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Concentration broadening of absorption lines from shallow donors
in multivalley bulk semiconductors

David M. Larsen
University of Massachusetts Lowell, Lowell, Massachusetts 01854

~Received 9 December 2002; published 17 April 2003!

Concentration broadening of donor absorption lines is studied by numerical simulation at donor densities so
low that overlap of the wave functions of electrons bound to different donors is completely negligible. At such
densities broadening of donor absorption lines due to overlap is replaced by broadening due to resonant van der
Waals interaction between donors, an effect which produces linewidths proportional to the first power of the
donor concentration. It is argued that in three dimensions, but not in two, the van der Waals interaction
completely delocalizes the excitation induced by the absorption of a photon by the donor system initially in its
ground state. Detailed line-shape calculations are made for P donors in Si. For that donor species the concen-
tration broadened 1s→2p6 transition line is predicted to be 32% broader than the zero-density~lifetime-
broadened! line at a P concentration of 131016 donors/cm3 whereas the 1s→2p0 transition at the same P
density is only 8% broader. Comparison is made with available data.

DOI: 10.1103/PhysRevB.67.165204 PACS number~s!: 71.55.Cn, 78.30.Am
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I. INTRODUCTION

Low-temperature experiments on high-purity uncomp
satedn-type bulk samples of the multivalley semiconducto
Si and Ge reveal numerous narrow absorption lines. Abs
tions to the lower-lying excited states in Si are reported1 to
have, typically, full widths at half maximum of 0.02–0.0
meV at donor concentrations near 1014 donors/cm3; the
broadening of the narrowest lines is attributed to the spo
neous emission of acoustic phonons from the excited s
with the electron falling either to the ground state or a low
lying excited state. Such a process would give rise to
Lorentzian line with full width at half maximum~FWHM!
equal to 2G whereG is the decay constant of the excited sta
reached in the optical transition. An increase of 0.004 meV
linewidth of the 1s→2p0 transition at densities of 2 or 4
31015 donors/cm3 is reported in Si:P~Si doped with phos-
phorus donors!, but the measurements do not definitively e
tablish the amount of concentration-induced broaden
since error bars quoted for each linewidth determination
60.002 meV.

Magneto-optical measurements in Ge give FWHM valu
for the 1s→2p2 transitions as small as 0.008 meV for th
stress-insensitiveD(H,O) donor complex and 0.027 meV fo
substitutional P donors2 at concentrations o
1011 donors/cm3. The D(H,O) lines are observed to b
Lorentzian, and their width is attributed to lifetime broade
ing as described above.

Although as far as the author is aware, systematic hi
resolution measurements of linewidth vs concentration
not available at low donor concentrations~say,
<1016 donors/cm3 in Si! it is evident that with increasing
concentration the lines broaden and eventually develop st
ture in their low-energy tails, likely associated with overl
of electrons from nearest-neighbor donor pairs.3 However,
the experimental situation is not completely clear even in
relatively well-studied case of Si:P. There appears, for
ample, to be a major discrepancy in the linewidths repor
0163-1829/2003/67~16!/165204~9!/$20.00 67 1652
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in Refs. 1 and 3, the latter plotting lines much wider th
reported in the former at a comparable donor concentra
('431015 donors/cm3).

In this paper the broadening of dipole-allowed donor tra
sitions induced by Coulomb interactions between neutral
nors is studied in dilute systems, where the donor centers
widely separated. To isolate the leading term in the conc
tration broadening of a system of donors in random positi
the Coulomb interaction between them is expanded in p
ers of the ratio of the ‘‘radius’’ of the donor wave function t
the separation of the donor centers. Only the lowest-or
nonvanishing contribution to the shift in transition energy
kept. Its contribution to the broadening is then calculated
dipole transitions originating from the ground state of t
donor system. In the case of Si and Ge the most prominen
the observed transitions are 1s→np0 or 1s→np6 . Detailed
calculations are carried out for the case of Si:P for thes
→2p0 and 1s→2p6 transitions.

There are two calculations previously reported that
similar in spirit to the one to be presented, although both
concerned with the van der Waals interaction in donors
GaAs, which has a single conduction-band minimum. T
first deals with the relatively simple case of donors in a m
netic field, where broadening of the 1s→2p2 transition is
studied in bulk samples.4 The second considers effects on t
impurity cyclotron resonance line due to van der Waals
teractions between barrier impurities in a two-dimensio
quantum well model.5 Features of the present calculatio
include consideration of interactions between electrons
different anisotropic valleys, which is not relevant for sem
conductors with a single conduction-band minimum, a
taking into account the effect of central cell correction
which have been neglected for the very shallow don
found in GaAs and related compound semiconductors.

