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Concentration broadening of absorption lines from shallow donors
in multivalley bulk semiconductors
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Concentration broadening of donor absorption lines is studied by numerical simulation at donor densities so
low that overlap of the wave functions of electrons bound to different donors is completely negligible. At such
densities broadening of donor absorption lines due to overlap is replaced by broadening due to resonant van der
Waals interaction between donors, an effect which produces linewidths proportional to the first power of the
donor concentration. It is argued that in three dimensions, but not in two, the van der Waals interaction
completely delocalizes the excitation induced by the absorption of a photon by the donor system initially in its
ground state. Detailed line-shape calculations are made for P donors in Si. For that donor species the concen-
tration broadened € 2p.. transition line is predicted to be 32% broader than the zero-defigiyime-
broadenejlline at a P concentration of>410' donors/cm whereas the 4— 2p, transition at the same P
density is only 8% broader. Comparison is made with available data.
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I. INTRODUCTION in Refs. 1 and 3, the latter plotting lines much wider than
reported in the former at a comparable donor concentration
Low-temperature experiments on high-purity uncompen+{~4x 10> donors/cr).
satedn-type bulk samples of the multivalley semiconductors In this paper the broadening of dipole-allowed donor tran-
Si and Ge reveal numerous narrow absorption lines. Absorpsitions induced by Coulomb interactions between neutral do-
tions to the lower-lying excited states in Si are reported  nors is studied in dilute systems, where the donor centers are
have, typically, full widths at half maximum of 0.02—-0.03 widely separated. To isolate the leading term in the concen-
meV at donor concentrations near *4@onors/cm; the  tration broadening of a system of donors in random positions
broadening of the narrowest lines is attributed to the spontathe Coulomb interaction between them is expanded in pow-
neous emission of acoustic phonons from the excited staters of the ratio of the “radius” of the donor wave function to
with the electron falling either to the ground state or a lower-the separation of the donor centers. Only the lowest-order
lying excited state. Such a process would give rise to awonvanishing contribution to the shift in transition energy is
Lorentzian line with full width at half maximuntFWHM) kept. Its contribution to the broadening is then calculated for
equal to " wherel is the decay constant of the excited statedipole transitions originating from the ground state of the
reached in the optical transition. An increase of 0.004 meV irdonor system. In the case of Si and Ge the most prominent of
linewidth of the Is—2p, transition at densities of 2 or 4 the observed transitions are--np, or 1s—np- . Detailed
X 10 donors/cm is reported in Si:RSi doped with phos- calculations are carried out for the case of Si:P for tise 1
phorus donors but the measurements do not definitively es-—2p, and 1s—2p.. transitions.
tablish the amount of concentration-induced broadening There are two calculations previously reported that are
since error bars quoted for each linewidth determination arsimilar in spirit to the one to be presented, although both are
+0.002 meV. concerned with the van der Waals interaction in donors in
Magneto-optical measurements in Ge give FWHM valuesGaAs, which has a single conduction-band minimum. The
for the 1s—2p_ transitions as small as 0.008 meV for the first deals with the relatively simple case of donors in a mag-
stress-insensitiv® (H,0) donor complex and 0.027 meV for netic field, where broadening of thesd:2p_ transition is
substitutional P donofs at  concentrations  of studied in bulk samplebThe second considers effects on the
10" donors/cmd. The D(H,0) lines are observed to be impurity cyclotron resonance line due to van der Waals in-
Lorentzian, and their width is attributed to lifetime broaden-teractions between barrier impurities in a two-dimensional
ing as described above. quantum well modet. Features of the present calculations
Although as far as the author is aware, systematic highinclude consideration of interactions between electrons in
resolution measurements of linewidth vs concentration aréifferent anisotropic valleys, which is not relevant for semi-
not available at low donor concentrationgsay, conductors with a single conduction-band minimum, and
<10 donors/ci in Si) it is evident that with increasing taking into account the effect of central cell corrections,
concentration the lines broaden and eventually develop struavhich have been neglected for the very shallow donors
ture in their low-energy tails, likely associated with overlap found in GaAs and related compound semiconductors.
of electrons from nearest-neighbor donor paitdowever, Briefly, the results obtained indicate that, in the absence of
the experimental situation is not completely clear even in thether broadening mechanisms, the low-density concentration
relatively well-studied case of Si:P. There appears, for exdependence of the broadening of the donor species of interest
ample, to be a major discrepancy in the linewidths reporteds proportional to the density of that donor species, indepen-
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dent of the density of any other donor species that might als&ffective-mass theory is very accurate for describing fthe
occur in the same samplassuming that the central cell cor- states but is not generally sufficient for the ground state,
