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Optical selection rules for shallow donors in 4-SiC and ionization energy of the nitrogen donor
at the hexagonal site
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The selection rules for transitions between the electronic levels of shallow donos$iCG4in the dipole
approximation are derived. The ionization energy of the shallow nitrogen dahdrexagonal sijeis deter-
mined to be 61.40.5 meV by analyzing the photothermal ionization and infrared absorption spectra of
nitrogen doped samples in the frame of model that approximates the effective-mass Hamiltorn#Sig€ 4
with Hamiltonian of cylindric symmetryFaulkner’s model
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[. INTRODUCTION Here the indexk=1,2,3 enumerates the equivalent minima,
¢y is the free-electroriBloch) wave function at the bottom

In two recent publications? data on the excited states of of the conduction band, ang, is the envelope function,
the shallower nitrogen donor, identified as nitrogen substitutsolution of the one-valley effective-mass Satirmer equa-
ing for carbon atom at a hexagonal sitg Were published. tion. With our choice of coordinate systefsee Fig. 1, the
These data obtained by photothermal ionizati®Tl)  equation for the first valleyat the pointM V) becomes
spectroscopyand infrared(IR) absorptiod seem to be more
reliable than older data based only on IR absorptiorainly Rl 1 &2 1 & 1 2
because of the much better quality of the sample used. Un- Hipa=— 2\ mpy QJF Mk a_y2+ Myl 922
fortunately, no identification of the observed donor excited

states was attempted in these two publications, and the nitro- e2
gen binding energy for the shallower level was estimated to + — 5| ¢1=Ee1. 2
Epn=60.2-0.5 meV using only the temperature depen- Ve e\XP+y?+ (e, le))z

dence of the spectrutin this paper, we provide such iden- HereH, denotes the effective-mass one-valley Hamiltonian,

tification, based on the optical selection rules and on an es js the electron charge;; and ¢, are the values of the
timate of the energies of the observed transitions obtained

using Faulkner’s modélas a suitable approximation. Since a) = Notations:

details concerning the symmetry of the wave functions and o 6,,= x0z plane
the optical selection rules inH-SiC seem to be absent in the TT o= y0z plane
literature, they are given in Sec. Il. The comparison of the [0T10] S o,,= x0y plane

theoretical results with the experimental data is done in Sec.
[ll, and the conclusions are summarized in Sec. IV.

_ x=[1100]"
Il. THEORETICAL BACKGROUND [1010] z =[0001]
AND GROUP-THEORETICAL INVESTIGATION 7=C,,
OF THE OPTICAL SELECTION RULES

The conduction band of H-SiC has three equivalent b)
minima (valleys located at theM points of the Brillouin
zone® The group of thek vector for each of these points ' '
(valleys is C,, , with the C, axis oriented along the crystal ' A i Me
c axis. The orientation of the coordinate system with respect e e - —— - I y
to the crystal high-symmetry directions is shown in Fig. 1, ’ r
together with some notations used further. Throughout this L°
paper, we shall use the notations of Kosetral® for the MD
irreducible representations of the groups;,, and C;,. As M?
for the groupC,, , also Koster’s notations are used, but with
the letter “M” instead of “I",” in order to avoid confusion
with the representations @, . FIG. 1. Definition of some notations and the orientation of the

As shown by Kohn and Luttingérthe wave function of a  Cartesian coordinate system with respectdpthe crystal direc-
shallow donor in the effective-mass approximati@&WA)  tions, and(b) the Brillouin zone. The three directiorfsl100],

