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Quantum-limited measurement and information in mesoscopic detectors
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We formulate general conditions necessary for a linear-response detector to reach the quantum limit of
measurement efficiency, where the measurement-induced dephasing rate takes its minimum possible value.
These conditions are applicable to both noninteracting and interacting systems. We assess the status of these
requirements in an arbitrary noninteracting scattering-based detector, identifying the symmetries of the scat-
tering matrix needed to reach the quantum limit. We show that these conditions are necessary to prevent the
existence of information in the detector that is not extracted in the measurement process.
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I. INTRODUCTION

Issues of quantum measurement in mesoscopic sys
have recently garnered considerable interest, both becau
their relevance to attempts at quantum computation1 and
quantum-limited amplifiers.2 A general consequence of an
quantum measurement is that it must induce decoherenc
the system variable conjugate to that being measured.
basic fact naturally leads to the issue of measurement
ciency: what conditions must a particular detector satisfy
that it induces theabsolute minimumamount of dephasing
required by quantum mechanics? This minimum dephas
rate is identical to the measurement rateGmeas, the rate at
which information is extracted during the measurement p
cess; thus, the measurement efficiency ratiox<1 is defined
by x5Gmeas/Gw , where Gw is the measurement-induce
dephasing rate. Besides being of great conceptual inte
near-ideal measurement schemes are necessary to dete
natures of coherent qubit oscillations in the output noise o
detector,3,4 and are essential if one wishes to construc
quantum-limited amplifier~i.e., an amplifier whose noise en
ergy is the minimum allowed by quantum mechanics!.2

While the question of measurement efficiency has recei
attention in the context of general measurement theory,5 it is
only recently that it has been considered in the contex
solid-state detectors. Averin3 has considered the status of th
quantum limit in a number of solid-state detectors, wh
recently Pilgram and Bu¨ttiker6 considered the quantum lim
for a system in which a mesoscopic conductor acts as a
tector.

In this paper, we formulate general conditions that
needed for an arbitrary detector in the linear-response reg
to reach the quantum limit of detection, wherex51. These
general conditions are valid for both interacting and non
teracting systems, and can be given a direct physical in
pretation. We also discuss the quantum limit in terms o
simple concept from quantum information theory, the acc
sible information. To make these considerations more c
crete, we apply them to a mesoscopic scattering dete
similar to that considered in Ref. 6, identifying precise co
ditions and symmetries needed to reach the quantum li
We find that the required symmetries are most easily un
stood if one considers the scattering detector in terms
information; these symmetries are not the same as those
0163-1829/2003/67~16!/165324~12!/$20.00 67 1653
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ally considered in mesoscopic systems. For example, we
that time-reversal symmetry is not necessary for reaching
quantum limit. We also find that, surprisingly, an adiaba
point-contact7 system remains a quantum-limited detec
even for voltages large enough that several channels con
ute to transport and that the energy dependence of scatte
is important; previous studies8–10 have only shown that the
quantum limit is achieved in the small voltage regime. O
results for the mesoscopic scattering detector are com
mentary to those obtained in Ref. 6.

II. GENERAL CONDITIONS

A. Model and derivation of the quantum limit

We start by considering a generic system consisting o
qubit ~i.e. a two-level system described as a spin1

2 ) coupled
to an arbitrary detector. The system Hamiltonian isH
5Hqubit1Hdetector1H int , where Hqubit52 1

2 Vsz , H int
5AszQ, and we leaveHdetectorunspecified.Q is the detector
‘‘input’’ operator that couples to the qubit, whileA charac-
terizes the strength of the qubit-detector coupling. Mixi
effects, where the detector causes transitions in the qubit
neglected by taking@H int ,Hqubit#50; such effects always
cause a deviation from the quantum limit. We work in t
weak-coupling regime (A→0), and can thus use the linea
response theory to describe the output of detector. TakingI to
be the detector observable that is measured~i.e., the ‘‘out-
put’’ operator!, one has to lowest order inA,

^I ~ t !&5^I ~ t !&r0
1Al^ŝz~ t !&rQ

, ~1!

where the zero-frequency linear-response coefficient~or
‘‘forward gain’’ ! l is given by

l[
2 i

\ E
0

`

dt^@ I ~t!,Q~0!#&r0
~2!

5
2

\
ImE

0

`

dt^I ~t!Q~0!&r0
. ~3!

Here,r0 is the initial density matrix of the detector andrQ is
the initial density matrix of the qubit. We have assumed t
the qubit splitting frequencyV is much smaller than the rat
that characterizes the detector, which allows us to appr
©2003 The American Physical Society24-1
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mate the detector’s response to the qubit as instantane
Alternatively, one can restrict attention to the case where
qubit is in asz eigenstate, and thus^sz(t)& is time indepen-
dent. The operators on the right-hand side~RHS! in the
above equation evolve in the Heisenberg picture gener
by H05Hqubit1Hdetector.

Next, we connect the detector noise in the output oper
I and input operatorQ to, respectively, the measurement ra
Gmeas and the dephasing rateGw . Defining the fluctuating
part of an operatorA as Ã5A2^A&r0

, the required zero-
frequency noise correlators are given by,

SI52E
2`

1`

dt^ Ĩ ~ t ! Ĩ ~0!&r0
54p\(

i , f
Pid~Ei2Ef !u Ĩ i f u2,

~4a!

SQ52E
2`

1`

dt^Q̃~ t !Q̃~0!&r0
54p\(

i , f
Pid~Ei2Ef !uQ̃i f u2,

~4b!

SIQ52E
2`

1`

dt^ Ĩ ~ t !Q̃~0!&r0

54p\(
i , f

Pid~Ei2Ef !~ Ĩ i f !~Q̃f i !. ~4c!

Here, we use the short handOi f 5^ i uOu f &, whereu i &, u f & are
eigenstates ofHdetectorwith energiesEi ,Ef . The probability
Pi is defined aŝi ur0u i &; we assume thatr0 is diagonal in the
basis of eigenstates. Taking the detector noise to be Ga
ian, the standard expressions for the dephasing rateGw and
measurement rateGmeasare given by1

Gw5
A2

\2
SQ , Gmeas5

A2l2

SI
. ~5!

We briefly review the origin of Eqs.~5!. The dephasing
rate describes the measurement-induced decay of the
diagonal elements of the qubit density matrix. It can be
rived by looking at the decay at long times of the pha
correlatorV(t)5^s1(t)s2(0)&, wheres1 (s2) is the spin
raising ~lowering! operator:

V~ t !5K expF2 i E
0

t

dt8~V12AQ~ t8!/\!G L
.e2 i ṼtexpS 22A2

\2 E
0

t

dt1E
0

t

dt2^Q̃~ t1!Q̃~ t2!& D ~6!

→e2 i Ṽte2Gwt. ~7!

Here,Ṽ5V12A^Q&r0
/\.

