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Generalization of the coupled dipole method to periodic structures
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We present a generalization of the coupled dipole method to the scattering of light by arbitrary periodic
structures. This formulation of the coupled dipole method relies on the same direct-space discretization scheme
that is widely used to study the scattering of light by finite objects. Therefore, all the knowledge acquired
previously for finite systems can be transposed to the study of periodic structures.
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[. INTRODUCTION because this term is automatically taken into account in the
dynamic polarizabilitya;(w) (see, for instance, Ref).8The
In its original form, the coupled dipole methd€€DM) dynamic polarizability accounts for radiation reaction as
was developed for the study, in free space, of the scatteringell.>® The self-consistent fielf(r; ,w) is found by solving
of light by an object with finite dimensiorls> The method the symmetric linear system formed by writing Ed) for
was subsequently extended to deal with objects near &=1, ... N. The total field at positiom is computed as
substratd* or inside a multilayer systemThe principle of
the method is always the same: the object is represented byE I, ) =Ey(r, )

cubic array ofN polarizable subunits, each with a size small N
enough compared to the spatial variations of the electromag- n PR _ _ _
netic field for the dipole approximation to apply. If the CDM ,Zl [S(r.rj @)+ F(rr 0)]ej(@)B(r,©). (2)

could be extended to deal with local scatterers near periodic ) )

structures, the CDM could then also be used, for example, t¢his conventional form of the CDM is well adapted to deal
study light scattering by objects near surface gratings or byvith localized objects. If, instead of a single object, one
defects or cavities in photonic crystals. The first step towardvants to study a periodic structure created by the repetition

such an extension is to develop a form of the CDM capabl&@f the object over a lattice located above the substrate, Eq.
of describing periodic structures efficiently. In this paper, we(l) becomes

present a generalization of the CDM to arbitrary periodic N "
structures. E(r,0)=Eo(rj,w)+ >, > [S(r,j+mu+nv,e)
j=1 mn=-=
Il. SELF-CONSISTENT FIELD FOR A PERIODIC +F(r, ,r—j+ mu-+ nv,w)]a]-(w)
STRUCTURE
XE(Tj+mu+nv,o). 3

We consider a plane substrate occupying the region
=<0. For a single object on the substrate, the self-consistenthe vectoray andv are the basis vectors of the latti¢feig.
field at theith subunit at locatiom; is given by 1). The indexi runs over all the subunits of the structure.

is the position of subunit The sum ovey is restricted to the

N N subunits of a single object with positian inside the ob-
E(ri,0)=Eo(rj, )+ Zl [S(ri.rj,o) ject. The number of subunits is now infinite, and therefore so
= is the size of the linear system to be solved. One solution
+F(ri,rj,0)]aj(0)E(r), o), (1) would be to truncate the infinite sum and solve the system

for a large but finite number of objects, but this is impractical
whereEy(r; ,) is the(initial) field atr; in the absence of the because the sums over the lattice converge very slowly. This
scattering object. Note that none of the subunits lies in thgroblem can be circumvented by using a plane-wave decom-
planez=0. The tensor§ andS are the field susceptibilities position of the incident field. In the case of plane-wave
(linear responsesassociated with the free sp4cand the (propagating or evanescefitumination, the field above the-
substraté. Note that the diagonal term of the free-space sussurface can be written &sve note bykg the projection of
ceptibility F(r;,r;,w)is excluded from the sum in Eq1l)  vectork, on a plane parallel to the surfgce
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ko -
%0 ‘Z K= X [S(f,j+mu+nv,e)+F,Tj+mu+nv,o)]

mn=—x

X exg ko - (mu+nv)]

=f drumziw o(ry—mu—nv)exp(ikg-ry)

X[S(pij =1,z 2, 0) +F(pij—1|,2,Z; ,0)]. (6)

We define the two-dimensional Fourier transform as
nf-[b(rH)]=fder(rH)exp(—ir||-hH), and its inverse as
fﬁl[B(hH)]:[1/(277)2]fdh“B(hH)EXDGI’H-h”). Using the
Parseval-Plancherel theorem, E6) becomes

FIG. 1. Example of a periodic structure created by the repetitio
of an object over a lattice parallel to a substrate.

