%=B~%2 This fact alone
though the derivatives of the phase shifts are very differentsuggests that the specific heats of a dilute, interacting boson
This fact has been discussed for the interacting gas in twgas in one and two dimension may be qualitatively different.
dimension®34in connection with Levinson’s theorefft>® In Fig. 4 | plot the quantity—82d’B,/dB?. The full
which relates the phase shift at zero momentum to the numidashed line represents the calculation with the SAPT1
ber of bound states. It was foutidhat a proper account of (scaled SAPTLpotential. Obviously, both potentials produce
both the continuum and bound states eliminates discontinusimilar deviations. The calculation with the scaled SAPT1
ties in thermodynamic properties whenever an extra boung@otential yields somewhat smaller effects of interactions on
state appears with the small change of the parameters tfie specific heat, which is plausible since the scaled SAPT1

0 dk Z/L
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0 - | - | . . 9). It can also be inferred from Fig. 5 that the description of
thermodynamics of the adsorbed gas in terms of the second
virial coefficient only breaks down at very low temperatures
where such an approach yields negative specific heat. These
temperatures can be considered as the lower limits for the
application of the present approach. For higher densities, the
lower-temperature limits obviously increase, in agreement
with Eqg. (19), and the presented virial expansion approach
breaks down at higher temperatures. Note that the upper tem-
perature for which the specific heat was calculated is 6 K.
Above that temperature the higher bands start to contribute
1 to the specific heat as discussed in Sec. Il and Ref. 9. Al-
though the number of particles in higher bands is very small
: ' : ' : ' : at 6 K (see Fig. 1, the derivative of internal energy with
2 4 6 8 o : "
respect to temperatur@pecific heatis very sensitive even
TIK] to very small occupations of the higher bands and this causes
FIG. 4. Deviation of the specific heat per unit linear densitythe increase of the specific heat observed for a very dilute
(— B%d?B,/dB?) from its ideal value, Eq(19). Full line: Calcula- ~ 98S- . _ _
tion with the SAPT1 potential. Dashed line: Calculation with the It is now of interest to compare the obtained results with
scaled SAPT1 potential. those of exactly solvable 1D many-particle models. In par-
ticular, for the gas of bosons in one dimension interacting via

a repulsives-function potential, Lieb and Liniger have dem-

potential is weaker than the SAPT1 potential. An important L .
observation is that the deviation of specific heat from itsonstrated that the energy spectrum of such a gas is identical

ideal value isnegativefor a 1D boson gas, i.e., the inclusion to th? sp%cyrutrﬂ ofa golnlr}tgractgggﬁernllgiﬁme s_,atme
of interactions reduces the specific heat of the adsorbed 1{yas found in the mode! ot Loirar or . osons inter-
ting with the binary hard-core potentials of finite radius.

gas. For a 2D spinless boson gas considered in Ref. 21, t Fermi fth dina 1D Fermi ;
deviation was found to bpositive The observed difference e Fermi energyr of the corresponding ermi gas 1s

|
©o

2.2 2 9
—B°d’B,/dp” [A]

|
LS
|

CE=====—=T

scaled SAPT1

|
=l

between 1D and 2D results is a consequence of both th lven as
nonvanishing second derivative of the ideal tgrig}”) ()] AAC  p2n?
with respect tg3, and nonexistence of azimuthal degrees of EF:Z_mF: TR (23

freedom in the 1D treatment of the problem.

, Finally, in Fig. 5, I plot the specific heat of the interacting wherekg=7N/L=n is the Fermi wave vector. This map-
He gas adsorbed in grooves of SWCNT bundles for thregying (interacting Bose gas vs noninteracting Fermi)gas

d|fferent_ Imeqr densities. The fultlashedllines rep_resent the lows us to easily predict the specific heat of the impenetrable

calculation with the SAPT1scaled SAPTLpotential. Obvi- 1 Bose gas. Thus, at temperatures much smaller than the

ously, for denser gas, the specific heat is more strongly iNpqo i temperatureT = E¢ /K

fluenced by the interactions, and deviates more from the FomRTE

ideal (noninteracting 1D value(compare with Fig. 6 of Ref. Cy(T<Tp)xT, (24)

while at temperatures much larger than the Fermi tempera-

05k 4 ture, the specific heat reduces to its classical equipartition
~ N/L=00331/A value

