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Optical selection rules for shallow donors in 4H -SiC and ionization energy of the nitrogen donor
at the hexagonal site

I. G. Ivanov, B. Magnusson, and E. Janze´n
Department of Physics and Measurement Technology, Linko¨ping University, S-581 83 Linko¨ping, Sweden

~Received 9 December 2002; published 30 April 2003!

The selection rules for transitions between the electronic levels of shallow donors in 4H-SiC in the dipole
approximation are derived. The ionization energy of the shallow nitrogen donor~at hexagonal site! is deter-
mined to be 61.460.5 meV by analyzing the photothermal ionization and infrared absorption spectra of
nitrogen doped samples in the frame of model that approximates the effective-mass Hamiltonian in 4H-SiC
with Hamiltonian of cylindric symmetry~Faulkner’s model!.
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I. INTRODUCTION

In two recent publications,1,2 data on the excited states o
the shallower nitrogen donor, identified as nitrogen substi
ing for carbon atom at a hexagonal site Nh were published.
These data obtained by photothermal ionization~PTI!
spectroscopy1 and infrared~IR! absorption2 seem to be more
reliable than older data based only on IR absorption,3 mainly
because of the much better quality of the sample used.
fortunately, no identification of the observed donor excit
states was attempted in these two publications, and the n
gen binding energy for the shallower level was estimated
EDh560.260.5 meV using only the temperature depe
dence of the spectrum.1 In this paper, we provide such iden
tification, based on the optical selection rules and on an
timate of the energies of the observed transitions obtai
using Faulkner’s model4 as a suitable approximation. Sinc
details concerning the symmetry of the wave functions a
the optical selection rules in 4H-SiC seem to be absent in th
literature, they are given in Sec. II. The comparison of
theoretical results with the experimental data is done in S
III, and the conclusions are summarized in Sec. IV.

II. THEORETICAL BACKGROUND
AND GROUP-THEORETICAL INVESTIGATION

OF THE OPTICAL SELECTION RULES

The conduction band of 4H-SiC has three equivalen
minima ~valleys! located at theM points of the Brillouin
zone.5 The group of thek vector for each of these point
~valleys! is C2v , with theC2 axis oriented along the crysta
c axis. The orientation of the coordinate system with resp
to the crystal high-symmetry directions is shown in Fig.
together with some notations used further. Throughout
paper, we shall use the notations of Kosteret al.6 for the
irreducible representations of the groupsD2h and C3v . As
for the groupC2v , also Koster’s notations are used, but w
the letter ‘‘M ’’ instead of ‘‘G, ’’ in order to avoid confusion
with the representations ofC3v .

As shown by Kohn and Luttinger,7 the wave function of a
shallow donor in the effective-mass approximation~EMA!
can be presented in the form

ck5wk8wk . ~1!
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Here the indexk51,2,3 enumerates the equivalent minim
wk8 is the free-electron~Bloch! wave function at the bottom
of the conduction band, andwk is the envelope function
solution of the one-valley effective-mass Schro¨dinger equa-
tion. With our choice of coordinate system~see Fig. 1!, the
equation for the first valley~at the pointM (1)) becomes
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HereH1 denotes the effective-mass one-valley Hamiltonia
e is the electron charge,« i and «' are the values of the

FIG. 1. Definition of some notations and the orientation of t
Cartesian coordinate system with respect to~a! the crystal direc-