The measurement rate describes how long the meas
ment must be on before the signal associated with the
qubit states can be distinguished from the noise inI. The
quantity of interest is the time integral of the detector outp
m(t)5*0

t dt8I (t8). One needs that the distributions ofm(t)
corresponding to the two different qubit states@i.e.,
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p„m(t)u↑… and p„m(t)u↓…] be statistically distinguishable
Assuming Gaussian distributions, distinguishability is d
fined as

^m~ t !&↑2^m~ t !&↓>A2@s↑~ t !1s↓~ t !#, ~8!

wheres denotes the variance of the distribution and theA2
factor is included in order to make the final upper bound
x unity. Using Eq. ~1! for ^I (t)&, and letting tmeas
51/Gmeas, the condition becomes

2Altmeas>2A2AS 1

2
SII D tmeas, ~9!

which directly yields the expression in Eq.~5! for Gmeas.
Note that we have takens↑5s↓ in the last step; this is
sufficient to obtain the leading-order-in-A expression for
Gmeas.

To relateGw andGmeas, we first note that the right-hand
sides of Eqs.~4a!–~4c! implicitly define an inner product
~i.e., interpret the matrix elements$ Ĩ i f % and$Q̃i f % as defining
vectors!. The Schwartz inequality then immediately yields

SISQ>uSIQu25\2~l2l8!21~ReSIQ!2, ~10!

where we have introduced the reciprocal response coeffic
~or ‘‘backwards gain’’! l8:

l8[
2

\
ImE

0

`

dt^Q̂~t! Î ~0!&r0
. ~11!

l8 would describe the response of^Q(t)& to a perturbation
that couples to the operatorI. Note that asl and l8 are
defined in terms of commutators, we may substituteI→ Ĩ

and Q→Q̃ in their definitions. General stability conside
ations lead to the conditionll8<0. Using Eqs.~5!, we thus
have

Gmeas

Gw
5

\2l2

SQSI
<

\2l2

\2~l2l8!21~ReSIQ!2
<1. ~12!

The best one can do is measure the qubit as quickly as
dephases it.11 Note that this derivation only requires the v
lidity of linear-response and the weak-coupling approxim
tions which give rise to Eqs.~5!; very little is specified of the
detector. Similar derivations of the quantum limit are pr
sented in Refs. 3 and 5.

The inequality in Eq.~12! is in many ways intuitively
reasonable. Both dephasing and measurement involve en
gling the state of the qubit with states in the detector.
principle, there may be degrees of freedom in the dete
which become entangled with the qubitwithout providing
any detectable information in a measurement of^I &; any
such entanglement would lead toGw.Gmeas. More precisely,
imagine that when the measurement is initially turned on,
system is in a product state:

uc~ t50!&5
1

A2
~ u↑&1u↓&) ^ uD&, ~13!
4-2
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where uD& is the initial state of the detector, andu↑&, u↓&
denote qubitsz eigenstates. At some later timet, the state of
the system may be written as

uc~ t !&5
1

A2
~ u↑& ^ uD↑~ t !&1u↓& ^ uD↓~ t !&). ~14!

To say that we have measured the state of the system im
that the statesuD↑(t)& anduD↓(t)& are distinguishable; to sa
that the qubit has been dephased only implies that the de
tor statesuD↑(t)& and uD↓(t)& are orthogonal. While distin-
guishability implies orthogonality, the opposite is not tru
thus, in general,Gw.Gmeas. Note that, in this formulation,
the dephasing rate will be related to the overlap between
two detector states:

u^D↑~ t !uD↓~ t !&u.e2Gwt. ~15!

B. Necessary conditions for reaching the quantum limit

We have thus seen that on a heuristic level, reaching
quantum limit requires that the detector have no ‘‘extra
ous’’ degrees of freedom which couple to the qubit. Equiv
lently, all information on the state of the qubit residing in t
detector should be accessible in the measurement of^I &. The
virtue of the derivation presented in the preceding sectio
that these statements can be given a precise meaning.
sees that three conditions are necessary to reach the qua
limit: ~i! the Schwartz inequality in Eq.~10! must be opti-
mized,~ii ! the cross-correlator ReSIQ must vanish, and~iii !
the backwards gainl8 must vanish. Conditions~i! and ~ii !
can be succinctly reexpressed as a single condition, lea
to the following necessary and sufficient requirements:

$; i , f uPiÞ0,Ef5Ei%, ^ f u Ĩ u i &5 iC^ f uQ̃u i &, ~16!

l8[
2

\
ImE

0

`

dt^Q̂~t! Î ~0!&r0
50. ~17!

Here,C is a real number that is independent of the detec
eigenstatesu i & andu f &.12 Equations~16! and~17! are central
results of this paper. The first of these equations expre
the fact that to reach the quantum limit, there must be a c
similarity between the detector’s input and outp
operators—as far as the zero-frequency noise correlators
concerned,the operators I and Q must be proportional
one another. This required similarity between the detect
input and output is a formal expression of the intuitive id
that a quantum-limited detector has no ‘‘extraneous’’ inter
degrees of freedom. The second condition, Eq.~17!, ex-
presses the fact that a quantum-limited detector must ha
strong intrinsic directionality that discriminates between
input and output. The output operator is influenced by beh
ior at the input, but not vice versa. This requirement is c
sistent with our tacit assumption that the quantity^I & can be
measured without problems. To measureI, one needs to in-
troduce a coupling in the Hamiltonian toI; the vanishing of
16532
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l8 implies that this additional coupling will not contribute t
^Q(t)&, and thus cannot further dephase the qubit@cf. Eq.
~6!#.

On a technical level, Eq.~16! follows from the optimiza-
tion of the Schwartz inequality and the requirement th
ReSIQ50 @i.e. conditions~i! and~ii ! above#. The vanishing
of l8 @Eq. ~17!# can be interpreted in terms of causality. T
see this, we first introduce the frequency-dependent cr
correlatorSIQ(E):

SIQ~E!52E
2`

`

dt^ Ĩ ~ t !Q̃~0!&r0
eiEt/\

54p\ (
i , f Þ i

Pid~E1Ei2Ef ! Ĩ i f Q̃f i . ~18!

We may use this to write

l~l8!5
1

2\ S 1~2 !Im @SIQ~0!#

2
1

p
PE

2`

`

dE
Re@SIQ~E!#

E D . ~19!

If l850, it follows from the above that atE50, the imagi-
nary part ofSIQ(E) coincides with the Hilbert transform o
the real part ofSIQ(E):

Im @SIQ~E!#U
E50

5S 2
1

p
PE

2`

`

dE8
Re@SIQ~E8!#

E82E
D U

E50

.

~20!

If this held for all E, it would follow from the Titchmarsh
theorem13 thatSIQ(t)5^ Ĩ (t)Q̃(0)&r0

is causal: it would van-

ish for t,0. This would clearly be sufficient to satisfy Eq
~17!. More generally, the vanishing ofl8 only requires the
weaker zero-frequency causality condition in Eq.~20!.