X

can be presented in the form [0110], and[1010] (enumerated 1,2 and 3, respectielye the
, equivalent directions corresponding kevector at one of the three
= PPk - (1) equivalentM-points M®, M@, andM®) in the Brillouin zone.
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dielectric constant along and perpendicular to ¢hexis, re- TABLE I. Symmetry of the one-valley wave functiong, in
spectively, andnpy, , Myk , andm,,, are the electron effec- C,,, and their relation to Faulkner’s states. The main quantum
tive masses along the high-symmetry directidhs M, M numbern is n=1 for the S states, anth=2 for the other states.
—K, andM —L of the Brillouin zone, respectively. It is this
equation that can be approximated by the Faulkner’s model, Symmetry

if one substitutes formy, and myk, the averagem Type of ¢ In C,, In C, Approximated b§
= ymy Myk, and sets the ratie, /ej=1 (the real value in

both 4H- and 6H-SiC seems to be about 0)g&° thus ne- "> State M. r nS
glecting the anisotropy of the dielectric tensor. The approxi-?Fo state Mg r nPo
mation form,,, andmy is justified (only for 4H-SiC) by NPy state M r nP.
the measured values of the effective mass tensor, nameljP. state My - nP.

mFMZO.SSi 01, mML:0.33i0.1, anCh"IMK=O.3E 01(|n
units of the rest mass of electrol? Within these approxima-
tions, EqQ.(2) transforms to the form given in Ref. 4. The
usefulness of such approximations is that a good estimation
for energies of the donor states can be obtained simply b
interpolation from Faulkner’s tables. For the interpolation, it
will be natural to use the valugén Faulkner’s notation$
m, =y(my.myx)=0.32 and m=mpy=0.58. The
Faulkner’s parameter ig'/3=(m, /m)*3=0.82 in this case.
Fore=\ge,, we take the value =9.95°

Note that the Hamiltonian used in Ref. 4 has cylindrical
symmetryD..,,, whereas in the case of#SiC (or any other U =a, iy + ayihy+ A, 3
hexagonal polytype of SiCthe symmetry i, according
to Eq.(2). Hence, ¢, will be classified according to the irre- and, therefore, transforms according to the wave function
ducible representations @f,, . representatiol”. The latter can be deduced in a standard

The correspondence between the states presented in R#fay from the transformation properties #f under the sym-
4 and the states of the Hamiltonian in Ef) is easily estab- metry operations o€, . It is a three-dimensional reducible
lished. TheSlike state$ (or, shortly,S state$ are those that representation, which can be presented as a direct sum of the
possess the full symmetry 8%, i.e., transform a; . The irreducible representations &3, . The result is that if the
quantization axis for the orbital momentuinis Ox in our ~ basis functionsjy have M, or M3 symmetry inC,, (nS,
case, hence the classification by parity holds with respect t8 P, andnPyq stateg, thenl'=1I",+I'5, whereas ify, trans-
the o, plane. TheP-like (or simply Py) states have odd forms asM; (nP, statey, I'=I'; +I';. Therefore, each state
parity, i.e. the corresponding wave function changes sign afSplits into one nondegeneraté,( or I';), and one double-
ter reflection ino,,. One easily finds that they transform degeneratel(s) state. The splitting is a consequence of the
according tol'; in D,,. TheP.-like (odd parity states are valley-orbit |7nteract|on, which is usually not accounted for
degenerate only iD..;, symmetry. InD,,, they will split by the EMA." _
into two (closely spacedstates, which we call for conve-  The coefficients, , k=1,2,3, in Eq.(3) can be found for
nienceP, and P, states(sign changes after reflection in, each |rredu0|blg representation using standard projection-
for the former, andr,, for the latte. Hence P, states trans- operators techniqué. The results, presented shortly in the

form asT'; , andP, states ad'; irreducible representations f0rM (a1,a,as) are, as follows:

of D,,. Both these states are approximated by the corre- (1/y3,14/3,143) for bothI'; or I';;

spondingP.. state from Faulkner’s model, because the de- 1/V6(2,~1,~1) for the first row ofl's;

viation of the Hamiltonian in Eq(2) from cylindrical sym- 1/2(0,1,-1) for the second row oF ;.

metry is small. Since the enumerated states are most We note also that all wave functions have zero amplitude

important for comparison with the experiment and represendt the donor nucleus, which follows from E@) and theM 4

the lowest lying states, our derivation of selection rules willsymmetry ofe, .

