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Influence of a time-periodic magnetic flux on interacting electrons in a one-dimensional loop
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Institute of Theoretical Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

~Received 22 May 2002; revised manuscript received 31 October 2002; published 3 April 2003!

We considerN strongly interacting electrons in a one-dimensional circular loop that is pierced by a time-
periodic magnetic fluxa(t)5a01a1(t) with the angular frequencyv. Similar to our previous work, where we
have considered a static magnetic fluxa0, the electron positions are expressed in terms of collective and
relative coordinates. Stronge-e interaction can then be treated in a harmonic approximation for the relative
motion. The presently searched solutions of the time-dependent Schro¨dinger equation for a time-periodic flux
are given by the Floquet states. The Floquet states for a spatially constant one-particle potential form a
complete set of Floquet-basis states, which is used to study the influence of the one-particle potential on the
electronic states. While for a spatially constant one-particle potential the time-averaged observables, such as
the electronic energy and the electronic current or angular momentum, depend solely on the time-averaged
magnetic fluxa0, a spatially varying one-particle potential leads to pronounced resonances. In the case of
moderate electronic relaxation, the stationary properties are determined by the Floquet state with lowest
time-averaged energy. For the associated persistent angular momentum we predict jumps with heights propor-
tional to the number of electronsN. We further show that, already by measuring the locations of these jumps
in the (a0 ,v) plane, one could determine the number of electronsN as well as the effectivee-e interaction.

DOI: 10.1103/PhysRevB.67.165305 PACS number~s!: 73.22.Lp, 73.23.Ra, 73.21.2b
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I. INTRODUCTION

Mesoscopic rings are the simplest systems revealing e
tronic quantum coherence in conjunction with the Aharon
Bohm effect. Their electronic properties have been discus
by many authors. Already two decades ago, Bu¨ttiker, Imry,
and Landauer1 have shown that the electronic ground state
a strictly one-dimensional metallic ring enclosing a sta
magnetic flux carries a flux-dependent persistent current.
ing associated with the electronic ground state, this curre
expected to survive moderate inelastic backscattering2–4 as
well as elastic backscattering by a spatially varying o
particle potential.1 These theoretical predictions have be
confirmed experimentally by several groups.5–13 The most
recent review of the actual situation is found in Ref. 9.
agreement with the theoretical predictions, the oscillations
the persistent current found for single rings have the pe
F05h/e.6–8 The magnetic response of large ensembles
rings shows oscillations with periodF0/2.5,12,13The suppres-
sion of the F0 periodicity can be attributed to ensemb
averaging,3,4,14 an explanation confirmed by the observ
magnetic response of ensembles containing only few rin
where bothF0 as well asF0/2 oscillations are found.10,11

In spite of the above-described success of the theore
description of the electronic ground-state properties of m
soscopic rings, some experimental features are not yet
understood. Thus, until now it is not possible to predict
sign of the current at a given flux. Experimentally, the sign
the F0/2 oscillations found for the ensemble-averaged p
sistent currents corresponds to a diamagnetic behavior
small magnetic fields.5 Theoretical predictions for a purel
one-dimensional ring show that the sign of the current a
given flux depends critically on the spin configuration of t
electronic ground state.15–17Clearly, when comparing the ex
periment with these theoretical predictions one has to
aware of the fact that, due to their finite thickness, the rin
0163-1829/2003/67~16!/165305~11!/$20.00 67 1653
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studied experimentally contain a large number of transp
channels and that the experiments are carried out at fi
temperatures. Nevertheless, the role of the spin configura
should remain important also in this case.

Another problem concerns the experimentally observ
amplitudes of the persistent currents, which have given
to intense discussion in the literature. The currents in me
lic loops are by two to three orders of magnitude too large
comparison with the theoretical predictions based on
one-electron theory.5,6,10,12Apparently, the backscattering o
electrons by impurities is largely overestimated in these
proaches. It is interesting to note that such discrepancies
not found for semiconductor rings.7,11,13

Motivated by the failure of the one-electron picture
explain the observed large amplitudes of the persistent
rents in metallic loops, several authors have studied the
of e-e interaction. Screening of the Coulomb part of th
impurity potentials is important in metal rings and ma
partly be responsible for the reduced electr
backscattering.18 The particular effects of electronic correla
tion on the persistent currents have been discussed in R
15–17 and 19–24. A somewhat different explanation of
large amplitudes of the persistent currents has been prop
in Refs. 9, 25, 26, where the dc magnetic response of di
dered ring systems is related with the dephasing by inte
or external nonthermal equilibrium noise. In this picture, t
contributions of excited states become important, i.e.,
persistent currents are not a property of the electronic gro
state. Bute-e interactions remain essential also here, sin
they determine the coupling of the electronic system to
fluctuating electromagnetic field.25