tions, and ~b! the Brillouin zone. The three directions@ 1̄100#,

@01̄10#, and @101̄0# ~enumerated 1,2 and 3, respectively! are the
equivalent directions corresponding tok-vector at one of the three
equivalentM-points (M (1), M (2), andM (3)) in the Brillouin zone.
©2003 The American Physical Society12-1
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dielectric constant along and perpendicular to thec axis, re-
spectively, andmGM , mMK , andmML are the electron effec
tive masses along the high-symmetry directionsG2M , M
2K, andM2L of the Brillouin zone, respectively. It is thi
equation that can be approximated by the Faulkner’s mo
if one substitutes formML and mMK , the averagem
5AmMLmMK, and sets the ratio«' /« i51 ~the real value in
both 4H- and 6H-SiC seems to be about 0.96!,8,9 thus ne-
glecting the anisotropy of the dielectric tensor. The appro
mation formML andmMK is justified ~only for 4H-SiC) by
the measured values of the effective mass tensor, nam
mGM50.5860.1, mML50.3360.1, andmMK50.3160.1 ~in
units of the rest mass of electron!.10 Within these approxima-
tions, Eq.~2! transforms to the form given in Ref. 4. Th
usefulness of such approximations is that a good estima
for energies of the donor states can be obtained simply
interpolation from Faulkner’s tables. For the interpolation
will be natural to use the values~in Faulkner’s notations!4

m'5A(mMLmMK)50.32 and mi5mGM50.58. The
Faulkner’s parameter isg1/35(m' /mi)

1/350.82 in this case.
For «5A« i«', we take the value«59.95.9

Note that the Hamiltonian used in Ref. 4 has cylindric
symmetryD`h , whereas in the case of 4H-SiC ~or any other
hexagonal polytype of SiC! the symmetry isD2h , according
to Eq. ~2!. Hence,wk will be classified according to the irre
ducible representations ofD2h .

The correspondence between the states presented in
4 and the states of the Hamiltonian in Eq.~2! is easily estab-
lished. TheS-like states4 ~or, shortly,S states! are those that
possess the full symmetry ofD2h , i.e., transform asG1

1 . The
quantization axis for the orbital momentuml is Ox in our
case, hence the classification by parity holds with respec
the syz plane. TheP0-like ~or simply P0) states have odd
parity, i.e. the corresponding wave function changes sign
ter reflection insyz . One easily finds that they transform
according toG4

2 in D2h . TheP6-like ~odd parity! states are
degenerate only inD`h symmetry. InD2h , they will split
into two ~closely spaced! states, which we call for conve
niencePy andPz states~sign changes after reflection insxz
for the former, andsxy for the latter!. Hence,Py states trans-
form asG2

2 , andPz states asG3
2 irreducible representation

of D2h . Both these states are approximated by the co
spondingP6 state from Faulkner’s model, because the d
viation of the Hamiltonian in Eq.~2! from cylindrical sym-
metry is small. Since the enumerated states are m
important for comparison with the experiment and repres
the lowest lying states, our derivation of selection rules w
be restricted to transitions between them.

The transformation properties ofwk in C2v ~which is a
subgroup ofD2h) are found simply by comparing the repr
sentations of these two groups, and one obtains that e
product functionck (k51,2,3), as defined in Eq.~1!, trans-
forms asM4 for SandPz states, asM1 for Py states, and as
M3 for P0 states. The transformation properties of the o
valley wave functionsck and the Faulkner’s states corr
sponding to them are summarized in Table I. The trans
mation properties ofck in the groupC2 are also shown,
since they will be needed later on. The notationsG1 andG2

will also be defined later.
16521
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The site symmetry of substitutional donor in 4H-SiC is
C3v . The three functionsck (k51,2,3) corresponding to
certain energy eigenvalue of Eq.~2! must form a basis for a
representationG of C3v ,7 called here the wave function rep
resentation. The total wave functionC of the donor electron
in the EMA is, in general, a linear combination of the wa
functionsck corresponding to the three valleys,

C5a1c11a2c21a3c3 , ~3!

and, therefore, transforms according to the wave funct
representationG. The latter can be deduced in a standa
way from the transformation properties ofck under the sym-
metry operations ofC3v . It is a three-dimensional reducibl
representation, which can be presented as a direct sum o
irreducible representations ofC3v . The result is that if the
basis functionsck have M4 or M3 symmetry inC2v (nS,
nPz , andnP0 states!, thenG5G21G3, whereas ifck trans-
forms asM1 (nPy states!, G5G11G3. Therefore, each stat
splits into one nondegenerate (G1 or G2), and one double-
degenerate (G3) state. The splitting is a consequence of t
valley-orbit interaction, which is usually not accounted f
by the EMA.7