Briefly, the results obtained indicate that, in the absence
other broadening mechanisms, the low-density concentra
dependence of the broadening of the donor species of inte
is proportional to the density of that donor species, indep
©2003 The American Physical Society04-1
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dent of the density of any other donor species that might a
occur in the same sample~assuming that the central cell co
rections of the two species are not equal or nearly equa
each other!. Unlike broadening associated with overlap
electrons on different donors, the concentration broaden
predicted here, being proportional to the squared transi
dipole matrix element from the ground state, tends to
weaker for transitions to more highly excited states than
lower-lying excited states of the same symmetry. The p
dicted FWHM due to concentration broadening alone
donor-species dependent, increasing with decreasing ce
cell correction, but, for low concentrations, is much smal
than the observed linewidths. It is assumed that another
cess, which is concentration independent~presumably life-
time broadening!, is responsible for the bulk of the observe
broadening at low densities. The effect of concentrat
broadening is found by convolving the predicte
concentration-broadened spectrum with a Lorentzian
representing the lineshape at zero donor density. Altho
the predictions are not inconsistent with the experimen
results of Ref. 1, there is not at present sufficiently deta
experimental information to definitively test the prese
theory.

II. THEORY

The Coulomb interaction between donorsi andj with cen-
ters separated by a displacementRi , j is given by the expres
sion

e2

e0
S 1

uRi , j1r i2r j u
2

1

uRi , j2r j u
2

1

uRi , j1r j u
1

1

Ri , j
D . ~1!

where r i is the displacement of thei th electron from the
center of thei th donor; the magnitude of this displacement
understood to be of the order of the ‘‘donor radius,’’r donor.
The first nonvanishing term in the expansion of Eq.~1! in
inverse powers ofRi , j is the van der Waals term, given by

HVW~ i , j !5
e2

e0Ri , j
3 F r i•r j2

3~Ri , j•r i !~Ri , j•r j !

Ri , j
2 G . ~2!

This interaction couples a two-donor state in which donori is
in a p state with donorj in its ground state, to a second sta
in which donori is in its ground state and donorj is in an
equivalentp state.~The p states of a donor have a nonva
ishing dipole matrix element to the ground state.! These
coupled states are degenerate for isolated donors;
common energy is equal to the sum of the ground-s
energy and thep-state energy for an isolated donor.HVW
splits the degeneracy, leading to an energy shift of or
(e2/e0Ri , j )(r donor

2 /Ri , j
2 ). Thus, the leading term in the shift o

the excitation energy due to the Coulomb interaction
tween two neutral donors at large separations~low density! is
provided byHVW . This paper studies the effect ofHVW on
the spectral line shape of dilute donors.

To understand the effect ofHVW on the spectrum of
weakly excited donors in Si or Ge it is useful to revie
briefly certain pertinent facts about the nature of the grou
state andp states of isolated donors in these materials6,7
16520
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Effective-mass theory is very accurate for describing thp
states but is not generally sufficient for the ground sta
since it predicts, contrary to experiment, that the ground s
of isolated donors is degenerate, each degenerate state
characterized by ans-like envelope function associated wit
a different conduction-band minimum. In the case of sub
tutional donors this degeneracy is broken by valley-orbit
teraction which splits off the true, nondegenerate, comple
symmetric ground-state function, denoted as the 1s(A1)
state. The energy separation of this 1s(A1) state from any
other donor state is much larger than the energy shifts
duced byHVW . Valley-orbit interaction is negligible for the
p states. If the effective mass of electrons in the valleys w
isotropic thep states associated with each valley would
triply degenerate~as in the elementary picture of the hydr
gen atom!. However, in both Si and Ge each valley has
anisotropic effective mass which partially breaks the thr
fold p-state degeneracy producing a degenerate pair,np1

and np2 , and a deeper split-off singlet state,np0 , associ-
ated with that valley. Thisp-state splitting also turns out to
be much larger than energy shifts induced byHVW .

For each value ofn there are six degeneratenp0 states in
Si @corresponding to two conduction-band minima alo
each of the directions~1,0,0!, ~0,1,0!, and~0,0,1! in k space#
and four for Ge @corresponding to one conduction-ban
minimum at the zone boundary along each of the directi
~1,1,1!, ~21,1,1!, ~1,21,1!, and~21,21,1!#; each of thesep
states is associated with a single valley and has a non
dipole matrix element to the ground state. Likewise there
twelve degeneratenp6 states for Si and eight for Ge. T
describe the interaction of two donors due toHVW in Eq. ~2!
when one donor is in an excitednp0 state and the other is in
the 1s(A1) state would appear to require diagonalizingHVW
in a set of twelve basis states for Si~to realize all the possi-
bilities of one donor in the ground state and the other in o
of the six possiblenp0 states! and eight for Ge. Likewise 24
basis states for Si and sixteen for Ge would seem to be
quired for the analogous problem involving thenp6 states.
~Actually, for Si it can be shown that only three of the s
valleys need be included, one for each of the directions
sociated with the conduction-band minima. Thus for Si on
six basis states fornp0 and twelve fornp6 are required.!