C. The quantum limit and information theory

We close this section by formalizing the connection b
tween the quantum limit and information. A deviation fro
the quantum limit~i.e., x,1) implies the existence in the
detector of ‘‘missing information’’ regarding the state of th
qubit, information that is not revealed in the measuremen
^I &. The dephasing rate thus corresponds to what the m
surement rate would beif we could make use of all the avai
able information. This notion can be quantified by borrowi
a concept from quantum information theory, the access
information.14–17To define this, note first that if we choose
specific detector quantity~or set of quantities! Y to measure
~described by, e.g., a set of commuting observables!, we can
think of our system as a noisy classical communication ch
nel. The two possible inputs to the channel are the qu
statesu↑& and u↓&; interaction with the detector for a timet
then leads to two corresponding detector statesuD↑(t)& and
uD↓(t)& @c.f. Eq. ~14!#.18 Finally, the outputs from the chan
nel are the outcomes of the measurement ofY. The ‘‘noise’’
here is a result of the intrinsic uncertainties ofY in the states
4-3
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uD↑(t)& anduD↓(t)&; the output will thus be described by th
conditional probability distributionsp(yu↑) and p(yu↓),
which are determined by these states, wherey represents
possible outcomes of the measurement. Lettingp̄(y)
5@p(yu↑)1p(yu↓)#/2, the mutual informationR of this
channel is19

R@Y#5H@ p̄~y!#2
1

2
„H@p~yu↑ !#1H@p~yu↓ !#…, ~21!

whereH@p(y)# is the Shannon information entropy asso
ated with the distributionp:

H@p~y!#52(
yi

p~yi !ln@p~yi !#. ~22!

Note that we have chosen to equally weight our two inputs
the channel. Assuming that this choice is optimal, Shanno
noisy channel coding theorem implies thatR@Y# is the maxi-
mum rate at which messages can be reliably transmi
down the channel by modulating the state of the qubit a
making measurements ofY.19 Alternatively, R@Y# may be
considered as being related to a generalized measure
rate describing the chosen measurementY. For example, if
the distributionsp„y(t)u↑… and p„y(t)u↓… are Gaussian, one
finds that at small times~i.e., before the two distributions ar
well separated!

R@Y#Gaussian5
1

8

~^y~ t !&↑2^y~ t !&↓!2

s↑~ t !s↓~ t !
. ~23!

This corresponds to our definition of the measurement r
cf. Eqs.~8! and~9!. We thus have a new way to interpret th
measurement rateGmeas: given that one is monitorinĝI &,
Gmeasrepresents the maximum rate at which information c
be sent to the detector by modulating the qubit.

The quantum-mechanical accessible informationI is now
defined by maximizing the mutual informationR@Y# over all
possible measurement schemesY. Remarkably, for the cas
considered here~where the detector is described by a pu
state!, it can be calculated exactly;14 a simplified proof is
presented in Appendix A, where we also demonstrate
there are several possible optimal measurement sche
Letting u^D↑(t)uD↓(t)&u25cos2„a(t)…, we have

I5max
$Y%

R5
1

2
$@11sina~ t !# ln@11sina~ t !#

1@12sina~ t !# ln@12sina~ t !#%. ~24!

This expression corresponds to having equally weighted
two input states, as we did in Eq.~21!; one can check tha
this choice maximizesI. At small times (Gwt!1), compari-
son against Eq.~15! yields a(t)→0, and we have

I.a~ t !25Gwt. ~25!

As expected, the growth of the accessible information is
termined by the dephasing rate. Achievingx51 thus implies
that the rate that we actually obtain information,Gmeas, co-
incides with the growth of the total accessible informatio
16532
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Thus, there is no ‘‘missing’’ information in the detector. W
can also think of Eqs.~24! and~25! as providing an alternate
route for deriving the quantum-limit inequalityGw>Gmeas,
i.e.,

R@Y#.Gmeast<I.Gwt. ~26!

The utility of thinking about back-action effects and th
quantum limit in terms of information will become clear i
the following section, where we discuss the mesoscopic s
tering detector. Note also that the relation between inform
tion and state disturbance has been studied in a slightly
ferent context by Fuchset al.15

III. MESOSCOPIC SCATTERING DETECTOR

To make the preceding discussion more concrete, we n
consider the status of the quantum limit in a slightly le
general detector setup, the mesoscopic scattering dete
considered in Ref. 6. We determine the conditions neede
reach the quantum limit of detection by directly applying t
general conditions derived in the preceding section, nam
the proportionality condition in Eq.~16! and the causality
condition in Eq.~17!. This is in contrast to Ref. 6, which
developed conditions needed for the quantum limit by
rectly calculatingGw andGmeas. We explicitly show that the
violation of Eq. ~16! implies the existence of unused info
mation in the detector, information that is not extracted in
measurement process.

The detector here is a two terminal scattering region~see
Fig. 1! characterized by a scattering matrixs. Taking the
contact to both the right and left reservoirs to haveN propa-
gating transverse modes,s will have dimension 2N. The
output operator of the detectorI is simply the current through
the region; the state of the qubit alters^I & by modulating the
potential in the scattering region. Note that while we foc
on the limit of a weak coupling between the qubit and det
tor, so that the linear-response approach of the prece
section is valid, we do not assume that the voltage is sm
enough that̂ I &}V.20 The mesoscopic scattering detector d
scribes the setup used in two recent ‘‘which pat
experiments.21,22 These experiments used a quantum po
contact to detect the presence of an extra electron in a ne

FIG. 1. Schematic diagram of the mesoscopic scattering de
tor, in which the current through a phase coherent scattering re
is used to detect the qubit.Q denotes the charge in the scatterin
region, whileI R (I L) is the current in the right~left! contact.
4-4
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quantum dot. As the dot was imbedded in an Aharan
Bohm ring, the dephasing induced by the measurement c
be studied directly.

We start by considering the simplest situation, also c
sidered in Ref. 6, where the state of the qubit provide
uniform potential change in the scattering region. In t
case, the input operatorQ is thetotal charge in the scattering
region. Unlike Ref. 6, we do not explicitly consider th
effects of screening here. Within the random-phase appr
mation, consideration of such effects allows an explicit c
culation of the qubit-detector coupling strengthA, but does
not result in any other changes over a noninteracting
proach. In the weak-coupling regime, the particular value
A does not affect the approach to the quantum limit.

Letting aan
† (E) represent the creation operator for an

cident wave in contacta5L,R, transverse moden, and at
energyE, the detector current operator for contacta takes
the form;23

I a5
e

hE dEE dE8

3 (
b,g5L,R

(
n,m51

N

@abn
† ~E!Abn,gm~a;E,E8!agm~E8!#,

~27!

