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Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals
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An analytic modal expansion method combined with a transfer-matrix technique is developed to investigate
the reflection, transmission, and absorption spectra of three-dimensional layer-by-layer metallic photonic crys-
tals working in a regime from microwave to infrared wavelengths. The eigenmodes for electromagnetic fields
within each layer of the crystal are solved analytically by matching boundary conditions. The eigenmodes are
then projected onto a plane wave basis, so that the scattering problem for a multilayer structure can be cast into
the framework of transfer-matrix method. In addition, the structural symmetry between different layers of the
crystal is fully exploited to connect the transfer matrix for different layers and significantly reduce the com-
putation effort on the light scattering problem. Fast convergence of numerical result has been obtained and
excellent agreement of theoretical results with experimental measurements has been achieved, indicating the
effectiveness and efficiency of the developed analytical modal expansion method.
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[. INTRODUCTION smaller than the incident wavelength. A large number of
plane waves in the coupled-wave method or very fine mesh
Photonic crystals, a class of material giving rise to a rang®f grid point in the real-space transfer-matrix method is re-
of frequency called a photonic band gd@&BG) within which  quired to account for this small skin depth effect. To attack
electromagneti¢EM) waves cannot propagate along any di-the theoretical challenge for a 2D metallic layer-by-layer
rection, provide a powerful way to manipulate and controlgrating scaled from mid-IR to microwave wavelengths, we
the flow of photons in much the same way as conventionahave developed an EM approach which combines a series of
semiconductors do to electroh8.In recent years metallic techniques ranging from analytic modal expansion method,
photonic crystals have attracted much attention because ¢ the transfer-matrix method, and to the application of struc-
the large PBG preseht'® and potential applications in mi- tural symmetry. A fast-convergent solution of the spectra has
crowave regimes such as filters. Most experimental workdeen obtained and excellent agreement with experimental
were done in the microwave regime, and metal in this regimeneasurements has been achieved.
can be assumed as a perfect reflector. Very recently, a three- Before we move into the very detailed discussions on how
dimensional(3D) metallic photonic crystal working in the the developed method is working for a metallic photonic
midinfrared (IR) wavelength was successfully achieved bycrystal slab, we will first present here a brief description of
means of state-of-the-art lithographic technidflasder a  the general idea. Let us first take a close look at a layer-by-
layer-by-layer stacking schemi&.**Even in this long wave- layer photonic crystal. A 3D schematic picture of the crystal
length regime, the absorptive and dispersive properties dftructure is shown in Fig.(&). The top-view picture of this
metal has already become appar@nit is the aim of this  photonic crystal from th¢001) direction is also displayed in
paper to present a simple, efficient, and rigorous theoreticdfig. 1(b). The metallic photonic crystal is formed by stacking
model to investigate the propagation behavior of EM wavesectangular metallic rods layer by layer consecutively along
through this important class of metallic photonic crystalthe (001) direction. Rods in each layer are arrayed into a
structures in a regime from microwave to infrared wave-one-dimensional periodic structure—a lamellar grating with
lengths. a pitch ofd. Rods in one layer are perpendicular to those in
For a metallic photonic crystal structure, the usual planethe adjacent layers, while rods in one layer are shifted/By
wave expansion meth&d'® becomes ineffective. Other the- with respect to those in the second-nearest neighboring lay-
oretical approaches have been employed as an alternativers. The primitive unit cell of the photonic crystal is arrayed
such as the finite-difference time-domain methadid the into a face-centered tetragor(&it) lattice. In Figs. 1a) and
multiscattering methotf”* based on the Korringa-Kohn- 1(b), we have assumed that rods in the first layer are along
Rostoker theoryfwhich is limited to photonic crystals made they axis, and rods in the second layer are alongxleis
of particles inscribed to nonoverlapping spheres or cylin-direction, and so on. The rods each has a widthwpfa
derg. The propagation of EM waves through a 3D photonicthickness ofh, and form a square lattice with a lattice spac-
crystal slab with a finite thickness can be cast into the frameing of d in the (001) plane. Every four layers of rods com-
work of scattering of EM waves by a 2D grating. EM ap- prise a repeating unit cell along tHe01) direction of the
proaches such as the coupled-wave metfiddin the Fou-  crystal.
rier space and the real-space transfer-matrix métttdtiave The layer-by-layer photonic crystal is an interconnected
been developed to study the transmission and reflection spetopological network with a complex surface geometry, there-
tra of 1D and 2D gratings. However, severe convergencéore, the usual method to match boundary conditions at every
difficulty is found in both methods for a highly conducting air-metal wall of the whole crystal is quite troublesome. To
2D grating due to a skin depth two orders of magnitudeovercome this difficulty, several tricks have been used in our
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FIG. 2. Schematical configuration of a plane EM wave scattered
by a 1D metallic lamellar grating. The grating has a pitchdpf
thickness ofh, and an air-domain size @ The dielectric constant

