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Quantum-limited measurement and information in mesoscopic detectors
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We formulate general conditions necessary for a linear-response detector to reach the quantum limit of
measurement efficiency, where the measurement-induced dephasing rate takes its minimum possible value.
These conditions are applicable to both noninteracting and interacting systems. We assess the status of these
requirements in an arbitrary noninteracting scattering-based detector, identifying the symmetries of the scat-
tering matrix needed to reach the quantum limit. We show that these conditions are necessary to prevent the
existence of information in the detector that is not extracted in the measurement process.
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[. INTRODUCTION ally considered in mesoscopic systems. For example, we find
that time-reversal symmetry is not necessary for reaching the
Issues of quantum measurement in mesoscopic systengglantum limit. We also find that, surprisingly, an adiabatic
have recently garnered considerable interest, both because pgint-contact system remains a quantum-limited detector
their relevance to attempts at quantum computatiand even for voltages large enough that several channels contrib-
quantum-limited amplifier$.A general consequence of any ute to transport and that the energy dependence of scattering
quantum measurement is that it must induce decoherence i important; previous studi&s'® have only shown that the
the system variable conjugate to that being measured. Thiguantum limit is achieved in the small voltage regime. Our
basic fact naturally leads to the issue of measurement effiesults for the mesoscopic scattering detector are comple-
ciency: what conditions must a particular detector satisfy sgnentary to those obtained in Ref. 6.
that it induces theabsolute minimunamount of dephasing
required by quantum mechanics? This minimum dephasing Il. GENERAL CONDITIONS
rate is identical to the measurement rétg.,, the rate at
which information is extracted during the measurement pro-
cess; thus, the measurement efficiency ratiol is defined We start by considering a generic system consisting of a
by x=T'meadl',, WhereT, is the measurement-induced qubit (i.e. a two-level system described as a spjrcoupled
dephasing rate. Besides being of great conceptual intere¢ty an arbitrary detector. The system Hamiltonian Hs
near-ideal measurement schemes are necessary to detect sigH qupirt Hdetecto Hint,»  Where  Hgpie= — 1Q0,, Hiy
natures of coherent qubit oscillations in the output noise of &= Ac,Q, and we leave 4o orunspecifiedQ is the detector
detector* and are essential if one wishes to construct ainput” operator that couples to the qubit, whil& charac-
guantum-limited amplifiefi.e., an amplifier whose noise en- terizes the strength of the qubit-detector coupling. Mixing
ergy is the minimum allowed by quantum mechanfcs effects, where the detector causes transitions in the qubit, are
While the question of measurement efficiency has receivedeglected by takind Hn,Hqunil =0; such effects always
attention in the context of general measurement theidris ~ cause a deviation from the quantum limit. We work in the
only recently that it has been considered in the context ofveak-coupling regimeA—0), and can thus use the linear-
solid-state detectors. Averias considered the status of the response theory to describe the output of detector. Tdking
guantum limit in a number of solid-state detectors, whilebe the detector observable that is measured, the “out-
recently Pilgram and Btiker® considered the quantum limit put” operato), one has to lowest order i,
for a system in which a mesoscopic conductor acts as a de- R
tector. (I(t))z(l(t))poJrA)\(aZ(t))pQ, (1)
In this paper, we formulate general conditions that are . o
needed for an arbitrary detector in the linear-response regiméhere the zero-frequency linear-response coefficieott
to reach the quantum limit of detection, wheye=1. These forward gain”) \ is given by
general conditions are valid for both interacting and nonin- .
teracting systems, and can be given a direct physical inter- )‘E__If dr([1(7),Q(0)]) 2
pretation. We also discuss the quantum limit in terms of a fi Jo Po
simple concept from quantum information theory, the acces-
sible information. To make these considerations more con- *
crete, we apply them to a mesoscopic scattering detector :#mfo d7(1(7)Q(0)),. 3
similar to that considered in Ref. 6, identifying precise con-
ditions and symmetries needed to reach the quantum limitiere,p, is the initial density matrix of the detector apg is
We find that the required symmetries are most easily undetthe initial density matrix of the qubit. We have assumed that
stood if one considers the scattering detector in terms othe qubit splitting frequenc§) is much smaller than the rate
information; these symmetries are not the same as those usiltat characterizes the detector, which allows us to approxi-

A. Model and derivation of the quantum limit
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mate the detector’s response to the qubit as instantaneoys(m(t)|1) and p(m(t)|])] be statistically distinguishable.
Alternatively, one can restrict attention to the case where thdssuming Gaussian distributions, distinguishability is de-
qubit is in ac, eigenstate, and thysr,(t)) is time indepen-  fined as
dent. The operators on the right-hand sid@HS) in the
above equation evolve in the Heisenberg picture generated (m(t));—(m(t)),= \/E[O'T(t)-i-a'l(t)], (8)
by Ho= H qubit™ H detector . C

Next, we connect the detector noise in the output operatof/hereo denotes the variance of the distribution and e
| and input operato® to, respectively, the measurement ratefactor_s mclu_ded in order to make the final upper bound on
T'meas@nd the dephasing raté, . Defining the fluctuating X Unity. Using Eq. (1) for (I(t)), and letting 7ieas

part of an operatoA as "A=A—(A>po, the required zero- =1/Tmeas the condition becomes

frequency noise correlators are given hy, 1
. 2AN 7'measzz\/i (ESII ) Tmeas 9

szzf “at(T(1)T(0)), = 4mh S, P6(E ~EnTyl2,
! —w (HOTC )>p° i ; OB~ EnTil which directly yields the expression in E) for I'\eas
(43 Note that we have taken;=o | in the last step; this is
. sufficient to obtain the leading-order-k-expression for
A = r
=2 dt(Q(t 0 =47h P:S(E,—E <12, meas . '
S f_m (QUQ(0)), =4 |2f 1 0B = )| Qurl To relatel’, and T ,es We first note that the right-hand
(4b)  sides of Egs.(4a—(4c) implicitly define an inner product
.. (i.e., interpret the matrix elemenf;;} and{Q;;} as defining
SIQZZJ’ dt(T(t)Q(O)) vectors. The Schwartz inequality then immediately yields
Po

— o

S|SQ2|S|Q|2:ﬁ2(7\_)\,)2+(ReS|Q)2, (10)