be restricted to transitions between them. At low temperatures, usually only the donor ground state
The transformation properties af, in C,, (which is a and possibly its valley-orbit split-off counterpart are popu-

subgroup ofD,;,) are found simply by comparing the repre- lated. In our notations, these are the two statggl’}) and

sentations of these two groups, and one obtains that eadf(I'3), and it has been shown for the N-donor, th&(Il,)

product functiony, (k=1,2,3), as defined in Eql), trans-  is the ground stat&. One of these two states is always the

forms asM, for SandP, states, ad/, for P, states, and as initial stateW; in absorption, and we consider now the selec-

Mg for P, states. The transformation properties of the onedtion rules for matrix elements of the formb,V¥;), re-

valley wave functionsy, and the Faulkner’s states corre- sponsible for the transitions. 183, , the dipole operato¥

sponding to them are summarized in Table |. The transfortransforms ad’; for polarizationEL c (i.e., perpendicular to

mation properties off, in the groupC, are also shown, the crystal axig and ad"; for E||c.*? Therefore, forE| c the

since they will be needed later on. The notatibiisandl’ ~ function VW¥; transforms as¥;, which means that transi-

will also be defined later. tions from 1S(I',) (the ground stapeare allowed only to

aDenotes the corresponding state within the Faulkner’s mdRief.
4), used to approximate the binding energy.

The site symmetry of substitutional donor itH4SiC is
&311- The three functions), (k=1,2,3) corresponding to
certain energy eigenvalue of E@) must form a basis for a
representatiof’ of Cy,,’ called here the wave function rep-
resentation. The total wave functich of the donor electron
in the EMA is, in general, a linear combination of the wave
functions ¢ corresponding to the three valleys,
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other states withI', symmetry, namely, tonST',), TABLE Il. Selection rules in #-SiC for optical transitions
nPy(I',), andnP,(I',) states withn=2. Transitions from from the ground state(I';) and its valley-orbit split-off counter-
1S(I"3) with E|/c are allowed to thd'; split-off counterpart ~ Part 13(I';) to other excited states.

of all states. FOEL c, and if the initial stateV; is the ground

1S(I',) state, theVW; hasI'3®T,=I'5 symmetry. Hence, Initial state Allowed final statesnt=2)

transitions to thd’; counterpart of all excited states are al- pg|arizationE.L ¢

lowed. For the B(I';) state,VV¥; hasI';@I's=I'1+1", 18(T',) NPy(T's), NPy(T3)

+1I'3 symmetry, and transitions to all states are allowed. ;4 Ts) nP,(I'y), NPy(I's), nPZ(Fz), nP,(T's)
However, the selection rules considered only within thePoIarizationEHc Y y

C3, symmetry are not sufficient to find all forbidden transi- 1S(T',) NS(T,), NPLT,)

tions. Indeed, by virtue of Eq3), each matrix element is a

sum of subelements of the form 18(T'3) nNST's), nP(T5)

(@mF(an)(¥m)f V(). (4)  relations, the irreducible representatidls andM, in C,,
correspond td"~ in C,, whereasM; andM; correspond to
where the coefficienta,,,a, and the one-valley wave func- I'*. Therefore, the dipole operatdf transforms ad”~ for
tions ¢, ¥, are labeled with the numbep(or q) of the  ELc, and asI'" for E|c. The wave function of the initial
respective irreducible representatisuperscriptp for the  state )4 always transforms aE~, according to Table .
flnal f, andq for the initial i statd. The selecthn rules |¢3U Hence,V(¢n)M4 transforms a& ~®T~ =T for ELc, and
give the sums of such terms that do not vanish, provided that ~_ -’ """
at least one of the subelements in the sum is not zero. Hovﬂ"lSF @I =I" for Ellc. Consequently, foELc, the off-

ever, by considering the symmetry of the constituting matrixd'agonal elements are nonzero only if the final state trans-

: L . forms asI'". According to Table I, the allowed final states
elements P V(y,)?), one finds additional selection e ' .
rules ((Ym)7. V(o)) arenP, andnP, in this case. FoEl|c, the final state must