The coefficientsak , k51,2,3, in Eq.~3! can be found for
each irreducible representation using standard project
operators technique.11 The results, presented shortly in th
form (a1 ,a2 ,a3) are, as follows:

(1/A3,1/A3,1/A3) for bothG1 or G2;
1/A6(2,21,21) for the first row ofG3;
1/A2(0,1,21) for the second row ofG3.
We note also that all wave functions have zero amplitu

at the donor nucleus, which follows from Eq.~1! and theM4

symmetry ofwk8 .
At low temperatures, usually only the donor ground st

and possibly its valley-orbit split-off counterpart are pop
lated. In our notations, these are the two states 1S(G2) and
1S(G3), and it has been shown for the N-donor, that 1S(G2)
is the ground state.12 One of these two states is always th
initial stateC i in absorption, and we consider now the sele
tion rules for matrix elements of the form (C f ,VC i), re-
sponsible for the transitions. InC3v , the dipole operatorV
transforms asG3 for polarizationE'c ~i.e., perpendicular to
the crystal axis!, and asG1 for Eic.12 Therefore, forEic the
function VC i transforms asC i , which means that transi
tions from 1S(G2) ~the ground state! are allowed only to

TABLE I. Symmetry of the one-valley wave functionsck in
C2v , and their relation to Faulkner’s states. The main quant
numbern is n>1 for theS states, andn>2 for the other states.

Symmetry
Type of ck In C2v In C2 Approximated bya

nS state M4 G2 nS
nP0 state M3 G1 nP0

nPy state M1 G1 nP6

nPz state M4 G2 nP6

aDenotes the corresponding state within the Faulkner’s model~Ref.
4!, used to approximate the binding energy.
2-2
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other states with G2 symmetry, namely, tonS(G2),
nP0(G2), and nPz(G2) states withn>2. Transitions from
1S(G3) with Eic are allowed to theG3 split-off counterpart
of all states. ForE'c, and if the initial stateC i is the ground
1S(G2) state, thenVC i hasG3^ G25G3 symmetry. Hence,
transitions to theG3 counterpart of all excited states are a
lowed. For the 1S(G3) state, VC i has G3^ G35G11G2
1G3 symmetry, and transitions to all states are allowed.

However, the selection rules considered only within t
C3v symmetry are not sufficient to find all forbidden trans
tions. Indeed, by virtue of Eq.~3!, each matrix element is a
sum of subelements of the form

~am! f
p~an! i

q
„~cm! f

p ,V~cn! i
q
…, ~4!

where the coefficientsam ,an and the one-valley wave func
tions cm ,cn are labeled with the number (p or q) of the
respective irreducible representation@superscriptp for the
final f, andq for the initial i state#. The selection rules inC3v
give the sums of such terms that do not vanish, provided
at least one of the subelements in the sum is not zero. H
ever, by considering the symmetry of the constituting ma
elements„(cm) f

p ,V(cn) i
q
…, one finds additional selectio

rules.
We consider first the terms withm5n representing tran-

sitions within one valley, i.e.,„(cn) f
p ,V(cn) i

q
… ~we will call

them shortly ‘‘diagonal terms’’!. Obviously, the selection
rules for the diagonal terms can be established for only
of them@say,„(c1) f

p ,V(c1) i
q
…], and this can be done entirel

in the environment ofC2v symmetry. The dipole operatorV
always transforms as the rows of the three-dimensional r
tional representationR, which in C2v is readily in diagonal
form, R5M21M41M1. Then it is convenient to conside
the three polarizationsEiOx, EiOy, andEiOz separately,
because they transform asM2 , M4, and M1, respectively.
Since the initial state (c1) i

q always transforms asM4 @i.e.,
q5M4 for both 1S(G2) and 1S(G3)], the final state (c1) f

p

must transform asM2^ M45M3 for EiOx, M4^ M45M1
for EiOy, and M1^ M45M4 for EiOz. The former two
selection rules correspond to light polarizedE'c and can be
combined into a single one, namely, transitions from init
state ofM4 symmetry are possible only to states ofM3 and
M1 symmetries~i.e., nP0 and nPy , see Table I!. The last
selection rule corresponds to light polarizedEic and shows
that in this case only transitions to states with the same s
metry as the initial stateM4 are allowed~i.e., nS andnPz).

