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Quantum virial expansion approach to thermodynamics of 4He adsorbates
in carbon nanotube materials: Interacting Bose gas in one dimension

Antonio Šiber*
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I demonstrate that4He adsorbates in carbon nanotube materials can be treated as one-dimensional interact-
ing gas of spinless bosons for temperatures below 8 K and for coverages such that all the adsorbates are in the
groove positions of the carbon nanotube bundles. The effects of adsorbate-adsorbate interactions are studied
within the scheme of the virial expansion approach. The theoretical predictions for the specific heat of the
interacting adsorbed gas are given.
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I. INTRODUCTION

The adsorption of gases in nanotube-based materials
been recently a subject of considerable interest and m
theoretical and experimental studies focused on this phen
enon have been reported.1–12 The interest in the subjec
stems partially from the possibility to use these materials
efficient gas containers for hydrogen storage.13 Another rea-
son for the interest is that the nanotube materials provid
very specific potential-energy environment for the gas ato
and molecules. In particular, the nature of this environmen
such that it reduces the effective dimensionality
adsorbates8,9 which at sufficiently low temperatures beha
as one-dimensional~1D! gases. This provides an excelle
opportunity to study the interactions in the 1D gas. The pr
lem of N particles interacting mutually via binary interactio
potentials in one dimension has been thoroughly investiga
in the literature and there exist exact quantum and class
solutions for very specific functional forms of the interacti
potential.14–17 The aim of this paper is to investigate a rea
istic system in which the adsorbate atoms~molecules! inter-
act with a relatively complicated binary potential that is
tractive at large and repulsive at short interadsorb
separations.18

The outline of this paper is as follows. In Sec. II, th
behavior of a single atom adsorbed on the surface o
bundle of single-wall carbon nanotubes~SWCNT’s! is dis-
cussed. The range of temperatures in which the isolated
sorbates exhibit effective one-dimensional behavior is d
cussed for4He atoms. In Sec. III the calculation of a seco
virial coefficient for the interacting gas in one dimension
briefly outlined. A fully quantal approach is followed sinc
the gas of interest is composed of4He atoms for which
quantum effects are essential. In Sec. IV the specific hea
adsorbed He gas is predicted and the effects of He-He in
actions are discussed. The results obtained are comp
with those for exactly solvable models15,16 and qualitative
agreement is found. The calculation of specific heat in co
bination with experiments, some of them quite recen
reported,19,20 is expected to yield additional insight into th
thermodynamics of the adsorbed gas. In Sec. V, the influe
of the corrugation of the nanotube~which is neglected in
Secs. II–IV! and sample inhomogeneities on the thermo
0163-1829/2003/67~16!/165426~8!/$20.00 67 1654
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namics of adsorbed gas is thoroughly discussed. Section
concludes the paper and summarizes the main results o
present work.

II. BEHAVIOR OF ISOLATED 4He ATOMS ADSORBED
ON THE SURFACE OF A BUNDLE OF SWCNT’s

Although there is still ongoing discussion1–4,9,10concern-
ing the preferable adsorption sites for He atoms in SWC
materials, the experimental information1–3 combined with
the theoretical considerations9–11 suggests that individual He
atoms are predominantly adsorbed in the groove position
the SWCNT’s bundle surface. If the number of He atom
adsorbed in the sample is very large, then one can expect
the He atoms will also occupy other positions on the bun
surface. This point is discussed in Sec. III.

Quantum states of4He atoms adsorbed in the groove p
sitions of an infinitely long bundle made of~10,10!
SWCNT’s have been discussed in Ref. 9. It was found t
the low-energy part of the4He excitation spectrum exhibits
typical 1D behavior with characteristic 1/AE singularities
present in the density of states,g(E). The density of states
does not exhibit gaps which is a consequence of the neg
of the corrugation of the carbon nanotube. In this appro
mation there are no potential barriers for the adsorbate
tion along the groove. The severeness of this approxima
and its influence on the results presented is discussed in
V. In Fig. 1, the low-energy part of the4He density of states
per unit length of the groove is presented, which was cal
lated as described in Ref. 9, i.e., the three-dimensio
Schrödinger equation was numerically solved to yield t
complete set of bound states. As can be seen in Fig. 1, al
excitations with energies between222.7 meV and218.88
meV pertain to essentially one-dimensional4He atoms. The
excitations in this regime of energies represent the activa
free motion of4He atoms along the groove characterized
a 1D wave vectorKy ~the y axis is oriented along the
groove!, as discussed in Ref. 9. The transverse profile~in the
xz plane, perpendicular to the groove direction! of the 4He
wave function is the same for all these excitations and can
represented by a narrow, Gaussian-like 2D function@see Fig.
4~a! in Ref. 9#.