Abn,gm~a;E,E8!5dbgdabdnm2$@sab~E!#†sag~E8!%nm .
~28!

A positive current corresponds to a current incident on
scattering region; note that throughout this section, we
glect electron spin for simplicity. The total chargeQ in the
scattering region may be defined in terms of the total curr
incident on the scattering region—in the Heisenberg pictu
] tQ(t)5I L(t)1I R(t) . One obtains

Q5eE dEE dE8 (
b,g5L,R

@abn
† ~E!Nbn,gm~E,E8!agm~E8!#,

~29!

N~E,E1\v!5
1

2p i Fs†~E!
s~E1\v!2s~E!

\v G . ~30!

In the limit wherev→0, N(E,E1\v) reduces to the well-
known Wigner-Smith delay-time matrix

N~E!5
1

2p i Fs†~E!
d

dE
s~E!G . ~31!

Finally, the assumption that the qubit couples to the to
charge in the scattering region is equivalent to assuming
the potential it creates is smooth in the WKB sense. We
use the fact that the sensitivity of the scattering matrixs to a
global change of potential in the scattering region is the sa
as its sensitivity to energy. Thus, the linear-response co
cient l has the form
16532
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l52
e2

h EmR

mL
d«

d

d«
@ tr sLR

† ~«!sLR~«!#

52
e2

h EmR

mL
d«(

j

dTj~«!

d«
, ~32!

where theTj are the transmission eigenvalues of the syste
Without loss of generality, we have assumed that our de
tor is biased such that the chemical potential of the left r
ervoir is greater than that of the right reservoir:mL2mR
5euVu; we also consider the limit of zero temperature.

A. Single-channel case

Given these definitions, we can now turn to Eqs.~16! and
~17! and ask what is required of the scattering matrixs in
order to reach the quantum limit. We first focus on the ca
N51, where there is a single propagating mode in both c
tacts. The scattering matrixs is thus 232, and may be writ-
ten as

s~E!5S sLL sLR

sRL sRRD 5S AReib ATeiw8

ATeiw 2ARei (w1w82b)D ,

~33!

where R512T. At zero temperature, the detector is d
scribed by a single many-body stateu i & in which all incident
states in leada with E,ma are occupied and all other inci
dent states are unoccupied:

u i &5@PEL<mL
aL

†~EL!#@PER<mR
aR

†~ER!#uvac&. ~34!

First, we consider the causality condition in Eq.~17!
which requires that the backwards gainl8 vanishes. As we
know the initial state of the detector and have explicit e
pressions forI andQ, we can directly evaluate the functio
SIQ(E) appearing in Eq.~18! in terms ofs. A direct calcula-
tion can be performed to show that

E
2`

`

dE
Re@SIQ~E!#

E
5E

2`

`

dE
Re@F~E!#

E
, ~35!

Im @SIQ~0!#5Im @F~0!#, ~36!

where, lettingt[sRL ,the functionF(E) is defined as:

F~E!52 i
e2

2pEmR

mL
dE8t* ~E8!S t~E81E!2t~E8!

E D .

~37!

Note that Eqs.~35! and~36! are independent of whetherI is
taken to beI L , I R , or a linear combination of the two. Now
causality dictates that the scattering matrixs is analytic in the
upper half complex plane, and thus so is the functionF(E).
The real and imaginary parts ofF are thus related by a Hil-
bert transform, and Eqs.~20!, ~35!, and ~36! imply that l8
50 for the scattering detectorirrespective of the choice of s.
Thus, the causality properties of the scattering matrixs en-
sure that one of the conditions necessary for reaching
quantum limit is always satisfied. Note that substituting the
4-5



t

re
l
th
e
-

a
e
i

it
t

e

-
n-

Eq
io

is
e

o
s
so
e
I

a
he
t

an
th
n

hi

ad-
la-
for-

nd
in-
ce
or-

r-

effi-
eres

will
nd
an

r

il-
-
as-

ot
re-

the
re-

be
in

red

pic
e-
)

e
d as

A. A. CLERK, S. M. GIRVIN, AND A. D. STONE PHYSICAL REVIEW B67, 165324 ~2003!
expressions forSIQ(E) in Eq. ~19! does indeed yield the
expected form ofl @Eq. ~32!#. It is also useful to note tha
gauge invariance can be used to directly establish24 l850 .
The essence of the argument is that a coupling to the cur
@i.e., H int5AszI (x50)] is equivalent to introducing a loca
vector potential. The gauge transformation that removes
term will only modify the transmission phases in the scatt
ing matrixs ~i.e., f andf8) in an energy-independent man
ner. Using Eq.~29!, one can check that^Q& is independent of
energy-independent phase changes; thusl850.

Next, we turn to the condition given in Eq.~16!, which
requires a certain proportionality betweenĨ andQ̃ in order to
reach the quantum limit. Given the stateu i & that describes the
detector @Eq. ~34!#, the only matrix elements ofI and Q
which contribute to the zero frequency noise correlators@cf.
Eqs. ~4!#, involve energy-conserving transitions where
scattering state incident from the left reservoir is destroy
while a scattering state incident from the right reservoir
created. Since these transitions require an occupied in
state and an unoccupied final state, they can only occur in
energy intervalmR,E,mL . We are thus interested in th
coefficients of the operatorsaR

†(E)aL(E) appearing in the
expansion ofI andQ in this energy interval. The proportion
ality requirement of Eq.~16! thus results in a necessary co
dition on s(«):

;Ee@mR ,mL#, @sLR#* ~E!sLL~E!5 iCNRL~E!, ~38!

where C is a real, energy-independent constant. Using
~33!, the imaginary and real parts of the above condit
become

; Ee@mR ,mL#,
d

dE
@b~E!2f~E!#50, ~39!

dT

dE
~E!

T~E!@12T~E!#
52

4p

C . ~40!

Similar conditions for reaching the quantum limit for th
version of the scattering detector were first developed in R
6 by directly calculatingGmeasand Gw @note that there is a
sign error in Eq.~7! of Ref. 6 which must be corrected t
obtain our Eq.~39!#.25 The fulfilling of these conditions doe
not correspond to symmetries usually considered in me
copic systems; for example, as we will show, the presenc
time-reversal symmetry is not a necessary requirement.
stead, the conditions of Eqs.~39! and ~40! correspond di-
rectly to the requirement that there be no missing inform
tion in the detector, information that is not revealed in t
measurement of̂I &. We demonstrate this explicitly in wha
follows.