Let us consider now the off-diagonal terms (mÞn). It is
easily deduced from Fig. 1 that the one-valley wave fu
tions (cm) f

p and (cn) i
q with mÞn have only two common

symmetry elements, namely, the identity operationE and the
twofold rotation C2z about thez axis. In other words, the
intersection group of the threeC2v groups corresponding to
the three equivalent valleysM (1), M (2), andM (3) is simply
C2, a subgroup ofC2v . C2 has two one-dimensional irre
ducible representations, denoted here asG1 ~the trivial rep-
resentation!, and G2 ~with matrices ‘‘1’’ for E, and ‘‘21’’
for C2z). The transformation properties ofck in theC2 sym-
metry are shown in Table I. According to the compatibili
16521
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relations, the irreducible representationsM2 andM4 in C2v
correspond toG2 in C2, whereasM1 andM3 correspond to
G1. Therefore, the dipole operatorV transforms asG2 for
E'c, and asG1 for Eic. The wave function of the initial
state (cn) i

M4 always transforms asG2, according to Table I.

Hence,V(cn) i
M4 transforms asG2

^ G25G1 for E'c, and
as G1

^ G25G2 for Eic. Consequently, forE'c, the off-
diagonal elements are nonzero only if the final state tra
forms asG1. According to Table I, the allowed final state
arenP0 andnPy in this case. ForEic, the final state must
have G2 symmetry in C2, which selectsnS and nPz as
possible final states~see Table I!. Comparing these result
with the results for the diagonal matrix elements, we not
that there are cases when the diagonal elements vanish
the off-diagonal elements do not. However, this does
change the selection rules deduced by considering only
diagonal terms. For example, forE'c, transitions were al-
lowed only to states transforming asM1 and M3, but these
are exactly the states transforming asG1 in C2 (nP0 and
nPy). The same holds forEic, the diagonal terms were
nonzero only for final states ofM4 symmetry, but these are
also the states transforming asG2 in C2 (nS and nPz).
Combining the selection rules deduced for the constitut
matrix elements from Eq.~4! with the selection rules inC3v ,
we obtain the final selection rules presented in Table II.

III. COMPARISON WITH THE EXPERIMENTAL DATA
AND DISCUSSION

We compare now the energy levels calculated w
Faulkner’s model to the experimental data. This is done
Table III and Fig. 2, displaying our own photothermal io
ization spectrum of a 4H-SiC sample.

We have to clarify the way the theoretical values p
sented in Table III were obtained. The theoretical bindi
energies for the final state of each transition were calcula
using Faulkner’s model, as described in Sec. II. It is w
known that the effective-mass theory describes well the
cited states, but fails to describe the ground state~as well as
its valley-orbit splitting, of course!. Thus, the theoretica
value for the binding energy of the 1S state~i.e., the theo-
retical donor ionization energy! calculated with our choice o
parameters~see Sec. II! is 53.1 meV, which is assumed to b
inaccurate.@This value is the common theoretical estima
for both 1S(G2) and 1S(G3) states.# Therefore, the theoret

TABLE II. Selection rules in 4H-SiC for optical transitions
from the ground state 1S(G2) and its valley-orbit split-off counter-
part 1S(G3) to other excited states.