Finding the wave functions and energy spectrum of
coupled two-donor system is an exercise in degenerate
turbation theory. It is convenient to employ basis states of
form

unp,l & j3u1s~A1!& i , unp,l & i3u1s~A1!& j , ~3!

wherei andj are donor subscripts,np refers either to annp0
state~if transitions 1s→np0 are of interest! or to either an
np2 or np1 state~if transitions 1s→np6 are required!, and
the indexl labels the valley with which thep state is associ-
ated~more exactly,l labels the valley Bloch function multi-
plying the np envelope function!. The Hamiltonian matrix
constructed fromHVW and these basis functions is then d
agonalized.

Matrix elements ofHVW in the basis states of Eq.~3! for
Si donors for transitions from the ground state to 2p0 have
the form
4-2
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CONCENTRATION BROADENING OF ABSORPTION . . . PHYSICAL REVIEW B67, 165204 ~2003!
e2

e0

u^1suzunpz&u2

3
F~Ri j ;a,l ;b,l 8!/Ri j

3 , ~4a!

where u1s& and unpz& are, respectively, the envelope fun
tions for the 1s and np0 states in the~0,0,1! valley ~where
thez direction is the heavy-mass direction!; the indicesl and
l 8 label the valleys occupied by the excited-state elect
belonging to donorsi and j. Here l or l 851 – 3 refer to val-
leys along thex, y, andz directions, respectively@or equiva-
lently the ~1,0,0!, ~0,1,0!, and~0,0,1! crystallographic direc-
tions, respectively#. When l and l 8 are equal, the excited
electrons of the coupled donors are in the same valley,
erwise they are not. The indicesa or b identify which np
state is excited; these indices assume possible values 1,
3 corresponding, respectively, tonpx , npy , or npz excited
states. In Eq.~4a!,

a5 l , b5 l 8.

Likewise for transitions tonp6 the matrix elements are

e2

e0

u^1suxunpx&u2

3
F~Ri j ;a,l ;b,l 8!/Ri j

3 . ~4b!

In Eq. ~4b! there are two values ofa for each value ofl and
similarly two values ofb for eachl 8. This follows from the
requirement thata andb run over all of their possible value
subject to the inequalities

aÞ l , bÞ l 8.

All envelope functions in the matrix elements of Eqs.~4a!
and ~4b! are those for states in the~0,0,1! valley ~although
the formulas apply to all valleys!. Since no magnetic field is
present we have replaced in Eq.~4b! the np-state basis se
np1 and np2 by the more convenient setnpx and npy ,
where x and y lie along ~1,0,0! and ~0,1,0!, respectively.
@Note that in the~0,0,1! valley ^1suxunpx&5^1suyunpy&].
The factor of 1

3 in Eqs. ~4a!–~4b! arises from the uniform
weighting of the 1s envelope functions in each of the thre
valleys in the 1s(A1) split-off ground state. Formulas for th
F functions are given in Appendix A; it will suffice here t
note that these functions depend only on the angles ofRi j .
The matrix elements appearing in Eqs.~4a!–~4b!, which in-
volve envelope functions, are discussed in Appendix B. T
are sensitive to the central cell correction of the donor s
cies of interest, since the 1s envelope function must be
modified from the form predicted by effective-mass theory
account for the extra central cell binding. Such a correct
to the effective-mass 1s wave function for P donors in S
reduces significantly the matrix elements of Eqs.~4a!–~4b!.

The generalization from two donors to N donors
straightforward. For N donors the problem is to find the a
sorption line shape for a single photon incident upon
sample of volumeV containing a dilute system of N donor
all of which are initially in the ground state. The donor de
sity nd is defined by

nd5N/V.
16520
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The excited-state basis functions analogous to those of
~3! are

f i~np,l !5unp,l & i)
j Þ i

N

u1s~A1!& j , ~5!

where n is fixed andunp,l & i ranges over all donors (1< i
<N) and all possible degeneratenp states;l labels the valley
occupied by the electron in thenp state. In Si there are 3N
such basis functions for transitions to annp0 state and 6N
for np6 transitions. If separations between donor centers
measured in units ofnd

21/3, as is the convention hencefort
in this paper, then by virtue of theR23 dependence of the
matrix elements indicated in Eqs.~4a! and ~4b!, all matrix
elements between these basis functions for a given trans
share a common factor,

v05
e2

e0
ndu^1suzunpz&u2/3 ~6a!

for np0 transitions and

v65
e2

e0
nd^1suxunpx&u2/3 ~6b!

for np6 final states. These quantities,v0 and v6 , serve,
therefore, as scale factors for their respective energy spe
The spectral shapes inferred from diagonalizingHVW in the
basis functions of Eq.~5! are universal for donors in S
which have ground states of symmetry 1s(A1), being inde-
pendent of the density of donors and the quantum numben.
On the other hand the line breadth is linear innd ~and de-
pends onn through the matrix elements!.