1. Phase condition

The first condition@Eq. ~39!# for reaching the quantum
limit requires that the difference between transmission
reflection phases in the scattering matrix be constant in
energy interval defined by the voltage. If this conditio
holds, changing the state of the qubit will not modulate t
16532
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phase difference. Equation ~39! thus constrains
information—it ensures that the detector does not extract
ditional information about the qubit that resides in the re
tive phase between transmission and reflection. Such in
mation is clearly not revealed in the measurement of^I &, and
would necessarily lead to additional dephasing over a
above the measurement rate. In principle, this additional
formation could be extracted by performing an interferen
experiment. To be more specific, note that the cross c
relatorSIQ @c.f. Eq. ~4c!# is given by

SIQ5 i\l1
e2

p E
mR

mL
dE8S T~12T!

d

dE
~b2w! D . ~41!

By definition, the imaginary part of this correlator dete
mines the linear-response coefficientl @cf. Eq. ~3!# associ-
ated with measurinĝ I &. In contrast, thereal part of this
correlator may be interpreted as the linear-response co
cient associated with a measurement where one interf
reflected and transmitted electrons; the factor ofT(12T)
corresponds to the fact that the magnitude of this signal
be proportional to the amplitude of both the reflected a
transmitted beams. More explicitly, consider the Hermiti
operatorI mod, defined by

I mod5
e

\EmR

mL
dE@ iaR

†~E!ARL~L;E,E!aL~E!1H.c.#.

~42!

If one were to now measureI mod, the corresponding linea
response coefficientlmod is precisely the real part ofSIQ
@this can be seen by comparing Eqs.~42! and~27!#. The fact
that additional information on the state of the qubit is ava
able in the expectation̂I mod& implies that the qubit is entan
gling with the detector faster than the measurement rate
sociated with^I &. This remains true even if one does n
explicitly extract this information, as was demonstrated
cently in the experiment of Sprinzaket. al.22

Stepping back, we see that the general condition ReSIQ
50 @i.e., the required factor ofi on the RHS of Eq.~16!#
needed to reach the quantum limit directly corresponds to
requirement of no missing information discussed in the p
ceding section. In general, a nonvanishing ReSIQ implies
that additional information about the qubit’s state could
obtained by simultaneously measuring another quantity
addition toI ~e.g., in our case, the quantityI mod).

Note that in the scattering detector, the symmetry requi
to ensure that Eq.~39! holds ~i.e., that the phasesb and f
coincide! is not one that is usually considered in mesosco
systems. In particular,the presence of time-reversal symm
try is not necessary to fulfilling the condition of Eq. (39;
time-reversal symmetry only implies thatw5w8, and speci-
fies nothing on the relation betweenw and b. However, as
pointed out in Ref. 6, asufficientcondition for achieving Eq.
~39! is that one has parity symmetry, that isboth time-
reversal symmetry and left-right inversion symmetry~the lat-
ter condition implies that the two reflection phases ins are
identical!.26 Note that this is not a necessary condition. W
see that the required symmetry here is best understoo
being related to information.
4-6
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2. Transmission condition

We now turn to the second condition@Eq. ~40!# needed to
have the scattering detector reach the quantum limit, a c
dition that constrains the energy dependence of the trans
sion probabilityT. This condition arises from the require
ment that the proportionality betweenI andQ needed for the
quantum limit must hold over the entire energy interval d
fined by the voltage. In general, energy averaging caus
departure from the quantum limit—over sufficiently large i
tervals, the operatorsI and Q look less and less like on
another. Like Eq.~39!, Eq. ~40! can also be interpreted as
requirement of no missing information. Here, the requi
ment is that energy averaging does not result in the los
information about the qubit that is encoded in the ene
dependence ofT. While such information is not obtained i
the measurement of̂I & @which involves energy averaging
cf. Eq. ~32!#, it could be obtained if one measured the ent
function ^I (V)& for 0<uVu<mL2mR . As discussed, the
presence of any missing information necessarily implie
departure from the quantum limit.

Interestingly enough, Eq.~40! may be understood com
pletely classically, even though it formally results from r
quiring the proportionality of two quantum operators. To
so, we calculate the classical information capacityR @cf. Eq.
~21!# corresponding to two different possible measureme
First, imagine we measure the integrated currentm
5*0

t dt8I (t8), and assume the probability distribution
p(mu↑) and p(mu↓) are Gaussian. For weak coupling, o
finds for the capacity:

Ravg5Gmeast5
t

2h

S eAE
mR

mL
d«

dT~«!

d« D 2

E
mR

mL
d«T~«!@12T~«!#

~43!

.
~d«!t

2h

S eA(
j

dT~« j !

d« D 2

(
j

T~« j !@12T~« j !#

. ~44!

In the last line, we have discretized the energy integrals,
partitioned the interval@mR ,mL# into equal segments o
length d«. If we now imagine we could measure eachmj

5*0
t I j (t), whereI j (t) is the contribution to the current from

the j th energy interval, a similar calculation reveals

Rtot5
~d«!t

2h (
j

S eA
dT~« j !

d« D 2

T~« j !@12T~« j !#
. ~45!

One can easily check thatRtot>Ravg; this corresponds to the
additional information that is generally available in the e
ergy dependence ofT. A necessary and sufficient conditio
for ensuringRtot5Ravg is precisely the condition in Eq.~40!.
On a purely classical level, this condition ensures that
information is lost when one averages over energy.
16532
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How can the problems generally posed by energy ave
ing be avoided? One possible solution would be to use v
ages small enough that the scattering matrixs can be ap-
proximated as being linear in energy, that iseV(dT/dE)
!1 ~this is the approach of Ref. 6!. However, as the linear
response coefficientl is given by the energy derivative o
the transmission@cf. Eq. ~32!#, such a small voltage would
imply both a small signal and essentially no gain. T
change in current induced by the qubit,DI 56Al, would be
much smaller than the current associated with the coup
voltageA:

l.
e2

h S dT

dE
euVu D!

e2

h
, ~46!

Gmeas}S dT

dE
eVD 2S A

eVD A

h
!

A

h
. ~47!

Even though this smallness ofl does not theoretically affec
the approach to the quantum limit, it does severely limit t
detector’s practical value—for very slow measurement ra
environmental effects on the qubit will become domina
over back-action effects.

If we now consider finite voltages and fully energ
dependent scattering, Eq.~40! tells us the condition unde
which energy averaging the transmission does not imp
reaching the quantum limit. The solution to Eq.~40! has the
form

T~E!5
1

11e4p(E2E0)/C . ~48!

This form forT(E) implies that there is no extra informatio
in the energy dependence ofT which is lost upon energy
averaging. Amusingly, Eq.~40! correspondsexactly to the
energy-dependent transmission of one channel of an a
batic quantum point contact.7 The constantE0 represents the
threshold energy of the channel~i.e., the transverse mode!,
and the constantC is given by

C52
2A2\vF

AdR
, ~49!

whered is the transverse width of the constriction at its ce
ter andR is the radius of curvature of the transverse confi
ing potential at the constriction center.

B. Multichannel case

We now consider the situation where there areN channels
in each of the two contacts leading to the reservoirs. I
useful to writes in terms of itsN transmission eigenvalue
Tj (E) using the standard polar decomposition:27

s~E!5S sLL sLR

sRL sRR
D 5S U

V D S AR AT

AT 2AR
D S U8

V8
D . ~50!

