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Generalization of the coupled dipole method to periodic structures
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We present a generalization of the coupled dipole method to the scattering of light by arbitrary periodic
structures. This formulation of the coupled dipole method relies on the same direct-space discretization scheme
that is widely used to study the scattering of light by finite objects. Therefore, all the knowledge acquired
previously for finite systems can be transposed to the study of periodic structures.
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I. INTRODUCTION

In its original form, the coupled dipole method~CDM!
was developed for the study, in free space, of the scatte
of light by an object with finite dimensions.1,2 The method
was subsequently extended to deal with objects nea
substrate3,4 or inside a multilayer system.5 The principle of
the method is always the same: the object is represented
cubic array ofN polarizable subunits, each with a size sm
enough compared to the spatial variations of the electrom
netic field for the dipole approximation to apply. If the CDM
could be extended to deal with local scatterers near peri
structures, the CDM could then also be used, for example
study light scattering by objects near surface gratings or
defects or cavities in photonic crystals. The first step tow
such an extension is to develop a form of the CDM capa
of describing periodic structures efficiently. In this paper,
present a generalization of the CDM to arbitrary perio
structures.

II. SELF-CONSISTENT FIELD FOR A PERIODIC
STRUCTURE

We consider a plane substrate occupying the regioz
<0. For a single object on the substrate, the self-consis
field at thei th subunit at locationr i is given by

E~r i ,v!5E0~r i ,v!1(
j 51

N

@S~r i ,r j ,v!

1F~r i ,r j ,v!#a j~v!E~r j ,v!, ~1!

whereE0(r i ,v) is the~initial! field atr i in the absence of the
scattering object. Note that none of the subunits lies in
planez50. The tensorsF andS are the field susceptibilities
~linear responses! associated with the free space6 and the
substrate.7 Note that the diagonal term of the free-space s
ceptibility F(r i ,r i ,v)is excluded from the sum in Eq.~1!
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because this term is automatically taken into account in
dynamic polarizabilitya i(v) ~see, for instance, Ref. 8!. The
dynamic polarizability accounts for radiation reaction
well.2,9 The self-consistent fieldE(r i ,v) is found by solving
the symmetric linear system formed by writing Eq.~1! for
i 51, . . . ,N. The total field at positionr is computed as

E~r ,v!5E0~r ,v!

1(
j 51

N

@S~r ,r j ,v!1F~r ,r j ,v!#a j~v!E~r j ,v!. ~2!

This conventional form of the CDM is well adapted to de
with localized objects. If, instead of a single object, o
wants to study a periodic structure created by the repeti
of the object over a lattice located above the substrate,
~1! becomes

E~r i ,v!5E0~r i ,v!1(
j 51

N

(
m,n52`

`

@S~r i , r̄ j1mu1nv,v!

1F~r i , r̄ j1mu1nv,v!#a j~v!

3E~ r̄ j1mu1nv,v!. ~3!

The vectorsu andv are the basis vectors of the lattice~Fig.
1!. The indexi runs over all the subunits of the structure.r i
is the position of subuniti. The sum overj is restricted to the
N subunits of a single object with positionr̄ j inside the ob-
ject. The number of subunits is now infinite, and therefore
is the size of the linear system to be solved. One solut
would be to truncate the infinite sum and solve the syst
for a large but finite number of objects, but this is impractic
because the sums over the lattice converge very slowly. T
problem can be circumvented by using a plane-wave dec
position of the incident field. In the case of plane-wa
~propagating or evanescent! illumination, the field above the-
surface can be written as~we note byk0i the projection of
vectork0 on a plane parallel to the surface!
©2003 The American Physical Society04-1
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E0~ r̄ i1mu1nv,v!5E0~ r̄ i ,v!exp@ ik0i•~mu1nv!#, ~4!

wherek0 is the wave vector in free space. Because of
periodicity of the system and the translational invariance
the field susceptibilities, the self-consistent field satisfies
same relation as the incident field@Eq. ~4!#, and at any sub-
unit Eq. ~3! can be written as

E~r i ,v!5E0~r i ,v!1(
j 51

N S (
m,n52`

`

@S~r i , r̄ j1mu1nv,v!

1F~r i , r̄ j1mu1nv,v!#

3exp@ ik0i•~mu1nv!# Da j~v!E~ r̄ j ,v!. ~5!