Spectra are constructed from the wave functions and
ergies calculated in a way already described in Ref. 5. Do
samples are modeled by filling a sphere with N donors s
tered at random throughout the spherical volume. The rad
of the sphereRS is set so thatnd51 @RS5(3N/4p)1/3#. The
matrix of HVW is set up and diagonalized, with both energi
and wave functions recorded for each sample. Each en
eigenvalue is weighted in proportion to the square of its
sociated dipole transition matrix elemen
ue^cu(S i 51

N xi)u1s(A1)&u2, whereuc& is the eigenfunction as
sociated with the eigenvalue considered@here, linearly polar-
ized light along~1, 0, 0! is assumed, but the direction o
polarization is immaterial#. Using these weights histogram
of the energy are plotted for a sufficient number of differe
random samples to produce a smooth curve. It was noted
as the sample size~N! increased the predicted spectral sha
became broader, caused almost entirely by a decrease in
tive spectral strength near the unperturbed transition ene
~a similar effect was noted in Ref. 4!. The maximum values
of N employed in the present work were 250 and 500,
1s→np6 and 1s→np0 transitions, respectively. Conver
gence studies at differentN values suggest that spectral lin
widths using these maximum values ofN attain values
within, perhaps, a few percent of those which would ha
been computed from an arbitrarily large sample. Howeve
is difficult to be sure about this.
4-3
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DAVID M. LARSEN PHYSICAL REVIEW B 67, 165204 ~2003!
To obtain the transition energy one need merely subt
the unperturbed ground-state energy from the calculated
ergies of the one-photon excited states. The unpertur
ground-state energy is used because concentration broa
ing of the ground state is of higher order innd than that of
the excited state and so can be neglected at low donor
sities. If one performs this subtraction in each diagonal e
ment of the matrix, those elements all become equal to
unperturbed transition energy of the donor, and the eigen
ues of the matrix directly give the possible transition en
gies. ~Note that if two donor species are present with su
ciently different central cell corrections then their transiti
energies will likewise be very different. As a result, dono
of one species can couple only very weakly to those of
other and, to a good approximation, transitions associa
with each donor species will be broadened as if the ot
species were not present.!

Spectra based on the foregoing theory are shown in Fi
for both 1s→np0 and 1s→np6 transitions. Zero energy on
the graph corresponds to the unperturbed donor trans
energy for both of these transitions. The energy scale
corded is forv05v652, whereas the calculated values f
the scale factorsv0 andv6 as discussed in Appendix B ar
only 5.131025 and 1331025 meV, respectively, for transi

FIG. 1. Predicted normalized line shapes for pure van der W
broadening in Si of the 1s(A1)→np0 absorption~curve labeledp0)
and the 1s(A1)→np6 ~curve labeledp6). Infinite lifetime is as-
sumed for the excited state. The zero of energy for each curve
the isolated donor transition energy. The appropriate energy s
for any particular transition is found by multiplying the energy sc
shown byv0/2 or v6/2, respectively. Approximately 1600 and 300
different random donor configurations withN equal to 500 and 250
respectively, were employed in calculating the curves shown. Th
curves are interpolated from histograms produced by the nume
simulation with energy box sizes equal to 0.2.
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tions to 2p states in Si withnd5431015 donors/cm3. Based
on these calculated values the predicted full widths at h
maximum for both 1s→2p6 and 1s→2p0 transitions in
Si:P are much smaller than those reported in Ref. 1. Mo
over, the experimental widths show a much weaker than
ear dependence of the widths withnd . It is clear, as has bee
recognized in Refs. 1 and 2, that in the high-purity don
samples of those references there is at least one other so
of broadening that dominates the concentration broaden
Both references suggest that one such broadening me
nism likely to be of importance is the decay of donor excit
states via spontaneous emission of acoustic phonons. S
decay processes result in Lorentzian lines with values
FWHM of 2G, which are much larger than the FWHM in
ferred from the scale factors and line-shape curves for p
concentration broadening at values ofnd less than or near
431015 donors/cm2 in Si.