We consider first the terms wittn=n representing tran- have_l" symmetry in Ca, which selectsr)S and nP; as
sitions within one valley, i.e.((1)? V(1)) (we will cal possible final state¢ésee Table ) Comparing these results

them shortly “diagonal terms’ Obviously, the selection with the results for the diagonal matrix elements, we notice
y diag ' Y, that there are cases when the diagonal elements vanish, but
rules for the diagonal terms can be established for only on

. . the off-diagonal elements do not. However, this does not
of them[say, (1) ,V(#1)], and this can be done entirely .\, 6 the selection rules deduced by considering only the
in the environment oC,, symmetry. The dipole operatdf

always transforms as the rows of the three-dimensional rot diagonal terms. For example, f@L ¢, transitions were al-
tional representatioRR, which in C,, is readily in diagonal Towed only to states transformmg 38, ar_1dM3, but these
' 2v are exactly the states transforming 8$ in C, (nPy and

form, R=M,+M,+Mj. Then it is convenient to consider | p ). The same holds foE|c, the diagonal terms were
the three polarizationg||Ox, E||Oy, andE|Oz separatel Y - :
P ’ Y, P Y nonzero only for final states &, symmetry, but these are

because they transform ?A;Z' My, andM,, respectively. 154 the states transforming & in C, (nS and nP,).
Since the initial state ,);’ always transforms asl, [Leb' Combining the selection rules deduced for the constituting
q=M, for both 1IS(T';) and 1(I';)], the final state é1)f  matrix elements from Eq4) with the selection rules i€, ,

must transform asl,®M,=M; for E[|[OX, M4@M4=M1 e obtain the final selection rules presented in Table Il.
for E[|Oy, andM,;@M,4=M, for E[|Oz. The former two

selection rules correspond to light polariZéd ¢ and can be
combined into a single one, namely, transitions from initial lll. COMPARISON WITH THE EXPERIMENTAL DATA
state ofM, symmetry are possible only to statesMf and AND DISCUSSION

M; symmetries(i.e., nPy, andnP,, see Table)l The last We compare now the energy levels calculated with
selection rule corresponds to light polarizEfic and shows  Faulkner’s model to the experimental data. This is done in
that in this case only transitions to states with the same symraple 11l and Fig. 2, displaying our own photothermal ion-
metry as the initial staté, are allowed(i.e., nSandnP,). ization spectrum of a ¥-SiC sample.

Let us consider now the off-diagonal terms£n). It is We have to clarify the way the theoretical values pre-
easily deduced from Fig. 1 that the one-valley wave funcsented in Table Ill were obtained. The theoretical binding
tions (¥)f and (¥,){ with m#n have only two common energies for the final state of each transition were calculated
symmetry elements, namely, the identity operatioand the  using Faulkner's model, as described in Sec. Il. It is well
twofold rotation G, about thez axis. In other words, the known that the effective-mass theory describes well the ex-
intersection group of the thre@,, groups corresponding to cited states, but fails to describe the ground stasewell as
the three equivalent valleyd ™, M®), andM® is simply its valley-orbit splitting, of course Thus, the theoretical
C,, a subgroup ofC,,. C, has two one-dimensional irre- value for the binding energy of theSlstate(i.e., the theo-
ducible representations, denoted herd ds(the trivial rep-  retical donor ionization energygalculated with our choice of
resentation andI"'™ (with matrices “1” for E, and “— 1" parametergsee Sec. )lis 53.1 meV, which is assumed to be
for C,,). The transformation properties ¢f in theC, sym-  inaccurate[This value is the common theoretical estimate
metry are shown in Table I. According to the compatibility for both 1S(I",) and 1S(I';) states] Therefore, the theoret-
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TABLE IlI. Identification of the transitions between the levels of the shallow dongrolserved
in the PTI spectra, and comparison of the experimental energy values with the calculated ones. All energy
units are meV.

