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Influence of a time-periodic magnetic flux on interacting electrons in a one-dimensional loop
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We considemN strongly interacting electrons in a one-dimensional circular loop that is pierced by a time-
periodic magnetic flwa(t) =ay+ a,(t) with the angular frequency. Similar to our previous work, where we
have considered a static magnetic flay, the electron positions are expressed in terms of collective and
relative coordinates. Strongre interaction can then be treated in a harmonic approximation for the relative
motion. The presently searched solutions of the time-dependenidiutyeo equation for a time-periodic flux
are given by the Floquet states. The Floquet states for a spatially constant one-particle potential form a
complete set of Floquet-basis states, which is used to study the influence of the one-particle potential on the
electronic states. While for a spatially constant one-particle potential the time-averaged observables, such as
the electronic energy and the electronic current or angular momentum, depend solely on the time-averaged
magnetic fluxay, a spatially varying one-particle potential leads to pronounced resonances. In the case of
moderate electronic relaxation, the stationary properties are determined by the Floquet state with lowest
time-averaged energy. For the associated persistent angular momentum we predict jumps with heights propor-
tional to the number of electrorid. We further show that, already by measuring the locations of these jumps
in the (@, ) plane, one could determine the number of electidres well as the effective-e interaction.
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[. INTRODUCTION studied experimentally contain a large number of transport
channels and that the experiments are carried out at finite
Mesoscopic rings are the simplest systems revealing ele¢cemperatures. Nevertheless, the role of the spin configuration
tronic quantum coherence in conjunction with the Aharonov-should remain important also in this case.
Bohm effect. Their electronic properties have been discussed Another problem concerns the experimentally observed
by many authors. Already two decades agoftiRer, Imry,  amplitudes of the persistent currents, which have given rise
and Landauérhave shown that the electronic ground state ofto intense discussion in the literature. The currents in metal-
a strictly one-dimensional metallic ring enclosing a staticlic loops are by two to three orders of magnitude too large in
magnetic flux carries a flux-dependent persistent current. Beeomparison with the theoretical predictions based on the
ing associated with the electronic ground state, this current isne-electron theory®1%*2Apparently, the backscattering of
expected to survive moderate inelastic backscattéfhgs  electrons by impurities is largely overestimated in these ap-
well as elastic backscattering by a spatially varying onejproaches. It is interesting to note that such discrepancies are
particle potential. These theoretical predictions have beennot found for semiconductor rings::*3
confirmed experimentally by several grodps$® The most Motivated by the failure of the one-electron picture to
recent review of the actual situation is found in Ref. 9. Inexplain the observed large amplitudes of the persistent cur-
agreement with the theoretical predictions, the oscillations ofents in metallic loops, several authors have studied the role
the persistent current found for single rings have the perio@f e-e interaction. Screening of the Coulomb part of the
®,=h/e.®~8 The magnetic response of large ensembles ofmpurity potentials is important in metal rings and may
rings shows oscillations with pericly/2.>*21*The suppres- partly be responsible for the reduced electron
sion of the ®, periodicity can be attributed to ensemble backscattering® The particular effects of electronic correla-
averaging*'* an explanation confirmed by the observedtion on the persistent currents have been discussed in Refs.
magnetic response of ensembles containing only few ringsl5-17 and 19-24. A somewhat different explanation of the
where both®, as well asd,/2 oscillations are found’** large amplitudes of the persistent currents has been proposed
In spite of the above-described success of the theoreticah Refs. 9, 25, 26, where the dc magnetic response of disor-
description of the electronic ground-state properties of medered ring systems is related with the dephasing by internal
soscopic rings, some experimental features are not yet wedlr external nonthermal equilibrium noise. In this picture, the
understood. Thus, until now it is not possible to predict thecontributions of excited states become important, i.e., the
sign of the current at a given flux. Experimentally, the sign ofpersistent currents are not a property of the electronic ground
the ® /2 oscillations found for the ensemble-averaged perstate. Bute-e interactions remain essential also here, since
sistent currents corresponds to a diamagnetic behavior fdhey determine the coupling of the electronic system to the
small magnetic field3.Theoretical predictions for a purely fluctuating electromagnetic fiefd.
one-dimensional ring show that the sign of the current at a The above-cited theoretical investigations were focused
given flux depends critically on the spin configuration of theon the magnetic response of ring systems stagic external
electronic ground state=” Clearly, when comparing the ex- flux. Temporal fluctuations of the electromagnetic field have
periment with these theoretical predictions one has to benly been considered to explain the large amplitudes of the
aware of the fact that, due to their finite thickness, the ringgpersistent currents in mesoscopic metal rings2°In these
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studies it was assumed that the amplitudes of the fluctuating €a
electromagnetic fields are small enough to be treated in sec-

ond order. In the present work we propose a general and

systematic approach that allows us to treat the influence of a

time-periodic magnetic flux on the electronic states of meso- 9
scopic rings. The influence of time-periodic flux oscillations
on systems of strongly interacting electrons is undoubtedly
interesting in its own right. In particular, such measurements
should give more insight into the particular nature of the
electronic correlations. Experimentally, no frequency depen-
dence is observed in the low-frequency range of 1G-H2,
This is quite expected, since the time variations are very
slow in comparison with the relevant dephasing times, so FIG. 1. Geometrical description of the sample system.