At 218.88 meV, another band of states becomes av
able to the isolated adsorbates. In this band, the transv
©2003 The American Physical Society26-1
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ANTONIO ŠIBER PHYSICAL REVIEW B 67, 165426 ~2003!
profile of the 4He wave function is different from the
ground-state profile@see Fig. 4~b! in Ref. 9#. As discussed in
Ref. 9, the population of higher~excited! bands causes tran
sition from the effectively 1D behavior of4He atoms to 2D,
and eventually, 3D behavior.

For the purposes of this work, it is sufficient to note th
the separation between the lowest 1D band and the first
cited band is quite large~3.82 meV! which immediately sug-
gests that the higher bands are poorly populated in a sig
cant range of temperatures. The width of this tempera
range can be evaluated from the known density of states.
total density of states can be represented as a sum o
lowest band density of states,g0(E), and the density of
states representing all other transverse excitations,ga ,

g~E!5g0~E!1ga~E!. ~1!

The lowest band density of states per unit length of
groove is given by9

g0~E!5A2m

\2

1

2p

Q~E2EG!

AE2EG

, ~2!

where the mass of the adsorbate ism, EG5222.7 meV is
the ground-state energy, andQ is the Heaviside function
The total number of adsorbates,N, is given by

N5LE
EG

`

g~E! f ~E,T!dE, ~3!

where L is the total length of the groove, and the Bos
Einstein distribution function is given by

f ~E,T!5
1

expS E2n

kBT D21

. ~4!

Here,kB is the Boltzmann constant,T is the temperature, an
n is the chemical potential. The number of adsorbates in
lowest band,N0, can be calculated as

FIG. 1. Density of states per unit length of the groove of a sin
4He atom adsorbed in the groove of a bundle made of~10,10!
SWCNT’s. The low-energy portion of the density of states is d
played.
16542
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EG

`

g0~E! f ~E,T!dE, ~5!

once the chemical potential has been determined from
~3!.

In Fig. 2, I plot the ratioN0 /N as a function of tempera
ture and for three different linear densities of adsorba
n, n5N/L. From this figure one can conclude that thenon-
interacting 4He gas can be treated as effectively being
for temperatures smaller than about 8 K~13 K! since for
these temperatures more than 99%~95%! of 4He atoms oc-
cupy the lowest-energy band.

III. VIRIAL EXPANSION APPROACH TO TREATING
THE INTERACTING GAS IN ONE DIMENSION

The approach to be presented here assumes that al
adsorbed atoms are in the groove positions on the bu
surface. Thus, the approach cannot be applied to the s
tions where the number of adsorbates is so large that o
positions on the bundle surface become occupied by the
sorbates. One could envisage the situation where a very l
number of atoms is adsorbed on the bundle surface. F
this phase, one could get to the phase where all the ad
bates are exclusively in the groove positions by desorbing
the atoms which are not in groove positions. These atoms
more weakly bound than those in the grooves9 and will de-
sorb from the sample at lower temperatures. This fact
ables the experimental realization of the 1D phase of inte
to this work. Similar arguments can be applied to 1D hea
adsorbate phases studied in Ref. 12.

The virial expansion approach to treating the imperf
~interacting! quantum gas is well known21–23and in this sec-
tion it will be only briefly outlined with reference to a quan
tum gas in one dimension. The basic idea of the virial e
pansion approach is to represent the so-called gas sprea
pressure,f, as a power series of the gas density,n,

e

-

FIG. 2. Ratio of the number of4He atoms in the lowest 1D ban
and the total number of4He atoms (N0 /N) as a function of tem-
perature and for three different linear densities. Thick full lin
N/L50.011/Å. Thick dashed line:N/L50.11/Å. Thick dotted line:
N/L50.21/Å. Two thin dotted lines represent the 0.99 and 0
values of the ratio.
6-2
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bf5(
l 51

`

Bl~L,b!nl . ~6!