The self-consistent field on the right-hand side of Eq.~5! is
independent of (m,n) and can be taken out of the infinit
sum. Hence, the sum over subunits in Eq.~5! only involves
j 51, . . . ,N, that is, the number of subunits in a unit ce
which we choose to be the cell for whichm5n50. More-
over, because of the translational symmetry of the s
consistent field, we only need to findE in one cell. Once the
self-consistent field is found in the central cell, the field
any other cell is obtained by multiplying by the appropria
phase factor. Thus we only have to solve a linear system
the same size as the one describing a single object. The
jor issue in solving Eq.~5! is to compute efficiently the in-
finite, slowly convergent sums without performing a trunc
tion of the sums. This is possible owing to the translatio
invariance of the field susceptibilities in a plane parallel
the surface. The dependence on (r̄ i , r̄ j ,v) can be written as
(ri j ,zi ,zj ,v) with ri j 5( r̄ i2 r̄ j ) i . Hence, the infinite sums
of Eq. ~5! become

FIG. 1. Example of a periodic structure created by the repeti
of an object over a lattice parallel to a substrate.
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K5 (
m,n52`

`

@S~ r̄ i , r̄ j1mu1nv,v!1F~ r̄ i , r̄ j1mu1nv,v!#

3exp@ ik0i•~mu1nv!#

5E dr i (
m,n52`

`

d~r i2mu2nv!exp~ ik0i•r i!

3@S~ri j 2r i ,zi ,zj ,v!1F~ri j 2r i ,zi ,zj ,v!#. ~6!

We define the two-dimensional Fourier transform
F@b(r i)#5*dr ib(r i)exp(2ir i•hi), and its inverse as
F 21@B(hi)#5@1/(2p)2#*dhiB(hi)exp(ir i•hi). Using the
Parseval-Plancherel theorem, Eq.~6! becomes

K5
1

~2p!2E dhiM (
m,n52`

`

d~hi2mu82nv81k0i!

3F@S~ri j 2r i ,zi ,zj ,v!1F~ri j 2r i ,zi ,zj ,v!#, ~7!

where

u852p~vyx̂2vxŷ!/~uxvy2vxuy!

and

v852p~2uyx̂1uxŷ!/~uxvy2vxuy!

are the basis vectors of the reciprocal lattice, andM
5(2p)2/(uxvy2vxuy). x̂ and ŷ are the basis vectors of th
coordinate system. Using the angular spectrum represe
tions W andG of tensorsS andF, Eq. ~7! becomes6,7

K5
i

2p
M (

m,n52`

`

exp@ i ~mu81nv81k0i!•ri j #

3$W~mu81nv81k0i ,k0!exp@ iw0~zi1zj !#

1G~mu81nv81k0i ,k0!exp@ iw0uzi2zj u#%, ~8!

with

G~ki ,k0!5S k0
22kx

2

w0
2

kxky

w0
2gkx

2
kxky

w0

k0
22ky

2

w0

2gky

2gkx 2gky
ki

2

w0

D , ~9!

and

n

W~ki ,k0!5S kx
2w0Dp

ki
2

2
ky

2k0
2Ds

ki
2w0

kxky

w0ki
2 ~w0

2Dp1k0
2Ds! kxDp

kxky

w0ki
2 ~w0

2Dp1k0
2Ds!

ky
2w0Dp

ki
2

2
kx

2k0
2Ds

ki
2w0

kyDp

2kxDp 2kyDp 2
Dpki

2

w0

D , ~10!
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whereg5sgn(zi2zj ), ki5mu81nv81k0i5kxx̂1kyŷ, and
w0 is the component alongz of the wave vectork0, i.e.,
w05(k0

22kx
22ky

2)1/2. Dp and Ds are the Fresnel reflectio
coefficients for the substrate. Sums involving different s
ceptibility tensors~free space or surface! will have a differ-
ent behavior, due to the different arguments of the expon
tial terms (zi1zj and uzi2zj u). They will be computed
separately.

For the surface term, the convergence of the sum is
sured by the exponential term. Asm andn increase, the mag
nitude of ki increases and the nature of the plane wa
changes from propagating to evanescent. Becausezi1zj
never vanishes, and because the subunits are never ex
on the surface, this exponential term is always present
ensures the rapid convergence of the sum. Hence, the
odic field susceptibility associated to the surface is compu
in the reciprocal space.

For the free-space part, the argument of the exponen
term isuzi2zj u and the rapid convergence of the sums is
as trivial. We use the method introduced to derive the Gr
function of a two-dimensional~2D! square grating.10 We
consider two cases. The first case pertains to the interac
between elements from different ‘‘layers’’ of the lattice, an
corresponds to the caseziÞzj . This case is similar to the
surface case where the rapid convergence of the sum is
sured by the exponential term. Accordingly, this sum is a
computed in the reciprocal space.