that the electronic system always relaxes into its static

ground statdsee, e.g., Ref.)5However, experiments in the dimensional loop with radiuR. A description in polar coor-
interesting high-frequency range should now be feasible. Theinates is therefore adequaf€ig. 1). Internal and external
magnetic response of an ensemble of fiigs etched in a fields are represented by a time-independent one-particle po-
GaAs-AlGaAs heterostructure has recently been measuradntial \V(6) and by a time-periodic tangential vector poten-

. . - 27 > >
for an oscillation frequency of 350 MHZ. Pieperet al. tial A= A(t)e, with periodP, where the latter corresponds to

have measured the magnetoconductance of single mesogtime.-periodic fluxd(t). These potentials satisfy the peri-
copic Ag rings connected to leads, for a time-periodic flux iNodicity conditions

the frequency range of 250 Hz-1.2 GHz superposed to a
static flux. More generally, we expect that the understanding V(0+2m)=V(6), O(t+P)=d(t)=27RA(1).
of the behavior of electronic states in a time-periodic flux ) ]
will also be useful to get a better insight into the effects of EXPressed in units of the flux quantuin,=h/e, the mag-
nonperiodic fluctuating electromagnetic fields treated inM€tic flux reads
Refs. 9, 25, 26. ®(1) 1P

Our approach is based on our previous work in Ref. 24, a(t)= ——=ap+ay(t), aoz_f a(t)dt,
where we have treated the situation of a loop enclosing a @, PJo
static magnetic flux using a continuous real-space represe
tation. Here we will generalize this description by allowing
for an additional time-periodic flux. The adequate Hilbert
space, the Hamiltonian, and the angular momentum operator 1f

\mt

Where ay represents the time-averagéat statig contribu-
tion. We then have

P
a,(t) dt=0.
0

for the N-electron system are introduced in Sec. Il. The elec- P
tronic states are described using Floquet’s theorem. In Sec.

Il we derive a solution for the Floquet states. We fUrtherThe N-electron wave function at agiven t|m§|s periodic in

introduce the expressions for the time-averaged quantities 3fe anglesd,,, n=1, ... N,

for the energy and for the expectation value of the angular

momentum, thus completing the description of isolated rings. V(... 00+2m, ... t)=V(...,0,,...1),
Under real conditions, coupling with the statistical environ-

ment will always lead to electronic relaxation. The relevant n=1,...N. (1)

time scales and the consequences of relaxation are discus
in Sec. IV. For sufficiently weak interaction with the statisti-
cal environment and temperaturés-0, we find that the

stationary situation reached after relaxation is described b

S\(Rg assume the spin part of the wave function to be
symmetric?® The spatial part must then be antisymmetric
With respect to the permutation of two electrons,

the Floquet state with the smallest time-averaged energy. The V(o br Bt
corresponding time-averaged expectation value of the angu- RS
lar momentum measures the time-averaged “persistent cur- ==W(...,0,,...,0¢, ... t), k#F{. (2

rent.” In Sec. V we present our numerical results for the . . .
time-averaged persisfent angular momentum. The resonand&'€ System is thus described by the Hilbert spice
features due to the coupling with the time-periodic flux are " N
analyzed. Final conclusions are drawn in Sec. VI. W(0,ts) e H=P(Lo([0,27)),
‘P being the projector on the subspace of the spatially peri-
odic and antisymmetric functions.

Expressed in the unitsi?/(2mR?) for the energy,

In Ref. 24 we have discussed the situatioNoélectrons  2mRe/# for the time andf for the angular momentunm
in a circular loop enclosing a static magnetic flux. Presentlypeing the electron mass, the evolution of the wave function
we generalize our approach to a time-periodic magnetic flux¥ e C1([0,27[NXR,C) for a given initial condition is ob-
We considerN interacting electrons in a circular one- tained from the Schiinger equation

Il. GENERAL THEORETICAL DESCRIPTION
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i W=HWV (3  and define the set of modes
with the Hamiltonian M,={e+t o} 7. (7)
H=Hg+Heet Hey. The Floquet parameters are often called quasienergies.
o With the scalar product-|-) in H, one forms the scalar
The Hamiltonian terms read product inHp
N ' , 1P
Ho(t)= 2 [—idy —apo—ay(t)]", <f|g>P:Ef dy(f|g),
n=1 0
5 which is the time-averaged value d¢f|g). The Floquet
Hoo= 2 L_, statesy, form an orthogonal basis iy . A general solution
1=n<n’=N | On— On/ of the Schrdinger equatior(3) for a given initial condition
2 can always be expressed as
5 w(in=3 ce ity (4,1)
Hev=2 vVE e+ c.c. ' 7 ) AR
v>0 n=1