The above-cited theoretical investigations were focu
on the magnetic response of ring systems to astaticexternal
flux. Temporal fluctuations of the electromagnetic field ha
only been considered to explain the large amplitudes of
persistent currents in mesoscopic metal rings.9,25,26 In these
©2003 The American Physical Society05-1
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studies it was assumed that the amplitudes of the fluctua
electromagnetic fields are small enough to be treated in
ond order. In the present work we propose a general
systematic approach that allows us to treat the influence
time-periodic magnetic flux on the electronic states of me
scopic rings. The influence of time-periodic flux oscillatio
on systems of strongly interacting electrons is undoubte
interesting in its own right. In particular, such measureme
should give more insight into the particular nature of t
electronic correlations. Experimentally, no frequency dep
dence is observed in the low-frequency range of 10–103 Hz.
This is quite expected, since the time variations are v
slow in comparison with the relevant dephasing times,
that the electronic system always relaxes into its st
ground state~see, e.g., Ref. 5!. However, experiments in th
interesting high-frequency range should now be feasible.
magnetic response of an ensemble of 105 rings etched in a
GaAs-AlGaAs heterostructure has recently been meas
for an oscillation frequency of 350 MHz.13 Pieperet al.27

have measured the magnetoconductance of single me
copic Ag rings connected to leads, for a time-periodic flux
the frequency range of 250 Hz–1.2 GHz superposed t
static flux. More generally, we expect that the understand
of the behavior of electronic states in a time-periodic fl
will also be useful to get a better insight into the effects
nonperiodic fluctuating electromagnetic fields treated
Refs. 9, 25, 26.

Our approach is based on our previous work in Ref.
where we have treated the situation of a loop enclosin
static magnetic flux using a continuous real-space repre
tation. Here we will generalize this description by allowin
for an additional time-periodic flux. The adequate Hilbe
space, the Hamiltonian, and the angular momentum oper
for theN-electron system are introduced in Sec. II. The el
tronic states are described using Floquet’s theorem. In
III we derive a solution for the Floquet states. We furth
introduce the expressions for the time-averaged quantitie
for the energy and for the expectation value of the angu
momentum, thus completing the description of isolated rin
Under real conditions, coupling with the statistical enviro
ment will always lead to electronic relaxation. The releva
time scales and the consequences of relaxation are discu
in Sec. IV. For sufficiently weak interaction with the statis
cal environment and temperaturesT→0, we find that the
stationary situation reached after relaxation is described
the Floquet state with the smallest time-averaged energy.
corresponding time-averaged expectation value of the an
lar momentum measures the time-averaged ‘‘persistent
rent.’’ In Sec. V we present our numerical results for t
time-averaged persistent angular momentum. The reson
features due to the coupling with the time-periodic flux a
analyzed. Final conclusions are drawn in Sec. VI.

II. GENERAL THEORETICAL DESCRIPTION

In Ref. 24 we have discussed the situation ofN electrons
in a circular loop enclosing a static magnetic flux. Presen
we generalize our approach to a time-periodic magnetic fl
We consider N interacting electrons in a circular one
16530
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dimensional loop with radiusR. A description in polar coor-
dinates is therefore adequate~Fig. 1!. Internal and externa
fields are represented by a time-independent one-particle
tential V(u) and by a time-periodic tangential vector pote
tial AW 5A(t)eW u with periodP, where the latter corresponds t
a time-periodic fluxF(t). These potentials satisfy the per
odicity conditions

V~u12p!5V~u!, F~ t1P!5F~ t !52pRA~ t !.

Expressed in units of the flux quantumF05h/e, the mag-
netic flux reads

a~ t !5
F~ t !

F0
5a01a1~ t !, a05

1

PE0

P

a~ t !dt,

wherea0 represents the time-averaged~or static! contribu-
tion. We then have

1

PE0

P

a1~ t ! dt50.

TheN-electron wave function at a given timets is periodic in
the anglesun , n51, . . . ,N,

C~ . . . ,un12p, . . . ,ts!5C~ . . . ,un , . . . ,ts!,

n51, . . . ,N. ~1!

We assume the spin part of the wave function to
symmetric.28 The spatial part must then be antisymmet
with respect to the permutation of two electrons,

C~ . . . ,uk , . . . ,u l , . . . ,ts!

52C~ . . . ,u l , . . . ,uk , . . . ,ts!, kÞ,. ~2!

The system is thus described by the Hilbert spaceH,

C~uW ,ts!PH5P~L2~@0,2p@N!!,

P being the projector on the subspace of the spatially p
odic and antisymmetric functions.

Expressed in the units\2/(2mR2) for the energy,
2mR2/\ for the time and\ for the angular momentum,m
being the electron mass, the evolution of the wave funct
CPC1(@0,2p@N3R,C) for a given initial condition is ob-
tained from the Schro¨dinger equation

FIG. 1. Geometrical description of the sample system.
5-2



-

ll
he
u

q

-

s.
r

tic

-
-

ore

l

or
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i ] tC5HC ~3!

with the Hamiltonian

H5H01Hee1HeV .

The Hamiltonian terms read

H0~ t !5 (
n51

N

@2 i ]un
2a02a1~ t !#2,

Hee5 (
1<n,n8<N

h2

Usin
un2un8

2 U ,

HeV5 (
n.0

vn (
n51

N

einun1c.c.

The angular momentum operator is

L~ t !5 (
n51

N

@2 i ]un
2a02a1~ t !#.

In this energy scale thee-e interaction parameter ish2

5e2mR/(\24p«0), and thenth Fourier componentVn of
the one-particle potential becomesvn52mR2Vn /\2.