Here, b51/kBT and coefficientsBl are the virial coeffi-
cients. The virial coefficients can be obtained by compar
the expansion of the gas spreading pressure in the po
series of fugacity,z5exp(bn),

bf5
1

L
lnQ~z,b,L !5(

l 51

`

bl~L,b!zl ~7!

with the expansion in Eq.~6!. bl is the l th cluster integral
obtained as the coefficient in the power-series expansio
the logarithm of the grand partition function,Q, in terms of
fugacity. Since the grand partition function is given by

Q~z,L,b!5(
l 50

`

Zl~L,b!zl , ~8!

whereZl are the quantum partition functions forl particles,
the formulas for cluster integrals can be obtained by comp
ing the expansions in Eqs.~7! and~8!. The general form ofbl
is given in Ref. 21. For the first two cluster integrals one h

b15
Z1

L
,

b25

Z22
1

2
Z1

2

L
. ~9!

Eliminatingz from Eqs.~6! and~7! by expressing it in terms
of linear densityn yields the relation between the virial co
efficients and cluster integrals. Using Eq.~9!, one can obtain
the relations between virial coefficients and quantum pa
tion functions. Explicitly, for the first and second virial co
efficient one has

B151,

B25LS 1

2
2

Z2

Z1
2D . ~10!

The quantum expression for the partition function ofN
particles in one dimension is

ZN5E dy1•••dyN(
a

Ca* ~y1 , . . . ,yn!

3exp@2bH~p1 , . . . ,pN ,y1 , . . . ,yN!#

3Ca~y1 , . . . ,yn!, ~11!

wherepi and yi , i 51, . . . ,N, represent 1D momenta an
coordinates of theN gas particles, respectively. The dynam
ics of N gas particles is described by the Hamiltoni
H(p1 , . . . ,pN ,y1 , . . . ,yN). A complete set of quantum
states describingN particles is denoted by$a%. The wave
functions Ca are assumed to be properly normalized a
symmetrized according to the statistics satisfied by the
16542
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particles. It is easy to show21–23that the partition function for
one 1D spinless particle is given by

Z15
L

l
, ~12!

wherel is the thermal wavelength,l5A2p\2b/m. Since I
consider 4He atoms, the consideration of spinless partic
suffices. As shown by the authors of Ref. 21, the spin
grees of freedom can be considered~if needed! after the spin-
less problem has been solved. In the problem of spin
particles ~anti!symmetrization of the wave function is pe
formed solely in the coordinate space. All expressions wh
follow do not consider the spin degrees of freedom.

For the calculation of the second virial coefficient,B2,
given by Eq.~10!, one needs to calculate the partition fun
tion for two-interacting particles. This is an easy task wh
the corrugation of the nanotubes can be neglected, sinc
that case the interacting two-body problem can be reduce
free motion of the center of mass and the relative mot
representing a particle of reduced massm5m/2 in an exter-
nal potential.21–24 The motion of the center-of-mass can b
represented by a wave function for the free particle of m
2m, exp(ikcmY)/AL, where kcm is the wave vector of the
center-of-mass motion andY is the center-of-mass coord
nate,Y5(y11y2)/2. The relative motion can be describe
by a wave function of relative coordinate,y5y12y2, which
is denoted byjc(y), and which satisfies the 1D Schro¨dinger
equation

F2
\2

2m

d2

dy2
1v~ uyu!Gjc~y!5ecjc~y!. ~13!

The binary potential representing an interaction between
two gas particles is denoted byv(uyu)5v(uy12y2u). The set
of ‘‘relative’’ quantum states is denoted by$c%. This set con-
sists of a finite number of bound states denoted by$b%, and
the continuum of states which can be numbered accordin
the wave vectork associated with the motion of the partic
with reduced mass in the region where the interaction v
ishes~large y). The energy of the quantum stateuc& is de-
noted by ec . Relative wave functions behave in th
asymptotic regime (y→`) as

jk~y!→ 1

AL
sin@ky1h~k!#,

~14!
jb~y!→0.