where the index € Z labels the eigenvalues of E¢) within
the zone defined in Ed6).
N The Hamiltonian depends on the time-periodic magnetic
L(t)= > [—idy —ag—ay(t)]. flux a(t) =ag+ay(t). The static fluxao may be con_sidered
n=1 n as a parameter. Then, for eagfiwe have a set of eigenval-
uesej=¢j(ag), jeZ. Due to the periodicity of the eigen-
functions ¢, in the variablesd,, n=1, ... N, all spectra
are periodic in the static flugy with period 1. Indeed, if the
angle-periodic eigenfunctiogi, is an eigenfunction of Eq.
(5) for the fluxay, the function exg@E=h_, 6,)¢, is an angle-
periodic eigenfunction for the flugy+ &, provided thats is
We consider a time-periodic Hamiltonian with perigg ~ @n integer. Without any loss of generality one may therefore
H(t+P)=H(t). According to Floquet's theorem, a particu- restrict to the intervady e[ — 7, 3[. The pairs &, ¢;) denote
lar solution of the Schidinger equatiori3) can be written as  Points in the reduced zonZgg, the “Floquet-Brillouin”

The angular momentum operator is

In this energy scale the-e interaction parameter is)?
=e’mR/(h%4me,), and thewvth Fourier componeny, of
the one-particle potential becomes=2mRV, /%2,

lll. THE FLOQUET BASIS

Zone,
W(o,t)=e "y, (0,1), R, (0,t+P)=,(6,1). 11 o o
@ (ag,&)) € Zpp= 57 X 515 CR2
The functionsy, are elements of the Hilbert spaéés,
These points define the Floquet barg&),j € Z. Compar-
V. e Hp="Pp(L([0,20[NX[0,P)), ing the solutionsy= ¢, andy’ = ¢, to Eq.(5) for different

: . . time-periodic fl (1), ins th I
where Py is the projector on the subspace of the spatlallytIme periodic fluxesa(t) anda’(t), one obtains the genera

periodic, antisymmetric, and time-periodic functions. In thecontlnwty equation
following, they are referred to as Floquet states. The Floquet — e — i
statesy, e C1([0,2#[NX[0,P[,C) satisfy the equation (e=e)yy (")

N
e, =(H=id),. (5) == 2 (—i9g +a=a)l(~idg~a) gy’
n=
The periodP is related to the angular frequenay _
+ip(—id, —a')y)]. 8
o ] ] . For fluxesa(t) anda’(t) differing only in the static contri-
An infinite number of eigenvalues and eigenfunctions of Eq-bution,a(t) —a’(t)=a,—a}, the integration of Eq(8) over

(5) is associated with the same functi@r(é,t) in Eq.(4). In one period and over the angles leads to
fact, if ¢, is an eigenfunction in Ed5) for the eigenvalue,

then ¥, ., ,=€“'y,, N eZ, is an eigenfunction for the ei- (e —&")(Yl¢")p=—(ao—ag) (Ly|¢")p+(HIL ¥ )p),
genvalues + Aw. Thus, replacinge by e+\w in Eq. (4), )
one obtains the same functioh. Without loss of generality \yhere L and L’ are the angular momentum operators for
we may then choose the zone a(t) anda’(t), respectively. For identical static fluxes
=a}, Eq.(9) leads to

(e—&"){(ily')p=0.

wP=21.

(6)
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Floquet statesy and ¢ for different quasienergies are thus and the evolution operator becomes
orthogonal. _

For two Floquet stategs and ' belonging to the same Uty g)=e HnlTm-0) g <t<ty.
bands;, £=¢;(ao) ands’'=¢;(ag), we obtain after divid- The evolution operator over one peri®=ty —t, is then
ing of Eq.(9) by (ag—ap)(#|¢')p and performing the limit  given by the time-ordered product
ap—ay, . :

U(to+P,tg)=e Humm. .. g Him (14

1 g¢;
(L)pj=— > 19_61:)’ (10 The unitarity of the evolution operator is conserved in this

time-step procedure. In comparison with the first method, the

i.e., the slope of the Floquet bang(ao) is given by the size of the matrices that must be diagonalized to solve Eq.
time-averaged expectation value of the angular momentum(12) is reduced, but the number of diagonalizations in-

The Schrdinger equation for the Floquet states, ), creases, since we have to solve the static problem in each
may be solved in different ways. A first method consists ofinterval[t,,_,ty[. Itis evident, that the time-step procedure
the direct calculation using a basis of the Hilbert spage yields exact results for any physical continuous time-periodic
It necessitates the diagonalization of rather large matriceglux, if the time intervals are chosen sufficiently small.
This approach will, however, be useful in a perturbation Using Egs.(11) and(12) for a stationary solution of type
scheme. A second method is based on the unitary timei4), we get the time-averaged quantities for the energy and
evolution operatol(t,to), which relates a system staieat ~ for the expectation value of the angular momentum,
time t to the state at timé,,