rections of the two species are not equal or nearly equal teince it predicts, contrary to experiment, that the ground state
each other Unlike broadening associated with overlap of of isolated donors is degenerate, each degenerate state being
electrons on different donors, the concentration broadeningharacterized by aslike envelope function associated with
predicted here, being proportional to the squared transitioa different conduction-band minimum. In the case of substi-
dipole matrix element from the ground state, tends to beutional donors this degeneracy is broken by valley-orbit in-
weaker for transitions to more highly excited states than tderaction which splits off the true, nondegenerate, completely
lower-lying excited states of the same symmetry. The presymmetric ground-state function, denoted as trefAl)
dicted FWHM due to concentration broadening alone isstate. The energy separation of this(Al) state from any
donor-species dependent, increasing with decreasing centrather donor state is much larger than the energy shifts in-
cell correction, but, for low concentrations, is much smallerduced byH.,,. Valley-orbit interaction is negligible for the
than the observed linewidths. It is assumed that another prg states. If the effective mass of electrons in the valleys were
cess, which is concentration independé@mtesumably life-  isotropic thep states associated with each valley would be
time broadening is responsible for the bulk of the observed triply degeneratéas in the elementary picture of the hydro-
broadening at low densities. The effect of concentratiorgen atom. However, in both Si and Ge each valley has an
broadening is found by convolving the predicted anisotropic effective mass which partially breaks the three-
concentration-broadened spectrum with a Lorentzian lindold p-state degeneracy producing a degenerate pair,
representing the lineshape at zero donor density. Althoughndnp_, and a deeper split-off singlet statep,, associ-
the predictions are not inconsistent with the experimentahted with that valley. Thig-state splitting also turns out to
results of Ref. 1, there is not at present sufficiently detailectbe much larger than energy shifts inducedHby, .
experimental information to definitively test the present For each value of there are six degeneratg, states in
theory. Si [corresponding to two conduction-band minima along
each of the directionél,0,0, (0,1,0, and(0,0,)) in k spacé
Il. THEORY and four for Ge[corresponding to one conduction-band
, ) ) o minimum at the zone boundary along each of the directions
The Coulomb mteractlon betwee_n d_ono&ndj with cen- (1,1,9, (-1,1,, (1,—1,2), and(—1,—1,1)]: each of thes@
ters separated by a displacemy is given by the expres-  giates is associated with a single valley and has a nonzero
sion dipole matrix element to the ground state. Likewise there are
2 twelve degeneratap. states for Si and eight for Ge. To
e 1 1 1 1 ; . ; .
( — — + _) ) describe the interaction of two donors dueHg,, in Eq. (2)
[Rigtri=rl [Rij=rl [Rij+rl Ry when one donor is in an exciteth, state and the other is in
wherer; is the displacement of thith electron from the the 1S(Al) state would appear to require diagonalizhig,
center of théth donor; the magnitude of this displacement isin @ set of twelve basis states for @ realize all the possi-
understood to be of the order of the “donor radiusgy,,.  Pilities of one donor in the ground state and the other in one
The first nonvanishing term in the expansion of Efj.in  Of the six possiblep, states and eight for Ge. Likewise 24
inverse powers oR, ; is the van der Waals term, given by basis states for Si and sixteen for Ge would seem to be re-
quired for the analogous problem involving the.. states.
(Actually, for Si it can be shown that only three of the six
valleys need be included, one for each of the directions as-
sociated with the conduction-band minima. Thus for Si only
This interaction couples a two-donor state in which ddrier  six basis states fanp, and twelve fomp.. are required.
in a p state with donoj in its ground state, to a second state  Finding the wave functions and energy spectrum of the
in which donori is in its ground state and dongris in an  coupled two-donor system is an exercise in degenerate per-
equivalentp state.(The p states of a donor have a nonvan- turbation theory. It is convenient to employ basis states of the
ishing dipole matrix element to the ground stat€hese form
coupled states are degenerate for isolated donors; their
common energy is equal to the sum of the ground-state Inp.1)x[1s(AL))i,  [np,1)ix[1s(AL));, 3)
energy and thep-state energy for an isolated donétfyy  wherei andj are donor subscriptsip refers either to amp,
splits the degeneracy, leading to an energy shift of ordestate(if transitions Is—np, are of interestor to either an
(eZ/eoRi,j)(rﬁono/REj). Thus, the leading term in the shift of np_ or np, state(if transitions ls—np.. are requireyl and
the excitation energy due to the Coulomb interaction bethe indexl labels the valley with which thp state is associ-
tween two neutral donors at large separatidow density is  ated(more exactly) labels the valley Bloch function multi-
provided byH,,. This paper studies the effect bf,,y on  plying the np envelope function The Hamiltonian matrix
the spectral line shape of dilute donors. constructed fronH,,, and these basis functions is then di-
To understand the effect dfl,,y on the spectrum of agonalized.
weakly excited donors in Si or Ge it is useful to review Matrix elements oH,,y in the basis states of E¢B) for
briefly certain pertinent facts about the nature of the groundsi donors for transitions from the ground state f@, have
state andp states of isolated donors in these matefidls. the form