Here, U,U8,V,V8 are N3N energy-dependent unitary ma
trices, andAR andAT are diagonal matrices having entrie
A12Tj (E) andATj (E), respectively.
4-7
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In the multichannel case, the backwards gainl8 again
vanishes irrespective of the details ofs as a result of the
analytic properties ofs. The relevant question then to ask
what conditions must be satisfied bys(E) so that the propor-
tionality betweenI andQ required to reach the quantum lim
@i.e., Eq.~16!# is achieved. As in the single-channel case,
relevant matrix elements ofI and Q involve destroying a
scattering state incident from the left and creating an eq
energy state describing an incident wave from the right;
additional complication now is that these transitions co
result in a change of transverse mode. One thus need
examine the coefficients of the operator produ
aRn

† (E)aLm(E) appearing in the expansion ofI andQ, in the
energy interval@mR ,mL#. The proportionality condition of
Eq. ~16! again yields the requirement that Eq.~38! holds for
all energies in this interval; now, however, both the right- a
left-hand sides of this equation areN3N matrices:

;Ee@mR ,mL#,@sLR~E!#†sLL~E!5 iCNRL~E!. ~51!

Here,C is again an energy-independent real number. Us
the polar decomposition, one can derive from Eq.~51! two
necessary matrix conditions that must hold for all energie
the interval defined by the voltage:

AT~E!fU~E!AR~E!2AR~E!fV~E!AT~E!50, ~52!

dT

dE
~E!

T~E!@12T~E!#
52

4p

C 31̂. ~53!

These conditions are the multichannel analogs of Eqs.~39!

and ~40!. 1̂ denotes theN3N unit matrix, and we have in-
troduced the generalized ‘‘phase-derivative’’ Hermitian m
tricesfU andfV

fU~«!52 iU †~«!F d

dE
U~«!G , ~54!

fV~«!52 iV†~«!F d

dE
V~«!G . ~55!

These matrices play the role of the energy derivatives of
phasesb andf in the single-channel case. Note the evide
asymmetry in Eq.~52!: the polar decomposition matricesU
andV enter, but the matricesU8 andV8 do not. We comment
on this in what follows.

1. Phase and channel mixing conditions

The first requirement@Eq. ~52!# places a stringent require
ment on the scattering matrixs. Like the corresponding re
quirement for the single-channel system, it ensures that t
is no additional information on the state of the qubit ava
able in measurable changes of scattering phases. Again,time-
reversal symmetry is not necessaryto have this condition
hold, as time-reversal symmetry only ensuresU5U8 and
V5V8. However, unlike the single-channel case, even
presence of parity symmetry~i.e., the combination of both
time-reversal symmetry and left-right inversion symmetry! is
16532
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not sufficientto guarantee that Eq.~52! is satisfied. The pres
ence of parity symmetry would indeed ensurefU5fV , but
as, in general,@AT,fU# and @AR,fU#Þ0, this is not
enough. In addition to havingfU5fV , one also generally
needs either thatfU is diagonal, meaning that the mod
index ~i.e., transverse momentum! is conserved during scat
tering, or that all the transmission eigenvaluesTj are identi-
cal. We thus see that if the transmissions fluctuate, m
mixing ~e.g., the nonconservation of transverse energy! also
prevents one from reaching the quantum limit of detecti
This can be understood from the point of view of inform
tion. If fU and fV matrices are not purely diagonal, info
mation about the qubit could be gained by looking
changes in how electrons incident in a given mode are p
titioned into outgoing modes. Such changes would not
detectable if all channels had the same transmission. N
that the matricesU8 and V8 appearing in the polar decom
position of s @Eq. ~50!# are irrelevant to reaching the quan
tum limit. As each transverse mode is equally populated w
incoming waves in the stateu i &, there is no information as
sociated with the preferred mode structure for incom
waves~i.e., the eigenvectors ofU8 andV8).

2. Transmission condition

Consider now the condition imposed by Eq.~53!, which
constrains the form of the transmissionsTj («) of the detec-
tor. Similar to the corresponding condition for the singl
channel system, this requirement ensures that there is no
ditional information available in either the energyor the
channel structure of the$Tj («)% which is lost upon averag
ing. One obtains a necessary form for the transmissio
similar to what was found in Ref. 6:

Tj~E!5
1

11e4p(E2Ej )/C
. ~56!

Note that different modes differ from one another only
their threshold energyEj ; the constantC is the same for each
mode. Again, this form for the transmissions$Tj («)% corre-
sponds exactly to those expected for a multichannel adiab
point contact.7 The assumption of adiabaticity implies th
transverse energy is conserved. Thus, if parity symmetry
holds, we reach the surprising conclusion thata multichannel
adiabatic point contact remains a quantum limited detec
even if the voltage is large enough that several modes c
tribute to transport. Previous studies have established th
point-contact detectors reach the quantum limit in the lim
of small voltages, where the energy dependence of scatte
can be neglected.8–10 We have shown here that in the adi
batic case, the quantum limit continues to hold even at v
ages large enough that the energy dependence of scatter
important. This is significant from a practical standpoint
requiring small voltages limits the magnitude of the outp
current and thus, the overall scale of the measurement
making the detector more susceptible to environmental
fects.
4-8
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3. General expression for noise correlators

For completeness, we give explicit expressions for
noise correlators. Writing them in terms of energy depend
N3N matrix kernels„ i.e., SX5*mR

mLd«@ tr ŜX(«)#…, we ob-

tain

ŜI~«!5
2e2

h
T~12T!, ~57a!

ŜQ~«!5
e2\

2p S ~]«T!2

2T~12T!
12TR~fU2fV!2

12@fU ,ATR#@ATR,fV#1@fU ,T#@T,fU#

1@fV ,T#@T,fV# D , ~57b!

l̂~«!52
e2

h
~]«T!, ~57c!

ŜIQ~«!5 i\l̂~«!1
e2

p
@TR~fU2fV!#. ~57d!

A similar expression for the charge noiseSQ of a mesoscopic
conductor was first derived by Bu¨ttiker.28 Unlike the expres-
sion for the current noiseSI , which can easily be understoo
in terms of partition noise, it would seem at first that there
no simple, heuristic way to interpret the expression forSQ .
However, if we invoke ideas of information, each term in E
~57b! acquires a simple meaning. The first term represe
information associated with the energy dependence of
transmissions; the second represents information assoc
with the energy dependence of phase differences; and the
three terms represent information associated with the p
tioning of electrons into different modes. In general, us
Eqs.~5! and~25!, we maydefinethe charge noise in terms o
the accessible informationI in the coupled conductor plu
qubit system:

SQ5 lim
A→0

lim
t→0

\2

A2

d

dt
I~ t !. ~58!