1 (P
(1) =U(t,t)W(ty), with iU=HU, U(to,to)=1. <H>P=5JO dt(H (D))
(11
M
A solution of the type defined in Eq4) taken over one :i +
period P satisfies the eigenvalue equation for the Floquet P mzzl T Y1) U (tm o) HimU (tm o) [ 4 (to))
states
1 M
U(to+P,to) (to) =€ "*Py(to). (12 =5 2 Tl elto) Halv:(t0)), (19

The unitarity of the evolution operator implies

: 1P
jeieP|=1. L= | dLw)
This shows again that the parameterare real and that they

are defined up to a multiple of the angular frequeacyTo 1Y
determine the operatdi (ty+ P,t), it is convenient to ap- ) mZzl Tl ¥s(10) | U T (tm ,to) LU (tm  to) | (1))
proximate the time-dependent flux by a sequence of steps.
We then have (16)
M
a =3 81,1, (13 IV. ELECTRONIC RELAXATION
m=1 Up to now we have considered an isolated electronic loop.
with Real systems are, however, always embedded in some statis-
tical environment. In the following we assume that the envi-
1 ift,_st<ty ronment is maintained near some equilibrium. The effects
C.(t)= m=1 M due to weak dynamical interaction with the environment may
) be described by decoherence and energy loss of the elec-
0 otherwise, tronic system. The relaxation time depends on the coupling

The Hamiltonian and the angular momentum are thus tim@f the system to the environment as well as on the dynamical

independent in each time intervl,,_,,t[. The lengths Properties of the environment. The typical time scale for the
ro=tn—t,_, satisfy the conditionEranlrmz P. For t fluctuations of the environment near equilibrium is given by

the bath-coherence time,,,. In the limit 7,,,—0 and for
sufficiently weak interaction with the electrons the environ-
H(t)=H,=Hom*+ Heet Hev, ment acts as an ideal bath, i.e., memory effects can be ne-
glected. The bath-coherence timg, has to be distinguished
N from the coherence timess of the electrons in the system,
Hom= >, (—idg —ap—arm)? which depends on the dynamical coupling of the system to
i the statistical environment. In the hypothetical limifg
N —oo, the electronic system would be completely decoupled
L(t)=L,= 2 (_iaf}n_ao_al,m)a from its environment and evolve coherently. o .
n=1 In the following we assume weak dynamical interaction

el[tm_1,ty, We have
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between the electronic system and its environment. In this 8000 -
case we haver,< 7. If the environment is held at low
temperature, a system described by a time-independen
Hamiltonian will relax into its ground state, i.e., its electronic
properties are determined by the electronic eigenstate with

lowest energy. S & [+2N,0> -2N,0>
Presently we consider time-periodic Hamiltonians with L4 [#N-1,1°75 =N-1,1*">
. . . . -1 -1
periodP. For a weak interaction between the electronic sys- "t AL N
tem and its environment, the system will evolve coherently :/1\:
over several periods if v s s

Tenv<P< Tsys- (17 [+N,0> }-N,0>

. . . . . . O
Under this condition, the system is conveniently described in A E7-1600

terms of the Floquet states and the expectation values in the o [ : ]

static case have to be replaced by their time-averaged values  "_g g 0 0.5
. . . a .

For low temperatures, the system will then relax into the 0

“Floquet ground state,” the Floquet state with lowest time-

averaged energyH)p. The time-averaged physical proper-

ties are determined by the properties associated with the Flo., o o isy?=1C%. The bands are identified by the eigenstates

quet QfOU”d state. In _the fOHOWin_g' we will, in partiCUIar_’ |[ke). The first states of the relative motion are the ground state
investigate the behavior of the time-averaged expectatiol. g’ ang the twofold degenerate excitatians 11 of the first har-
value of the angular mor_nentUKfL)p associated with this monjc oscillator with frequency, (see Ref. 24 Direct dynamical
Floquet ground state. It will be denoted as persistent angulaoupling between statdsandk’ may occur fork—k’=» andv,
momentumL .. In the static case, the persistent angularx0. The coupling conditions are resumed in Table 1.

momentum is of course equivalent to the “persistent cur-
rent” discussed in the literature? 1
For a typical valuerq,e~10 1%s, the excitation period Hom+tHee=

FIG. 2. Energy bands foN=1001 interacting electrons in ab-
sence of the one-particle potentidfi{,,=0). The e-e interaction

(—id,—Nag—Nay )2

has to be much smaller to satisfy conditi¢tv?) , i.e., P N
<10 %s. The angular frequency or the energy of the elec- N-1
tromagnetic field should thus satisfy the condition + le (_aéﬁ 772wqujz)