III. THE FLOQUET BASIS

We consider a time-periodic Hamiltonian with periodP,
H(t1P)5H(t). According to Floquet’s theorem, a particu
lar solution of the Schro¨dinger equation~3! can be written as

C~uW ,t !5e2 i«tc«~uW ,t !, «PR,c«~uW ,t1P!5c«~uW ,t !.
~4!

The functionsc« are elements of the Hilbert spaceHP ,

c«PHP5PP„L2~@0,2p@N3@0,P@ !…,

wherePP is the projector on the subspace of the spatia
periodic, antisymmetric, and time-periodic functions. In t
following, they are referred to as Floquet states. The Floq
statesc«PC1(@0,2p@N3@0,P@ ,C) satisfy the equation

«c«5~H2 i ] t!c« . ~5!

The periodP is related to the angular frequencyv,

vP52p.

An infinite number of eigenvalues and eigenfunctions of E
~5! is associated with the same functionC(uW ,t) in Eq. ~4!. In
fact, if c« is an eigenfunction in Eq.~5! for the eigenvalue«,
thenc«1lv5eilvtc« , lPZ, is an eigenfunction for the ei
genvalue«1lv. Thus, replacing« by «1lv in Eq. ~4!,
one obtains the same functionC. Without loss of generality
we may then choose the zone

«PF2
v

2
,
v

2 F ~6!
16530
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and define the set of modes

M «5$«1lv%lPZ . ~7!

The Floquet parameters« are often called quasienergie
With the scalar product̂•u•& in H, one forms the scala
product inHP

^ f ug&P5
1

PE0

P

dt^ f ug&,

which is the time-averaged value of^ f ug&. The Floquet
statesc« form an orthogonal basis inHP . A general solution
of the Schro¨dinger equation~3! for a given initial condition
can always be expressed as

C~uW ,t !5(
j

cje
2 i« j tc« j

~uW ,t !,

where the indexj PZ labels the eigenvalues of Eq.~5! within
the zone defined in Eq.~6!.

The Hamiltonian depends on the time-periodic magne
flux a(t)5a01a1(t). The static fluxa0 may be considered
as a parameter. Then, for eacha0 we have a set of eigenval
ues« j5« j (a0), j PZ. Due to the periodicity of the eigen
functions c« in the variablesun , n51, . . . ,N, all spectra
are periodic in the static fluxa0 with period 1. Indeed, if the
angle-periodic eigenfunctionc« is an eigenfunction of Eq.
~5! for the fluxa0, the function exp(id(n51

N un)c« is an angle-
periodic eigenfunction for the fluxa01d, provided thatd is
an integer. Without any loss of generality one may theref
restrict to the intervala0P@2 1

2 , 1
2 @ . The pairs (a0 ,« j ) denote

points in the reduced zoneZFB , the ‘‘Floquet-Brillouin’’
zone,

~a0 ,« j !PZFB5F2
1

2
,
1

2 F3F2
v

2
,
v

2 F,R2.

These points define the Floquet bands« j (a0), j PZ. Compar-
ing the solutionsc5c« andc85c«8 to Eq. ~5! for different
time-periodic fluxesa(t) anda8(t), one obtains the genera
continuity equation

~«2«8!c̄c82 i ] t~ c̄c8!

52 (
n51

N

~2 i ]un
1a2a8!@~2 i ]un

2a!cc8

1c̄~2 i ]un
2a8!c8!]. ~8!

For fluxesa(t) anda8(t) differing only in the static contri-
bution,a(t)2a8(t)5a02a08 , the integration of Eq.~8! over
one period and over the angles leads to

~«2«8!^cuc8&P52~a02a08!~^Lcuc8&P1^cuL8c8&P!,
~9!

where L and L8 are the angular momentum operators f
a(t) and a8(t), respectively. For identical static fluxesa0

5a08 , Eq. ~9! leads to

~«2«8!^cuc8&P50.
5-3
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GUIDO BURMEISTER AND KLAUS MASCHKE PHYSICAL REVIEW B67, 165305 ~2003!
Floquet statesc andc8 for different quasienergies are thu
orthogonal.

For two Floquet statesc and c8 belonging to the same
band« j , «5« j (a0) and«85« j (a08), we obtain after divid-
ing of Eq. ~9! by (a02a08)^cuc8&P and performing the limit
a08→a0,

^L&P, j52
1

2

]« j

]a0
, ~10!

i.e., the slope of the Floquet band« j (a0) is given by the
time-averaged expectation value of the angular momentu

The Schro¨dinger equation for the Floquet states, Eq.~5!,
may be solved in different ways. A first method consists
the direct calculation using a basis of the Hilbert spaceHP .
It necessitates the diagonalization of rather large matri
This approach will, however, be useful in a perturbati
scheme. A second method is based on the unitary ti
evolution operatorU(t,t0), which relates a system stateC at
time t to the state at timet0,

C~ t !5U~ t,t0!C~ t0!, with i ] tU5HU, U~ t0 ,t0!5I.
~11!

A solution of the type defined in Eq.~4! taken over one
period P satisfies the eigenvalue equation for the Floq
states

U~ t01P,t0!c~ t0!5e2 i«Pc~ t0!. ~12!