€0

e2

S ~3(Rij-rd(Rij-1y)
Hyw(i,j)= GORig,j .

R,

ri'rj
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e? |<1S|Z|ﬂpz>|2 5 The excited-state basis functions analogous to those of Eqg.
_TF(RU;Q’,';BJ,)/R”: (48  (3) are
€0

N
where|1s) and |np,) are, respectively, the envelope func-
tions f|or t>he 5 Lndilpo states in the0,0,1) valley (where ¢i(np,l)=|np,l>ij];[i |1s(AD);, ®)
the z direction is the heavy-mass directjothe indiced and
|” label the valleys occupied by the excited-state electrowheren is fixed and|np,l); ranges over all donors i
belonging to donors andj. Herel or I’=1-3 refer to val- =<N) and all possible degeneraip states] labels the valley
leys along thex, y, andz directions, respectiveljor equiva-  occupied by the electron in thep state. In Si there arelB
lently the(1,0,0, (0,1,0, and(0,0,1) crystallographic direc- such basis functions for transitions to ap, state and 6l
tions, respectively When| and |’ are equal, the excited for np. transitions. If separations between donor centers are
electrons of the coupled donors are in the same valley, othmeasured in units orhgm, as is the convention henceforth
erwise they are not. The indices or B identify whichnp in this paper, then by virtue of the~3 dependence of the
state is excited; these indices assume possible values 1, 2, @atrix elements indicated in Eq&a) and (4b), all matrix
3 corresponding, respectively, tgp,, np,, or np, excited  elements between these basis functions for a given transition
states. In Eq(4a), share a common factor,

a=1, B=I". e?
vo=—ngl(1slzInp,)|%/3 (63
Likewise for transitions ta1p.. the matrix elements are 0
for npg transitions and

3 F(Rij;al;8,1")/RY. (4b) o2

€ v =—ng(1sx|npg|*/3 (6b)
0

In Eq. (4b) there are two values af for each value of and

similarly two values ofg for eachl’. This follows from the ~ for np. final states. These quantitiesy andv., serve,
requirement thatr and 8 run over all of their possible values therefore, as scale factors for their respective energy spectra.

¢ [(1slx|npy)?

subject to the inequalities The spectral shapes inferred from diagonalizithg,, in the
basis functions of Eq(5) are universal for donors in Si
a#l, B#I'. which have ground states of symmetrg(Al), being inde-

pendent of the density of donors and the quantum number
All envelope functions in the matrix elements of E¢4a) On the other hand the line breadth is lineamip (and de-
and (4b) are those for states in th@,0,1 valley (although  pends om through the matrix elements
the formulas apply to all valleysSince no magnetic field is Spectra are constructed from the wave functions and en-
present we have replaced in Egb) the np-state basis set ergies calculated in a way already described in Ref. 5. Donor
np, andnp_ by the more convenient setp, and np,, samples are modeled by filling a sphere with N donors scat-
where x and y lie along (1,0,0 and (0,1,0, respectively. tered at random throughout the spherical volume. The radius
[Note that in the(0,0,1 valley (1s|x|npy)=(1sly|np,)].  of the spherdRg is set so thany=1 [Rg=(3N/4m)'3]. The
The factor of3 in Egs. (48—(4b) arises from the uniform matrix of H,y is set up and diagonalized, with both energies
weighting of the & envelope functions in each of the three and wave functions recorded for each sample. Each energy
valleys in the B(A1) split-off ground state. Formulas for the eigenvalue is weighted in proportion to the square of its as-
F functions are given in Appendix A; it will suffice here to sociated dipole transition matrix element,
note that these functions depend only on the angleRijof  |e(y|(S],x;)|1s(A1))|?, where|y) is the eigenfunction as-
The matrix elements appearing in E@éa)—(4b), which in-  sociated with the eigenvalue considefgere, linearly polar-
volve envelope functions, are discussed in Appendix B. Theyzed light along(1, 0, O is assumed, but the direction of
are sensitive to the central cell correction of the donor spepolarization is immaterigl Using these weights histograms
cies of interest, since theslenvelope function must be of the energy are plotted for a sufficient number of different
modified from the form predicted by effective-mass theory torandom samples to produce a smooth curve. It was noted that
account for the extra central cell binding. Such a correctioras the sample siz@N) increased the predicted spectral shape
to the effective-mass slwave function for P donors in Si became broader, caused almost entirely by a decrease in rela-
reduces significantly the matrix elements of E@&)—(4b). tive spectral strength near the unperturbed transition energy