0>10s"1, E=hw>10 eV, _ ,
_ _ _ asa basigsee Ref. 2/ Here w; denote the frequencies of
which corresponds to electromagnetic waves with energy inhe harmonic oscillators describing the relative motion of the

the far-infrared region. electrons. The eigenstates of the Hamiltonian may be labeled
by |ke), where the indicek and ¢ are associated with the
V. N ELECTRONS IN A TIME-PERIODIC collective and the relative modes, respectively. We have

MAGNETIC FIELD

EQ™|ko)=(Hom+Hed ko),
In Ref. 24 we have developed an approach allowing to ke [ke)=(Hom+ Heollke)

treat a system ol interacting electrons, which are confined 1

on a one-dimensional loop enclosing a time-independent E(k%m)zﬁ(k_NaO_Nal,m)2+EQi
magnetic field. The electronic positions were expressed in

terms of a collectivecenter-of-magscoordinateu and rela-

tive coordinates|. We have shown that strorege repulsion <u,ﬁ|kg):eik”¢e(ﬁ).
can be treated within a harmonic approximation allowing to
study a large number of electrons. The harmonic approximaWe note thak and ¢ are related due to the symmetry con-
tion of the relative motion becomes exact in the limit of ditions(1) and(2). Since the system is rotationally invariant,
infinite e-e interaction parameten?. Even though the accu- the eigenstatei&e) do not depend on the magnetic flux. The
racy deteriorates for decreasingf, the low-energy states, corresponding energy bandE(k%)(aO) for a static flux
which are physically the most relevant, remain still well de-[a,(t)=0] are shown in Fig. 2 foN=1001. Considering an
scribed for large but finite;?. additional time-periodic fluxa,(t), we have to look for the
The approach of Ref. 24 provides a convenient basis téime-averaged values given in Eq45) and(16). Up to a
handle the present situation of time-periodic magnetic fieldsconstant shift in energy, the time-averaged energy bands re-
Adopting the time-step procedure described in Sec. Ill, wemain the same as in the static case. The time-averaged ex-
have in fact time-independent Hamiltonians in the intervalgpectation values of the angular momentum are unchanged.
tmo1=t<t,, [Eq. (13)]. For sufficiently small one-particle Allowing for a one-particle potentidfl .\, we express the
potentials, it is then convenient to take the eigenstates of thidamiltonians H,=Hgm+Heet Hey in the basis{|ke)}.
Hamiltonian The corresponding matrix elements are
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1 o 800
<kQ| HO,m+ Hee|k’Q’>: N(k_ Nao_ Nal,m)2+gg 5KQQ '
W
(kelHavlk @)= 2 ViK™ (v),
0
where the matrix elemenwtéﬁr(v), corresponding to the
vth Fourier component of the one-particle potential, have @
been calculated in Ref. 24. There it was shown that coupling
is possible only if
—-800
[k=K'[=w. (18 8000

Note that the matrix elements bf,,, are independent of the
magnetic flux, so that they can be calculated once for all.
After diagonalization of the Hamiltoniandl,,, we can
write each factor in Eq(14) for the time-evolution operator

U(to+ P,tp) in the common basi§ke)}. From Eq.(12) we
get the Floquet parametegsand the corresponding Floquet
statesiy(tg). The time-averaged energid)p and the time-
averaged expectation value of the angular momentujp
are calculated from Eq$15) and(16).

Repeating the procedure for different static contributions 0
ay, we obtain the Floguet bands(a,) as well as the bands 2002
describing theag-dependence ofH)p, (L)p, and of the
persistent angular momentuimes.

Figure 3a) shows the Floquet bands fas=1600 and
a,(t)=0. This may be seen as a particular dynamic contri-
bution. To each pointdy, ;) in the Floguet-Brillouin zone
Zgg corresponds a time-averaged ene(ti)p ; [Fig. 3(b)] 0
and a time-averaged expectation value of the angular mo-
mentum (L)p; [Fig. 3(c)]. The one-particle potentiab
=1 leads to the opening of gaps in the Floquet-band struc-
ture, for instance neaa,= =+ 3.

In order to determine the time-averaged persistent angular

<H>P

<L>P

momentum, we have to identify the Flogquet state with the 20(1%.5 0 a 05
lowest time-averaged energy, the Floquet ground state. The 0
associated Floguet parametersare depicted in Fig. (4). FIG. 3. Dispersion curves for interacting electron®N (

The corresponding time-averaged persistent angular mao=1001, ;2= 1¢%) in presence of a one-particle potentialy& 1)
menta, calculated from Eq16), are shown in Fig. @). In and a static flux ¢=1600,a,=0): () Flogquet parametes, (b)
principle, they could also be obtained from the derivatives ofime-averaged energyH)s, and (c) time-averaged expectation
the Floguet banfisee Eq(10)]. The time-averaged persistent value of the angular momentu¢h ), . A gap is opened between the
angular momentum decreases with increasing(see Ref. first two energy bandéH)p .