To study the effect of concentration broadening on
observed lines in Si:P it is necessary to include both conc
tration and lifetime broadening simultaneously. This can
done by convolving line shapes of Fig. 1 with Lorentzia
lines of appropriate width.~Of course, convolution is al-
lowed only if the two broadening mechanisms a
independent.9! Figures 2 and 3 summarize the results of t
convolution calculations for the linewidths. These grap
predict the fractional increase of the zero-concentrat
FWHM for a given ratio 2G0 /v0 or 2G6 /v6 , whereG0 and
G6 are half widths of the 1s→np0 and 1s→np6 transitions,
respectively, of isolated donors. These plots convey the
portant result that the FWHM of the convolved line is alwa
significantly greater than the sum of the FWHM values
each of the unconvolved lines. It should be noted that wid

ls

at
le

se
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FIG. 2. The FWHM of the predicted concentration-broaden
line in units of the FWHM of the donor line at vanishing don
density (2G0) vs 2G0 /v0 for 1s→np0 donor transitions in Si:P
~solid line!. The quantityv0 is a measure of the strength of the va
der Waals interaction pertinent to transitions to thenp0 states and is
defined in Eq.~B2a!. The dashed line shows the result obtained
simply adding the FWHM values for each of the unconvolv
curves.
4-4
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CONCENTRATION BROADENING OF ABSORPTION . . . PHYSICAL REVIEW B67, 165204 ~2003!
of the convolved lines are considerably less sensitive to
value of N chosen in their calculation than are the lines
Fig. 1.

To apply the predictions of Figs. 2 and 3 to the results
Ref. 1 one can see that, for the data at lowest dens
quoted ('1014 donors/cm2), the expected concentratio
broadening is negligible for the 1s→2p0 transition and
small for 1s→2p6 ; to a good approximation one can set t
observed FWHM at lowest density ~1 or 2
31014 donors/cm3) to 2G. The present theory predicts
'4% increase in linewidth for the 1s→2p0 transition at 4
31015 donors/cm3 compared to pure lifetime broadenin
Although the data1 seems to show a bigger effect than th
the error bars are sufficiently large that a'4% effect could
not be excluded.

It would appear that the 1s→2p0 absorption is not the
ideal transition for study of concentration broadening
high-purity n-Si. A much larger increase is predicted~14%!
for the 1s→2p6 transition at the same donor density (
31015 donors/cm2) but, unfortunately, to our best know
edge, published data to test this prediction is not availabl
Ref. 1 or elsewhere at the time of this writing.

III. LOCALIZATION

An interesting question is whether the excitation of d
nors produced by the absorption of a single photon is lo
ized or extended. A ‘‘localized’’ eigenstate in this pap
means an eigenstate for which it is possible to enclose es
tially all excited donors in a sphere of sufficiently large b
finite radius.@For example, one might require that for an
positive nonzero numbere, however small, it is always pos

FIG. 3. The FWHM of the predicted concentration-broaden
line in units of the FWHM of the donor line at vanishing don
density (2G6) vs 2G6 /v6 for 1s→np6 donor transitions in Si:P
~solid line!. The quantityv6 is a measure of the strength of the va
der Waals interaction pertinent to transitions to thenp6 states and
is defined in Eq.~B2b!. The dashed line shows the result obtain
by simply adding the FWHM values for each of the unconvolv
curves.
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sible to find a sphere sufficiently large that the sum of
squared amplitudes of the basis functions of Eq.~5! that
correspond to donors lying outside the sphere is less thane in
the eigenvector of interest.#

One way to approach this question in a simulation is
assume that the exciting light falls only upon a single don
~rather than the whole sample! and investigate the probabil
ity of finding donors excited at various distances from th
single donor. The light is to be taken to have uniform inte
sity over a spectral range broad enough to encompass e
tially the whole absorption line. A simulation of this type ha
been performed in which the single donor being excited
incident photons, having been assigned the index 1, is pla
in the center of a spherical sample constructed as descr
earlier. The eigenvectors ofHVW are calculated and the prob
ability of finding thei th donor excited,P( i ), wherei .1, is
calculated according to the formula

P~ i !5(
j 51

N

uc1
~ j !u2uci

~ j !u2,

whereci
( j ) is the amplitude for excitation of thei th donor in

the j th eigenfunction. In this simulation the probability o
exciting thej th eigenfunction itself isuc1

( j )u2. The distance of
the i th donor from the center of the sphere is then ente
into the histogram with the weightP( i ) assigned to it.

To keep the computations manageable the one-va
model of Ref. 4 was employed, where, in the notation
Appendix A,

HVW5~123Z2/R2!/R3.

Results for the probability per unit length averaged ov
many random donor distributions are plotted in Fig. 4 f
sample sizesN5100 and 1000. Of particular interest is th
steadily rising probability as one approaches the sam
boundary, evident for both sample sizes. One can ha
avoid interpreting this behavior as evidence of extend
states. The sharp peak at small distances corresponds p
rily to excitation of a donor pair consisting of the centr
donor and its close-lying nearest neighbor. From the disc
sion to follow it is expected that asN→` this peak will
narrow and disappear as even excited states associated
those rare pairs which are very closely spaced~and have
energies far out in the tail of the lines! delocalize in suffi-
ciently large samples.