The generalization from two donors to N donors is(a similar effect was noted in Ref).4The maximum values

straightforward. For N donors the problem is to find the ab-of N employed in the present work were 250 and 500, for
sorption line shape for a single photon incident upon als—np. and I1s—np, transitions, respectively. Conver-
sample of volume/ containing a dilute system of N donors, gence studies at differeht values suggest that spectral line-
all of which are initially in the ground state. The donor den-widths using these maximum values of attain values
sity ny is defined by within, perhaps, a few percent of those which would have

been computed from an arbitrarily large sample. However, it

ng=N/V. is difficult to be sure about this.
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FIG. 2. The FWHM of the predicted concentration-broadened
line in units of the FWHM of the donor line at vanishing donor
density (4'g) vs 2I'g/vg for 1s—np, donor transitions in Si:P
0_80 60 40 20 0 20 40 ® 80 (solid line). The quantityvy is a measure of the strength of the van
Transition Energy der Waals interaction pertinent to transitions to g states and is

defined in Eq(B2a). The dashed line shows the result obtained by

FIG. 1. Predicted normalized line shapes for pure van der Waalsimply adding the FWHM values for each of the unconvolved
broadening in Si of the4(A1)— np, absorption(curve labelegy) curves.
and the B(Al)—np. (curve labeledp.). Infinite lifetime is as-
sumed for the excited state. The zero of energy for each curve is alons to 2 states in Si witiy=4x 10'® donors/cri. Based
the isolated donor transition energy. The appropriate energy scalgy these calculated values the predicted full widths at half
for any particular transition is found by multiplying the energy Scalemaximum for both 3—2p. and Is—2p, transitions in
shown byvo/2 orv ./2, respectively. Approximately 1600 and 3000 g;.p a6 much smaller than those reported in Ref. 1. More-

d'ﬁeren.t random donor Conf'g.urat'ons Wmequal t0 500 and 250, over, the experimental widths show a much weaker than lin-
respectively, were employed in calculating the curves shown. These

curves are interpolated from histograms produced by the numericael'ar depen((jjgnc; Off thle WIC(ijchS Vmbt .It I?hdeﬁ.r’ f?s hat&‘, bgen
simulation with energy box sizes equal to 0.2. recognized in Refs. 1 an , that In the high-punty donor

samples of those references there is at least one other source
To obtain the transition energy one need merely subtraadf broadening that dominates the concentration broadening.
the unperturbed ground-state energy from the calculated eBoth references suggest that one such broadening mecha-
ergies of the one-photon excited states. The unperturbegism likely to be of importance is the decay of donor excited
ground-state energy is used because concentration broadetates via spontaneous emission of acoustic phonons. Such
ing of the ground state is of higher orderrng than that of decay processes result in Lorentzian lines with values of
the excited state and so can be neglected at low donor deWHM of 21", which are much larger than the FWHM in-
sities. If one performs this subtraction in each diagonal eleferred from the scale factors and line-shape curves for pure
ment of the matrix, those elements all become equal to theoncentration broadening at values f less than or near
unperturbed transition energy of the donor, and the eigenval x 10'° donors/cr in Si.
ues of the matrix directly give the possible transition ener- To study the effect of concentration broadening on the
gies. (Note that if two donor species are present with suffi-observed lines in Si:P it is necessary to include both concen-
ciently different central cell corrections then their transitiontration and lifetime broadening simultaneously. This can be
energies will likewise be very different. As a result, donorsdone by convolving line shapes of Fig. 1 with Lorentzian
of one species can couple only very weakly to those of thdines of appropriate width(Of course, convolution is al-
other and, to a good approximation, transitions associatebwed only if the two broadening mechanisms are
with each donor species will be broadened as if the otheindependent) Figures 2 and 3 summarize the results of the
species were not present. convolution calculations for the linewidths. These graphs
Spectra based on the foregoing theory are shown in Fig. piredict the fractional increase of the zero-concentration
for both 1s—npy and Is—np.. transitions. Zero energy on FWHM for a given ratio 2°g/vq or 2I" . /v . , wherel’y and
the graph corresponds to the unperturbed donor transitioh .. are half widths of the §—np, and 1s—np.. transitions,
energy for both of these transitions. The energy scale rerespectively, of isolated donors. These plots convey the im-
corded is forvg=v . =2, whereas the calculated values for portant result that the FWHM of the convolved line is always
the scale factors, andv . as discussed in Appendix B are significantly greater than the sum of the FWHM values of
only 5.1x 10 ° and 13<10 ° meV, respectively, for transi- each of the unconvolved lines. It should be noted that widths
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19 sible to find a sphere sufficiently large that the sum of the