24).
In presence of a time-periodic contributiom,(t) 1
=_a1cos@t), al_a&O, additional gaps due to dynamlca_l cou- Ho(t) +Hee—idy=—[ —id,— Nag— Nay(t)]2
pling appear in the Floquet-band structure at certain static N
contributionsag. This is shown in Fig. &). The same dy- N—1

namical coupling is also at the origin of the rapid changes of
the time-averaged energy bandsg. 5b)] and of the time-
averaged expectation values of the angular momenfim
5(c)]. Figure &a) shows the Floguet parameters for the Flo-
quet ground states. The associated time-averaged persistést an orthonormal basis. The eigenstates may be written as
angular momenta given in Fig(§ show well-marked jumps |ke\), where, as previously, the indicksand o label col-
of heightN as well as some smaller peaks. lective and relative modes, respectively, ant the Floquet

To understand the dynamical effects, it is convenient tanode index defined in Eq7). For the time-periodic contri-
choose the eigenstates of the time-periodic opefate Eq. bution a,(t) =a;cost), we have the eigenvalues and the
5)] corresponding eigenstates

+ jzl (— a§j+ n*w’q’)—id,
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FIG. 4. Dispersion curves for interacting electron®N (
=1001, °=10% in presence of a one-particle potentialy&1)
and a static flux ¢ =1600,a,=0) for the Floquet ground statég)
Floguet parametes and (b) persistent angular momentuinpes.

<L>P

(0) 1 2 °
E(\ = (k—Nag)?+ &0, (19)
(u,g.tlken)=e" " Wekigy(q),
22k 2002 :
ap () =Aot— —=sin(ot). ~0.5 0 a 0.5
From the identitye*izsimb:2;7%\]%(2)@5(1), where Jy(z) are FIG. 5. Dispersion curves for interacting electron®N (
the Bessel functions of the first kind, we get =1001,7°=1C) in presence of a one-particle potentialy& 1)

and a dynamic flwa,(t) =a;cost) (w=1600,a;=1), (a) Flo-
1fpdt (D @iy () — quet parametee, (b) time-averaged energ{H)p, and(c) time-
PJo € € = Ih-n (Zie) averaged expectation value of the angular momer{iuyp . Due to
dynamical coupling between the static bands shown in Fig. 3, ad-
a, ditional gaps are opened at Floguet-band crossings leading to the
Zykr :7“(_ k’). particular behavior of the time-averaged quantities.

The time-averaged energies and the time-averaged expecta- (LYp=(ko\|L|koN)=k—Nay.
tion values of the angular momentum associated with the
basis statesko)\) are In presence of a one-particle potentidly, the Floquet
states are solutions of
<H0(t)+Hee>P:<kQ7\|H0(t)+Hee|kQ)\>
1 8|¢S>Z[H0(t)+Hee_iat+HeV]|¢s>'

= (k=Nag)®+&,,

N They may be expressed in the above basis as
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800 Fora,/w#0, coupling between Floquet-basis states with
different A becomes possible, as can be seen from(EQ).
For Floquet states satisfying conditioh8), the coupling is

w largest when the eigenvalues given by ELp) are degener-
ate. In other words, coupling may occur when the time-
averaged energiefHy+Hgop Of the interacting electrons

ol ] differ by a multiple of the angular frequenay. As shown
before[see Eq.(6)], we need only to consider the eigenval-
() uesE(Y), in the intervall — w/2,0/2[,
o 1 ) _ 0@
—o=qkNa+Erw=elgi<5. (2D
-800 ‘ which determines the integér. We thus have to look for
1001 crossings in the Floquet-Brillouin zor&g (see Figs. 3 and

5). At the Floquet-band crossing we have(®)(a,)
[ =¢'O(ay), which implies

- (’\J 1 k?=K'24+N(E—Ep ) ~N(A =N o 1
__SaO: e
2 2N(k—k") 2

0 (22)

(\’/ For a given static fluxag and in absence of a one-particle
] potential, a time-periodic flua,(t) =a;cost) does not in-
(b) fluence the time-averaged quantities. In Ref. 24 we have
shown that for large-e interaction only Fourier components
v, with v=uN, u e N lead to significant static coupling. The
1001 . - e .
—0.5 0 a 05 effects of coupling may be amplified in presence of a time-
0 periodic fluxa,(t) =a,cost) revealing other Fourier com-
FIG. 6. Dispersion curves for interacting electronfN ( pon_en_ts. In the following, we consider the eﬁects_ of a time-
=1001, 72=10% in presence of a one-particle potential1)  Periodic flux for the cases of strong and weak static coupling,
and a dynamic flwa, (t) = a,cost) (o=1600,a;=1) in the Flo-  Which will be represented by Fourier componenis#0 and
quet ground stateg) Floguet parameter and(b) persistent angular  v17 0, respectively. We further restrict the discussion on the
momentumL .. The time-averaged energy bands crgsig.  influence of the couplings involving the ground state. Similar
5(b)], leading to jumps of heighi of the persistent angular mo- arguments hold for any other state.
mentum. The Fourier componenty of the static potential enables
dynamical coupling between basis Floquet states With
—k’|=N. Efficient coupling is expected between the ground
e = 2 / k'@ NP, rgrnr - state |ke)=[0,0) (£,=0) and the statesk’@’)=|+N,0)
ke (£,,=0), when the crossing conditioE(k(?)g,—E(k%)zw is
The coupling of the basis statéiso)\) is described by the satisfied. FoN= 1001, »?=10°, andw= 1600 (see Fig. 2,
matrix elements we find A=0 and \'=1 from Eq. (21). Equation (22)
yields the Floquet-band crossing positionsag ()
=(%0.30, 89.61)see Fig. 3. The resulting width of the gap
seen in Fig. B8) may be estimated for smadly in a two-