The 1D phase shifts, which are nonvanishing due to the p
ence of the interaction potentialv, are denoted byh(k).

The partition function for the twononinteractingparticles
@v(uyu)50# in one dimension can be calculated without i
voking Y andy coordinates. Its form results solely from th
requirement of the~anti!symmetrization of the total wave
function. Explicitly,

Z2
(0)5

Z1
2

2
6

L

2A2l
, ~15!
6-3
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where the upper~lower! sign is for a spinless boson~fermion!
gas. The second virial coefficient for thenoninteractinggas
is thus

B2
(0)57

l

2A2
. ~16!

The superscripts~0! in Eqs. ~15! and ~16! indicate that the
expressions correspond to the noninteracting quantum
As often noted in the literature,22,23 the finite value of the
B2

(0) coefficient for noninteracting quantum gas reflects
so-called statistical attraction for bosons@negativeB2

(0)] and
statistical repulsion for fermions@positiveB2

(0) , see Eq.~6!#.
The expression forB2

(0) should be compared with Eq.~3.15!
of Ref. 21 which pertains to noninteracting gas in two
mensions.

The second virial coefficient can be calculated as

B25B2
(0)1lA2(

c
$exp@2bec

(0)#2exp~2bec!%,

~17!

whereec
(0) is the set of ‘‘relative’’ energies for two noninter

acting particles. Equation~17! has been obtained by perform
ing integration over the center-of-mass coordinate in the
pression for the partition function of the two interactin
particles,Z2 @Eq. ~11!#.

The formula forB2 which is convenient for numerica
implementation can be obtained by replacing the summa
over$c% in Eq. ~17! with two summations, one going over th
bound states,$b%, and the other over the continuum state
$k%. One can pass from the sum over states$k% to the integral
over the wave vectork by introducing the density of states i
k space, which can be obtained from the 1D phase sh
h(k).21 I finally obtain

B2~b!5B2
(0)~b!2lA2(

b
exp~2beb!

2
lA2

p E
0

`dh~k!

dk
expS 2b

\2k2

2m Ddk, ~18!

where the dependence of the virial coefficient on the te
perature~or b) is emphasized. This formula is very simila
to the one obtained for 2D and 3D gases, although the
merical factors~such asA2) and units ofB2 ~in one dimen-
sion,B2 has units of length since the linear density has un
of inverse length! are different, depending on a dimensiona
ity of the problem. It should also be noted that since
problem involves only one dimension, one does not obt
azimuthal quantum numbers which occur in the treatment
interacting gases in two and three dimensions as a co
quence of the central symmetry of the binary potential.

The evaluation of Eq.~18! requires the calculation of 1D
phase shifts which depend on the binary potential,v. The
interaction between the two He atoms in the otherwise em
space is known to great precision.18 However, the effective
interaction between the two He atoms positioned in the
cinity of a third polarizable body is different from the fre
16542
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space He-He interaction.25 In the case of interest to thi
work, the two He atoms are surrounded by two SWCNT
and the polarization induced in the SWNCT’s will modif
the He-He interaction. While the polarization-induced effe
on the binary potential can be calculated for atoms ph
isorbed on a crystalline surface,25 the analogous calculation
for the very specific geometry of the nanotube bundle is c
tainly more difficult. It is interesting to note here, that Vida
and Cole26 found that the measurements of specific heat
He overlayers on graphite27 can be more accurately repro
duced by the effective He-He potential which is 15% sh
lower from the free-space He-He potential. They attribu
this effect to the screening of He-He interaction by the s
strate. The treatment of Vidali and Cole26 was also based on
quantum virial expansion. In another study,28 more related to
the system considered here, the authors found that the i
action between two He atoms adsorbed in the interst
channels of SWCNT’s has a well depth which is 28% sh
lower with respect to the free-space interaction. The gro
adsorption represents a situation which is ‘‘somewhere
between’’ the adsorption on planar graphite and in SWCN
interstitial channels.