In the second casezi5zj and the exponential term disap
pears making the convergence of the sum in the recipr
space slow. Therefore, another strategy is needed to com
this term efficiently. We cast the free-space part of the in
nite sum in two different forms. Leta(r i ,zi2zj ) be the sum
expressed in direct space@the F terms in Eq.~6!#, and let
A(ki ,zi2zj ) be the sum in reciprocal space@the G terms in
Eq. ~8!#. Note that these two sums represented the sa
quantity ~sum of free-space terms! expressed in two forms
one in direct space and the other in reciprocal space.
combining these two forms we can improve the converge
of the sum in the casezi5zj . When zi5zj , we write the
sum as

a~r i,0!5A~ki ,h!1@a~r i,0!2a~r i ,h!#, ~11!

whereh is an offset parameter. We emphasize thatA(ki ,h)
anda(r i ,h) represent the same sum expressed in recipr
and direct space, respectively. The auxiliary sum in the
ciprocal space@A(ki ,h)# can be computed efficiently owin
to the presence of an exponentially decreasing term.
difference of direct-space sumsa(r i,0)2a(r i ,h) goes as
1/r i

2 and can also be computed efficiently. With Eq.~11! we
can ensure a rapid convergence of the sums in a discre
tion plane despite the absence of an exponentially decrea
term in the original sum.

To improve further on the convergence of the sums~both
the sums in direct space and reciprocal space for the
susceptibility of free space and the surface!, we use Shanks
transformation.11 The principle is the following: consider th
sum S5( i 51

` ai . Let us define the partial sumSn5( i 51
n ai

and a new sequencees11(Sn) such that
16540
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es11~Sn!5es21~Sn11!1
1

es~Sn11!2es~Sn!
~12!

for s51, . . . ,n21 with

e0~Sn!5Sn , and e1~Sn!5
1

e0~Sn11!2e0~Sn!
. ~13!

The new sequence formed by the even-order termse2p(Sn)
converges towardS faster than the original sumS
5( i 51

` ai .
Because we are dealing with double sums~overm andn),

one way to evaluate the double sums would be to ap
successively Shanks’ accelerator to the inner~n! and outer
~m! sums~as suggested in Ref. 12!. The problem with this
approach is that in our case, the convergence of the in
sum ~over n) can be very slow for high values ofm ~outer
sum!. A better solution consists in defining one elementl of
the Shanks series as the sum overm52 l ,l for n5
2 l , . . . ,l andn52 l ,l for m52 l 11, . . . ,l 21. This strat-
egy gets rid of the inner/outer sum problem and results i
faster convergence and an easier implementation of
Shanks’ algorithm.

Note that there is another way of computing efficien
the free-space term. As we did earlier, when we introduce
parameterh, it is possible to split the infinite sum (F) terms
in Eq. ~6! in two parts; one in the direct space and one in
reciprocal space, where these two sums converge qui
owing to a damping function.13,14 The convergence is the
best whenh5Ap/(uxvy2vxuy). Poppe et al. introduced
this method to study the optical response of an atomic mo
layer; the period of the structure was therefore very sm
compared to the wavelength.

Once the periodic susceptibility tensors are known,
solve the linear system of Eq.~5! to find the self-consisten

FIG. 2. Intensity of the electric field above a dielectric substr
in the direction of thex axis with a 2D grating of parallelepipeds
The inset shows the geometry used. The solid line is for an isola
parallelepiped. The other curves are obtained for the 2D gra
with a5100 nm ~dotted line!, a5200 nm ~dot dashed line!, a
51000 nm~dashed line!.
4-3
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field at each site. Once the field at all subunits is known,
scattered field at any positionr , above, below, or inside the
periodic structures is readily computed through Eq.~5! with
the exchanger↔r i . Notice that the new linear system is n
longer symmetric. This is due to the fact that the element
the system depend on the incident plane wave via the e
nential term in Eq.~5!.

III. EXAMPLE: SCATTERING BY A PERIODIC
STRUCTURE LYING ON A SUBSTRATE

To illustrate the method we consider the case of a die
tric substrate~the relative permittivity is 2.25! on which lies
a 2D grating of parallelepipeds with the same permittivi
The structure is illuminated in TM polarization from the su
strate side by total internal reflection at an angle of incide
u545°; then

k0i5S 2p

l
sinuA2.25,0D .