=4t 2, PiS(E—E)(Tin)(Qu). (4c)  where we have introduced the reciprocal response coefficient
L (or “backwards gain) \':
Here, we use the short ha@j; =(i|O|f), whereli), |f) are
eigenstates o yeiectorWith energiest; ,E;. The probability
P; is defined agi|poli); we assume that, is diagonal in the
basis of eigenstates. Taking the detector noise to be Gauss- ) ]
ian, the standard expressions for the dephasinglatand ~ * would describe the response @(t)) to a perturbation

2 © .
)\,E%ImJ‘O dT<Q(T)|(O)>pO. (11

measurement raté, ,care given by that couples to the operatdr Note that as\n and A\’ are
defined in terms of commutators, we may substitLite]
I _Aj I _A27\2 () and Q—Q in their definitions. General stability consider-
w_ﬁsz' meas— g - ations lead to the condition\'<0. Using Egs(5), we thus
have
We briefly review the origin of Eq9(5). The dephasing
rate describes the measurement-induced decay of the off- I eas 72N2 h2\?
diagonal elements of the qubit density matrix. It can be de- = <1. (12

= <

T S 20y _y 2 2
rived by looking at the decay at long times of the phase e %5 AN+ (ReSg)
correlatorV(t) = (o, (t)o_(0)), whereo, (o_) isthe spin  The best one can do is measure the qubit as quickly as one

raising (lowering) operator: dephases it! Note that this derivation only requires the va-
lidity of linear-response and the weak-coupling approxima-
V()= exp —i ftdt’(Q+2AQ(t’)/ﬁ) tions which.giye rise to E_q$5); very little is speci_fie_d of the
0 detector. Similar derivations of the quantum limit are pre-

o2 sented in Refs. 3 and 5.

5 - t vt~ The inequality in Eq.(12) is in many ways intuitively

=€ ImEXp( 72 fodtlfodb(Q(h)Q(tz))) ) reasonable. Both dephasing and measurement involve entan-
gling the state of the qubit with states in the detector. In
principle, there may be degrees of freedom in the detector
which become entangled with the qubithout providing
Here,ﬁ=Q+2A<Q>pO/h. any detectable information in a measurement(of, any

The measurement rate describes how long the measurgych.entanglement would Ieadlfg>l“meqs'l\'/lore precisely,
ment must be on before the signal associated with the twgnaglne_th_at when the meas.urement is initially turned on, the
qubit states can be distinguished from the noisd.ifThe System is in a product state:
quantity of interest is the time integral of the detector output,
m(t)=fgdt’l(t’). One needs that the distributions moft) |y(t=0))=
corresponding to the two different qubit statése.,

*)e—if)te—lﬂwt_ (7)

1

2(|T>+|l>)®|D>, (13

il
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where |D) is the initial state of the detector, and), ||) N\’ implies that this additional coupling will not contribute to
denote qubiir, eigenstates. At some later timethe state of (Q(t)), and thus cannot further dephase the qibit Eq.

the system may be written as (6)].
On a technical level, Eq16) follows from the optimiza-
1 tion of the Schwartz inequality and the requirement that

lg(t))y=—=(I1)2|D;())+|1)®|D (1))). (14  ReSo=0 [i.e. conditions(i) and(ii) above. The vanishing
V2 of N’ [Eq. (17)] can be interpreted in terms of causality. To

__see this, we first introduce the frequency-dependent cross-
To say that we have measured the state of the system impliggrelators, o(E):

that the statefD(t)) and|D (t)) are distinguishable; to say
that the qubit has been dephased only implies that the detec- © EUh
tor stategD(t)) and|D (t)) are orthogonal. While distin- S,Q(E)=2f_wdt<l(t)Q(O)>pOe
guishability implies orthogonality, the opposite is not true;
thus, in generall’ > T',cas Note that, in this formulation, ~ =
the dephasing rate will be related to the overlap between the :4”ﬁi%i Pio(E+E—EnifQyi. (18)
two detector states: '
We may use this to write

[(D1(1)|D ()= ", (15 1
AMA) =52 | +(2)IM[S(0)]
B. Necessary conditions for reaching the quantum limit
We have thus seen that on a heuristic level, reaching the 3 ip ” dERe[S|Q(E)] (19
qguantum limit requires that the detector have no “extrane- ) E '

ous” degrees of freedom which couple to the qubit. Equiva- _ _ _
lently, all information on the state of the qubit residing in the If A" =0, it follows from the above that &=0, the imagi-

detector should be accessible in the measuremefiyofrhe  nary part ofSo(E) coincides with the Hilbert transform of

virtue of the derivation presented in the preceding section ighe real part ofSo(E):

that these statements can be given a precise meaning. One

sees that three conditions are necessary to reach the quantum 1 (= ,Re[So(E")]

limit: (i) the Schwartz inequality in Eq10) must be opti- Im[Sio(E)] T ;Pf_de T E_E

mized, (i) the cross-correlator R§q must vanish, andiii) E=0 E:(OZO)

the backwards gaim’ must vanish. Condition§) and (ii)

can be succinctly reexpressed as a single condition, leading this held for all E, it would follow from the Titchmarsh

to the following necessary and sufficient requirements: theorem3 thatS,Q(t)z(T(t)Q(O))po is causal: it would van-
_ _ ish for t<0. This would clearly be sufficient to satisfy Eq.

{V i,f|Pi#0Ei=E}, (f[I]i)=iC(f[Qli), (16)  (17). More generally, the vanishing of only requires the

weaker zero-frequency causality condition in E20).

2 © .
N= %Imfo dr(Q(7)l (O)>pO:0' 17) C. The quantum limit and information theory

We close this section by formalizing the connection be-
Here,C is a real number that is independent of the detectotween the quantum limit and information. A deviation from
eigenstatedi) and|f).'? Equations(16) and(17) are central the quantum limit(i.e., y<1) implies the existence in the
results of this paper. The first of these equations expressetetector of “missing information” regarding the state of the
the fact that to reach the quantum limit, there must be a closgubit, information that is not revealed in the measurement of
similarity between the detector's input and output{l). The dephasing rate thus corresponds to what the mea-
operators—as far as the zero-frequency noise correlators aseirement rate would hiéwe could make use of all the avail-
concernedthe operators | and Q must be proportional to able information. This notion can be quantified by borrowing
one another This required similarity between the detector a concept from quantum information theory, the accessible
input and output is a formal expression of the intuitive ideainformation**~1"To define this, note first that if we choose a
that a quantum-limited detector has no “extraneous” internalspecific detector quantitgor set of quantitiesY to measure
degrees of freedom. The second condition, Ej), ex-  (described by, e.g., a set of commuting observaples can
presses the fact that a quantum-limited detector must havethink of our system as a noisy classical communication chan-
strong intrinsic directionality that discriminates between thenel. The two possible inputs to the channel are the qubit
input and output. The output operator is influenced by behavstates| ) and||); interaction with the detector for a tinte
ior at the input, but not vice versa. This requirement is conthen leads to two corresponding detector stgiegt)) and
sistent with our tacit assumption that the quanity can be  |D (t)) [c.f. Eq. (14)].*8 Finally, the outputs from the chan-
measured without problems. To measurene needs to in- nel are the outcomes of the measuremenY.ofhe “noise”
troduce a coupling in the Hamiltonian tpthe vanishing of  here is a result of the intrinsic uncertaintiesYoiin the states
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|D(t)) and|D(t)); the output will thus be described by the
conditional probability distributionsp(y|T) and p(y|l),
which are determined by these states, why:reeprefents
possible outcomes of the measurement. Lettipgy)
=[p(y|T)+p(y|l)]/2, the mutual informationR of this