) ] . ) band approximation. Fai; =1 andvy=1 we obtain
This shows that dynamical coupling between basis Floquet

states withk—k’|= v requires the presence of nonzero Fou-
rier components . Ae=2]J_4
Taking the limita; /w— 0, we recover the static situation
discussed in Ref. 24. In this case, we hayg —0 and the in good agreement with the numerical result. The numerical
matrix element$20) reduce to factor Jy is defined in Ref. 24. The time-averaged energy
bands (H)p(ay) [Fig. 5(b)] associated with the Floquet
L ' 1ot bands may differ strongly from the energy bands for the
(keMHevk @' \")— &} ;0 Vie” (). static casgFig. 3b)]. In particular, the contributions of the
Floquet basis states to the Floquet ground state may change
Thus only the Floquet-basis states with-\" are coupled. strongly with the time dependeneg(t) of the flux. This
For w—, the Floquet parameter can be identified with is seen in Fig. @&). Because of the symmetry of the band
the energy, and we may choose=0. structures, we may restrict our discussions to positive fluxes

pers

<kex|Hev|k’e'x'>=~n_w(zkkr>20vt’f’m. (20)

2a;N

w

=26.34,

UNNJN
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a FIG. 8. Dispersion curves for interacting electron®N (
A =1001,7°=10% in presence of a one-particle potentiad(
v =200) and a dynamic flum,(t) =a,;cost) (w=2885.5,a;=1)
in the Floquet ground statéa) Floquet parameter and(b) persis-
tent angular momentuni ... The time-averaged energy bands
0 cross[Fig. 7(b)], leading to jumps of heighN of the persistent
angular momentum.
interval age[0.29, 0.31 the Floquet basis statfN,0,0)
gives the main contribution to the Floquet ground state. The
‘ time-averaged energy is then given BM)p=N(1—a)?
20(1% and the persistent angular momentumLig,<=N(1—ay),

5 0 a, 0.5 corresponding to a jump of height[Fig. 6(b)]. The width of
_ _ _ _ this structure becomes important when the state® and
FIG. 7. Dispersion curves for interacting electron®\ (k= +N are coupled in first order by Fourier components
=1001, »°=10° in presence of a one-particle potentiad;( 55 js the case in the given situation.
:g(ol?) and a dynamic fluxa,(t)=a,cos@f) (w=2885.5 In principle, the same arguments hold for coupling asso-
<&, a;=1), (8 Floquet paramete, (b) time-averaged energy ;jated with the Fourier componeni of the static potential,
(H)p, and(c) time-averaged expectation value of the angular mo~, hich enables dynamical coupling between basis Floquet
mentum(L)p . The Fourier component, couples between almost states with [k—k'|=1. Efficient coupling between the
identical Floquet bands, leading to the coupling of parallel time- round state|k >_|0 O} (£,=0) and the State$k’ 2
averaged energy bang@Big. 2(b)]. 9 - @)= 1) [ ) e
=|=1, 174 (SQ,:g(l , see Ref. 2%is expected when the

a,=0. Far from the resonance ab,=0.30, the F|oquet Crossing COﬂditiOfEE((?)Q,_E(k%):w is satisfied. Note that the
ground state is essentially described by the Floquet baslwidth of the window for the resonance frequencies

state |0,0,0). As in the static case, the associated time-
averaged energy is given kz(y-l)p=Na§ and the persistent
angular momentum it o= —Nag. Near the intervala,
€[0.29, 0.31, coupling with the Floquet basis state
|—N,0,1) becomes important, leading to the increase of thds independent oN. For N=1001 and»*=10°, we have
absolute value of the persistent angular momentum. In thé(ll):2885.86. With the choice okw=2885.5, we find

1
—1<&M+ o<+l
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3.4

= 3.0x10°

FIG. 9. Persistent angular momentig,sas a function of the static flua, and the angular frequenay in presence of a one-particle
potential ¢,=100,vy=1) and a time-periodic fluxg;=1). The jumps in_ ¢ sare located on straight lines in thay, ) plane, identified
in Table | \'=1 and\'=3).