The unitarity of the evolution operator implies

ue2 i«Pu51.

This shows again that the parameters« are real and that they
are defined up to a multiple of the angular frequencyv. To
determine the operatorU(t01P,t0), it is convenient to ap-
proximate the time-dependent flux by a sequence of st
We then have

a1~ t !5 (
m51

M

a1,mCm~ t !, ~13!

with

Cm~ t !5H 1 if tm21<t,tm

m51, . . . ,M

0 otherwise,

.

The Hamiltonian and the angular momentum are thus t
independent in each time interval@ tm21 ,tm@ . The lengths
tm5tm2tm21 satisfy the condition(m51

M tm5P. For t
P@ tm21 ,tm@ , we have

H~ t !5Hm5H0,m1Hee1HeV ,

H0,m5 (
n51

N

~2 i ]un
2a02a1,m!2,

L~ t !5Lm5 (
n51

N

~2 i ]un
2a02a1,m!,
16530
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and the evolution operator becomes

U~ t,tm21!5e2 iH m(t2tm21), tm21<t,tm .

The evolution operator over one periodP5tM2t0 is then
given by the time-ordered product

U~ t01P,t0!5e2 iH MtM
•••e2 iH 1t1. ~14!

The unitarity of the evolution operator is conserved in th
time-step procedure. In comparison with the first method,
size of the matrices that must be diagonalized to solve
~12! is reduced, but the number of diagonalizations
creases, since we have to solve the static problem in e
interval@ tm21 ,tm@ . It is evident, that the time-step procedu
yields exact results for any physical continuous time-perio
flux, if the time intervals are chosen sufficiently small.

Using Eqs.~11! and~12! for a stationary solution of type
~4!, we get the time-averaged quantities for the energy
for the expectation value of the angular momentum,

^H&P5
1

PE0

P

dt^H~ t !&

5
1

P (
m51

M

tm^c«~ t0!uU†~ tm ,t0!HmU~ tm ,t0!uc«~ t0!&

5
1

P (
m51

M

tm^c«~ t0!uHmuc«~ t0!&, ~15!

^L&P5
1

PE0

P

dt^L~ t !&

5
1

P (
m51

M

tm^c«~ t0!uU†~ tm ,t0!LmU~ tm ,t0!uc«~ t0!&.

~16!

IV. ELECTRONIC RELAXATION

Up to now we have considered an isolated electronic lo
Real systems are, however, always embedded in some s
tical environment. In the following we assume that the en
ronment is maintained near some equilibrium. The effe
due to weak dynamical interaction with the environment m
be described by decoherence and energy loss of the e
tronic system. The relaxation time depends on the coup
of the system to the environment as well as on the dynam
properties of the environment. The typical time scale for
fluctuations of the environment near equilibrium is given
the bath-coherence timetenv. In the limit tenv→0 and for
sufficiently weak interaction with the electrons the enviro
ment acts as an ideal bath, i.e., memory effects can be
glected. The bath-coherence timetenv has to be distinguished
from the coherence timetsys of the electrons in the system
which depends on the dynamical coupling of the system
the statistical environment. In the hypothetical limittsys
→`, the electronic system would be completely decoup
from its environment and evolve coherently.

In the following we assume weak dynamical interacti
5-4



th

de
ic
wi

ith
ys
tl

t
lu
h
e-
r-
F
r,
tio

ul
la
ur

ec

y

t
d
e

to
m
of
-
,
e

ld
w
al

t

f
the
eled

n-
t,
e

re-
ex-
d.

-

tes
e

INFLUENCE OF A TIME-PERIODIC MAGNETIC FLUX . . . PHYSICAL REVIEW B67, 165305 ~2003!
between the electronic system and its environment. In
case we havetenv!tsys. If the environment is held at low
temperature, a system described by a time-indepen
Hamiltonian will relax into its ground state, i.e., its electron
properties are determined by the electronic eigenstate
lowest energy.

Presently we consider time-periodic Hamiltonians w
periodP. For a weak interaction between the electronic s
tem and its environment, the system will evolve coheren
over several periods if

tenv!P!tsys. ~17!

Under this condition, the system is conveniently described
terms of the Floquet states and the expectation values in
static case have to be replaced by their time-averaged va
For low temperatures, the system will then relax into t
‘‘Floquet ground state,’’ the Floquet state with lowest tim
averaged energŷH&P . The time-averaged physical prope
ties are determined by the properties associated with the
quet ground state. In the following, we will, in particula
investigate the behavior of the time-averaged expecta
value of the angular momentum̂L&P associated with this
Floquet ground state. It will be denoted as persistent ang
momentumLpers. In the static case, the persistent angu
momentum is of course equivalent to the ‘‘persistent c
rent’’ discussed in the literature.1,2

For a typical valuetsys'10210 s, the excitation period
has to be much smaller to satisfy condition~17! , i.e., P
!10210 s. The angular frequency or the energy of the el
tromagnetic field should thus satisfy the condition

v@1010 s21, E5\v@1024eV,

which corresponds to electromagnetic waves with energ
the far-infrared region.