channel i&° v

_ 1 ;
RIYI=HIp(y)]- 5 (HIp(y[ ]+ HIp(YIDD, (21 T -

whereH[p(y)] is the Shannon information entropy associ- Qubit

ated with the distribution:
P FIG. 1. Schematic diagram of the mesoscopic scattering detec-

tor, in which the current through a phase coherent scattering region
HLp(y)]1=—2 p(y)In[p(y)]. (22 is used to detect the qubi denotes the charge in the scattering
Yi region, whilel g (1) is the current in the righfleft) contact.

Note that we have chosen to equally weight our two inputs to
the channel. Assuming that this choice is optimal, Shannon’dhus, there is no “missing” information in the detector. We
noisy channel coding theorem implies tiRitY] is the maxi- ~ can also think of Eqg24) and(25) as providing an alternate
mum rate at which messages can be reliably transmittetbute for deriving the quantum-limit inequality ;=T eas
down the channel by modulating the state of the qubit and.e.,
making measurements of° Alternatively, R[Y] may be
considered as being related to a generalized measurement RIY]=Tmead <Z=T",t. (26)

rate describing the chosen measureménkor example, it The yiility of thinking about back-action effects and the
the distributionsp(y(t)|1) and p(y(t)||) are Gaussian, one g antym limit in terms of information will become clear in
finds that at small time€.e., before the two distributions are ¢ following section, where we discuss the mesoscopic scat-
well separated tering detector. Note also that the relation between informa-
tion and state disturbance has been studied in a slightly dif-
1 ({y); = {y)))? gnty

15
R[Y] Gaussia™ g (0,0 (23)  ferent context by Fuchet al.

This corresponds to our definition of the measurement rate, Ill. MESOSCOPIC SCATTERING DETECTOR
cf. Egs.(8) and(9). We thus have a new way to interpret the
measurement ratE.,s given that one is monitoringl ), To make the preceding discussion more concrete, we now
I' neasrepresents the maximum rate at which information carconsider the status of the quantum limit in a slightly less
be sent to the detector by modulating the qubit. general detector setup, the mesoscopic scattering detector
The quantum-mechanical accessible informafida now  considered in Ref. 6. We determine the conditions needed to
defined by maximizing the mutual informati®j Y] over all  reach the quantum limit of detection by directly applying the
possible measurement schemésRemarkably, for the case general conditions derived in the preceding section, namely
considered heréwhere the detector is described by a purethe proportionality condition in Eq(16) and the causality
state, it can be calculated exactly;a simplified proof is condition in Eq.(17). This is in contrast to Ref. 6, which
presented in Appendix A, where we also demonstrate thaleveloped conditions needed for the quantum limit by di-
there are several possible optimal measurement schemesctly calculatingl’, andI e, We explicitly show that the
Letting [(D+(t)|D (t))|*=cos(a(t)), we have violation of Eqg.(16) implies the existence of unused infor-
L mation in the detector, information that is not extracted in the
a B . : measurement process.
1= r?f}‘)R_ E{[1+sma(t)]ln[1+sma(t)] The detector here is a two terminal scattering redsee
Fig. 1) characterized by a scattering matsx Taking the
+[1-sina(t)]In[1-sina(t)]}. (24 contact to both the right and left reservoirs to h&Vpropa-
ating transverse modes, will have dimension K. The
utput operator of the detectbis simply the current through
the region; the state of the qubit alt€its by modulating the
potential in the scattering region. Note that while we focus
on the limit of a weak coupling between the qubit and detec-
T=a(t)?=Tt (25) tor, so that the linear-response approach of the preceding
ol o . :
section is valid, we do not assume that the voltage is small
As expected, the growth of the accessible information is deenough that! )« V.?° The mesoscopic scattering detector de-
termined by the dephasing rate. Achievipg 1 thus implies  scribes the setup used in two recent “which path”
that the rate that we actually obtain informatidh,e,s CO-  experiment$:?? These experiments used a quantum point
incides with the growth of the total accessible information.contact to detect the presence of an extra electron in a nearby

This expression corresponds to having equally weighted oug
two input states, as we did in EQR1); one can check that
this choice maximizeg. At small times (" ,t<1), compari-
son against Eq15) yields a(t)—0, and we have
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guantum dot. As the dot was imbedded in an Aharanov- e fu d
Bohm ring, the dephasing induced by the measurement could A=— wl, ds$[tr sir(e)sir(e)]
be studied directly.
We start by considering the simplest situation, also con-
sidered in Ref. 6, where the state of the qubit provides a h
uniform potential change in the scattering region. In this "“R
case, the input operat@ is thetotal charge in the scattering where theT; are the transmission eigenvalues of the system.
region. Unlike Ref. 6, we do not explicitly consider the without loss of generality, we have assumed that our detec-
effects of screening here. Within the random-phase approxkor is biased such that the chemical potential of the left res-
mation, consideration of such effects allows an explicit cal-ervoir is greater than that of the right reservoir; — ug
culation of the qubit-detector coupling strengthbut does  =g|V/|; we also consider the limit of zero temperature.
not result in any other changes over a noninteracting ap-
proach. In the weak-coupling regime, the particular value of A. Single-channel case
A does not affect the approach to the quantum limit.
Letting azn(E) represent the creation operator for an in-
cident wave in contactr=L,R, transverse moda, and at
energyE, the detector current operator for contacttakes

, : (32)
J

Given these definitions, we can now turn to E($) and
(17) and ask what is required of the scattering magin
order to reach the quantum limit. We first focus on the case