The wavelength in vacuum isl5632.8 nm, and the basi
vectors of the latticeu5(a,0), v5(0,a). The parallelepipeds
have a square base of 40340 nm2, and a height of 20 nm
~see inset in Fig. 2!. In Fig. 2, we present the intensity of th
electric field, normalized to the incident field, along thex
axis, 60 nm above the dielectric substrate for different va
of a. The curves are obtained forN5256, hence the size o
the subunit is 53535 nm3 ~but convergence is alread
achieved forN532). Notice that the solid line is for an
isolated parallelepiped on the substrate, i.e., the electric
is computed with the conventional CDM.4 Whena is small,
the computed curves for the electric field are notably diff
ent from the single object case. This denotes a strong c
pling between parallelepipeds. Conversely, for largea (a
51000 nm), the curve is very similar to the curve for
isolated parallelepiped.

Table I presents the computation time for the coefficie
of the linear system@Eq. ~6!# used to solve Eq.~5!, for dif-
ferent values ofN, and three values ofa. The factorh has an

TABLE I. Computation time in seconds for the coefficients
the linear system@Eq. ~6!# used to solve Eq.~5!. N is the number of
subunits. CDM is the time for the classical CDM for one parall
epiped. CDM1 is the time for the periodic CDM when the free
space contribution is computed with Eq.~8!, and CDM2 is the time
for the periodic CDM when the free-space contribution is compu
with Ref. 13. The infinite sums of the series are stopped when
relative error is less than 1023 (1026).

N 32 256 500 1372

CDM 2 18 39 137

a5 CDM1 0.3 ~2! 4 ~17! 10 ~34! 43 ~116!
100 nm CDM2 0.2 ~0.4! 2.7 ~5.5! 7 ~13! 29 ~54!

a5 CDM1 0.7 ~2! 12 ~30! 30 ~75! 119 ~300!
200 nm CDM2 0.4 ~1! 7 ~16! 18 ~40! 72 ~158!

a5 CDM1 5.7 ~16! 96 ~281! 246 ~684! 949 ~4020!
1 mm CDM2 5.6 ~16! 96 ~276! 233 ~674! 900 ~2460!
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important influence on the computation time, therefore
have chosen the optimal value ofh for each case. As a ref
erence, we use the conventional CDM to compute the fi
for a single parallelepiped.15

Table I shows three computation times: CDM is the tim
for the classical CDM for one parallelepiped. CDM1 is the
time for the periodic CDM when the free-space contributi
is computed with Eq.~8!, and CDM2 is the time for the
periodic CDM when the free-space contribution is compu
with Ref. 13. CDM2 is faster than CDM1 for small periods.
For a51 mm, the computation times are similar. For larg
periods, CDM2 fails to converge to the reference result b
cause the method of Ref. 13 used to compute the free-s
term does not work well for largea. We note that the com-
putation time increases witha. This is mainly due to the
surface term. The convergence of the series depends on
term exp@iw0(zi1zj)#. In our case the moduli of the vectors o
the reciprocal basis areuu8u5uv8u52p/a. Hence whena
decreases, the modulus of the vector basis increases,w0 be-
comes imaginary for smaller values of (m,n), and the expo-
nential term produces a stronger damping. Obviously, w
N increases, the computation time increases due to the
creased number of subunits involved. But there is anot
effect of the surface term. As the size of the subunit becom
smaller (N increases!, there are more subunits close to th
substrate with a small value ofzi1zj and a slower exponen
tial decay. When we compare the classical CDM to the p
odic CDM, we see that fora smaller than 200 nm the com
putation time of the periodic CDM is shorter. When the si
of the period becomes larger than the wavelength used,
convergence becomes slower.

IV. CONCLUSION

In conclusion we have generalized the coupled dip
method ~CDM! to periodic structures. We have discuss
explicitly the case of a three-dimensional structure, perio
in two directions, placed on a substrate. However, the p
ciple of the approach described here applies to a broad ra
of configurations with one-, two-, or three-dimensional stru
tures. The main advantage of this formulation is that it rel
on the same straightforward, direct-space discretiza
scheme that is used for a single localized object. Theref
all the knowledge acquired previously in CDM modeling
finite systems can be transposed to the study of perio
structures.16 Optical anisotropy, for instance, can be includ
by taking the appropriate permittivity tensor. Also, as sho
here, the symmetry of the periodic lattice can be arbitra
Here, we have considered the case of plane-wave illum
tion. In the case of arbitrary illumination, each spectral co
ponent of the incident field must be treated individually. A
interesting extension of the present work would be to me
the periodic CDM and the conventional CDM into a sing
approach to light scattering. This would be particularly us
ful in dealing with localized defects in periodic structures
the interaction between a near-field probe~microscope tip,
fluorescing particle, . . . ! and a periodic system. The period
generalization of the coupled dipole method can also be u
to draw a better physical picture of the local-field correctio
that appear during the multiple scattering of light by a d
crete set of scatterers.17
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