While this last expression may seem purely tautological, i
clear that the various contributions to Eq.~57b! for the
charge noise are best understood in terms of informat
Note that the accessible informationI could be obtained di-
rectly in the present system by calculating the overlap
tween the detector states corresponding to the two q
states. Such a calculation would take the form of an ortho
nality catastrophe calculation, similar to that presented
Ref. 29.

C. Local potential coupling

In the remaining part of this paper, we consider a m
general version of the mesoscopic scattering detector, sh
ing that the main results of the preceding section continu
hold. We relax the condition that the state of the qubit mo
lates auniformpotential in the scattering region, thus allow
16532
e
nt

s

.
ts
e

ted
ast
ti-

s

n.

-
it

o-
n

e
w-
to
-

ing for a wider class of input operatorsQ than that given in
Eq. ~29!. In general, we may write

Q5eE dEdE8 (
b,g5L,R

@abn
† ~E!Wbn,gm~E,E8!agm~E8!#,

~59!

whereW(E,E8) is a 2N32N Hermitian matrix having di-
mensions of inverse energy. The situation considered in
preceding section corresponds to choosingW to beN(E,E8)
@Eq. ~30!#, which atE5E8 is just the Wigner-Smith delay
time matrix. By comparing against the current operatorI @cf.
Eq. ~27!#, it is clear that the proportionality condition in Eq
~16! necessary for the quantum limit constrains the diago
in energy, off diagonal in lead index part of the potent
matrix W:

;Ee@mR ,mL#, @W~E,E!#RL5 i
1

C @sLR#†~E!sLL~E!,

~60!

where C is a real constant. We thus see that the requi
proportionality betweenI andQ needed to reach the quantu
limit at zero temperature leaves a large part of the poten
matrix W undetermined~i.e., terms diagonal in the lead inde
and/or off diagonal in energy!. We now show that by consid
ering a form forW that is drastically different fromN, one
can make it easier to reach the quantum limit and hav
reasonable gain. In particular, one can work at small volta
without necessarily having a vanishing gain.

We specialize the discussion to a case that in many w
is the opposite of having global potential coupling. We ta
the scattering matrixs to be energy independent over th
energy interval defined by the voltage, and takeW to corre-
spond to a local potentialW(E,E8)5W over the energies o
interest. In this case, the scattering matrixs will have one of
two different energy-independent values depending on
state of the qubit:

s65s06eA~Ds!, ~61!

wheres0 is the scattering matrix at zero coupling (A50).
The matrixW may be directly related to the change in th
scattering matrix,Ds ~see Appendix B for a derivation!:

W5 is0
†~Ds!. ~62!

Note the similarity to the form ofW in the global-potential
coupling case~where W5N); now, the energy derivative
ds/dE has been replaced by the finite differenceDs[(s1

2s2)/(2eA).
Turning to the conditions needed for the quantum lim

we find again that the causality properties of the scatter
matricess6 ensurel850 always. The remaining proportion
ality requirement of Eq.~16! places constraints ons6 . These
have an analogous form to Eqs.~53! and ~52!, but now the
energy derivatived/dE is replaced by the finite differenceD
„i.e., DX5(X@s1#2X@s2#)/(2eA)…:

DT

T~12T!
5C31̂, ~63!
4-9
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ATf̃UAR2ARf̃VAT50, ~64!

wheref̃U52 iU †(DU) and f̃V52 iV†(DV) . Importantly,
the above conditions do not involve any energy averaging, as
we have takens andW to be energy independent. Noneth
less, there still is a nonvanishing gainl determined by both
the voltage and theDTj :

l5
e2V

h (
j

DTj . ~65!

Thus, using a local coupling between the qubit and the s
tering detector makes it easier to reach the quantum limit
have a sizeable gain—one can use voltages small eno
that energy averaging is not a problem, while still having
qubit modulate the transmissions. Note that in the sing
channel case, all that is needed for the quantum limit is
the state of the qubit should not change the difference
tween reflected and transmitted phases:D(f2b)50. Also
note the various noise correlators are given by Eqs.~57!,
with the substitutiond/dE→D.

IV. CONCLUSIONS

We have developed a general set of conditions that
needed for a detector in the linear-response regime to re
the quantum limit of detection. One needs both a restric
proportionality between the input and output operators of
detector@cf. Eq. ~16!#, and a causal relation between th
output and input@cf. Eq. ~17!#. Applying the concept of ac-
cessible information to the detector, one sees that deviat
from the quantum limit imply the existence of missing info
mation residing in the detector, information that is not be
utilized. The general conditions in Eqs.~16! and~17! ensure
the nonexistence of such information. Applying these c
cepts to the mesoscopic scattering detector, we find that t
general conditions place restrictions on the form of the
tector’s scattering matrix. These restrictions do not invo
symmetry properties usually considered in mesoscopic
tems, but are rather best understood as following from
requirement of having no missing information. In the mes
scopic scattering detector, missing information may resid
the relative phase between transmission and reflection, in
energy or mode structure of the transmission probabilities
in the partitioning of scattered electrons between differ
modes. Surprisingly, we find that an adiabatic point cont
conforms to all the conditions needed for the quantum lim
even when the voltage is large enough that many modes
involved in transport, and the energy dependence of sca
ing is important.
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APPENDIX A: ACCESSIBLE INFORMATION

In this appendix, we provide a simple proof of Eq.~24!
for the accessible informationI. Given the two statesuD↑&
anduD↓&, the goal is to maximize the classical mutual info
mation R @defined in Eq.~21!# over all possible choices o
measurements. A given choice of measurementY corre-
sponds to a choice of basis; the probability distributio
p(yi u↑) and p(yi u↓) are determined by the elements of th
corresponding states in this basis. Treating thep(yi us) as
independent variables restricted to the interval@0,1# and us-
ing Lagrange multipliers, we minimizeR subject to the fol-
lowing constraints:

(
i 51

N

p~yi us!51, ~A1!

(
i 51

N

Ap~yi u↑ !p~yi u↓ !5u^D↑uD↓&u[cosa. ~A2!