23 N=1, where there is a single propagating mode in both con-
the form; ) 2 .
tacts. The scattering matriis thus 2<2, and may be writ-
o ten as
= dEJ dE, i Co
hJ St Str JRe?# JTe*
N S(B)={ sr. srr|~ JTee —Rdlere =A |

X ag,(E)A E,E")a,(E’
52 e, LB E) A ym( @B E ) aym(EN)] =3
(277  where R=1-T. At zero temperature, the detector is de-
scribed by a single many-body statg in which all incident
Agn (@ E.EN)=85.8058mm=A[Sas(E)]'Suy(E') b am- states in leadr with E<u, . occupied and all other inci-
(2g)  dent states are unoccupied:
i — t t
A positive current corresponds to a current incident on the |I>_[HELSMLaL(EL)][HERS/"RaR(ER)]|Vac>' (34)
scattering region; note that throughout this section, we ne- _. id h i dition i
glect electron spin for simplicity. The total char@ein the First, we consider the causality condition in Ed7)
scattering region may be defined in terms of the total currenf/hich requires that the backwards gain vanishes. As we

incident on the scattering region—in the Heisenberg pICtureknow the initial state of the detector and have explicit ex-
3:Q(t)=1,(t)+1x(t) . One obtains pressions foil andQ, we can directly evaluate the function

Sio(E) appearing in Eq(18) in terms ofs. A direct calcula-
tion can be performed to show that

— ' T ' ’
Q—ef dEf dE ﬁ’;L’R [aﬁn(E)NBn,ym(E,E Ja,m(E")], jw dERe[S'Q(E)] :J‘ac dERe[F(E)] -
(29) e E - E

P 1], c S(E+%w)—s(E) 20 Im[So(0)]=Im[F(0)], (36)

(E.E+ w)_2_7ri s'(E) hw - (30 where, lettingt=sg, ,the functionF(E) is defined as:

In the limit wherew— 0, M(E,E+% ) reduces to the well- F(E)= —ie—2 MLdE’t*(E’) t(E'+E)—t(E")

known Wigner-Smith delay-time matrix 27 J g E '

(37)

Note that Eqs(35) and(36) are independent of whetheiis
taken to bd | , Ik, or a linear combination of the two. Now,
causality dictates that the scattering magrig analytic in the
Finally, the assumption that the qubit couples to the totalipper half complex plane, and thus so is the funcigi).
charge in the scattering region is equivalent to assuming thathe real and imaginary parts &fare thus related by a Hil-
the potential it creates is smooth in the WKB sense. We cabert transform, and Eq$20), (35), and(36) imply that A’

use the fact that the sensitivity of the scattering magri@ a =0 for the scattering detectarespective of the choice of s
global change of potential in the scattering region is the sam&hus, the causality properties of the scattering magren-

as its sensitivity to energy. Thus, the linear-response coeffisure that one of the conditions necessary for reaching the
cient\ has the form guantum limit is always satisfied. Note that substituting these

d
ME)=5— ST(E) qesB)|- (31)
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expressions foiS;o(E) in Eqg. (19) does indeed yield the phase difference. Equation (39) thus constrains
expected form of [Eq. (32)]. It is also useful to note that information—it ensures that the detector does not extract ad-
gauge invariance can be used to directly esta#lish=0 .  ditional information about the qubit that resides in the rela-
The essence of the argument is that a coupling to the curretite phase between transmission and reflection. Such infor-
[i.e., Hiyw=Ado,l(x=0)] is equivalent to introducing a local mation is clearly not revealed in the measuremenri pf and
vector potential. The gauge transformation that removes thiwould necessarily lead to additional dephasing over and
term will only modify the transmission phases in the scatterabove the measurement rate. In principle, this additional in-
ing matrixs (i.e., ¢ and¢’) in an energy-independent man- formation could be extracted by performing an interference
ner. Using Eq(29), one can check thdQ) is independent of experiment. To be more specific, note that the cross cor-

energy-independent phase changes; thus0. relatorSq [c.f. Eq.(40)] is given by
Next, we turn to the condition given in E§16), which )
. . . . ~ ~ . . e” [ mL d
requires a certain proportionality betweleandQ in order to Sio=ifiN+ _f dE’ ( T1-T)==(8—¢)|. (4)
reach the quantum limit. Given the stéitg that describes the T J pR dE

detector[Eqg. (34)], the only matrix elements of and Q
which contribute to the zero frequency noise correlafofs
Egs. (4)], involve energy-conserving transitions where a
scattering state incident from the left reservoir is destroyed

By definition, the imaginary part of this correlator deter-
mines the linear-response coefficienfcf. Eq. (3)] associ-
ated with measuringl). In contrast, thereal part of this

i . o : J="correlator may be interpreted as the linear-response coeffi-
while a scattering state incident from the right reservoir is ient associated with a measurement where one interferes

created. Since these transitions require an occupied initiar flected and transmitted electrons; the factorTétL—T)

state and an unoccupied final state, they can only occur in th((?orresponds to the fact that the magnitude of this signal will

energy intervalupr<E<pu, . \Q/e are thus interested in the o 1 ohortional to the amplitude of both the reflected and

coefficients of the operatorag(E)a, (E) appearing in the angmitted beams. More explicitly, consider the Hermitian

expansion of andQ in this energy interval. The proportion- operatorl .4, defined by

ality requirement of Eq(16) thus results in a necessary con- moer

dition ons(e): efr .

|mod:g dE[iag(E)ArL(L;E,E)a (E)+H.c].
VEe[ur,puils [SrI* (E)SLL(E)=iCNRU(E), (39 #R

where(C is a real, energy-independent constant. Using Eq

(33), the imaginary and real parts of the above condition
become

(42

If one were to now measurg,.q, the corresponding linear
response coefficienk o4 is precisely the real part 0§ q
[this can be seen by comparing E¢82) and(27)]. The fact
d that additional information on the state of the qubit is avail-
V Eelpur,pls d—E[,B(E)— ¢(E)]=0, (390  able in the expectatiofl ,,,¢ implies that the qubit is entan-
gling with the detector faster than the measurement rate as-
dT sociated with(l). This remains true even if one does not
—(E) explicitly extract this information, as was demonstrated re-
dE _ A 40  cently in the experiment of Sprinzait. al??
T(E)[1-T(E)] c (40 Stepping back, we see that the general conditior5ge
=0 [i.e., the required factor of on the RHS of Eq(16)]