A=0 and\’'=1 from Eg. (21). Equation(22) yields the ground statg0,0,0) and the relevant excited Floquet states
Floquet-band crossing positionag,e) =(+0.18, 31.72) in |k’@’'\’) to first and second order in, andvy are given.
agreement with the numerical results shown in Fig. 7. TheThe lines(1) and (2) with slopes 2 and 4N in Fig. 9(b)
Fourier component; have to be large to give a sensible correspond to the strongest couplingsigyfor A'=1. The
effect. Near the intervadye[0.17, 0.19, the Floquet basis lines(2), (3), and(4) with slopes N/3 and 2\/3 are associ-
state|0,0,0) couples with the basis stajte- 1,171,1). In con-  ated with the weaker coupling far' = 3. According to Table
trast to the situation for they coupling discussed above, the |, the position of the quasidegenerate lin@s and (4) is
time-averaged expectation values of the angular momentumetermined by the first excitation energy’=27w, of the
of both states are nearly the same and no additional strugelative motion.
tures appear in the persistent angular momentum. In the in-
tervalape[0.17, 0.19 we obtain again a jump of height
[Fig. 8(b)]. Note that the window for the resonance frequen-
cies is very narrow, and that therefore it will be difficult to  We have studied the magnetic response of strongly inter-
observe the jump under realistic experimental conditions. acting electrons in a one-dimensional loop with respect to a
When both Fourier components, and vy are present, time-periodic magnetic flux. Our approach is based on Ref.
both the number of electroM$and the first excitation energy 24, where we introduced an explicit basiso&lectron states
gg”:znwl of the relative motion may be deduced from the to describe the situation for strong electron-electron interac-
positions of the jumps of the persistent angular momentumtion and time-independent potentials. Separating the collec-
Figure 9a) shows the numerical results for the same set otive and the relative motion of thdl electrons, this basis
parameters as before, but the one-particle potential now bgrovides an adequate description of the ground state as well
ing described by the two componentg andvy . The reso- as of the first excitations that can be associated with the
nance structures are seen to follow straight lines, which arexcited states of the relative motion.
identified in Fig. 9b). The linear dependence can be under- In the present work, approximating the time dependence
stood from Table I, where the couplings between the Floquedf a time-periodic flux by a sequence of piece-wise time-

VI. CONCLUSIONS

TABLE I. Floquet statesk’o’\") coupled with the ground statko\)=|0,0,0) to first (v,) and second
order v ,v,s), and band-crossing conditions. The energy bands are presented in Fig. 2.

k'’ & v, a, Frequency range
+N 0 Vo L[ Ne 0<\'w<2N
2 2N
+2N 0  vanvan i(lf_‘” 2N<\'w=<6N
4N
+(1-N) &Y viway +N;1+E(11)——)\’w & 1-N__, <& (1-N)(1-2N)
e W NI T( ) Do SN es&T T

N+1 EP-Nw

+(1+N gy b e
(1+N) ! N T 2N+ 1)

<
+
=
<
+
=z

+

1+N 1+N)(1+2N
&Y+ Tsh@sé‘fh*
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independent fluxes, we have made use of the basis con- Experimentally, it should, in principle, be feasible to ob-
structed in Ref. 24 for each time interval. We have furtherserve the here discussed resonances of the persistent angular
assumed the electronic coherence time to be much largehomentum by measuring the associated magnetic momen-
than the period of oscillation. We then have discussed théum in presence of time-periodic fields with frequencies in
time-averaged expectation value of the angular momentunhe far infrared. Our results show that such measurements are
which is equivalent to the time-averaged current. In absencgypected to give useful information about the importance of
of a one-particle potentidfl.y, a time-periodic contribution  the e-e coupling, the disorder potential, as well as the num-
to the magnetic flux has no effect on the time-averaged cUfper of electrons in small ring systems. In order to test our
rent an.d the current eqyals th_e free-electron current. ABredictions we suggest to look for the appearance of reso-
shown in R_ef. 24, the-e Interaction tends to Suppress the nances in thedy,w) plane, i.e., to establish the situation of
backscattering due to the Fourier componentsf Hey with Fig. 9. Since the required Fourier coefficients of the one-

nonintegerv/N, while the influence of Fourier components particle potential are most probably rather negligible in

vuN, p &N, is enhanced. In presence of a one-particle poj, 24 e expect that semiconductor loops are more inter-
tentialH.y, a time-periodic magnetic flux reveals other Fou- :

. : esting for such investigations. The position of the resonances
rier components than , as for exampley,, which would

correspond to a static electric field in the plane of the Ioop]depeg.dlng c_rltlcal.lty on Itdhelnurtr:ber of (_elzgtrc)thatnd th?
The dynamical coupling leads to additional coupling be- 00p dimensions, 1t would also beé more indicated fo periorm

tween Floquet basis states separated in energy by a muItipﬂs‘Ch experiments on single rings rather than on ensembles of

of the frequencyw. Taken as a function of the time-averaged "N9S:

magnetic fluxa,, the persistent current, which corresponds

to the Floquet state with the lowest time-averaged energy, ACKNOWLEDGMENT
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