squared amplitudes of the basis functions of Es). that
187 correspond to donors lying outside the sphere is lessélian
174 the eigenvector of intere$t.

1s to np4 transitions One way to approach this question in a simulation is to
assume that the exciting light falls only upon a single donor
(rather than the whole sampland investigate the probabil-

ity of finding donors excited at various distances from that
single donor. The light is to be taken to have uniform inten-
sity over a spectral range broad enough to encompass essen-
tially the whole absorption line. A simulation of this type has
been performed in which the single donor being excited by
incident photons, having been assigned the index 1, is placed
in the center of a spherical sample constructed as described
................................................... earlier. The eigenvectors éfy,y are calculated and the prob-

1 - - - i - 7 T ; ability of finding theith donor excitedP(i), wherei>1, is
calculated according to the formula

1.44

1.3

Predicted FWHM /2T,
—
tn
ol

/ convolution

124 addition

L1 e,

N
FIG. 3. The FWHM of the predicted concentration-broadened P(i)=> |C(1j)|2|c-<j)|2,
line in units of the FWHM of the donor line at vanishing donor =1 :

density (4'.) vs 2I'. /v. for 1s—np. donor transitions in Si:P () . o . .
(solid line). The quantity .. is a measure of the strength of the van Wherec;™ is the amplitude for excitation of thigh donor in

der Waals interaction pertinent to transitions to the. states and the jth eigenfunction. In this simulation the probability of
is defined in Eq(B2b). The dashed line shows the result obtained exciting thejth eigenfunction itself igc{’|2. The distance of

by simply adding the FWHM values for each of the unconvolvedthe ith donor from the center of the sphere is then entered
curves. into the histogram with the weigtR(i) assigned to it.

To keep the computations manageable the one-valley
of the convolved lines are considerably less sensitive to thenodel of Ref. 4 was employed, where, in the notation of
value of N chosen in their calculation than are the lines of Appendix A,

Fig. 1.

To apply the predictions of Figs. 2 and 3 to the results of Hyw=(1-3Z%/R%)/R®,

Ref. 1 one can see that, for the data at lowest densitie
quoted 10" donors/cri), the expected concentration
broadening is negligible for the st-2p, transition and
small for 1s—2p.. ; to a good approximation one can set the
observed FWHM at lowest density(1 or 2

X 10* donors/cm) to 2I'. The present theory predicts a
~4% increase in linewidth for thest-2p, transition at 4

X 10 donors/cm compared to pure lifetime broadening.
Although the dathseems to show a bigger effect than this
the error bars are sufficiently large thate% effect could
not be excluded.

It would appear that the sb-2p, absorption is not the
ideal transition for study of concentration broadening in
high-purity n-Si. A much larger increase is predict€t4%)
for th5e Is—2p.._transition at the same donor density (4~ gharnly contrasting results are presented in Fig. 5 for the
X 10" donors/cr) but, unfortunately, to our best knowl- 1" jer \Waals interaction in two dimensions. The two-

edge, published data to test this prediction is not available i'aimensional(ZD) van der Waals Hamiltonian employed is
Ref. 1 or elsewhere at the time of this writing. that of Ref. 5

Results for the probability per unit length averaged over
many random donor distributions are plotted in Fig. 4 for
sample size?N=100 and 1000. Of particular interest is the
steadily rising probability as one approaches the sample
boundary, evident for both sample sizes. One can hardly
avoid interpreting this behavior as evidence of extended
states. The sharp peak at small distances corresponds prima-
rily to excitation of a donor pair consisting of the central
*donor and its close-lying nearest neighbor. From the discus-
sion to follow it is expected that al—c this peak will
narrow and disappear as even excited states associated with
those rare pairs which are very closely spacadd have
energies far out in the tail of the linesdlelocalize in suffi-
ciently large samples.