Initial state Allowed final states (n>2)

PolarizationE'c
1S(G2) nP0(G3), nPy(G3)
1S(G3) nPy(G1), nP0(G3), nP0(G2), nPy(G3)
PolarizationEic
1S(G2) nS(G2), nPz(G2)
1S(G3) nS(G3), nPz(G3)
2-3
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TABLE III. Identification of the transitions between the levels of the shallow donor Nh observed
in the PTI spectra, and comparison of the experimental energy values with the calculated ones. All
units are meV.

Experimental Theoretical
Transition Energya Energyb Binding energyc Transition energyd

PolarizationE'c
1S(G3)22P0(G2 ,G3) 38.1 38.2 15.53 38.47
1S(G3)22Py(G1 ,G3) 41.8 41.8 12.27 41.73
1S(G2)22P0(G3) 45.6 45.6 15.53 45.87
1S(G3)23P0(G2 ,G3) 46.8 6.99 47.01
1S(G3)23Py(G1 ,G3) 48.4 ;48.5 5.52 48.48
1S(G2)22Py(G3) 49.2 49.2 12.27 49.13
1S(G2)23P0(G3) 54.2 shoulder;54.7 6.99 54.41
1S(G2)23Py(G3) 55.9256.3 55.9 5.52 55.88
PolarizationEic
1S(G2)22S(G2) 48.1 13.53 47.87
1S(G3)22S(G3) 40.7 13.53 40.52

aValues from Refs. 1,2, converted to meV.
bValues from our measurement, see Fig. 2.
cThe binding energy of the final state, calculated with Faulkner’s model.
dCalculated for each state as explained in text.
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ical transition energiescannotbe calculated by subtractin
the binding energy of the final state from thetheoretical
ionization energy. The transition energies can be calcula
by subtracting the calculated binding energies of the fi
states from some empirical value for the binding energy
either the 1S(G2), or the 1S(G3) state. These latter value
are chosen in such way as to provide the best match betw
the calculated and the observed transition energies. The
ergies of 61.40 meV for the 1S(G2) state, and 54.00 meV fo

FIG. 2. Spectrum of the photocurrent vs incident photon ene
for a sample of 4H-SiC:N. The bars labeled with numbers deno
the positions of the lines observed in Ref. 1, the numbers being
corresponding photon energies in cm21. The rest of the bars are a
the calculated energies for the transitions from either the 1S(G2)
ground state, or the 1S(G3) valley-orbit split-off state to the excited
state, as denoted for each bar.
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the 1S(G3) state are chosen to calculate the transition en
gies presented in the last column of Table III. The form
energy is the donor ionization energy. The difference
tween these two energies, 7.41 meV, is in close agreem
with the value of the valley-orbit splitting of the ground sta
~7.4 meV!, determined previously.1

The agreement between the model and experiment is
cellent, thus the model provides also identification of t
lines. Table III compares to the theory also the transitio
induced by light withEic, observed in IR absorption,2 and
associated here with 1S(G2)22S(G2) and 1S(G3)
22S(G3) transitions. The separation between these two
sorption peaks~7.4 meV! corresponds to the sum of th
valley-orbit splitting of the 1S and 2S states, according to
their identification. On the other hand, in the preceding pa
graph, we saw that 7.4 meV can be attributed to the vall
orbit splitting of the 1S state alone, i.e., the separation b
tween 1S(G2) and 1S(G3). This leads us to the conclusio
that the valley-orbit splitting of the 2S state is much smalle
than for the 1S state, probably within the experimental err
(&0.5 meV, approximately!. Moreover, several peaks in th
PTI spectrum are expected to be doublets with splitting eq
to the valley-orbit splitting of the involved excited stat
Consider for example the peaks at 45.6 and 38.1 meV.
former is identified as 1S(G3)22P0(G2 ,G3) ~doublet!, and
the latter as 1S(G2)22P0(G3) ~singlet! transitions. The dou-
blet is not observed, however, either because one of its c
ponents is very weak, or because its valley-orbit splitting
too small to be resolved experimentally, which is the m
probable reason. This leads us to conclude that the val
orbit splitting is negligible for all states except 1S.