In the following calculations, the He-He interaction wi
be described by free-space potential suggested recentl
Janzen and Aziz,18 but I also consider the scaled potenti
obtained from the free-space interaction by simple multip
cation with a factor of 0.785. Thus, the scaled potential ha
well depth which is 21.5% smaller from the well depth of th
free-space potential. This number was obtained as a sim
arithmetic mean of the well depth reductions found for a
sorption on planar graphite26 and in interstitial channels o
SWCNT’s.28 The assumed reduction of the well depth
quite close to the numerical estimate in Ref. 28~24%!. The
exact value of the scaling factor used should not be taken
seriously because the substrate-induced contributions to
potential cannot be modeled by a simple scaling of the fr
space potential.25 The scaled potential was introduced simp
to examine the effects of the details of interaction poten
on the thermodynamics of adsorbed gas. Additionally, to
tain the effective potential in one dimension, the 3D poten
should be averaged over the 2D cross sections of the ad
bate probability density.26,29However, since the cross sectio
of the lowest band states is rather small, and in light of
uncertainties of the substrate-mediated forces, such a pr
dure has not been performed.

SAPT1 potential supports one weakly bound state in o
dimension, representing a4He dimer with an energy ofe0
520.16meV. This state, being so weakly bound, is e
tremely extended in a relative coordinate.30,31 The-bound
state energy in one dimension is significantly smaller th
the one obtained by Siddon and Schick in a 2D treatmen21

which is in accord with the existing literature.30 The scaled
SAPT1 potential does not support bound states. The
phase shifts and their derivatives with respect to the rela
wave vector were calculated by numerically solving t
Schrödinger equation using an algorithm quite similar to t
one described in Ref. 32.

In Fig. 3, the calculated values of a second virial coe
cient are presented. The full line corresponds to calculati
6-4
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with the He-He potential suggested in Ref. 18~SAPT1!,
while the dashed line corresponds to calculations using
scaled SAPT1 potential. The behavior of the second vi
coefficient with temperature is qualitatively similar to th
one obtained for4He adsorbates on graphite~2D problem! in
Ref. 21. There is, however, one important difference. T
ideal gas term,B2

0, reflecting the purely quantum effect o
gas statistics, decays with temperature asA1/T in one dimen-
sion, and as 1/T in two dimension.21 Thus, the approach of a
second virial coefficient to its classical value as the tempe
ture increases is slower in one than in two dimensions. In
inset of Fig. 3 the derivatives of the phase shifts,dh(k)/dk,
are plotted as a function of relative wave vectork. Note that
the phase-shift derivatives become negative and nearly
stant for large relative energies~wave vectors!. This is a
consequence of a strongly repulsive potential at short
tances~hard core!. Note also that the phase shifts of the tw
potentials are very different for small wave vectors, and th
one could expect that the two potentials produce quite dif
ent thermodynamical quantities. However, the very differ
behavior of the phase shifts is a consequence of the fact
the SAPT1 potential supports a weakly bound state whe
the scaled SAPT1 potential does not. Thus, in the evalua
of Eq. ~18! one has to properly account for the bound st
which exists in the case of the SAPT1 potential. This ‘‘extr
term for the SAPT1 potential makes the thermodynam
quantities derived from the two potentials quite similar,
though the derivatives of the phase shifts are very differe
This fact has been discussed for the interacting gas in
dimensions33,34 in connection with Levinson’s theorem,24,35

which relates the phase shift at zero momentum to the n
ber of bound states. It was found33 that a proper account o
both the continuum and bound states eliminates disconti
ties in thermodynamic properties whenever an extra bo
state appears with the small change of the parameter

FIG. 3. Second virial coefficient for 1D4He gas as a function o
temperature. Full line: Quantum calculation with the SAPT1 pot
tial. Dashed line: Quantum calculation with the scaled SAPT1
tential ~see text!. Inset: Phase-shift derivatives,dh(k)/dk, corre-
sponding to the SAPT1 potential~full line! and the scaled SAPT1
potential~dashed line!.
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interaction potential. In the present calculation a similar
fect is found in one dimension.