Experimental Theoretical

Transition Energy Energy® Binding energy® Transition energy
PolarizationE L ¢

1S(I'3) —2Po(I',,T'3) 38.1 38.2 15.53 38.47
1S(I'3) —2Py(I'y,T'3) 41.8 41.8 12.27 41.73
1S(T°,) —2Py(T'3) 45.6 45.6 15.53 45.87
1S(I'3) —3Po(I',,I'3) 46.8 6.99 47.01
1S(I'3) —3Py(I'y,I'5) 48.4 ~48.5 5.52 48.48
1S(I';) —2Py(T'5) 49.2 49.2 12.27 49.13
1S(I',) —3Po(I'5) 54.2 shoulder54.7 6.99 54.41
1S(I'p) =3Py (I'3) 55.9-56.3 55.9 5.52 55.88
PolarizationE||c

1S(I',) —25(T",) 48.1 13.53 47.87
1S(I'3) —29(T'5) 40.7 13.53 40.52

A/alues from Refs. 1,2, converted to meV.

bValues from our measurement, see Fig. 2.

“The binding energy of the final state, calculated with Faulkner’s model.
dCalculated for each state as explained in text.

ical transition energiesannotbe calculated by subtracting the 1S(I';) state are chosen to calculate the transition ener-
the binding energy of the final state from tlleeoretical gies presented in the last column of Table Ill. The former
ionization energy. The transition energies can be calculatednergy is the donor ionization energy. The difference be-
by subtracting the calculated binding energies of the finatween these two energies, 7.41 meV, is in close agreement
states from some empirical value for the binding energy ofyith the value of the valley-orbit splitting of the ground state
either the B(I',), or the 1S(I"3) state. These latter values (7.4 meV), determined previouslfy.
are chosen in such way as to provide the best match between The agreement between the model and experiment is ex-
the-calculated and the observed transition energies. The Bellent, thus the model provides also identification of the
ergies of 61.40 meV for theX(I";) state, and 54.00 meV for jines Taple 11l compares to the theory also the transitions
induced by light withE|c, observed in IR absorptichand

4H-SiC:N associated h(_are with S(Fz)—_ZS(I‘Z) and 1S(I'3)

5 —28(I';) transitions. The separation between these two ab-
T=33K

sorption peakg7.4 me\j corresponds to the sum of the
valley-orbit splitting of the B and 2S states, according to
their identification. On the other hand, in the preceding para-
graph, we saw that 7.4 meV can be attributed to the valley-
orbit splitting of the 1S state alone, i.e., the separation be-
tween 1S(I',) and 1S(I';). This leads us to the conclusion
that the valley-orbit splitting of the  state is much smaller
than for the B state, probably within the experimental error
(=0.5 meV, approximately Moreover, several peaks in the
PTI spectrum are expected to be doublets with splitting equal
p shoulder ~54.7 meV to the valley-orbit splitting of the involved excited state.
X3 Consider for example the peaks at 45.6 and 38.1 meV. The

40 4'5 5'0 55 former is identified as $(F3)—ZPO(FZ,F3)_(_d0ubIe1, and
Photon Energy (meV) the I_atter as §(I'y) —2Py(T'3) (sm_glei) transitions. The (_jou-
blet is not observed, however, either because one of its com-
FIG. 2. Spectrum of the photocurrent vs incident photon energ)ponems is very weak, or becal'!se its Va"ey'F’rb'F splitting is
for a sample of #-SiC:N. The bars labeled with numbers denote (00 Small to be resolved experimentally, which is the most
the positions of the lines observed in Ref. 1, the numbers being thBrobable reason. This leads us to conclude that the valley-
corresponding photon energies in ch The rest of the bars are at 0rbit splitting is negligible for all states excep81

1 S(ra)'zPy(rl,Fs)

3375

—1 S(Fz)'BPo(Fa)

1S(T,)-38,T)

2 18T ,)-2P, (T)

—1 S(ra)'3po(rz,rs)
—1 S(FS)-3Py(rl’r3)

—1 S(F:)'ZPo(rz’ra)