Sharply contrasting results are presented in Fig. 5 for
van der Waals interaction in two dimensions. The tw
dimensional~2D! van der Waals Hamiltonian employed
that of Ref. 5,

HVW
~2D !521/Ri , j

3 ,

whereRi , j is the distance in thex-y plane between donorsi
and j. The diagonal elements are all zero. Only small diffe
ences can be found between the radial dependence of
tation for the small and large samples~at distances for which
they can be compared!. For both sample sizes the probabili
of finding excited donors farther away from the illuminate
donor than, for example, the average nearest-neigh

d

4-5



e

in

it
f.
l t
m

e

th
io

ith
om
the
-
e

re-
m-

d-

rve
. T
s;
-
liz

g

r
ors.

the

DAVID M. LARSEN PHYSICAL REVIEW B 67, 165204 ~2003!
distance~0.5 on the distance axis of Fig. 5! tends to decreas
with distance.~The rise near the sample edge forN5100
samples appears to be an artifact of small sample size, s
no comparable effect is found for theN51000 samples.!
Behaviors of this sort suggest that the van der Waals exc
tions are localized in two dimensions, as concluded in Re

To understand these results in a simple way it is usefu
review how quantum states that are close in energy
when coupled by a perturbation. Ifj1 andj2 are normalized
eigenstates of some unperturbed Hamiltonian which hav
common energyE, and are coupled by the perturbationH8,
which has zero diagonal elements in those eigenstates,
the resulting eigenstates are completely mixed combinat
of both, namely, (j11j2)/& and (j12j2)/& with energies
E1M and E2M , respectively, whereM5^j1uH8uj2&.
Should the unperturbed energies ofj1 andj2 be not exactly
equal to each other but differ by an amountDE, then if uDEu
is less than or of the order ofuMu substantial mixing still

FIG. 4. Probability per unit length, in three dimensions, of fin
ing an excited donor vs distance~units of nd

21/3) from the single
illuminated donor at the center of a spherical sample. The cu
terminate at the boundary of the spheres enclosing the donors
interpolated curve is forN5100, calculated with 205 000 sample
the dots represent results forN51000 with 7700 samples. The his
togram bin size is 0.02 in both cases, and the curves are norma
to the unit area.
16520
ce

a-
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en
ns

occurs, the mixing becoming weaker as the ratiouM /DEu
gets smaller.

The eigenfunctions of an infinite system of donors, w
finite uniform density, which has absorbed one photon fr
its ground state can be written as a linear combination of
basis states given by Eq.~5!. For example, in Si the normal
ized eigenvectors of the 2p0 donor excited states have th
form

(
i 51

N

(
l 51

3

ci ,l~2p0!f i~2p0 ,l !,

whereci ,l(2p0) is the probability amplitude for finding the
i th donor excited to the 2p0 state in valleyl. Consider such
an eigenvector corresponding to an arbitrary eigenvalueE.
Let it be assumed, contrary to the evidence already p
sented, that to an excellent approximation only a finite nu

s
he

ed

FIG. 5. Probability per unit length, in two dimensions, of findin
an excited donor vs distance~units of nd

21/2) from the single illu-
minated donor at the center of a circular sample. The curve foN
5100 terminates at the boundary of the circle enclosing the don
The interpolated curve is forN5100, calculated with 1.23106

samples; the dots represent results forN51000 with 10 400
samples. The histogram bin size is 0.02 in both cases, and
curves are normalized to the unit area.
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ber of donors~a ‘‘donor cluster’’! are excited in this eigen
vector, irrespective of the value ofE. ~Notice that the
excitation is, by that assumption, localized in space, sinc
finite number of donors can occupy only a finite volume
space.! For every value ofE, then,

(
subset

(
l 51

3

uci ,l u251,

where the sum is over the finite subset comprised of
excited donors. The eigenvector associated withE is also an
eigenvector of an ‘‘unperturbed’’ van der Waals Hamiltonia
which includes couplings only among the members of
subset.

Let it also be assumed that the distribution of energies
the clusters is continuous. Then, given a cluster of energE,
one can search for other clusters with energy close toE, say,
with energy betweenE andE1DE, located at a distanceR
from the first cluster, whereR is much greater than any linea
dimension of any cluster. Such distant clusters will
coupled to the given cluster by matrix elements ofHVW ,
which the elements act as the perturbing Hamiltonian and
all of orderR23. The number of such clusters betweenR and
R1DR is proportional to

4pR2DRDE

in three dimensions and to

2pRDRDE

in two dimensions. These clusters will mix significantly wi
the given cluster ifDE is smaller than or of the order of th
matrix element ofHVW coupling the clusters. ThusDE can
be as large as orderR23 and still allow significant coupling
between the clusters. The number of such clusters in th
dimensions is then proportional to 4pR21DR, which di-
verges logarithmically upon integration to infinity, where
the number in two dimensions is only proportional
2pR22DR, which gives a finite result upon such integratio
In three dimensions, then, there are an infinite numbe
clusters strongly coupled to the original cluster; these can
be enclosed in a finite volume so it is clear that the excitat
must spread throughout the infinite system, contrary to
initial assumption. In two dimensions, however, there
only a finite number of clusters that couple strongly to
given cluster. Whether excitations can percolate through
system under such circumstances is not obvious from
argument above, which gives only a sufficient condition
the appearance of extended states. The computer experim
reported here and in Ref. 5 suggest that they cannot.