(b) y for the air and metal domain is ande,, respectivelyE,, E,, and
| » E; are the incident, reflection, and transmission waves, respectively.
X discussed. In Sec. IV, we will follow the similar theoretical

framework to solve the scattering problem of a metallic
layer-by-layer photonic crystal grating working in the
mid-IR wavelengths, where the metallic material is highly

Layer 3 conducting. In Sec. V, we will apply the developed theoreti-

cal tools to examine two experiments on metallic layer-by-

Layer 1 layer photonic crystals in order to demonstrate the power and

L] . L] efficiency of the developed method. One experiment is con-
Layer 4 Layer 2 cerned with the microwave regime, the other is working in

the mid-IR regime. Finally in Sec. VI, we will present some

FIG. 1. (a) Schematical configuration of a 3D layer-by-layer concluding remarks.

photonic crystal composed of rectangular metallic rods in (ajr.

Top-view picture of(a) from the(001) direction, the stacking direc-
tion of the crystal layers. Il. EM WAVES SCATTERING BY 1D PERFECT-

CONDUCTING LAMELLAR GRATINGS

method developed in this work. First, as one has noticed As we have noticed in the Introduction, each layer of the
above, each layer of the photonic crystal is just a 1D lamellaconsidered layer-by-layer photonic crystal is a 1D lamellar
grating. This specific configuration allows us to use analyti-grating along the stacking direction. This reminds us that in
cal solution of EM modes inside each 1D lamellar grating.our first step we should have a clear understanding on how to
Second, for a multilayer photonic crystal slab, we can treasolve this 1D scattering problem. To correspond well to the
the wave scattering by each single layer separately, and thesgattering problem of 2D grating, we must consider general
combine all layers using the transfer-matrix technigue. Thigncidence condition(so-called off-plane conical incidence
enables us to examine the scattering problem of a multilayefor the 1D grating, namely, arbitrary incident angles and po-
structure in a systematical manner, and brings great flexibillarizations. However, it is helpful to first start from the sim-
ity. Third, one can further notice that there are several strucplest case of in-plane incidence, where the incident wave
tural symmetries between different layers of the crystal. Ifvector lies in the plane perpendicular to the grating édis
fully considered and exploited, these symmetries can signifirection where the dielectric function keeps constalmt this
cantly reduce the scattering problem for all different layerssituation we have two eigenmodes for the scattering prob-
into that for only one single layer. Therefore, virtually only a lem, the TE and TM modes, in which either the electric or
1D scattering problem needs to be attacked. This is anothéhe magnetic field is parallel to the grating axis. This prob-
big saving of theoretical and numerical efforts from those forlem has been investigated extensively in literatdfed’ and
a general 2D scattering problem. useful ideas and techniques have been developed, therefore,
Following the general ideas outlined above, we arrangave will not repeat it here. Interested readers can refer to
this paper as follows. In Sec. Il we will deal with general original literatures. In the following, we will extend the ideas
scattering problem for a 1D perfect-conducting lamellar grat-and techniques to general off-plane conical incidence situa-
ing under off-plane conical wave incidence. Modal expan-tions.
sion and moment techniques will be used. This will lay down The schematic configuration of the scattering problem is
a basis for our later discussions on general 2D scatteringepicted in Fig. 2, where the 1D perfect-conducting grating
problems. In Sec. Il we will move forward to consider scat-is supposed to extend along tixis direction, and repeat
tering by a 2D layer-by-layer photonic crystal grating madeits unit cell along thex-axis direction every distance af
up of perfect-conducting metallic materials. The transfer-The air-metal interface is located a0 andx=a, respec-
matrix method will be introduced in combination with the tively. In the situation of general off-plane conical incidence,
modal expansion techniques. In addition, application ofa plane wave is incident on the 1D grating from up to down
structural symmetries to the transfer-matrix method will bealong the —z direction with a wave vectorKk
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= (Kox ,Koy ,Koz) =Ko(sin @ cose, sindsin ¢, cose), wherekg be seen thaE"(H") andE (H ™) correspond to the inci-
= (wlc) is the wave numbem is the angular frequencg,is  dent and reflected waves, respectively.
the light speed in vacuung. and ¢ are the incident polar and The EM fields in the transmission regi@ andH, have
azimuthal angles, withr/2< <, and O<$<2w. In the  the same general form of expansion
conical incidence, the TE and TM modes are no longer the
eigenmodes of a 1D grating, instead, they are coupled with * . _
each other. Since the grating is homogeneous along the Ex(r)= E Uijyx(z)e'kix“'kiyy
y-axis direction, the/-axis wave vector component is a con- =
stantk, in the process of the wave scattering.
The E and H fields in the incidence and transmission = 2 [UgX(z)+ui}X(z)]eikixxtik;‘yy, (2.3
regions are both composed of three components. We first i=- ' '
consider EM fields in the incidence regi&p andH, . In the
plane-wave basis, the tangential componentk,oére writ-