Similar conditions for reaching the quantum limit for this haeded to reach the quantum limit directly corresponds to the

version of the scattering detector were first developed in Refrequirement of no missing information discussed in the pre-
6 by directly calculatingl’ neasandI', [note that there is a

. ) ) ceding section. In general, a nonvanishing Sxg implies
sign error in Eq.(7) of Ref. 6 which must be corrected to

. g - e that additional information about the qubit’s state could be
obtain our Eq(39)].” The fulfilling of these conditions does pained by simultaneously measuring another quantity in
not correspond to symmetries usually considered in mesosyyqition tol (e.g., in our case, the quantity,g)
copic systems; for example, as we will show, the presence of "\ ote that in the scattering detector, the symmetry required

time-reversal symmetry is not a necessary requirement. Mo ensure that Eq39) holds (i.e., that the
. ) ¢ L., phaseg8 and ¢
stead, the conditions of Eqe39) and (40) correspond di-  4icidg is not one that is usually considered in mesoscopic

rectly to the requirement that there be no missing informagy giemg In particulathe presence of time-reversal symme-
tion in the detector, information that is not revealed in the

q hi licitlv in wh try is not necessary to fulfilling the condition of Eq. (39)
frgﬁgvsvlérement off). We demonstrate this explicitly in what yine reversal symmetry only implies that= ¢', and speci-

fies nothing on the relation betweenand 8. However, as
pointed out in Ref. 6, aufficientcondition for achieving Eq.
(39 is that one has parity symmetry, that i®th time-

The first condition[Eq. (39)] for reaching the quantum reversal symmetry and left-right inversion symmethe lat-
limit requires that the difference between transmission ander condition implies that the two reflection phasessiare
reflection phases in the scattering matrix be constant in thiglentica).?® Note that this is not a necessary condition. We
energy interval defined by the voltage. If this condition see that the required symmetry here is best understood as
holds, changing the state of the qubit will not modulate thisbeing related to information.

1. Phase condition
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2. Transmission condition How can the problems generally posed by energy averag-
ing be avoided? One possible solution would be to use volt-

have the scattering detector reach the quantum limit, a cor?9eS small enough that the scattering matrigan be ap-
dition that constrains the energy dependence of the transmigf0ximated as being linear in energy, that&¥(dT/dE)
sion probability T. This condition arises from the require- <1 (this is the approach of Ref)6However, as the linear-
ment that the proportionality betwe¢randQ needed for the Fésponse coefficient is given by the energy derivative of
quantum limit must hold over the entire energy interval de-the transmissioricf. Eq. (32)], such a small voltage would
fined by the voltage. In general, energy averaging causes g'Ply both a small signal and essentially no gain. The
departure from the quantum limit—over sufficiently large in- change in current induced by the quidit, = = A\, would be
tervals, the operators and Q look less and less like one much smaller than the current associated with the coupling
another. Like Eq(39), Eq. (40) can also be interpreted as a VoltageA:

We now turn to the second conditipig. (40)] needed to

requirement of no missing information. Here, the require- 24T o2

ment is that energy averaging does not result in the loss of N = _(_e|\/|) <—, (46)
information about the qubit that is encoded in the energy h\dE h

dependence of. While such information is not obtained in 5

the measurement dfl) [which involves energy averaging, T endt d_TeV> (i) é<é (47)
cf. Eq.(32)], it could be obtained if one measured the entire meas i dE eV/h h’

function <|(;/)> for .O$.|V|.$f'“L_“.R' As d|scu§iseq, tlhe Even though this smallness bfdoes not theoretically affect
presence of any missing information necessarily implies e approach to the quantum limit, it does severely limit the

de?attrturet'fm:n the qu;:]mtém 4I(|)m|t. b derstood detector’s practical value—for very slow measurement rates,
| tn lereis mgyltlanoug ,thq. )hr_'ﬁy N ﬁm erslf[)of COM- "~ anvironmental effects on the qubit will become dominant
pletely classically, even though it formally results from re- o\ o o tion effects.

quiring the proportionality of two quantum operators. To do If we now consider finite voltages and fully energy-

s0, we calculate _the classma_l mformauon capabificf. Eq. dependent scattering, E¢0) tells us the condition under
(21)] corresponding to two different possible measurements, pi-h energy averaging the transmission does not impede

Firs;t, imagine we measure the i”teg,f_ated ) cgrremt reaching the quantum limit. The solution to E40) has the
=J[odt'I(t"), and assume the probability distributions ¢,

p(m|T) andp(m||) are Gaussian. For weak coupling, one
finds for the capacity:

T(E)= 4m(E—Eg)IC (48)
m dT(e)\? 1+etm(=Ed
eALR de This form forT(E) implies that there is no extra information
Ravg='mead = oh T (43 in the energy dependence @fwhich is lost upon energy
deT(e)[1-T(e)] averaging. Amusingly, Eq(40) correspondsxactlyto the
“R energy-dependent transmission of one channel of an adia-
batic quantum point contaéfThe constanE, represents the
AS dT(e)) 2 threshold energy of the channgle., the transverse moge
(5ot e j de w and the constard is given by
~ 2h '
Ej: T(ep[1-T(g))] C:_% (49

iR

In the last line, we have discretized the energy integrals, i.ewhered is the transverse width of the constriction at its cen-
partitioned the interval ur,u ] into equal segments of ter andR is the radius of curvature of the transverse confin-
length de. If we now imagine we could measure eagh  ing potential at the constriction center.

=fglj(t), wherel(t) is the contribution to the current from

the jth energy interval, a similar calculation reveals B. Multichannel case
dT 5 We now consider the situation where there Brehannels
( ﬂ in each of the two contacts leading to the reservoirs. It is
_(de)t > de (45) useful to writes in terms of itsN transmission eigenvalues
O 2h G T(e)[1-T(e)] T;(E) using the standard polar decompositfdn:
One can easily check th&,= R, this corresponds to the £y SlL SiRr) U\[VR T \[U’ 50
additional information that is generally available in the en- s(B)= st Srrl \V/\VT =RV ) (50

ergy dependence df. A necessary and sufficient condition .

for ensuringRi,= Rayg is precisely the condition in E§40).  Here,U,U",V,V" are NXN energy-dependent unitary ma-
On a purely classical level, this condition ensures that ndrices, andyR and \T are diagonal matrices having entries
information is lost when one averages over energy. V1-T;(E) and yT;(E), respectively.