V. N ELECTRONS IN A TIME-PERIODIC
MAGNETIC FIELD

In Ref. 24 we have developed an approach allowing
treat a system ofN interacting electrons, which are confine
on a one-dimensional loop enclosing a time-independ
magnetic field. The electronic positions were expressed
terms of a collective~center-of-mass! coordinateu and rela-
tive coordinatesqW . We have shown that stronge-e repulsion
can be treated within a harmonic approximation allowing
study a large number of electrons. The harmonic approxi
tion of the relative motion becomes exact in the limit
infinite e-e interaction parameterh2. Even though the accu
racy deteriorates for decreasingh2, the low-energy states
which are physically the most relevant, remain still well d
scribed for large but finiteh2.

The approach of Ref. 24 provides a convenient basis
handle the present situation of time-periodic magnetic fie
Adopting the time-step procedure described in Sec. III,
have in fact time-independent Hamiltonians in the interv
tm21<t,tm @Eq. ~13!#. For sufficiently small one-particle
potentials, it is then convenient to take the eigenstates of
Hamiltonian
16530
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H0,m1Hee5
1

N
~2 i ]u2Na02Na1,m!2

1 (
j 51

N21

~2]qj

2 1h2v j
2qj

2!

as a basis~see Ref. 24!. Herev j denote the frequencies o
the harmonic oscillators describing the relative motion of
electrons. The eigenstates of the Hamiltonian may be lab
by uk%&, where the indicesk and% are associated with the
collective and the relative modes, respectively. We have

Ek%
(0,m)uk%&5~H0,m1Hee!uk%&,

Ek%
(0,m)5

1

N
~k2Na02Na1,m!21E% ,

^u,qW uk%&5eikuw%~qW !.

We note thatk and% are related due to the symmetry co
ditions ~1! and~2!. Since the system is rotationally invarian
the eigenstatesuk%& do not depend on the magnetic flux. Th
corresponding energy bandsEk%

(0)(a0) for a static flux
@a1(t)50# are shown in Fig. 2 forN51001. Considering an
additional time-periodic fluxa1(t), we have to look for the
time-averaged values given in Eqs.~15! and ~16!. Up to a
constant shift in energy, the time-averaged energy bands
main the same as in the static case. The time-averaged
pectation values of the angular momentum are unchange

Allowing for a one-particle potentialHeV , we express the
Hamiltonians Hm5H0,m1Hee1HeV in the basis$uk%&%.
The corresponding matrix elements are

FIG. 2. Energy bands forN51001 interacting electrons in ab
sence of the one-particle potential (HeV50). The e-e interaction
parameter ish25103. The bands are identified by the eigensta
uk%&. The first states of the relative motion are the ground stat%
50 and the twofold degenerate excitations%5161 of the first har-
monic oscillator with frequencyv1 ~see Ref. 24!. Direct dynamical
coupling between statesk and k8 may occur fork2k85n and vn

Þ0. The coupling conditions are resumed in Table I.
5-5
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GUIDO BURMEISTER AND KLAUS MASCHKE PHYSICAL REVIEW B67, 165305 ~2003!
^k%uH0,m1Heeuk8%8&5S 1

N
~k2Na02Na1,m!21E%D dk%

k8%8 ,

^k%uHeVuk8%8&5 (
n.0

Vk%
k8%8~n!,

where the matrix elementsVk%
k8%8(n), corresponding to the

nth Fourier component of the one-particle potential, ha
been calculated in Ref. 24. There it was shown that coup
is possible only if

uk2k8u5n. ~18!

Note that the matrix elements ofHeV are independent of the
magnetic flux, so that they can be calculated once for al

After diagonalization of the HamiltoniansHm , we can
write each factor in Eq.~14! for the time-evolution operato
U(t01P,t0) in the common basis$uk%&%. From Eq.~12! we
get the Floquet parameters« and the corresponding Floque
statesc«(t0). The time-averaged energy^H&P and the time-
averaged expectation value of the angular momentum^L&P
are calculated from Eqs.~15! and ~16!.

Repeating the procedure for different static contributio
a0, we obtain the Floquet bands« j (a0) as well as the band
describing thea0-dependence of̂H&P , ^L&P , and of the
persistent angular momentumLpers.

Figure 3~a! shows the Floquet bands forv51600 and
a1(t)[0. This may be seen as a particular dynamic con
bution. To each point (a0 ,« j ) in the Floquet-Brillouin zone
ZFB corresponds a time-averaged energy^H&P, j @Fig. 3~b!#
and a time-averaged expectation value of the angular
mentum ^L&P, j @Fig. 3~c!#. The one-particle potentialvN
51 leads to the opening of gaps in the Floquet-band st
ture, for instance neara056 1

2 .
In order to determine the time-averaged persistent ang

momentum, we have to identify the Floquet state with
lowest time-averaged energy, the Floquet ground state.
associated Floquet parameters« are depicted in Fig. 4~a!.
The corresponding time-averaged persistent angular
menta, calculated from Eq.~16!, are shown in Fig. 4~b!. In
principle, they could also be obtained from the derivatives
the Floquet band@see Eq.~10!#. The time-averaged persiste
angular momentum decreases with increasingvN ~see Ref.
24!.