Eo(ri+mu+nv,w)=Ey(r;,0)exdike- (mu+nv)], (4)

1 "
wherek, is the wave vector in free space. Because of the K= (277)2] dh”Mm’z_w S(hy—mu’—nv’ +ko)
periodicity of the system and the translational invariance of

the field susceptibilities, the self-consistent field satisfies the X HAS(pij =12 ,Zj,0) +F(pj—r),2,Z,0)], (7)
same relation as the incident fidleq. (4)], and at any sub-

unit Eq. (3) can be written as where
N - U’ =2m(v X—v,9)/(uwy—ovyUy)
E(r,0)=Eqo(rj,0)+ > | 2 [S(rjfj+mu+tnv,0)  and
J=1 \mn=-»

V' =2m(—u K+ ug)/ (Uwy—vyuy)
+F(ri,rj+mu+nv,)] . , ,
are the basis vectors of the reciprocal lattice, avd
. o =(27‘r)2/(uxvy—vxuy). X andy are the basis vectors of the
Xexiko- (mu+nv)]|aj(w)E(r], o). () coordinate system. Using the angular spectrum representa-
tionsW andG of tensorsS andF, Eq. (7) become$’
The self-consistent field on the right-hand side of E5).is

independent of f,,n) and can be taken out of the infinite i - _

sum. Hence, the sum over subunits in E8). only involves K=5_M > exdi(mu’ +nv' +Kg) - py]

. . . . . m,n=—oo

j=1,... N, that is, the number of subunits in a unit cell,

which we choose to be the cell for which=n=0. More- XAW(mu'+nv’ +kg ,Ko)exd iwg(zi+2)]
over, because of the translational symmetry of the self- ) ) )

consistent field, we only need to firi#lin one cell. Once the +G(mu’ +nv' +kop ko) exdiwo|zi—z[1},  (8)

self-consistent field is found in the central cell, the field inWit
any other cell is obtained by multiplying by the appropriate

phase factor. Thus we only have to solve a linear system of k5— k3 kky K
the same size as the one describing a single object. The ma- Wo B Wo VX
jor issue in solving Eq(5) is to compute efficiently the in- 9 12
finite, slowly convergent sums without performing a trunca- Gk k)= | — keky ko—ky vk (9)
tion of the sums. This is possible owing to the translational I»%0 Wo Wo N
invariance of the field susceptibilities in a plane parallel to K2
the surface. The dependence aop,(;,w) can be written as —vke  —ky Bl
(pij 2,2, 0) with p;=(r;—T;)|. Hence, the infinite sums Wo
of Eq. (5) become and
|
Kiwod, KIkGAs kK,
- (WoApt+kgAs)  klp
kf kfwg — wokf
Wik ko) = | 5 an Liea ) kWolp _kikols kyA (10
I»Fo/= Wo 0 - yRp |
wokf P kK kw
Akt
—keAp —kyA, - W_O“
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where y=sgn(z —z;), kj=mu’+nv’ +kg=k,x+k,y, and 5.2
Wy is the component along of the wave vectoik,, i.e.,
wo=(kj—kZ—kJ)Y2 A, and A are the Fresnel reflection ‘
coefficients for the substrate. Sums involving different sus- 50 -4
ceptibility tensorgfree space or surfagevill have a differ- )
ent behavior, due to the different arguments of the exponen-
tial terms @ +z and |z—zl). They will be computed
separately. Y Vs

For the surface term, the convergence of the sum is en- 5 -
sured by the exponential term. Asandn increase, the mag- al 5
nitude of k| increases and the nature of the plane wave 46 t i
changes from propagating to evanescent. Becase;
never vanishes, and because the subunits are never exactly WS
on the surface, this exponential term is always present and 0
ensures the rapid convergence of the sum. Hence, the peri-
odic field susceptibility associated to the surface is computed
in the reciprocal space.

For the free-space part, the argument of the exponential £ 2. Intensity of the electric field above a dielectric substrate
term is|z—z;| and the rapid convergence of the sums is notin the direction of thex axis with a 2D grating of parallelepipeds.
as trivial. We use the method introduced to derive the Greemhe inset shows the geometry used. The solid line is for an isolated
function of a two-dimensional2D) square grating” We parallelepiped. The other curves are obtained for the 2D grating
consider two cases. The first case pertains to the interactiomith a=100 nm (dotted ling, a=200 nm (dot dashed ling a
between elements from different “layers” of the lattice, and =1000 nm(dashed ling
corresponds to the casg+#z;. This case is similar to the
surface case where the rapid convergence of the sum is en-