The overall agreement of the two experimental sets
data obtained withE'c is obvious, however, small discrep
ancies beyond the experimental error can be noticed, e

y

he
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cially in the transitions to higher excited states. For exam
the line at 437.3 cm21 ~54.22 meV! from Ref. 1 can be
observed as a shoulder around 54.7 meV, on the left sid
the peak at 56 meV~see Fig. 2!. Also, the splitting of this
latter peak is not observed in our spectra. These small
crepancies may be due to the different stress condition
our sample from the one used in Ref. 1, to which the exc
states will be more sensitive due to their larger orbits.
note also that the weak peak at 46.8 meV, associated with
1S(G3)23P0(G2 ,G3) transition was not reported in Ref. 1
Otherwise, the discrepancy between the theoretical mo
and the experiment~both sets of data! does not exceed 0.3
meV ~see Table III!. We conclude that, apart from the sim
plicity of the model, the disagreement between theory a
experiment is due at least to some extent to the stress pre
in the samples. However, the model describes very well
observed levels, and yields the ionization energy of the
trogen donor at hexagonal site,EDh561.460.5 meV. This
value is close to the 60.2 meV determined in Ref. 1 on
base of the temperature dependence of the photoioniza
spectrum, but we consider our value as more accurate.

Transitions toPz states are allowed withEic but not ob-
served, probably due to low oscillator strength. The beha
of the Bloch wave functionswk8 needs to be known in orde
to make possible the estimation of the relative intensities
the lines. In this connection, it is worth pointing out that
wk8 are either symmetric, or asymmetric with respect to
planesxy , i.e., if wk8(x,y,z)56wk8(x,y,2z), transitions be-
tween theSstates for polarizationEic become forbidden. In
such case the only allowed transitions withEic from the
ground donor state would be toPz states, which, similar to
Py states, are also approximated by theP6-like states from
Faulkner’s model. Our assignment to transitions betweeS
states in Table III forEic is based entirely on the matc
between the measured peak energy and the calculated
However, the measured peaks in the IR absorption are m
than 2 meV broad~see Ref. 2!, probably indicating poor
sample quality. Thus more experimental work on better m
terial, as well as more advanced theory will be needed
order to decide conclusively on the nature of these peak

Finally, we would like to comment on an earlier work3

which also attempts interpretation of the N-donor exci
y

in

,
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states observed in infrared absorption. The authors apply
model suggested by Gerlach and Pollmann,13 which accounts
for the anisotropy of«. At the time of this publication, the
electron effective masses were not known, so a fitting pro
dure is used for determination of a longitudinal and transv
sal effective masses, required to apply the theory. Howe
their values disagree with the recently measured electron
fective mass tensor.10 These latter values are in good agre
ment with the theory,5 and from them it follows that the
Gerlach-Pollmann model isnot applicable to 4H-SiC. In-
deed, their model requires that the anisotropy of« and the
effective mass tensor are along the same axis (z axis in Ref.
13!, whereas in 4H-SiC, the large effective mass anisotrop
is along thex axis, while the anisotropy of« is along thez
axis ([c axis!. The theory has not been worked out for th
case of Eq.~2!, and since the anisotropy of« is usually
small, it is not surprising that we obtain a better agreem
with the data by neglecting it, and then applying Faulkne
theory with no adjustable parameters.

IV. CONCLUSIONS

We have shown that the experimental data on the exc
states of the nitrogen donor at hexagonal site in 4H-SiC are
described very well with the Faulkner’s model,4 using the
data for the electron effective-mass tensor from Ref.
Since no adjustable parameters have been used in the m
the agreement between theory and experiment serves a
indirect confirmation of the accuracy of the experimenta
determined electron effective masses.10 The optical selection
rules deduced here are also in agreement with the experim
tal data, and we are able to conclude that the valley-o
splitting of the donor states in 4H-SiC is only important for
the ground state. Its value is probably too small to be
served for the excited states, at least as long as measurem
on 4H-SiC material of the present quality are considered
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