In presence of a time-periodic contributiona1(t)
5a1cos(vt), a1Þ0, additional gaps due to dynamical co
pling appear in the Floquet-band structure at certain st
contributionsa0. This is shown in Fig. 5~a!. The same dy-
namical coupling is also at the origin of the rapid changes
the time-averaged energy bands@Fig. 5~b!# and of the time-
averaged expectation values of the angular momentum@Fig.
5~c!#. Figure 6~a! shows the Floquet parameters for the F
quet ground states. The associated time-averaged pers
angular momenta given in Fig. 6~b! show well-marked jumps
of heightN as well as some smaller peaks.

To understand the dynamical effects, it is convenient
choose the eigenstates of the time-periodic operator@see Eq.
~5!#
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H0~ t !1Hee2 i ] t5
1

N
@2 i ]u2Na02Na1~ t !#2

1 (
j 51

N21

~2]qj

2 1h2v j
2qj

2!2 i ] t

as an orthonormal basis. The eigenstates may be writte
uk%l&, where, as previously, the indicesk and% label col-
lective and relative modes, respectively, andl is the Floquet
mode index defined in Eq.~7!. For the time-periodic contri-
bution a1(t)5a1cos(vt), we have the eigenvalues and th
corresponding eigenstates

FIG. 3. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (vN51)
and a static flux (v51600,a150): ~a! Floquet parameter«, ~b!
time-averaged energŷH&P , and ~c! time-averaged expectatio
value of the angular momentum̂L&P . A gap is opened between th
first two energy bandŝH&P .
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Ek%l
(0) 5

1

N
~k2Na0!21E%2lv, ~19!

^u,qW ,tuk%l&5e2 iakl(t)eikuw%~qW !,

akl~ t !5lvt2
2a1k

v
sin~vt !.

From the identitye2 izsinf5(s52`
` Js(z)e

isf, whereJs(z) are
the Bessel functions of the first kind, we get

1

PE0

P

dteiakl(t)e2 iak8l8(t)5Jl2l8~zkk8!,

zkk85
2a1

v
~k2k8!.

The time-averaged energies and the time-averaged exp
tion values of the angular momentum associated with
basis statesuk%l& are

^H0~ t !1Hee&P5^k%luH0~ t !1Heeuk%l&

5
1

N
~k2Na0!21E% ,

FIG. 4. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (vN51)
and a static flux (v51600,a150) for the Floquet ground state,~a!
Floquet parameter« and ~b! persistent angular momentumLpers.
16530
ta-
e

^L&P5^k%luLuk%l&5k2Na0 .

In presence of a one-particle potentialHeV , the Floquet
states are solutions of

«uc«&5@H0~ t !1Hee2 i ] t1HeV#uc«&.

They may be expressed in the above basis as

FIG. 5. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (vN51)
and a dynamic fluxa1(t)5a1cos(vt) (v51600,a151), ~a! Flo-
quet parameter«, ~b! time-averaged energŷH&P , and ~c! time-
averaged expectation value of the angular momentum^L&P . Due to
dynamical coupling between the static bands shown in Fig. 3,
ditional gaps are opened at Floquet-band crossings leading to
particular behavior of the time-averaged quantities.
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uc«&5 (
k8%8l8

uk8%8l8&F«,k8%8l8 .

The coupling of the basis statesuk%l& is described by the
matrix elements

^k%luHeVuk8%8l8&5Jl2l8~zkk8! (
n.0

Vk%
k8%8~n!. ~20!

This shows that dynamical coupling between basis Floq
states withuk2k8u5n requires the presence of nonzero Fo
rier componentsvn .

Taking the limita1 /v→0, we recover the static situatio
discussed in Ref. 24. In this case, we havezkk8→0 and the
matrix elements~20! reduce to

^k%luHeVuk8%8l8&→dl
l8(

n.0
Vk%

k8%8~n!.

Thus only the Floquet-basis states withl5l8 are coupled.
For v→`, the Floquet parameter« can be identified with
the energy, and we may choosel50.

FIG. 6. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (vN51)
and a dynamic fluxa1(t)5a1cos(vt) (v51600,a151) in the Flo-
quet ground state,~a! Floquet parameter« and~b! persistent angular
momentum Lpers. The time-averaged energy bands cross@Fig.
5~b!#, leading to jumps of heightN of the persistent angular mo
mentum.
16530
et
-

For a1 /vÞ0, coupling between Floquet-basis states w
different l becomes possible, as can be seen from Eq.~20!.
For Floquet states satisfying condition~18!, the coupling is
largest when the eigenvalues given by Eq.~19! are degener-
ate. In other words, coupling may occur when the tim
averaged energieŝH01Hee&P of the interacting electrons
differ by a multiple of the angular frequencyv. As shown
before@see Eq.~6!#, we need only to consider the eigenva
uesEk%l

(0) in the interval@2v/2,v/2@ ,

2
v

2
<

1

N
~k2Na0!21E%2lv[«k%l

(0) ,
v

2
, ~21!

which determines the integerl. We thus have to look for
crossings in the Floquet-Brillouin zoneZFB ~see Figs. 3 and
5!. At the Floquet-band crossing we have« (0)(a0)
5«8(0)(a0), which implies

2
1

2
<a05

k22k821N~E%2E%8!2N~l2l8!v

2N~k2k8!
,

1

2
.