/,
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o
7

44 : ! :
-200 -100 0 100 200
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sured by the exponential term. Accordingly, this sum is also €s+1(Sn) =€s-1(Sh+1)+ — (12
. : es(Sn+1) —es(Sy)
computed in the reciprocal space.
In the second casg=z; and the exponential term disap- for s=1, ... n—1 with

pears making the convergence of the sum in the reciprocal
space slow. Therefore, another strategy is needed to compute
this term efficiently. We cast the free-space part of the infi-
nite sum in two different forms. Led(r|,z —z;) be the sum
expressed in direct spagehe F terms in Eq.(6)], and let ~1ne néw sequence formed by the even-order tezppeS,)
A(kj,z—2) be the sum in reciprocal spafthe G terms in conxerges towardS faster than the original sumS

Eqg. (8)]. Note that these two sums represented the sam@ Zi-1ai - ) ]

quantity (sum of free-space termexpressed in two forms, ~ Because we are dealing with double suimeerm andn),

one in direct space and the other in reciprocal space. B§N€ way to evaluate the double sums would be to apply
combining these two forms we can improve the convergencguccessively Shanks’ accelerator to the infrlerand outer

of the sum in the case=z;. Whenz=z;, we write the (m) sums(as suggested in Ref. L2The problem with this

€(Sn) =Sy, and ey(S,)= (13

1
€0(Sh+1) —€o(Sp)

sum as approach is that in our case, the convergence of the inner
sum (overn) can be very slow for high values of (outer
a(r),0=A(k;,h)+[a(r,00—a(r;,h)], (1) sum. A better solution consists in defining one element
the Shanks series as the sum owver=—I,I for n=
whereh is an offset parameter. We emphasize thék ,h) —1,...landn=—1,l form=—1+1,...)—1. This strat-

anda(r,h) represent the same sum expressed in reciprocalgy gets rid of the inner/outer sum problem and results in a

and direct space, respectively. The auxiliary sum in the refaster convergence and an easier implementation of the

ciprocal spac¢A(k;,h)] can be computed efficiently owing Shanks’ algorithm.

to the presence of an exponentially decreasing term. The Note that there is another way of computing efficiently

difference of direct-space sumr|,0)—a(r|,h) goes as the free-space term. As we did earlier, when we introduced a

1/rﬁ and can also be computed efficiently. With Effl) we  parameteh, it is possible to split the infinite sunFj terms

can ensure a rapid convergence of the sums in a discretizan Eq. (6) in two parts; one in the direct space and one in the

tion plane despite the absence of an exponentially decreasimgciprocal space, where these two sums converge quickly

term in the original sum. owing to a damping functiof®''* The convergence is the
To improve further on the convergence of the submsth  best whenh= V7l(uxy—vyuy). Poppeet al. introduced

the sums in direct space and reciprocal space for the fielghis method to study the optical response of an atomic mono-

susceptibility of free space and the surfacge use Shanks’ layer; the period of the structure was therefore very small

transformatiort! The principle is the following: consider the compared to the wavelength.

sumS=3"_,a;. Let us define the partial sug,=={",a; Once the periodic susceptibility tensors are known, we

and a new sequen@, 1(S,) such that solve the linear system of E¢5) to find the self-consistent
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TABLE I. Computation time in seconds for the coefficients of important influence on the computation time, therefore we
the linear systerfiEq. (6)] used to solve E((5). N is the number of  have chosen the optimal value loffor each case. As a ref-
subunits. CDM is the time for the classical CDM for one parallel- erence, we use the conventional CDM to compute the field
epiped. CDM is the time for the periodic CDM when the free- for a single parallelepipeﬁ_
space contribution is computed with E§), and CDM, is the time Table | shows three computation times: CDM is the time
for the periodic CDM when the free-space contribution is computedfor the classical CDM for one parallelepiped. CRN& the
with Ref. 13. The infinite sums of the series are stopped when théime for the periodic CDM when the free-space contribution

relative error is less than 16 (10°°). is computed with Eq(8), and CDM, is the time for the

periodic CDM when the free-space contribution is computed
N 32 256 500 1372 with Ref. 13. CDM is faster than CDM for small periods.