ten in general forms as Ey(r)= 2 U (2)ekoxtikiyy
j=—o
— iKj x+ik; _ - -
Ed)= 2 Ejju(2)e! iy = 2 [Uj,(2+Uj ()], (2.3
2 [E; (2)+Ejj (2)]eM Ty (2.1 ”

Hx(r) :_ Z Vij ,x(z)eikixerikjyy
j=—o

©

Ey(r):i;m Eij’y(z)eikixx't-ikjyy :'72_ [Vi-}-‘x(z)+VJ’X(Z)]eikiXX+ikjyy’ (24a

2 [Ejf (2)+Ej] J(2) ]k Ky, (2.1 .
1Yy B Hy(f)=,_2_ Vij’y(z)eikixxﬂkjyy

Here II; » k())x+i27-r/d( . Kjy= koyfﬁ - Eij X(y?](z)

EIJ x(y)€ " <D =Eij xp€ » where — - iKixX+ikjyy
Blj _ _(kZ k2 )1/& for k2 k2 k2 /O and 2 [Vlj y(z)+vij,y(z)]e 7, (24b)
Bij=—i(k% +k2 k2)1’2 for k3— k2 k2 <0, The defini- _
tion of g;; are |n consistence Wlth the fact that the |nC|dentWhereUIJ (2= UIJ X(y)e » Ui, X(y)(z) Uij x€ 1Bijz,
wave is propagating along thez direction. VIJ x(y) @andVj; ;) are also connected td” X(y) andUIJ X(y)

The z componentE,(r) can be obtained fronV-E(r) through the X2 matrix To;;. Obviously u*(v*) and
=0. The magnetic field can be derived fraf= (1/iky)V U (V") correspond to forward and backward propagating
X E, and the tangential components are written as waves in the transmission region, respectively. Temporarily,

we assume that both waves coexist in the transmission re-
gion. In reality,U ™ (V™) should vanish, since only transmit-

Hy(= 2 Hj(2)e* kY X [H (2) ted waves exist in this region for our 1D lamellar grating.
o T But we will see in later sections that the introduction of
+HHYX(Z)]eikixX+ikjyy, (2.23 U~ (V™) into a single-layer 1D grating will bring us great

convenience and flexibility to the scattering problem of a
o general multilayer 2D grating, because they are one of the

Hy(r)= > Hij,y(z)eikixx‘”kjyy central elements in the transfer-matrix method.

j=—

As noted above, thg component of the wave vector is a
w0 constant during the process of EM waves scattering by the
= > [Hf (2)+H (2)]ekr kY, (2,20 1D grating, therefore, the EM fields,, and Hy, inside the
=2, - Y 1y grating domain can be written as

where Hij X&]y)(z) HIJ X(y )e'ﬁlj(Z*h), Hij xy)(2) oc ‘ . ’

=Hij xy)€ e 1Bz each wave vector we Ey(r)= > (Al cosumz+ Bl sinuwmz) Xm(x)e'kiyY,
have the foIIowmg relatlon between théd and E m=1 (2.5
fields: (HIJ X |J y) TO|J(E|J X1 |J y)T and (Hlj X1 IJ y)T .

= Toj (Eij x - Ejj y) , Where the superscript T"’ denotes
matrix transposmon The 22 matrix Tojj has matrix ele- i i ik:
E,(r)= E) cosumz+Fl sinum2)Ym(x)e iy,
ments TH = —kidky (ko) T = (k% kD) (ko). (1) = 2, (B 0OSyn - Fiy i an) (X
Toij = (kg k W (KoBij), and Tgj; = kKixkjy /(KoBij). It can (2.6)

o
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+( Mo S|nM02E0+ Mo COS/.L()ZF )Yo(X)elklyy
(2.9