~22!

For a given static fluxa0 and in absence of a one-partic
potential, a time-periodic fluxa1(t)5a1cos(vt) does not in-
fluence the time-averaged quantities. In Ref. 24 we h
shown that for largee-e interaction only Fourier component
vn with n5mN,mPN lead to significant static coupling. Th
effects of coupling may be amplified in presence of a tim
periodic fluxa1(t)5a1cos(vt) revealing other Fourier com
ponents. In the following, we consider the effects of a tim
periodic flux for the cases of strong and weak static coupli
which will be represented by Fourier componentsvNÞ0 and
v1Þ0, respectively. We further restrict the discussion on
influence of the couplings involving the ground state. Simi
arguments hold for any other state.

The Fourier componentvN of the static potential enable
dynamical coupling between basis Floquet states withuk
2k8u5N. Efficient coupling is expected between the grou
state uk%&5u0,0& (E%50) and the statesuk8%8&5u6N,0&
(E%850), when the crossing conditionEk8%8

(0)
2Ek%

(0)5v is
satisfied. ForN51001, h25103, andv51600~see Fig. 2!,
we find l50 and l851 from Eq. ~21!. Equation ~22!
yields the Floquet-band crossing positions (a0 ,«)
5(60.30, 89.61)~see Fig. 3!. The resulting width of the gap
seen in Fig. 5~a! may be estimated for smallvN in a two-
band approximation. Fora151 andvN51 we obtain

D«52UJ21S 2a1N

v D vNNJNU526.34,

in good agreement with the numerical result. The numer
factor JN is defined in Ref. 24. The time-averaged ener
bands ^H&P(a0) @Fig. 5~b!# associated with the Floque
bands may differ strongly from the energy bands for t
static case@Fig. 3~b!#. In particular, the contributions of the
Floquet basis states to the Floquet ground state may ch
strongly with the time dependencea1(t) of the flux. This
is seen in Fig. 6~a!. Because of the symmetry of the ban
structures, we may restrict our discussions to positive flu
5-8
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a0>0. Far from the resonance ata050.30, the Floquet
ground state is essentially described by the Floquet b
state u0,0,0&. As in the static case, the associated tim
averaged energy is given by^H&P5Na0

2 and the persisten
angular momentum isLpers52Na0. Near the intervala0
P@0.29, 0.31#, coupling with the Floquet basis sta
u2N,0,1& becomes important, leading to the increase of
absolute value of the persistent angular momentum. In

FIG. 7. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (v1

5200) and a dynamic flux a1(t)5a1cos(vt) (v52885.5
,E1

(1) , a151), ~a! Floquet parameter«, ~b! time-averaged energy
^H&P , and~c! time-averaged expectation value of the angular m
mentum^L&P . The Fourier componentv1 couples between almos
identical Floquet bands, leading to the coupling of parallel tim
averaged energy bands@Fig. 2~b!#.
16530
is
-

e
e

interval a0P@0.29, 0.31# the Floquet basis stateuN,0,0&
gives the main contribution to the Floquet ground state. T
time-averaged energy is then given by^H&P5N(12a0)2

and the persistent angular momentum isLpers5N(12a0),
corresponding to a jump of heightN @Fig. 6~b!#. The width of
this structure becomes important when the statesk50 and
k56N are coupled in first order by Fourier componentsvN ,
as is the case in the given situation.

In principle, the same arguments hold for coupling as
ciated with the Fourier componentv1 of the static potential,
which enables dynamical coupling between basis Floq
states with uk2k8u51. Efficient coupling between the
ground stateuk%&5u0,0& (E%50) and the statesuk8%8&
5u61, 171& (E%85E1

(1) , see Ref. 24! is expected when the
crossing conditionEk8%8

(0)
2Ek%

(0)5v is satisfied. Note that the
width of the window for the resonance frequencies

21,E1
(1)1

1

N
2v,11

is independent ofN. For N51001 andh25103, we have
E1

(1)52885.86. With the choice ofv52885.5, we find

-

-

FIG. 8. Dispersion curves for interacting electrons (N
51001,h25103) in presence of a one-particle potential (v1

5200) and a dynamic fluxa1(t)5a1cos(vt) (v52885.5,a151)
in the Floquet ground state:~a! Floquet parameter« and~b! persis-
tent angular momentumLpers. The time-averaged energy band
cross @Fig. 7~b!#, leading to jumps of heightN of the persistent
angular momentum.
5-9
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FIG. 9. Persistent angular momentumLpers as a function of the static fluxa0 and the angular frequencyv in presence of a one-particl
potential (v15100,vN51) and a time-periodic flux (a151). The jumps inLpersare located on straight lines in the (a0 ,v) plane, identified
in Table I (l851 andl853).
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l50 and l851 from Eq. ~21!. Equation ~22! yields the
Floquet-band crossing positions (a0 ,«)5(60.18, 31.72) in
agreement with the numerical results shown in Fig. 7. T
Fourier componentv1 have to be large to give a sensib
effect. Near the intervala0P@0.17, 0.19#, the Floquet basis
stateu0,0,0& couples with the basis stateu61,171,1&. In con-
trast to the situation for thevN coupling discussed above, th
time-averaged expectation values of the angular momen
of both states are nearly the same and no additional st
tures appear in the persistent angular momentum. In the
terval a0P@0.17, 0.19# we obtain again a jump of heightN
@Fig. 8~b!#. Note that the window for the resonance freque
cies is very narrow, and that therefore it will be difficult
observe the jump under realistic experimental conditions