CDM 2 18 39 137 Fora=1 um, the computation times are similar. For larger

periods, CDM fails to converge to the reference result be-

a= CDM; 03(2 4(17) 10(34  43(116 cause the method of Ref. 13 used to compute the free-space

100nm CDM 0.2(0.4 27(55 7(13 29 (54 term does not work well for larga. We note that the com-
a= COM, 072 12(30) 30(75  119(300 putation time increases with. This is mainly due to the

surface term. The convergence of the series depends on the
200nm _CDM 04 (1) 79 18 (40 72(158 term expiwg(z+z)]. In our case the moduli of the vectors of
a= CDM; 5.7(16) 96(281) 246(684 949 (4020 the reciprocal basis arpi’|=|v’'|=2n/a. Hence whena

1 um CDM, 5.6(16) 96(276) 233(674 900 (2460 decreases, the modulus of the vector basis increagelse-
comes imaginary for smaller values ah(n), and the expo-
nential term produces a stronger damping. Obviously, when
field at each site. Once the field at all subunits is known, theéN increases, the computation time increases due to the in-
scattered field at any positian above, below, or inside the creased number of subunits involved. But there is another
periodic structures is readily computed through Exj.with  effect of the surface term. As the size of the subunit becomes
the exchange«—r;. Notice that the new linear system is no smaller (N increaseg there are more subunits close to the
longer symmetric. This is due to the fact that the elements ogubstrate with a small value af+z; and a slower exponen-

the system depend on the incident plane wave via the expdial decay. When we compare the classical CDM to the peri-
nential term in Eq(5). odic CDM, we see that foa smaller than 200 nm the com-

putation time of the periodic CDM is shorter. When the size
Il EXAMPLE: SCATTERING BY A PERIODIC of the period becomes larger than the wavelength used, the

STRUCTURE LYING ON A SUBSTRATE convergence becomes slower.

To illustrate the method we consider the case of a dielec- IV. CONCLUSION
tric substratgthe relative permittivity is 2.2bon which lies
a 2D grating of parallelepipeds with the same permit'[ivity.m
The structure is illuminated in TM polarization from the sub-
strate side by total internal reflection at an angle of incidenc
0=45°; then

In conclusion we have generalized the coupled dipole
ethod (CDM) to periodic structures. We have discussed
explicitly the case of a three-dimensional structure, periodic
fh two directions, placed on a substrate. However, the prin-
ciple of the approach described here applies to a broad range
2m of configurations with one-, two-, or three-dimensional struc-
3om 9V2-25:0)- tures. The main advantage of this formulation is that it relies
on the same straightforward, direct-space discretization

The wavelength in vacuum i5=632.8 nm, and the basis scheme that is used for a single localized object. Therefore,
vectors of the latticei=(a,0), v=(0,a). The parallelepipeds all the knowledge acquired previously in CDM modeling of
have a square base of 4@0 nnf, and a height of 20 nm finite systems can be transposed to the study of periodic
(see inset in Fig. 2 In Fig. 2, we present the intensity of the structures® Optical anisotropy, for instance, can be included
electric field, normalized to the incident field, along tke Dby taking the appropriate permittivity tensor. Also, as shown
axis, 60 nm above the dielectric substrate for different valueghere, the symmetry of the periodic lattice can be arbitrary.
of a. The curves are obtained fof=256, hence the size of Here, we have considered the case of plane-wave illumina-
the subunit is %5x5 nn? (but convergence is already tion. In the case of arbitrary illumination, each spectral com-
achieved forN=232). Notice that the solid line is for an ponent of the incident field must be treated individually. An
isolated parallelepiped on the substrate, i.e., the electric fielthteresting extension of the present work would be to merge
is computed with the conventional CDfWhena is small,  the periodic CDM and the conventional CDM into a single
the computed curves for the electric field are notably differ-approach to light scattering. This would be particularly use-
ent from the single object case. This denotes a strong codul in dealing with localized defects in periodic structures or
pling between parallelepipeds. Conversely, for laegéa  the interaction between a near-field protmeicroscope tip,
=1000 nm), the curve is very similar to the curve for anfluorescing particlge. . .) and a periodic system. The periodic
isolated parallelepiped. generalization of the coupled dipole method can also be used

Table | presents the computation time for the coefficientgo draw a better physical picture of the local-field corrections
of the linear systeniEq. (6)] used to solve Eq(5), for dif-  that appear during the multiple scattering of light by a dis-
ferent values oN, and three values @t The factorh has an  crete set of scatterets.

Ko =
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