IV. CONCLUSION

This paper has shown how the interaction of electrons
two identical but widely separated donors causes transfe
excitation from one donor to the other. Such transfers
associated with a broadening of donor absorption lines wh
is linear in the donor density and, in the low-density lim
predominates over mechanisms of concentration broade
connected to overlap of donor wave functions. Detai
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calculations have been presented for P donors in Si, wh
the predicted broadening at low densities is small compa
to measured widths. It has been assumed that the z
density broadening is Lorentzian and independent of the
sitions of the donors~as would be the case for lifetime broad
ening! so that the concentration effect can be found
convolution. Other possible mechanisms that might cont
ute to the broadening of donor lines at very low donor de
sities, such as random strains due to electrically inactive
purities, dislocation lines,1,2 or statistical fluctuations of
mean isotopic composition at different donor neighborhoo
have not been considered. However, these broaden
would likely be only weakly, if at all, correlated with th
positions, relative to each other, of the donors that prod
the observed spectra. Thus the convolution method of
paper should be applicable, a least as a first approxima
but the actual line shape of the donor absorption at do
densities where the van der Waals interaction is neglig
should be used instead of the Lorentzian shape applied h
Small concentration-induced increases in linewidth are fou
in the simulation reported here for the 1s→2p0 transition,
which, given the error bars on the present data,1 is not incon-
sistent with that data. A significantly stronger concentratio
dependent broadening is predicted for the 1s→2p6 transi-
tion. That prediction awaits experimental test.

Computer experiments supported by heuristic argume
indicate that the eigenstates of excited donors are extende
three dimensions, but localized in two.

APPENDIX A

This appendix lists the functionsF in Si required for Eqs.
~4a! and~4b!. There the functionF(Ri j ;a,l ;b,l 8) is associ-
ated with the matrix element coupling a basis state in wh
donor j is in its ground state and donori is excited to thenp
state specified bya and located in valleyl, to a basis state in
which donori is in its ground state and donorj is in thenp
state specified byb and located in valleyl 8. For simplicity
the donor subscriptsi and j will be dropped (Ri j will be
written as R! and the components ofRi j will be written
~X,Y,Z!. ~Note that fori 5 j the matrix elements all vanish.!
For Eq.~4a! ~transitions to thenp0 states! one finds

F~1,1;1,1!5123X2/R2, F~2,2;2,2!5123Y2/R2,

F~3,3;3,3!5123Z2/R2,

F~1,1;2,2!523XY/R2,

F~1,1;3,3!523XZ/R2, F~2,2;3,3!523YZ/R2.

For Eq.~4b! ~transitions to thenp6 states! one has

F~2,1;2,1!5123Y2/R2, F~3,1;3,1!5123Z2/R2,

F~1,2;1,2!5123X2/R2, F~3,2;3,2!5123Z2/R2,

F~1,3;1,3!5123X2/R2, F~2,3;2,3!5123Y2/R2,

F~2,1;3,1!523YZ/R2,
4-7
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F~1,2;3,2!523XZ/R2, F~1,3;2,3!523XY/R2,

F~2,1;1,2!523XY/R2 F~2,1;3,2!523YZ/R2,

F~3,1;1,2!523XZ/R2,

F~3,1;3,2!5123Z2/R2,

F~2,1;1,3!523XY/R2, F~2,1;2,3!5123Y2/R2,

F~3,1;1,3!523XZ/R2,

F~3,1;2,3!523YZ/R2,

F~1,2;1,3!5123X2/R2, F~1,2;2,3!523XY/R2,

F~3,2;1,3!523XZ/R2,

F~3,2;2,3!523YZ/R2.

These functions are symmetric in the sense that

F~a,l ;b,l 8!5F~b,l 8;a,l !.

Similar, albeit more complicated, expressions can be
tained for donors in Ge.

APPENDIX B

Envelope functions and pertinent matrix elements invo
ing them for Eqs.~4a!–~4b! are discussed in this Appendix
Effective-mass envelope functions for a shallow-donor el
tron in Si are eigenfunctions of the problem

F2S ]2

]x2 1
]2

]y2 1g
]2

]z2D2
2

r Gc5Ec, ~B1!

where the electron is assumed to reside in thez valley @the
conduction-band valley along~0, 0, 1!#. Here the notation
and parameter values of Faulkner10 are adopted, whereing
5m' /mi50.2079, the energy is measured in units of t
effective rydberg given by Ry5\2/2m'a25e2/2e0a
519.9 meV, anda5e0\2/m'e253.17 nm. Lengths in Eq
~B1! are in units ofa and energy in units of rydberg. In thes
units, from Eqs.~6a! and ~6b!, one has

v05
e2

e0a
~nda3!u^1suzunpz&u2/352Ry~nda3!u^1suzunpz&u2/3,

~B2a!

v65
e2

e0a
~nda3!^1suxunpx&

2/352Ry~nda3!^1suxunpx&u2/3.