When both Fourier componentsv1 and vN are present,
both the number of electronsN and the first excitation energ
E1

(1)52hv1 of the relative motion may be deduced from t
positions of the jumps of the persistent angular moment
Figure 9~a! shows the numerical results for the same set
parameters as before, but the one-particle potential now
ing described by the two componentsv1 andvN . The reso-
nance structures are seen to follow straight lines, which
identified in Fig. 9~b!. The linear dependence can be und
stood from Table I, where the couplings between the Floq
16530
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.
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-
et

ground stateu0,0,0& and the relevant excited Floquet stat
uk8%8l8& to first and second order inv1 and vN are given.
The lines~1! and ~2! with slopes 2N and 4N in Fig. 9~b!
correspond to the strongest couplings byvN for l851. The
lines ~2!, ~3!, and~4! with slopes 4N/3 and 2N/3 are associ-
ated with the weaker coupling forl853. According to Table
I, the position of the quasidegenerate lines~3! and ~4! is
determined by the first excitation energyE1

(1)52hv1 of the
relative motion.

VI. CONCLUSIONS

We have studied the magnetic response of strongly in
acting electrons in a one-dimensional loop with respect t
time-periodic magnetic flux. Our approach is based on R
24, where we introduced an explicit basis ofN-electron states
to describe the situation for strong electron-electron inter
tion and time-independent potentials. Separating the col
tive and the relative motion of theN electrons, this basis
provides an adequate description of the ground state as
as of the first excitations that can be associated with
excited states of the relative motion.

In the present work, approximating the time depende
of a time-periodic flux by a sequence of piece-wise tim
TABLE I. Floquet statesuk8%8l8& coupled with the ground stateuk%l&5u0,0,0& to first (vn) and second
order (vnvn8), and band-crossing conditions. The energy bands are presented in Fig. 2.

k8 E8 vn a0 Frequency range

6N 0 v7N 6S 1

2
2

l8v

2N D 0<l8v<2N

62N 0 v7Nv7N 6S12
l8v

4N D 2N<l8v<6N

6(12N) E1
(1) v71v6N 6SN21

2N
1

E1
(1)2l8v

2~N21!
D E1

(1)1
12N

N
<l8v<E1

(1)1
(12N)(122N)

N

6(11N) E1
(1) v71v7N 6SN11

2N
1

E1
(1)2l8v

2~N11!
D E1

(1)1
11N

N
<l8v<E1

(1)1
(11N)(112N)

N

5-10
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independent fluxes, we have made use of the basis
structed in Ref. 24 for each time interval. We have furth
assumed the electronic coherence time to be much la
than the period of oscillation. We then have discussed
time-averaged expectation value of the angular moment
which is equivalent to the time-averaged current. In abse
of a one-particle potentialHeV , a time-periodic contribution
to the magnetic flux has no effect on the time-averaged
rent and the current equals the free-electron current.
shown in Ref. 24, thee-e interaction tends to suppress th
backscattering due to the Fourier componentsvn of HeV with
nonintegern/N, while the influence of Fourier componen
vmN , mPN, is enhanced. In presence of a one-particle
tentialHeV , a time-periodic magnetic flux reveals other Fo
rier components thanvmN as for examplev1, which would
correspond to a static electric field in the plane of the lo
The dynamical coupling leads to additional coupling b
tween Floquet basis states separated in energy by a mu
of the frequencyv. Taken as a function of the time-averag
magnetic fluxa0, the persistent current, which correspon
to the Floquet state with the lowest time-averaged ene
shows jumps of heightN. The heights and the positions o
the jumps are directly related to the number of electrons
to the first excitation energy of the relative motion, t
plasma frequency.
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Experimentally, it should, in principle, be feasible to o
serve the here discussed resonances of the persistent an
momentum by measuring the associated magnetic mom
tum in presence of time-periodic fields with frequencies
the far infrared. Our results show that such measurements
expected to give useful information about the importance
the e-e coupling, the disorder potential, as well as the nu
ber of electrons in small ring systems. In order to test o
predictions we suggest to look for the appearance of re
nances in the (a0 ,v) plane, i.e., to establish the situation
Fig. 9. Since the required Fourier coefficientsvN of the one-
particle potential are most probably rather negligible
metals,24 we expect that semiconductor loops are more int
esting for such investigations. The position of the resonan
depending critically on the number of electronsN and the
loop dimensions, it would also be more indicated to perfo
such experiments on single rings rather than on ensemble
rings.

ACKNOWLEDGMENT

This work was partly supported by the Swiss Nation
Science Foundation under Grant Nos. 20-52183.97,
58972.99, and 20-066681.01.
ys.

-

or a
hift
ag-
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