The second condition, in principle, need only be an inequ
ity, with the left-hand side being greater than or equal to
right-hand side; however, it can be verified that the ma
mum value ofR occurs when it is enforced as an equali
Also note that without loss of generality, we can choose
inner product appearing in Eq.~A2! to be real and positive
asR is independent of the relative phase between the st
uDs&. Finally, we have assumed to start that these states h
at mostN nonzero components in the chosen basis. Variat
with respect top(yi u↑) yields the following condition:

ln
p~yi u↑ !

p̄~yi !
12l↑1lAp~yi u↓ !

p~yi u↑ !
50, ~A3!

with a similar equation emerging from variation with respe
to p(yi u↓). l, l↑ , and l↓ are Lagrange multipliers;p̄(yi)
5@p(yi u↑)1p(yi u↓)#/2 is the averaged distribution. Sub
tracting the↑ and↓ equations yields

l5
Ap~yi u↓ !p~yi u↑ !

p~yi u↑ !2p~yi u↓ !
ln

p~yi u↑ !

p~yi u↓ !
5

A12b i
2

2b i
ln

11b i

12b i
,

~A4!

where we have definedb i via

b i5
p~yi u↑ !2p~yi u↓ !

p̄~yi !
. ~A5!

b i may be thought of as the amount of information gained
a measurement,given that the outcome of the measureme
is yi . Now, Eq. ~A4! must hold for eachb i ( i 51, . . . ,N);
moreover, the function on the right-hand side is symmetric
b i and monotone decreasing for 0<b i<1. It thus follows
that for eachi,

~b i !
25constant5sin2a. ~A6!
4-10
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QUANTUM-LIMITED MEASUREMENT AND INFORMATION . . . PHYSICAL REVIEW B 67, 165324 ~2003!
The last equality follows from substitution into Eq.~A2!.
Further substitution into Eq.~21! for R yields the expression
in Eq. ~24!; note that the averaged distributionp̄(yi) and the
relevant number of basis elementsN do not appear in this
expression. One can explicitly check that choosing any of
p(yi us) to be 0 or 1 results in a lower value ofR; thus, Eq.
~24! does indeed correspond to the maximum value ofR and
thus, by definition, to the accessible informationI. The con-
dition ~A6! required to optimizeR implies that the amount o
information gained via measurement is the same for eac
the measurement outcomesyi . Equivalently, each basis ele
ment in an optimal basis has the same information con
associated with it. This is similar to requirements obtained
have the mesoscopic scattering detector reach the qua
limit; in that case, each channel and each energy were
quired to have the same information content@cf. Eq. ~53!#.
Note also thatthere are several distinct choices of bases (i.
measurement schemes) which optimize R; this point was not
made in Ref. 14. A particularly simple optimal basis can
constructed forN52. In this basis, the nonzero componen
of the statesuDs& are given by

uD↑&5~cosu,sinu!, uD↑&5~sinu,cosu!, ~A7!

whereu5p/41a/2. By definition, the state (1,0) leads t
the measurement outcomey1 with perfect certainty, while
the state (0,1) leads to the measurement outcomey2 with
perfect certainty. In geometric terms, the optimal basis gi
here is one in which the angle between the two statesuDs& is
bisected by the vector (1,1).

More generally, consider the form of an optimal ba
where N5M ~i.e., there areM possible outcomes when
measurement is made on the stateuD↑& or uD↓&). Taking M
to be even for simplicity, and lettingu j & denote the basis
states, a possible optimal basis is one in which

^ j uD↑&5A11~21! jsina

M
, ~A8!

^ j uD↓&5A12~21! jsina

M
. ~A9!

The fact that there are many possible outcomes of a meas
ment does not degrade from the optimality of mutual inf
mationR, as the information associated with each measu
ment outcome is the same.

APPENDIX B: DERIVATION OF Ds

In this appendix, we provide a brief derivation of Eq.~62!
which relates the coupling potential matrixW @cf. Eq. ~59!#
to the associated change in the scattering matrix,Ds. The
latter quantity determines the noise correlators and gain
the local-potential coupling version of the mesoscopic sc
tering detector. Our approach is similar to that used in R
30 to relate the scattering matrix of a quantum dot to
Hamiltonian.

In what follows, we assume~as in Sec. II B! that the po-
tential matrixW and the zero-coupling scattering matrixs are
independent of energy on the scales of interest. We star
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writing the system Hamiltonian in terms of the scatteri
states of problem at zero coupling, assuming the qubi
frozen in the↑ state:

H5\vF(
m

E dkH kcm
† ~k!cm~k!

1~Ae!(
m8

E dk8@cm8
†

~k8!Wm8mcm~k!#J . ~B1!

We have assumed a linear dispersion near the Fermi en
with \k and \k8 representing the deviation of the mome
tum from the Fermi momentum. We have also neglected
fact that the effective Fermi velocity is channel depend
(vF drops out of all final expressions!. The operatorcm

† (k)
creates a scattering state incident in the lead and transv
mode indexed bym. For definiteness, we take our leads~both
left and right! to be defined only on the half linex,0, and to
be confined in they andz directions. Further, we assume th
the scattering region is situated onx.0. We may write the
full electron field operator in terms of thecm(k) operators,
using the zero-coupling scattering matrixs. Writing xW
5(x,y,z), we have:

C~xW !5(
m

E dk

A4p
cm~k!Fei (kF1k)xfm~y,z!

1(
n

e2 i (kF1k)xfn~y,z!snmG ~B2!

5
1

A2
(
m

cm~2x!eikFxfm~y,z!

1
1

A2
(
m,n

cm~x!e2 ikFxfn~y,z!snm . ~B3!

In the last line, we have introduced the operatorscm(x),
which are the Fourier transforms of the scattering state
eratorscm(k). Note again that this expression is only val
for x,0, as the leads are only defined onx,0. We thus see
that for x,0, cm(x) describes anoutgoing ~i.e., left-
moving! wave, whilecm(2x) describes anincoming ~i.e.,
right-moving! wave.

Next, we may express the system Hamiltonian in terms
the cm(x) operators. This in turn leads to an equivale
single-particle Schro¨dinger equation

Ec̃m~E,x!5\vFF i ]xc̃m~E,x!1Aed~x!(
n

Wmnc̃n~E,x!G .
~B4!

Here,c̃m(E,x) is a wave function that arises when the fie
operatorcm(x) is expressed in terms of operators corr
sponding to the eigenmodes of the full HamiltonianH. Given
the relation ofcm(x) to incoming and outgoing waves@cf.
Eq. ~B3!#, we choose the following form forc̃m(x):
4-11
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c̃m~E,x!5H e2 ikxain,m if x.0

e2 ikx(
n

smn
† aout,n if x,0,

~B5!

whereE5\vFk. Substituting this form into Eq.~B3!, we see
that the coefficientsain,m and aout,m do indeed correspond
~respectively! to the amplitudes of incoming and outgoin
waves.

Integrating Eq.~B4! from x502 to x501, interpreting
c̃(0) as @c̃(01)1c̃(02)#/2, and then using Eq.~B5!, we
find the following relation between the amplitude of incom
ing and outgoing waves:
ev

I.

it

e
re

s

,

-
e,

16532
aout,m5 (
n,n8

smnF 12
i

2
AeŴ

11
i

2
AeŴ

G
nn8

ain,n8 ~B6!

[(
n8

@s1AeDs#mn8ain,n8 . ~B7!

In the last line, we indicate that this relation defines the n
scattering matrixs1AeDs that includes effects of the add
tional potentialW. Expanding to lowest order in the dimen
sionless potentialAeW, we find Eq.~62! as advertised.
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