165324-7



A. A. CLERK, S. M. GIRVIN, AND A. D. STONE PHYSICAL REVIEW B67, 165324 (2003

In the multichannel case, the backwards gainagain  not sufficiento guarantee that E@52) is satisfied. The pres-
vanishes irrespective of the details fas a result of the ence of parity symmetry would indeed ensyfg= ¢,,, but
analytic properties 0é. The relevant question then to ask is as, in general,[\T,¢y] and [VR,¢y]#0, this is not
what conditions must be satisfied b{E) so that the propor- enough. In addition to having,= ¢y, one also generally
tionality betweerl andQ required to reach the quantum limit needs either thatp, is diagonal, meaning that the mode
[i.e., Eq.(16)] is achieved. As in the single-channel case, theindex (i.e., transverse momentuyris conserved during scat-
relevant matrix elements df and Q involve destroying a tering, or that all the transmission eigenvaldesare identi-
scattering state incident from the left and creating an equakal. We thus see that if the transmissions fluctuate, mode
energy state describing an incident wave from the right; thenixing (e.g., the nonconservation of transverse eneaiso
additional complication now is that these transitions couldprevents one from reaching the quantum limit of detection.
result in a change of transverse mode. One thus needs fhis can be understood from the point of view of informa-
examine the coefficients of the operator productstion. If ¢, and ¢, matrices are not purely diagonal, infor-
aLn(E)aLm(E) appearing in the expansion bandQ, in the  mation about the qubit could be gained by looking at
energy intervall ugr,u ]. The proportionality condition of changes in how electrons incident in a given mode are par-
Eq. (16) again yields the requirement that E§8) holds for titioned into outgoing modes. Such changes would not be
all energies in this interval; now, however, both the right- anddetectable if all channels had the same transmission. Note
left-hand sides of this equation ak&x N matrices: that the matricet)’ andV' appearing in the polar decom-

position ofs [Eq. (50)] are irrelevant to reaching the quan-
VEe[ g mi][Sir(E)]'sL (E)=iCNR(E). (1)  tum limit. As each transverse mode is equally populated with
incoming waves in the stafg), there is no information as-
ociated with the preferred mode structure for incoming
I){vaves(i.e., the eigenvectors @' andV').

Here,C is again an energy-independent real number. Usin
the polar decomposition, one can derive from Ezfl) two
necessary matrix conditions that must hold for all energies i
the interval defined by the voltage:

VT(E) ¢y(E)VR(E) = VR(E) $(E)VT(E) =0, (52)

dT
E(E)

2. Transmission condition

Consider now the condition imposed by E§3), which
constrains the form of the transmissiohge) of the detec-
tor. Similar to the corresponding condition for the single-
™ «i (59 channel system, this requirement ensures that there is no ad-
' ditional information available in either the energy the

TE[L-T(E)] C
" _ channel structure of thgT;(e)} which is lost upon averag-
These conditions are the multichannel analogs of E88. i One obtains a necessary form for the transmissions,

and (40). 1 denotes the\x N unit matrix, and we have in- similar to what was found in Ref. 6:
troduced the generalized “phase-derivative” Hermitian ma-
trices ¢y and ¢y

d T(E)=———. 56
Bule)=—iU"(e) T2U(e) | (59 B e e 56
. d Note that different modes differ f ther only b
——ivVie) —Vv 5 ote that different modes differ from one another only by
Pule) Vie) dE (€) ©9 their threshold energl; ; the constan€ is the same for each

gwode. Again, this form for the transmissiofis;(¢)} corre-
. . . ponds exactly to those expected for a multichannel adiabatic
gza:]emsget?nq ¢>Elﬂ t5hze .s':;gle-?har&nel case._{\_lote thf.elfempoint contact. The assumption of adiabaticity implies that
Y y in Eq(52): € po, ar ec’omp03| lon matric transverse energy is conserved. Thus, if parity symmetry also
andV_er_lter, but the matricés” andV" do not. We comment holds, we reach the surprising conclusion thatultichannel
on this in what follows. adiabatic point contact remains a quantum limited detector
even if the voltage is large enough that several modes con-
tribute to transport Previous studies have established that
The first requiremerteq. (52)] places a stringent require- point-contact detectors reach the quantum limit in the limit
ment on the scattering matrix Like the corresponding re- of small voltages, where the energy dependence of scattering
quirement for the single-channel system, it ensures that therean be neglectet:’° We have shown here that in the adia-
is no additional information on the state of the qubit avail-batic case, the quantum limit continues to hold even at volt-
able in measurable changes of scattering phases. Agagy, ages large enough that the energy dependence of scattering is
reversal symmetry is not necessdny have this condition important. This is significant from a practical standpoint—
hold, as time-reversal symmetry only ensutéssU’ and  requiring small voltages limits the magnitude of the output
V=V'. However, unlike the single-channel case, even theurrent and thus, the overall scale of the measurement rate,
presence of parity symmetry.e., the combination of both making the detector more susceptible to environmental ef-
time-reversal symmetry and left-right inversion symmgtsy  fects.

1. Phase and channel mixing conditions
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3. General expression for noise correlators ing for a wider class of input operato€s than that given in
For completeness, we give explicit expressions for theé=d- (29). In general, we may write
noise correlators. Writing them in terms of energy dependent
NXN matrix kernels( i.e., Sx=%"ds[tr Sx(¢)]), we ob- Q=ef dEdE’B EL . [afn(E)Wgn ym(E.E"a,m(E)],

Y=L

tain (59)
. 2¢? whereW(E,E") is a 2NX 2N Hermitian matrix having di-
Si(e)=—1-T(1-T), (578 mensions of inverse energy. The situation considered in the
preceding section corresponds to choodivigp be M(E,E’)
) et (,T)2 [Eg. (30)], which atE=E’ is just the Wigner-Smith delay-
Sole) = Z_(m +2TR(py— py)? time matrix. By comparing against the current operéataf.
& Eqg. (27)], it is clear that the proportionality condition in Eq.
+2[dy NTRIINTR ¢y ]+ [ b0, TILT, b0l (16) necessary for the quantum limit constrains the diagonal
in energy, off diagonal in lead index part of the potential
matrix W
+[ v ,T][T,¢v]) : (570
1
A 2 VEe[ ur L], [W(EaE)]RLzlE[SLR]T(E)SLL(E)v
Me)=—1-(:T), (570 (60)
5 where C is a real constant. We thus see that the required
R R e i -
s c _ proportionality betweehandQ needed to reach the quantum
Sio(e)=iN(e)+ 2 [TR(¢y = dv)]. G799 fimit at zero temperature leaves a large part of the potential

A similar expression for the charge noiSe of & Mesoscopic matrix W undeterminedi.e., terms diagonal in the lead index
P g Sg PIC and/or off diagonal in energyWe now show that by consid-

: ; “Brikar 28 [l _
g%r;]d%crt;)hrengsr:gﬁtt r?girsléedvtl)r{iimcear.n eggilllkeb(tahl?n?j);e:t}go d ering a form forW that is drastically different frorgV, one
1 y can make it easier to reach the quantum limit and have a

Ir?otirrrgslgf E:rt;ﬂ;g noé_set,c:t'\l’l]v'[(()al:lc:‘estetflrg :t f'rr:;;h;f th(rere Sreasonable gain. In particular, one can work at small voltages
Imple, heuristic way to nterp xp lonSgr. without necessarily having a vanishing gain.