IV. SPECIFIC HEAT OF ADSORBED 4He GAS

The specific heat of interacting quantum gas can be
culated from the set of virial coefficients.22,23 I assume that
the dominant contribution to the specific heat comes from
second virial coefficient. Thus, the results are applicable
restricted range of adsorbate concentrations and temp
tures. The range of validity of this approximation can
estimated from a calculation of higher virial coefficient
which is a difficult task, or from direct comparison with ex
periments, as has been done for4He adsorbates on graphit
in Refs. 21 and 36. Experiments dealing primarily with t
specific heat of adsorbates in carbon nanotube materials
not been reported yet and those which detected the signa
of the adsorbed gas in the overall specific heat of the sam
were focused on the specific heat of clean nanot
materials.19,20

The isosteric specific heat is given as21

C

NkB
5

1

2
2nb2

d2B2

db2
. ~19!

The second term in Eq.~19! can be calculated from Eq.~18!
as

nb2
d2B2

db2
5nlA2F 1

16
1

S01I 0

4
1b~S11I 1!2b2~S21I 2!G ,

~20!

where

Sn5(
b

eb
n exp~2beb!, ~21!

I n5
1

p S \2

2m D nE
0

`

k2n
dh~k!

dk
expS 2

\2k2b

2m Ddk. ~22!

The expression for the term in Eq.~20! representing a devia
tion of the specific heat from its ideal value~where the in-
teradsorbate interactions are neglected! is different from the
corresponding expression one would obtain in a 2D tre
ment. The 2D expression21 does not contain a term propo
tional to l and independent of the interadsorbate interact
potential@1/16 in Eq.~20!#. The reason for this is that in two
dimensions, the noninteracting value ofB2 , B2

(0) is propor-
tional to b @B2

(0)52l2/4#,21 and therefore, its second de
rivative with respect tob vanishes. In the 1D case,B2

(0)

}Ab @see Eq.~16!# andd2B2
(0)/db2}b23/2. This fact alone

suggests that the specific heats of a dilute, interacting bo
gas in one and two dimension may be qualitatively differe

In Fig. 4 I plot the quantity2b2d2B2 /db2. The full
~dashed! line represents the calculation with the SAPT
~scaled SAPT1! potential. Obviously, both potentials produc
similar deviations. The calculation with the scaled SAP
potential yields somewhat smaller effects of interactions
the specific heat, which is plausible since the scaled SAP

-
-

6-5
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potential is weaker than the SAPT1 potential. An importa
observation is that the deviation of specific heat from
ideal value isnegativefor a 1D boson gas, i.e., the inclusio
of interactions reduces the specific heat of the adsorbed
gas. For a 2D spinless boson gas considered in Ref. 21
deviation was found to bepositive. The observed difference
between 1D and 2D results is a consequence of both
nonvanishing second derivative of the ideal term@B2

(0)(b)#
with respect tob, and nonexistence of azimuthal degrees
freedom in the 1D treatment of the problem.

Finally, in Fig. 5, I plot the specific heat of the interactin
4He gas adsorbed in grooves of SWCNT bundles for th
different linear densities. The full~dashed! lines represent the
calculation with the SAPT1~scaled SAPT1! potential. Obvi-
ously, for denser gas, the specific heat is more strongly
fluenced by the interactions, and deviates more from
ideal ~noninteracting! 1D value~compare with Fig. 6 of Ref.

FIG. 4. Deviation of the specific heat per unit linear dens
(2b2d2B2 /db2) from its ideal value, Eq.~19!. Full line: Calcula-
tion with the SAPT1 potential. Dashed line: Calculation with t
scaled SAPT1 potential.

FIG. 5. Specific heat of4He gas adsorbed in the grooves
SWCNT bundles for three different linear densities~0.033 1/Å, 0.1
1/Å, and 0.2 1/Å!. Full line: Calculation with the SAPT1 potentia
Dashed line: Calculation with the scaled SAPT1 potential.
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9!. It can also be inferred from Fig. 5 that the description
thermodynamics of the adsorbed gas in terms of the sec
virial coefficient only breaks down at very low temperatur
where such an approach yields negative specific heat. T
temperatures can be considered as the lower limits for
application of the present approach. For higher densities,
lower-temperature limits obviously increase, in agreem
with Eq. ~19!, and the presented virial expansion approa
breaks down at higher temperatures. Note that the upper
perature for which the specific heat was calculated is 6
Above that temperature the higher bands start to contrib
to the specific heat as discussed in Sec. II and Ref. 9.
though the number of particles in higher bands is very sm
at 6 K ~see Fig. 1!, the derivative of internal energy with
respect to temperature~specific heat! is very sensitive even
to very small occupations of the higher bands and this cau
the increase of the specific heat observed for a very di
gas.