+ i H(— ik AL+ EL s sin g mz] X(x) €Y, Now that we have finished the expansion of EM fields in
the incidence, grating, and transmission regions, we can go
(2.7 straightforward to find out the unknown field expansion co-
where s,,=m/a, a being the width of the air domain, efficients in the three regions through match of boundary
Xm(X) = (2/2) ¥2sin(s, %), Yn(X)=(2/a)"?cos6x) for m  conditions az=h andz=0. From this we have
>0, and Yo(x) (1/2)Y2 u,, is defined as,um=(k§—

z(f)—E [ e (ikjy Bl — Fl s cospmz

—K2)2 i s24+kE=<K2, and =i (sB K, —K)V2 if st Efz=h)=Epz=h), O<x<d, (2103
+ki s k2 It can be shown that each expansmn term in Egs. Hﬁan(zz h)= HE,";‘”(Z= h), O<x<a, (2.10b
(2. 5) (2. 7) is a solution to Maxwell's equations in the rect-
angular air slit satisfying the boundary conditions that the E?z=0)=E®(z=0), 0<x<d, (2.100
tangential component§, =0 andE,=0 at bothx=0 and
x=a. From Maxwell's equatiorikyH=V X E, we can de- H2(z=0)=H2z=0), 0<x<a, (2.100

rive the tangentiaH,, components as . .
9 m P where the superscript “tan” means the tangential compo-

9 nents of fields. Using the technique of momentg=ah and
ikoHx(r)=—"E,~ -~ E, z=0 for the electric field, we have projected both hand sides
y of Egs. (2.103 and (2.100 onto the basis of plane-wave
functions. From this we arrive at the following matrix equa-

= E (K? iyMm +,um)sin,umzAjn—(k12y,u;1+ Mm) tion after truncation over the infinite linear equations:
: . dz=pP,z.. 2.1
X COSUmZ B+ (iKjythm ' Sm)SiNumz EL, ‘ ‘ 0 T 1em _ 213
_ . J, Z{, andZ!, are column vectors composed of the field expan-
= (iKjy pm~Sm)COSUMZ Fry, (2.8 sion coefficients, where the superscript'* refers to thek;,
5 5 component of the incident wave vector. They are defined by
ikgHy(r)= —E,——E .
TV Z{):[Eij,x(h>,Eij,y<h>,uij,x<0>,uij,y<0>]T,
o - Zi —(Al B ELE FlFT
= [(ikysn sm)sinunz Ay ( m’"
m= where ij’xgy)(h)T[Ej,Njyx(y)(P), P 1E0j|x(y)(h)- ey
~(iken=s Vcosu.zB Enjxiy(M1, AL=(AL,AL, ... Ay_,), etc. The corre-
(IKiyttm”Sim) COSptm " sponding dimension is M, and 4V —2, where No=2N
—(SZ e+ ) Sinumz EL +1 andM is the plane wave and modal numbers in the
S j W incidence and grating regions. TheN# X (4M —2) dimen-
+(Spim™ + mm) COSUMZ BRL]Y m(X) €%y sioned matrixP; is
0 0 coguoh)Jfy  copmh)dim  sin(poh) I sin(mph)Jim,
COg:U“mh)li*m Sin(#mh)li*m 0 0 0 0
1= )
0 0 x Jx 0 0
I* 0 0 0 0 0

where each elemeifisuch as cog(,h)J;;] represents a ma- (2.10d onto the basis of modal functiong,(x) and y(x).

trix, and the multiplication such as cash)J:E. in P,z From this we obtain

of Eqg. (2.11) implies summation over the mdem‘f which K-P.7l = p.7i 21
is just the multiplication of a matrix and a column vector. IkoP2Zy=P3Zp, (212
Herel;, and J;,, are defined as;,=f3e' X (x)dx and  where

Jim=[5e'ixY(x)dx. When we match the boundary condi- Zjl:[Hij,x(h)-Hij,y(h)nvij,x(o)yvij SO,

tions for the magnetic field at the interfacessh and z
=0, we project both hand sides of E€R.10h and Eq. P, is a (4M—2)X(4Ng) matrix defined by
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lm, O 0 O
0 J, 0 O
0 Jo 0 O
P=l o 0 1, o
0 0 0 J
o 0 0 J,

wherel;, denotes all — 1) X Ny matrix, and multiplication
such aslHj; «(h) in P,Z} of Eq. (2.12 should be under-

stood as the multiplication of a matrix and a column vector,

on which summation over the indexi'' is imposed. Others
have similar implications.
P5is a (4M —2)X (4M —2) matrix defined by