IIl. LOCALIZATION HAW = —1/R?,,

An interesting question is whether the excitation of do-whereR; ; is the distance in the-y plane between donois
nors produced by the absorption of a single photon is localandj. The diagonal elements are all zero. Only small differ-
ized or extended. A “localized” eigenstate in this paperences can be found between the radial dependence of exci-
means an eigenstate for which it is possible to enclose essetation for the small and large sampl@d distances for which
tially all excited donors in a sphere of sufficiently large butthey can be compargd-or both sample sizes the probability
finite radius.[For example, one might require that for any of finding excited donors farther away from the illuminated

positive nonzero numbet, however small, it is always pos- donor than, for example, the average nearest-neighbor
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d

FIG. 4. Probability per unit length, in three dimensions, of find-
ing an excited donor vs distandanits of ng”% from the single FIG. 5. Probability per unit length, in two dimensions, of finding
iluminated donor at the center of a spherical sample. The curve8n excited donor vs distandanits of ny*?) from the single illu-
terminate at the boundary of the spheres enclosing the donors. Ttginated donor at the center of a circular sample. The curvéNfor
interpolated curve is foN= 100, calculated with 205 000 samples; =100 terminates at the boundary of the circle enclosing the donors.
the dots represent results fir=1000 with 7700 samples. The his- The interpolated curve is foN=100, calculated with 1:210°

togram bin size is 0.02 in both cases, and the curves are normalizégmples; the dots represent results fdé=1000 with 10400
to the unit area. samples. The histogram bin size is 0.02 in both cases, and the

curves are normalized to the unit area.

distance(0.5 on the distance axis of Fig) fends to decrease . . .

with distance.(The rise near the sample edge fd=100 Og(t::;sr’n;“irmlxmg becoming weaker as the ratit/ AE|

samples appears o be. an artifact of small sample size, sincé The eigeﬁfunctions of an infinite system of donors, with

no cor.nparable. effect is found for t¢=1000 samples. .. finite uniform density, which has absorbed one photon from

Behaviors of this sort suggest that the van der Waals exCitgsg 414und state can be written as a linear combination of the

tions are localized in two dimensions, as concluded in Ref. Spasis states given by E(). For example, in Si the normal-
To understand these results in a simple way it is useful tg,oq eigenvectors of thep donor excited states have the

review how quantum states that are close in energy migrm

when coupled by a perturbation. §f and¢, are normalized

eigenstates of some unperturbed Hamiltonian which have a N 3

common energy, and are coupled by the perturbatibiri, 2 2 ¢ 1(2po) b1 (2P0, 1),

which has zero diagonal elements in those eigenstates, then i=1i=1 "

the resulting eigenstates are completely mixed combinations

of both, namely, £, + £,)/v2 and (€, — £,)/v2 with energies  wherec; |(2po) is the probability amplitude for finding the

E+M and E—M, respectively, whereM=(&|H’|&).  ith donor excited to the [, state in valleyl. Consider such

Should the unperturbed energies&fand ¢, be not exactly an eigenvector corresponding to an arbitrary eigenvéue

equal to each other but differ by an amo, then if | AE| Let it be assumed, contrary to the evidence already pre-

is less than or of the order dM| substantial mixing still sented, that to an excellent approximation only a finite num-
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ber of donorg(a “donor cluster”) are excited in this eigen- calculations have been presented for P donors in Si, where
vector, irrespective of the value dt. (Notice that the the predicted broadening at low densities is small compared
excitation is, by that assumption, localized in space, since to measured widths. It has been assumed that the zero-
finite number of donors can occupy only a finite volume ofdensity broadening is Lorentzian and independent of the po-

space. For every value oE, then, sitions of the donorgas would be the case for lifetime broad-
3 ening so that the concentration effect can be found by
S o 2=1 convolution. Other_possmle mec_hamsms that might contrib-
Fheisy ' ute to the broadening of donor lines at very low donor den-

sities, such as random strains due to electrically inactive im-
where the sum is over the finite subset comprised of theyurities, dislocation lines? or statistical fluctuations of
excited donors. The eigenvector associated &ith also an  mean isotopic composition at different donor neighborhoods
Eigenvector of an "UnperturbEd" van der Waals Hamiltonian,ha\/e not been considered. However, these broadenings
which includes couplings only among the members of theyould likely be only weakly, if at all, correlated with the
subset. ositions, relative to each other, of the donors that produce