However, if we invqke ideas of _informatio_n, each term in Eq. We specialize the discussion to a case that in many ways
(57b) acquires a simple meaning. The first term represent% the opposite of having global potential coupling. We take

informa_ltio_n associated with the energy depen_dence of_thﬁ1 scattering matrixs to be energy independent over the
transmissions; the second represents information assomatggfergy interval defined by the voltage, and taldo corre-

. : . ; a§|50nd to a local potentiaV(E,E’) =W over the energies of
three terms represent information associated with the part"nterest In this case, the scattering masiwill have one of

tioning of electrons into different modes. In general, using : g .
Egs.(5) and(25), we maydefinethe charge noise in terms of tSvtvz;)tedg;etLeen;SSiirgy independent values depending on the

the accessible informatiof in the coupled conductor plus
qubit system: S. =S+ eA(As), (61)

2 where s, is the scattering matrix at zero coupling€0).

So= lim Iim—2 aI( ). (58  The matrixW may be directly related to the change in the
A-0t—0A scattering matrixAs (see Appendix B for a derivation

While this last expression may seem purely tautological, it is -

clear that the various contributions to Etp7b) for the W=isy(As). (62

charge noise are best understood in terms of informationy . he similarity to the form of in the global-potential

Note that the accessible informati@ncould be obtained di- . — AA- P
rectly in the present system by calculating the overlap begouplmg casewhere W=A); now, the energy derivative

tween the detector states corresponding to the two qubl(iséd)E/(gisA)been replaced by the finite differente=(s.
states. Such a calculation would take the form of an orthogo- Tuming to the conditions needed for the quantum limit,

nality catastrophe calculation, similar to that presented Nye find again that the causality properties of the scattering

Ref. 29. matricess.. ensure\’ =0 always. The remaining proportion-

ality requirement of Eq(16) places constraints ag. . These

have an analogous form to Eq&3) and(52), but now the
In the remaining part of this paper, we consider a moreenergy derivatival/dE is replaced by the finite difference

general version of the mesoscopic scattering detector, showi-e., AX=(X[s,]—X[s_])/(2eA)):

ing that the main results of the preceding section continue to

hold. We relax the condition that the state of the qubit modu- AT —oxi 63)

lates auniform potential in the scattering region, thus allow- T(1-T) '

C. Local potential coupling
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\/f?bu \/ﬁ_ \/ﬁ;,)v\/fzo (64) APPENDIX A: ACCESSIBLE INFORMATION

_ 5 In this appendix, we provide a simple proof of EG4)
wherey=—iUT(AU) andy=—iVT(AV) . Importantly, ~ for the accessible informatiofi. Given the two statefD)
the above conditions do not involve any energy averagisg and|DL>, the goal is to maximize the classical mutual infor-
we have takers andW to be energy independent. Nonethe- mation R [defined in Eq.(21)] over all possible choices of
less, there still is a nonvanishing gaindetermined by both measurements. A given choice of measurem¥ntorre-

the voltage and thaT;: sponds to a choice of basis; the probability distributions
p(yi|T) andp(y;||) are determined by the elements of the

eV corresponding states in this basis. Treating pifg;| o) as

A= e 2 AT;. (65) independent variables restricted to the intef\ll] and us-

ing Lagrange multipliers, we minimizR subject to the fol-

Thus, using a local coupling between the qubit and the sca{pwmg constraints:

tering detector makes it easier to reach the quantum limit and N

have a sizeable gain—one can use voltages small enough 2 _1

that energy averaging is not a problem, while still having the “~ P(yilo)=1,

qubit modulate the transmissions. Note that in the single-

channel case, all that is needed for the quantum limit is that N

the state of the qubit should not change the difference be- oy iy )= —

tween reflected and transmitted phaskép— B8)=0. Also .21 Pl T)P(yil ) =KD4[D,)|=cosa. (A2)

note the various noise correlators are given by E§3),

with the substitutiord/dE—A. The second condition, in principle, need only be an inequal-

ity, with the left-hand side being greater than or equal to the

right-hand side; however, it can be verified that the maxi-

mum value ofR occurs when it is enforced as an equality.
We have de\/e|oped a genera] set of conditions that aré'SO note that without loss of generality, we can choose the

needed for a detector in the linear-response regime to readhner product appearing in E¢A2) to be real and positive,

the quantum limit of detection. One needs both a restricte@s R is independent of the relative phase between the states

proportionality between the input and output operators of théD,,). Finally, we have assumed to start that these states have

detector[cf. Eq. (16)], and a causal relation between the at mostN nonzero components in the chosen basis. Variation

output and inpufcf. Eq. (17)]. Applying the concept of ac- With respect top(y;|1) yields the following condition:

cessible information to the detector, one sees that deviations

(A1)

IV. CONCLUSIONS

from the quantum limit imply the existence of missing infor- p(yilT) p(yill)
mation residing in the detector, information that is not being In—= +2N;+A (—'|T): 0, (A3)
utilized. The general conditions in Eqd.6) and(17) ensure PLyi PLYi

the nonexistence of such information. Applying these con- . - . . . .
cepts to the mesoscopic scattering detector, we find that theQ4th @ Similar equation emerging from variation with respect
general conditions place restrictions on the form of the defo P(Yill). N, Xy, andX are Lagrange multipliersp(y;)
tector’s scattering matrix. These restrictions do not involve=[P(Yil1)+p(yi[1)]/2 is the averaged distribution. Sub-
symmetry properties usually considered in mesoscopic sydtacting thel and | equations yields

tems, but are rather best understood as following from the

requirement of having no missing information. In the meso- Ve(yil Dp(yil 1) | p(YilT) \/1—/3?' 1+p;
scopic scattering detector, missing information may reside in = svih—ovinD MoviD - 23 M—_g°
the relative phase between transmission and reflection, in the Pl =Pyl “p(yilL) hi hi (Ad)

energy or mode structure of the transmission probabilities, or

in the partitioning of scattered electrons between differentyhere we have defineg; via
modes. Surprisingly, we find that an adiabatic point contact
conforms to all the conditions needed for the quantum limit, (il 1) —p(yil 1)
even when the voltage is large enough that many modes are Bi S AL AL
involved in transport, and the energy dependence of scatter- p(y;)

ing is important.