It is now of interest to compare the obtained results w
those of exactly solvable 1D many-particle models. In p
ticular, for the gas of bosons in one dimension interacting
a repulsived-function potential, Lieb and Liniger have dem
onstrated that the energy spectrum of such a gas is iden
to the spectrum of a noninteracting Fermi gas.15,16The same
was found in the model of Girardeau17 for 1D bosons inter-
acting with the binary hard-core potentials of finite radiu
The Fermi energyEF of the corresponding 1D Fermi gas
given as

EF5
\2kF

2

2m
5

\2p2

2m
n2, ~23!

wherekF5pN/L5pn is the Fermi wave vector. This map
ping ~interacting Bose gas vs noninteracting Fermi gas! al-
lows us to easily predict the specific heat of the impenetra
1D Bose gas. Thus, at temperatures much smaller than
Fermi temperature,TF5EF /kB ,

CV~T!TF!}T, ~24!

while at temperatures much larger than the Fermi temp
ture, the specific heat reduces to its classical equiparti
value

CV~T@TF!

NkB
→ 1

2
. ~25!

The linear temperature dependence of the specific heat@Eq.
~24!# can be also interpreted as a signature of lon
wavelength compression waves of the 1D Bose gas~sound!,
and is thus also expected in a gas of 1D bosons interac
with more complex forces. This is a collective effect and
obviously outside of the scope of the second-order virial
pansion, treating only the two-body collisions. On the oth
hand, the classical equipartition value of specific heat@Eq.
~25!# is obtained also by the present approach at high te
peratures@Eq. ~19! and Fig. 4#. The temperature separatin
the two characteristic behaviors in Eqs.~24! and ~25! is
roughly given by the Fermi temperature of the equivale
noninteracting Fermi gas, which is proportional to the squ
6-6
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of linear density@Eq. ~23!#. Thus, for denser Bose gases, t
interval of temperatures in which the specific heat is sign
cantly smaller than one-half is larger. This is again in agr
ment with the results presented in Fig. 5.

V. THE EFFECT OF THE CORRUGATION OF CARBON
NANOTUBES AND SAMPLE INHOMOGENEITIES

The results presented in this paper are based on an id
ized representation of the SWCNT materials. In particula
is assumed that SWCNT bundles are infinitely long, straig
and smooth, which is certainly not the case in real materi
and the bundles wiggle on large length scales. The discr
ness of the nanotube results in the corrugation of the po
tial experienced by adsorbates, which is not accounted fo
the present approach. The influence of the corrugation of
potential confining the He atom to the interstitial channel
the bundle composed of~10,10! carbon nanotubes was stu
ied in Ref. 11. A model potential was used which enabled
easy examination of effects induced by the potential deta
A substantial effect of the corrugation on the density of sta
of a single He atom was predicted. In particular, for t
lowest band of states, a mass enhancement factor of 2.37
calculated. Another study6 predicted a mass enhanceme
factor of 1.3. The large difference between these factors
dicted by the two studies can be attributed to the larger se
ration of the tubes~by 0.1 Å! adopted in Ref. 6 with respec
to Ref. 11. For comparison, the mass enhancement facto
4He adsorbed on graphite was found to be only 1.06.26 For
an interstitial channel surrounded by three~17,0! nanotubes,
the authors of Ref. 6 found that a change in the intertu
separation by 0.1 Å changes the effective mass of4He by a
factor of 2.