CyT>Te) 1
Nk "3z (25)

The linear temperature dependence of the specific [kt
(24)] can be also interpreted as a signature of long-
wavelength compression waves of the 1D Bose(gasnd,

and is thus also expected in a gas of 1D bosons interacting
with more complex forces. This is a collective effect and is
obviously outside of the scope of the second-order virial ex-
pansion, treating only the two-body collisions. On the other
hand, the classical equipartition value of specific Hé&aj.
(25)] is obtained also by the present approach at high tem-

FIG. 5. Specific heat ofHe gas adsorbed in the grooves of peratureg§Eg. (19) and Fig. 4. The temperature separating

SWCNT bundles for three different linear densiti@s033 1/A, 0.1  the two characteristic behaviors in Eq24) and (25) is

1/A, and 0.2 1/A. Full line: Calculation with the SAPT1 potential. roughly given by the Fermi temperature of the equivalent
Dashed line: Calculation with the scaled SAPT1 potential. noninteracting Fermi gas, which is proportional to the square

C/NK,

T [K]
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of linear density Eq. (23)]. Thus, for denser Bose gases, thetial for the groove adsorption cannot be written as a Fourier
interval of temperatures in which the specific heat is signifi-series.
cantly smaller than one-half is larger. This is again in agree- All the mentioned complications are not present for the
ment with the results presented in Fig. 5. adsorption on planar graphite. In that case, a fairly reliable
potential can be construct®dand written as a 2D Fourier
series. However, even the inclusion of periodic corrugation
V. THE EFFECT OF THE CORRUGATION OF CARBON in the formalism of quantum virial expansion is not straight-
NANOTUBES AND SAMPLE INHOMOGENEITIES forward. The basic reason for this is that the two-body
o _ Schralinger equation in the textured potential background no
~ The results presented in this paper are based on an ideghnger separates into the two equations describing the motion
ized representation of the SWCNT materials. In particular, ity the center of mass and the relative motion. For the adsorp-
is assumed that SWCNT bundles are infinitely long, straight;ion of He on graphite, Guo and Bri@devised a perturba-
and smooth, which is certainly not the case in real materialg;on, reatment in which the two-body cluster integral is writ-
and the bundles wiggle on large length scales. The discretgay 45 an expansion in powers of the Fourier amplitudes of
ness of the nanotube results in the corrugation of the potenpe a1om-substrate potential. They also presented the results
tial experienced by adsorbates, which is not accounted for i, the second virial coefficient in which the corrugation ef-
the present app_roach. The influence of'the corrugation Of thRyts were treated up to second order of the perturbation
potential confining the He atom to the interstitial channel Ofseries. Another study dealing with the probfistarted from
the bundle composed ¢10,10 carbon nanotubes was stud- the tight-binding Hamiltonian and He atoms localized on

led in Ref. 11. A model potential was used which enabled ar) articular adsorption sites. A series of approximations and
easy examination of effects induced by the potential details. P ' PP