Let it also be assumed that the distribution of energies othe observed spectra. Thus the convolution method of this
the clusters is continuous. Then, given a cluster of enBigy paper should be applicable, a least as a first approximation,
one can search for other clusters with energy clodg ®ay,  put the actual line shape of the donor absorption at donor
with energy betweeit andE+AE, located at a distanc®  densities where the van der Waals interaction is negligible
from the first cluster, wherRis much greater than any linear should be used instead of the Lorentzian shape applied here.
dimension of any cluster. Such distant clusters will besmall concentration-induced increases in linewidth are found
coupled to the given cluster by matrix elementstofw,  in the simulation reported here for thes-3:2p, transition,
which the elements act as the perturbing Hamiltonian and ar@hich, given the error bars on the present daganot incon-
all of orderR™3. The number of such clusters betweRand  sistent with that data. A significantly stronger concentration-
R+AR is proportional to dependent broadening is predicted for the—42p. transi-

5 tion. That prediction awaits experimental test.
47RARAE Computer experiments supported by heuristic arguments
in three dimensions and to indicate that the eigenstates of excited donors are extended in

three dimensions, but localized in two.
2mRARAE

in two dimensions. These clusters will mix significantly with APPENDIX A

the given cluster iAE is smaller than or of the order of the This appendix lists the functiorfsin Si required for Egs.
matrix element oﬂvwacoupling the clus_ter_s_. ThusSE can  (4g and(4h). There the functiorF (R;; ;13 8,1") is associ-

be as large as ordét ~ and still allow significant coupling  ated with the matrix element coupling a basis state in which
between the clusters. The number of such clusters in thre&onorj is in its ground state and donbis excited to thenp

. . . . _1 . .

dimensions is then proportional tomR™“AR, which di-  state specified by and located in valley, to a basis state in
verges Iogarlthmmally upon |ptegre_1t|on to infinity, yvhereaswhich donori is in its ground state and donpis in thenp

the [uzjmber in two dimensions is only proportional 1o giate specified byg and located in valley’. For simplicity
2wR™“AR, which gives a finite result upon such integration. ine donor subscripts and j will be dropped R;; will be

In three dimensions, then, there are an infinite number ofitten as R) and the components dr;; will be written
clusters strongly coupled to the original cluster; these canno(tX'Y,Z_ (Note that fori=] the matrix eléments all vanigh.
be enclosed in a finite volume so it is clear that the excitation, Eq.(4a) (transitions to thenp, state$ one finds

must spread throughout the infinite system, contrary to the
initial assumption. In two dimensions, however, there are  F(1,1:1,)=1-3X%R?, F(2,2;2,2=1—-3Y?%R?
only a finite number of clusters that couple strongly to a

given cluster. Whether excitations can percolate through the F(3,3:3,3=1—-3Z2/R?,

system under such circumstances is not obvious from the

argument above, which gives only a sufficient condition for F(1,1;2,2=—3XY/R?

the appearance of extended states. The computer experiments

reported here and in Ref. 5 suggest that they cannot. F(1,1;3,3=—-3XZ/R?, F(2,2;3,3=-3YZR2
IV. CONCLUSION For Eq.(4b) (transitions to thenp.. state$ one has

This paper has shown how the interaction of electrons on  F(2,1;2,0=1-3Y%R? F(3,1;3,)=1-3Z%/R?,
two identical but widely separated donors causes transfer of
excitation from one donor to the other. Such transfers are F(1,2;1,2=1-3X%R? F(3,2;3,2=1-3Z%R?
associated with a broadening of donor absorption lines which
is linear in the donor density and, in the low-density limit, ~ F(1,3;1,3=1-3X%R?, F(2,3;2,3=1-3Y?/R?,
predominates over mechanisms of concentration broadening
connected to overlap of donor wave functions. Detailed F(2,1;3,9=-3YZR?,
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2pyy)t X(Y)exd — k. (x*+y*+a.z?) ],