~B2b!

Variational wave functions of the form proposed by Ko
and Luttinger are known to give very accurate energies
the lowests-like and p-like levels of Eq.~B1! for g.0.2.
These wave functions have the following forms~not normal-
ized!:

1s: exp@2ks~x21y21asz
2!1/2#,
16520
-

-

-

r

2px~y! : x~y!exp@2k6~x21y21a6z2!1/2#,

2pz : z exp@2kz~x21y21azz
2!1/2#,

where values ofk and a are determined variationally fo
each of these functions. When this is done and normali
functions are employed one obtains from effective-mass
velope functions

u^1suzu2pz&u250.144, ~B3a!

^1suxu2px&u250.243. ~B3b!

It is well known that the effective-mass envelope functio
give a very accurate description of thep states, but, for Si:P
the ground state is much lower in energy than predicted
Eq. ~B1!. Thus the 1s envelope function, associated with th
effective-mass theory ground-state energy, is certainly no
all accurate. To obtain a more accurate 1s wave function
~away from the origin! one should insert the experiment
ground-state energy on the right-hand side of Eq.~B1! and
solve for the wave function. This is done in an approxima
way to be described below. The results, using an experim
tal energy of22.286 Ry for the ground state of P donors1

are

u^1suzu2pz&u250.030, ~B4a!

^1suxu2px&u250.079. ~B4b!

The 1s wave function in Eqs.~B3a! and ~B3b! is the
effective-mass 1s state whereas that function has been mo
fied to take into account central cell corrections in Eqs.~B4a!
and~B4b!. The values in Eqs.~B4a! and~B4b! are to be used
in Eqs.~B2a! and~B2b! to obtain numerical values ofv0 and
v6 at donor concentrations of interest.

To find an approximate ground-state solution to Eq.~B1!
with E replaced by the experimental ground-state ene
Eexp, it is convenient to transform coordinates as in Ref.
Let

x85x, y85y, z85g21/2z.

In terms of the primed coordinates Eq.~B1! becomes

2$¹212/r @11~g21!cos2 u#21/2%x5Eexpx, ~B5!

where the primes have been omitted. The potential in
~B5! is expanded in Legendre polynomials and all terms
cept the first are dropped. The resulting equation is one
mensional and has the form

2F1

r

d2

dr2 r 1
2V0

r G f ~r !5Eexpf ~r !. ~B6!

where f (r ) is the required envelope function and

V05E
0

1

@11~g21!cos2 u#21/2d cosu51.233.

Let g(2Eexp
1/2r )/r 5 f (r ). Substituting into Eq.~B6! leads to

the equation
4-8
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d2

dz2 g~z!1~21/41l/z!g~z!50, ~B7!

wherez52Eexp
1/2r and l5V0 /AuEexpu. Note that Eq.~B7! is

Whittaker’s equation, with the solution regular at infini
given in conventional notation by

g~z!5Wl,1/2~z!.

A useful integral representation forW is given by

Wl,1/2~z!5
zl exp~2z/2!

G~12l!
E

0

`

t2l~11t/z!le2tdt.
v.

N

he
s

ll

16520
where the gamma function is defined by

G~12l!5E
0

`

t2le2tdt.

In Ref. 8 higher terms are kept in the Legendr
polynomial expansion of the potential in Eq.~B5!. It appears
that this more nearly exact treatment leads to somew
smaller values of the matrix elements than are reported h
in Eqs.~B4a! and ~B4b!.
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9Despite the coherence of the excited wave functions, pho
emission rates are the same as for excited isolated donor
M (k) is the matrix element for emission of a phonon with wa
vector k from, say, an isolated donor in the 2p0 state to the
ground state, thenu( i 51

N ( l 51
3 ci ,l(2p0)M (k)exp(2ik•Ri)u2 is the

squared matrix element for phonon emission from a cohe
excited 2p0 state. (Ri is the position of thei th donor.! But this is
equal to M (k)2$( iÞ j

N ( l ,l 851
3 ci ,l(2p0)exp@2ik•(Ri2Rj )#

1( i 51
N ( l 51

3 uci ,l u2%. The first term on the right-hand side is th
term arising from the coherent excitation and for an extend
state should add to zero due to the random-phase factor give
the exponential. The second term adds up to 1 by normalizat
As a result the squared matrix element isM (k)2, which is the
same as for an isolated excited donor.

10R. A. Faulkner, Phys. Rev.184, 713 ~1969!.
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