A substantial effect of the corrugation on the density of stateé'mp“.ﬁ.Catlons was neeQed .to obtain the formula fqr the sec-
of a single He atom was predicted. In particular, for theond ymal coefficient w_hlch is amena.ble to .evalua'uon. _
lowest band of states, a mass enhancement factor of 2.37 was It is clear from the discussion in this section that a reliable
calculated. Another stuypredicted a mass enhancementcalculation of the second virial coefficient with the effects of
factor of 1.3. The large difference between these factors préhe corrugation included is not possible at present, mainly
dicted by the two studies can be attributed to the larger sepdecause the relevant potential is not known with sufficient
ration of the tubegby 0.1 A) adopted in Ref. 6 with respect Precision. Additionally, aperiodic corrugation has not been
to Ref. 11. For comparison, the mass enhancement factor féfeated in the literature in this context. However, a simple
“He adsorbed on graphite was found to be only 20Bor  estimate of the corrugation effects is possible if we represent
an interstitial channel surrounded by thi@&,0 nanotubes, the adsorbate as a particle with the effective mass. Such a
the authors of Ref. 6 found that a change in the intertubgepresentation of the corrugation effects is adequate for ex-
separation by 0.1 A changes the effective maséé by a  citations with small velocity, i.e., for the states located
factor of 2. around the center of the 1D Brillouin zone. The mass en-
It is quite remarkable that a small change in the intertubdiancement for the groove adsorption can be expected to be
separation results in a very large change of the band structus®mewhere between 1.0planar graphiteand 2.37(intersti-
of adsorbates. A similar sensitivity of the adsorbate boundial channel. The quantity —3°d?B,/dg? was calculated
states on the interaction potential was found in Ref. 9 for theusing Egs.(20)—(22), the scaled SAPT1 potential, and the
groove adsorption. The details of the interaction potential areffective He mass equal tM* =1.3My,=5.2 amu. AtT
“magnified” in the spatially restricted regions of the intersti- =1 K (5 K), its value was found to be-1.69 A (—0.52 A).
tial channel and the groove, and the band structure of adsoi+his should be compared with the values obtained in Fig. 4.
bates is much more affected by the potential details whein particular, afT=1 K (5 K) the values obtained using the
compared with the adsorption on planar graphite. Thus, ifree mass of*He are—1.92 A (—0.77 A). Thus, the reflec-
order to assess the effect of the corrugation on the calculdion of the corrugation effects on the specific heat can be
tions presented in this paper, one would need to know thsignificant, but the overall trends, at least in the model of
intertube separation distance to a precision better than a&normalized mass, are the same. For strongly corrugated
least 0.05 A. Note that the groove region is at the surface opotentials, it may be more sensible to use the bandwidth for
the bundle where the relaxation effects can be expected ariie characterization of the effects of corrugation rather than
the separation between the tubes surrounding the groowbe curvature of dispersion curves at small wave vectors.
needs not to be the same as the separation between the twoThe influence of other bundles on the atoms adsorbed in a
tubes in the interior of the bundle. Additionally, one would groove of a particular bundle is neglected. This approxima-
have to know the He single tube potential with great accution obviously breaks down if two bundles touch each other.
racy. Even then, the calculation of the corrugation of theAt these points, the adsorbates move in a potential very
potential would require knowledge of the alignment of themuch influenced by both bundles in question, which may be
two tubes surrounding the groove. It is very likely that this significantly different from the potential of a single, infinitely
arrangement is not the same for all the grooves on the bundleng and straight bundle | used in the calculations. For the
surface. Furthermore, if the two tubes surrounding a groovadsorption of*He on graphité/° it was arguetf that the
are not of the same symmetry, the corrugations of the tw@resence of long-range inhomogeneities in the graphite may
tubes are not necessarily commensurate and the total poteaet as a trap and induce the Bose-Einstein condensation of
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the adsorbed gas. The same experiments were later explainsdould be very accurate for all temperatures below 8 K. The
in terms of the virial expansion approdttby assuming a interactions in the adsorbed gas are treated via the quantum
perfect graphite substrate. Nevertheless, a possible substaririal expansion approach, and the second virial coefficient
tial influence of the sample inhomogeneities on the thermofor the interacting gas was calculated. This information was
dynamics of the adsorbed gas cannotabpriori ruled out.  used to calculate the specific heat of adsorfidd gas which
This is expected to be more important at low temperaturesvas shown to be substantially influenced by interadsorbate
where the adsorbate thermal wavelength is large and thiateractions already at relatively low adsorbate linear densi-
long-range order of the sample may influence the adsorbaties (0.0331/4). A qualitative agreement between the results
gas thermodynamics. It is hoped that the low-temperaturebtained in this paper and those of exactly solvable 1D mod-

measurements of the specific heat may provide answers tls is demonstrated.

these questions.

VI. SUMMARY AND CONCLUSION
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