It is quite remarkable that a small change in the intertu
separation results in a very large change of the band struc
of adsorbates. A similar sensitivity of the adsorbate bou
states on the interaction potential was found in Ref. 9 for
groove adsorption. The details of the interaction potential
‘‘magnified’’ in the spatially restricted regions of the inters
tial channel and the groove, and the band structure of ad
bates is much more affected by the potential details w
compared with the adsorption on planar graphite. Thus
order to assess the effect of the corrugation on the calc
tions presented in this paper, one would need to know
intertube separation distance to a precision better tha
least 0.05 Å. Note that the groove region is at the surfac
the bundle where the relaxation effects can be expected
the separation between the tubes surrounding the gro
needs not to be the same as the separation between th
tubes in the interior of the bundle. Additionally, one wou
have to know the He single tube potential with great ac
racy. Even then, the calculation of the corrugation of
potential would require knowledge of the alignment of t
two tubes surrounding the groove. It is very likely that th
arrangement is not the same for all the grooves on the bu
surface. Furthermore, if the two tubes surrounding a gro
are not of the same symmetry, the corrugations of the
tubes are not necessarily commensurate and the total p
16542
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tial for the groove adsorption cannot be written as a Fou
series.

All the mentioned complications are not present for t
adsorption on planar graphite. In that case, a fairly relia
potential can be constructed36 and written as a 2D Fourie
series. However, even the inclusion of periodic corrugat
in the formalism of quantum virial expansion is not straigh
forward. The basic reason for this is that the two-bo
Schrödinger equation in the textured potential background
longer separates into the two equations describing the mo
of the center of mass and the relative motion. For the ads
tion of He on graphite, Guo and Bruch29 devised a perturba
tion treatment in which the two-body cluster integral is wr
ten as an expansion in powers of the Fourier amplitudes
the atom-substrate potential. They also presented the re
for the second virial coefficient in which the corrugation e
fects were treated up to second order of the perturba
series. Another study dealing with the problem37 started from
the tight-binding Hamiltonian and He atoms localized
particular adsorption sites. A series of approximations a
simplifications was needed to obtain the formula for the s
ond virial coefficient which is amenable to evaluation.

It is clear from the discussion in this section that a relia
calculation of the second virial coefficient with the effects
the corrugation included is not possible at present, ma
because the relevant potential is not known with suffici
precision. Additionally, aperiodic corrugation has not be
treated in the literature in this context. However, a sim
estimate of the corrugation effects is possible if we repres
the adsorbate as a particle with the effective mass. Suc
representation of the corrugation effects is adequate for
citations with small velocity, i.e., for the states locat
around the center of the 1D Brillouin zone. The mass
hancement for the groove adsorption can be expected t
somewhere between 1.06~planar graphite! and 2.37~intersti-
tial channel!. The quantity2b2d2B2 /db2 was calculated
using Eqs.~20!–~22!, the scaled SAPT1 potential, and th
effective He mass equal toM* 51.3MHe55.2 amu. At T
51 K ~5 K!, its value was found to be21.69 Å ~20.52 Å!.
This should be compared with the values obtained in Fig
In particular, atT51 K ~5 K! the values obtained using th
free mass of4He are21.92 Å ~20.77 Å!. Thus, the reflec-
tion of the corrugation effects on the specific heat can
significant, but the overall trends, at least in the model
renormalized mass, are the same. For strongly corrug
potentials, it may be more sensible to use the bandwidth
the characterization of the effects of corrugation rather th
the curvature of dispersion curves at small wave vectors38

The influence of other bundles on the atoms adsorbed
groove of a particular bundle is neglected. This approxim
tion obviously breaks down if two bundles touch each oth
At these points, the adsorbates move in a potential v
much influenced by both bundles in question, which may
significantly different from the potential of a single, infinitel
long and straight bundle I used in the calculations. For
adsorption of4He on graphite,27,39 it was argued40 that the
presence of long-range inhomogeneities in the graphite m
act as a trap and induce the Bose-Einstein condensatio
6-7
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the adsorbed gas. The same experiments were later expla
in terms of the virial expansion approach21 by assuming a
perfect graphite substrate. Nevertheless, a possible sub
tial influence of the sample inhomogeneities on the therm
dynamics of the adsorbed gas cannot bea priori ruled out.
This is expected to be more important at low temperatu
where the adsorbate thermal wavelength is large and
long-range order of the sample may influence the adsor
gas thermodynamics. It is hoped that the low-tempera
measurements of the specific heat may provide answer
these questions.

VI. SUMMARY AND CONCLUSION

4He gas adsorbed in the grooves of single-wall carb
nanotube bundles has been treated as an interacting Bos
in one dimension. It was found that this approximati
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