(A5)

B; may be thought of as the amount of information gained in
a measuremengiventhat the outcome of the measurement
ACKNOWLEDGMENTS is y;. Now, Eg.(A4) must hold for eactB; (i=1,... N);
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The last equality follows from substitution into EGA2).  writing the system Hamiltonian in terms of the scattering
Further substitution into Eq21) for R yields the expression states of problem at zero coupling, assuming the qubit is

in Eq. (24); note that the averaged distributipiy;) and the ~ frozen in thel state:
relevant number of basis elemerdsdo not appear in this
expression. One can explicitly check that choosing any of the
p(yi|o) to be 0 or 1 results in a lower value Bf thus, Eq.
(24) does indeed correspond to the maximum valu& ahd
thus, by definition, to the accessible informatibnThe con- et

dition (A6) required to optimizeR implies that the amount of +(Ae)2 fdk [ (K) Wiy mipm(K) 1. (B)
information gained via measurement is the same for each of m

the measurement outcomgs Equivalently, each basis ele- \ye haye assumed a linear dispersion near the Fermi energy,
ment in an optimal basis has the same information contenf;iih #k andzk’ representing the deviation of the momen-
associated with it. This is similar to requirements obtained tq,,m from the Fermi momentum. We have also neglected the
have the mesoscopic scattering detector reach the quantUt that the effective Fermi velocity is channel dependent
limit; in that case, each channel and each energy were 9% drops out of all final expressionsThe operatony! (k)
quired to have the same information contéelt Eq. (53)]. creates a scattering state incident in the lead and transverse

Note also thathere are several distinct choices of bases (i'e"mode indexed byn. For definiteness, we take our leasth
measurement schemes) which optimizehis point was not left and righj to be defined only on the half line<0, and to

made in Ref. 14. A partlcglarly §|mple optimal basis can bebe confined in thg andz directions. Further, we assume that
constructed foN=2. In this basis, the nonzero components

f the statedD . b the scattering region is situated @ 0. We may write the
of the state3D,,) are given by full electron field operator in terms of thg,,(k) operators,

|DT>=(cose,sin0), |DT>=(sin0,cosa), (A7) using the zero-coupling scattering matrix Writing X

where = w/4+ a/2. By definition, the state (1,0) leads to (x.y.2), we have:

the measurement outconyg with perfect certainty, while

the state (0,1) leads to the measurement outcggerith \I,(;):E f ﬂlﬂ (K)
perfect certainty. In geometric terms, the optimal basis given m N "
here is one in which the angle between the two stdde$ is

H=tivg >, f dk[ Kim(K) (k)

el WX (y,2)

bisected by the vector (1,1). + e i (ke k)x 2)s B2
More generally, consider the form of an optimal basis ; $nY.2)Shm B2)
whereN=M (i.e., there areM possible outcomes when a
measurement is made on the stdde) or [D)). TakingM 1
to be even for simplicity, and lettingj) denote the basis =— > Yn(—x)eKF*p (y,2)
states, a possible optimal basis is one in which 2 m
[14+(—1)'sina 1 .
<j|DT>: +1 (A8) +E % Im(X)e IkFX¢n(yaZ)Snm- (B3)
i 1-(—=21))sina In the last line, we have introduced the operatgfs(x),
(iD= BV E— (A9)  which are the Fourier transforms of the scattering state op-

eratorsy,(K). Note again that this expression is only valid
The fact that there are many possible outcomes of a measurfsr x<0, as the leads are only definedxx 0. We thus see
ment does not degrade from the optimality of mutual infor-that for x<0, #,,(x) describes anoutgoing (i.e., left-
mationR, as the information associated with each measuremoving) wave, while ¢,,,(—x) describes arincoming(i.e.,

ment outcome is the same. right-moving wave.
Next, we may express the system Hamiltonian in terms of
APPENDIX B: DERIVATION OF As the ¢n(X) operators. This in turn leads to an equivalent

In this appendix, we provide a brief derivation of £§2) single-particle Schrdinger equation

which relates the coupling potential matiX [cf. Eq. (59)]

to the asso_ciated cha}nge in the .scattering mafyi, The. Edm(E.X) =hvg| i dyihm(E,X) +AS(X) D, WmnTpn(E,x)}.

latter quantity determines the noise correlators and gain of n

the local-potential coupling version of the mesoscopic scat- (B4)
tering detector. Our approach is similar to that used in Ref. - ) _ ) ]

30 to relate the scattering matrix of a quantum dot to itsHere, ¥m(E,x) is a wave function that arises when the field
Hamiltonian. operator ¢,(x) is expressed in terms of operators corre-
In what follows, we assumés in Sec. Il B that the po- sponding to the eigenmodes of the full HamiltonknGiven
tential matrixwW and the zero-coupling scattering matsiare  the relation ofy,,(x) to incoming and outgoing wavesf.

independent of energy on the scales of interest. We start biq. (B3)], we choose the following form fog,(x):
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g ikx if x>0

ain,m

PYm(E,x) = (B5)

e D sl agun if x<0,
n

whereE =fv k. Substituting this form into EqB3), we see
that the coefficientsy, ,, and aqy, do indeed correspond
(respectively to the amplitudes of incoming and outgoing
waves.

Integrating Eq.(B4) from x=0" to x=07, interpreting
W(0) as[#(0")+(07)]/2, and then using EqB5), we

find the following relation between the amplitude of incom-

ing and outgoing waves:

PHYSICAL REVIEW B67, 165324 (2003

i ~
1- -AeW
2
Qoutm™ E Smn

n,n’

(B6)

a-in,n’
1+ -AeW
2 e

nn’

= [s+AeAS]yyainn - (B7)

n/
In the last line, we indicate that this relation defines the new
scattering matrixs+ AeAs that includes effects of the addi-
tional potentialW. Expanding to lowest order in the dimen-
sionless potentiaheW, we find Eq.(62) as advertised.
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