307

Photoresponce (linear scale)

the calculated energies for the transitions from either tB&l'3) The oyerall agreement Of_ the two experimental_ sets of
ground state, or the(I";) valley-orbit split-off state to the excited data obtained witle L ¢ is obvious, however, small discrep-
state, as denoted for each bar. ancies beyond the experimental error can be noticed, espe-
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cially in the transitions to higher excited states. For examplestates observed in infrared absorption. The authors apply the
the line at 437.3 cm! (54.22 meV from Ref. 1 can be model suggested by Gerlach and Pollma&fwhich accounts
observed as a shoulder around 54.7 meV, on the left side dbr the anisotropy ok. At the time of this publication, the
the peak at 56 meV\(see Fig. 2 Also, the splitting of this electron effective masses were not known, so a fitting proce-
latter peak is not observed in our spectra. These small disdure is used for determination of a longitudinal and transver-
crepancies may be due to the different stress conditions isal effective masses, required to apply the theory. However,
our sample from the one used in Ref. 1, to which the excitedheir values disagree with the recently measured electron ef-
states will be more sensitive due to their larger orbits. Wefective mass tensdf. These latter values are in good agree-
note also that the weak peak at 46.8 meV, associated with thment with the theory, and from them it follows that the
1S(I'3) —3Py(I',,I'5) transition was not reported in Ref. 1. Gerlach-Pollmann model iaot applicable to #-SiC. In-
Otherwise, the discrepancy between the theoretical modeleed, their model requires that the anisotropy cdnd the
and the experimentboth sets of dajadoes not exceed 0.3 effective mass tensor are along the same axiax{s in Ref.
meV (see Table Ill. We conclude that, apart from the sim- 13), whereas in #-SiC, the large effective mass anisotropy
plicity of the model, the disagreement between theory ands along thex axis, while the anisotropy of is along thez
experiment is due at least to some extent to the stress presentis (=c axig). The theory has not been worked out for the
in the samples. However, the model describes very well thease of Eq.(2), and since the anisotropy ef is usually
observed levels, and yields the ionization energy of the nismall, it is not surprising that we obtain a better agreement
trogen donor at hexagonal sitep,=61.4=-0.5 meV. This  with the data by neglecting it, and then applying Faulkner’s
value is close to the 60.2 meV determined in Ref. 1 on theheory with no adjustable parameters.
base of the temperature dependence of the photoionization
spectrum, but we consider our value as more accurate. V. CONCLUSIONS

Transitions toP, states are allowed witk||c but not ob- _ ,
served, probably due to low oscillator strength. The behavior We have shown that the experimental data on the excited
of the Bloch wave functions] needs to be known in order states of the nitrogen donor at hexagonal site i &iC are

to make possible the estimation of the relative intensities ofi€Scribed very well with the Faulkner’s modelising the
the lines. In this connection, it is worth pointing out that if data for the electron effective-mass tensor from Ref. 10.

Since no adjustable parameters have been used in the model,

¢, are either symmetric, or asymmetric with respect to the :
T, - f o the agreement between theory and experiment serves as an
planeoyy, i.e., if pg(X,y,2) = * ¢ (X,y,—2), transitions be-

o : indirect confirmation of the accuracy of the experimentally
tween theS states for poIarlzatloE||c_: _become forbidden. In determined electron effective mas$&3he optical selection
such case the only allowed transitions wifc from the

d.d tat Id b tat hich. similar t rules deduced here are also in agreement with the experimen-
ground donor state would be 1, states, which, SImrart0- 4 gata, and we are able to conclude that the valley-orbit
P, states, are also approximated by fe-like states from

. : " splitting of the donor states inH-SiC is only important for
Faulkngrs model. Our as§|gnment to tran3|t|ons betw@en the ground state. Its value is probably too small to be ob-
states in Table Ill forE|c is based entirely on the match

served for the excited states, at least as long as measurements
between the measured peak energy and the calculated o

$t 4H-SiC material of the present quality are considered.
However, the measured peaks in the IR absorption are more P q y

than 2 meV broadsee Ref. 2 probably indicating poor
sample quality. Thus more experimental work on better ma-
terial, as well as more advanced theory will be needed in We thank professor U. Lindefelt for many useful discus-
order to decide conclusively on the nature of these peaks. sions on group theory. Support from the SSF program SiCEP

Finally, we would like to comment on an earlier wotk, and the Swedish Research Council is gratefully acknowl-
which also attempts interpretation of the N-donor excitededged.
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