2p,:  zexf — k,(X2+ Y2+ a,z2) V2],

where values ofkx and « are determined variationally for
each of these functions. When this is done and normalized
functions are employed one obtains from effective-mass en-
velope functions

|(1s|z|2p,)|?=0.144, (B3a)

(1s]x|2p,)|?=0.243. (B3Db)

It is well known that the effective-mass envelope functions
give a very accurate description of tpestates, but, for Si:P
the ground state is much lower in energy than predicted by
Eg. (B1). Thus the % envelope function, associated with the
effective-mass theory ground-state energy, is certainly not at
all accurate. To obtain a more accurate Wave function
(away from the origin one should insert the experimental
ground-state energy on the right-hand side of @) and

These functions are symmetric in the sense that . S : :
solve for the wave function. This is done in an approximate
F(a,l: 81 =F(B,1";a,). way to be described below. The results, using an experimen-
tal energy of—2.286 Ry for the ground state of P dondrs,
Similar, albeit more complicated, expressions can be obare
tained for donors in Ge.
|(1s|z|2p,)|?=0.030, (B4a)
APPENDIX B
(1s|x|2p,)|?=0.079. (B4b)

Envelope functions and pertinent matrix elements involv- o )
ing them for Eqs(4a)—(4b) are discussed in this Appendix. The 1s wave function in Egs.(B3a) and (B3b) is the
Effective-mass envelope functions for a shallow-donor eleceffective-mass & state whereas that function has been modi-
tron in Si are eigenfunctions of the problem fied to take into account central cell corrections in E&ela)
and(B4b). The values in EqgB4a) and(B4b) are to be used
in Egs.(B2a) and(B2b) to obtain numerical values of, and
v at donor concentrations of interest.

To find an approximate ground-state solution to E&fl)
where the electron is assumed to reside inzhalley [the  with E replaced by the experimental ground-state energy
conduction-band valley alon®, 0, J]. Here the notation E,,,, it is convenient to transform coordinates as in Ref. 8.
and parameter values of Faulkteare adopted, whereip et
=m, /m;=0.2079, the energy is measured in units of the
effective rydberg given by Ry#%2/2m, a’=e?/2¢ya X'=x, y'=y, 2=y Y%
=19.9 meV, anda=e,h2/m, e2=3.17 nm. Lengths in Eq.
(B1) are in units ofa and energy in units of rydberg. In these
units, from Eqgs(6a) and(6b), one has

y=Ey, (B1)

(92 (92 2
(,sz Y ya_zz) r

In terms of the primed coordinates E@®1) becomes

—{VZ+2r[1+(y—1)cog 0] Y2 x=Eepx, (B5)

2 . . . .
e where the primes have been omitted. The potential in Eq.

— 3 21— 3 2
UO_EO_a(nda )|(1s[zInp,)[*/3=2Ry(nsa*)(1szInp,)|*/3,  (B5) is expanded in Legendre polynomials and all terms ex-
(B2a) cept the first are dropped. The resulting equation is one di-

mensional and has the form
2

e
v =—(nga®)(1s|x|np,)?/3=2Ry(nga®)(1s|x/np,)|*/3. 1d2 2V,
€oa [ 2V, )
0 (B2b) Farzt | T(D=Eegf (1) (B6)

Variational wave functions of the form proposed by Kohnwheref(r) is the required envelope function and
and Luttinger are known to give very accurate energies for
the lowests-like and p-like levels of Eq.(B1) for y>0.2.
These wave functions have the following forfm®t normal-

ized):

1
Vo=f [1+(y—1)cog 0] Y2d cosf=1.233.
0

Let g(2E52)/r =f(r). Substituting into Eq(B6) leads to

1s:  exfd — ks(X2+y?+ agz®)*?], the equation
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d? where the gamma function is defined by
d—zzg(z)+(— 1/4+\/z)g(z)=0, (B7)

wherez=2ELZr and\=V,/\[Eeyd. Note that Eq(B7) is
Whittaker’s equation, with the solution regular at infinity
given in conventional notation by

9(2)=W, 1/2(2).

ra-N= J t e 'dt.
0

In Ref. 8 higher terms are kept in the Legendre-

A useful integral representation foY is given by polynomial expansion of the potential in E®5). It appears
N . that this more nearly exact treatment leads to somewhat
W, 1(2)= Z'exp(—2/2) tN(1+t/2) e tdt. smaller values of the matrix elements than are reported here
: I'(i—»n) 0 in Egs.(B4a and(B4b).
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