Qll QlZ 0 Ql4 0 Q16
QZl Q22 0 Q24 0 Q26
o | 0 0 Qw0 Qw0
0 Qe 0 0 0 Q'
0 0 0 0 Qs5 O
0 Qe 0 0 0 Qu

where each block matriQ;; is diagonal The diagonal ele-

ments are Qiimm= (ky:“m +:U“m)sm(lu“mh) Q12mm

:_(k]y/-”m +1U*m)COSQLmh) Quamm= |kjy:u“m SmSiN(umh),
16mm— II(]y/-l’m Sm COS[umh), Q21mm
ijme Sm Sm(ﬂmh) Q22mm= |k]me Sm COS(“mh)

Q24,mm (S mu +Mm)sm(ﬂmh) ) Q26mm (S mu
+ Mm) COS(LLmh) Q33mm MO Sm(ﬂoh) Q35,mm
= Mo COS(uoh) Qazmm= (k]me + m), Qasmm

|kaMm Sm, Qssmm=Mos Qezmm= |k]y:“m Sm, and

1
Q66mm Sm/-l’m +um.

PHYSICAL REVIEW B 67, 165104 (2003

M-1
:_(lkold) E Ctar{ﬂmh)z(Zl)J|m i’ms

1y =—(iko/d) g “ctar( oh) Jodi o
M-1
~(iko/d) 3 ctar uph) ZE23divm,

M-1
iy =(iko/d) X o5t un)ZE Il irm,

1a=(iko/d) g tesd uoh) Iidirg
M—-1
—uko/d)E csd unh)ZZ23% 3,

M-1
(uko/d>2 ctar ) ZEE i,

M-1
:—<|ko/d>2 ctar pmh) Z821531m,

M-1
=(iko/d) 2, csdumh)ZG 1 liim,

M-1
Pha=(iko/d) X csd unh)ZR?1 i,

where
Z0Y= (2 + ) K3, Z0P=ikjy s sim/K3,

ZEV= —ikjy s lkG,  ZGP= = (K2 s+ ) /K3

Other matrices are given according to the following symme-

To solve the transmission and reflection spectra, one caffy relations

first delete the modal variables from Eq2.11) and(2.12.
This can be done by first calculating the inverseRaf by
means of analytical manipulation, then substitutijg back
into Eq. (2.11). We finally obtain the following linear equa-
tions satisfied by the plane-wave expansion coefficients:

(2.13

The block matricesP;;(i,j =
X Np. They are defined as

1,4) each is of dimensioi,

pi’— _pii’ pi' — _pii’
1= 13 2= 14
pii' — _pii’ pi'— _pii’
33~ 11 4= 12
pi’— _pii’ pii' — _pii’
41—~ Fa3, 2= 24
pii’— _pii’ pi'— _pii’
43— ~Fo1, = 22 -

Now inserting into Eq(2.13 the definition ofZ}, andz}
Wlth reSpeCt to Eij,X(h)! Eij,y(h)v Uij,X(O)! Uij,y(o)1
Hij x(h), Hij y(h), Vij «(0), andVIJ y(0), andusing the re-

lation betweerE;; andH;;, Uj;, andV;;, we get
( lﬂr _( PLTh PLT) lﬂ i 2.14
)(j+ P121T%) I322T0 , .

wherey;”, x; . ¢; , andy; are Ng-dimensioned column
vectors defined by
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gi=(... Eg Ead ., .. EF El., 0T cidence conditions, we can proceed to consider a more
J =0, x=0j,y 1,X2 =1y . .
complex 2D layer-by-layer perfect-conducting photonic
+( . Eojx:Eojys - - Eijx Eijys - )T crystal grating, each layer of which is a 1D lamellar grating.

A metallic grating working in the microwave regime can be

Y =(... Eojx:Eojys -+ Eijx:Eijys - )T assumed as a perfect-conducting grating. In this 2D struc-
_ _ _ _ - ture, the EM fields should be projected onto the 2D plane-
—( o EojoBojys B Eijy s ) wave basis, namely, we have now= (ki ki, ﬂ”)
L P P . where kij =Ko +i27/d, kij =Ko, +j2m/d, Bj= (kO
Xj _(---vUOj,x'UOj,yv U|JX1U|Jy7 ) kj X_kj y)1/2 for kO k2 kIJ y/o andﬁu |(k|JX
+(o o UgiUgiys -+ Ui Uiy - T, +ki] k2)™/2 for k32— kE. —k ,<0. In principle, the indi-
' ' ceS| j should both run from—oo to +o0, but in practice,
xX;=(... :U&,x:U31j,ya L Uﬂrx:Uﬂry’ )T truncations must be used and we tak&l<i<N and —N
- - - . <j=<N whereN is an integer number. Léi;=2N+1, the
= UgyxiUojys o Ui Uiy o) total plane wave number is théd¢. The EM fields are ex-
The index i ranges inside —N<i<N. T, is a Pandedinto

(2NpX 2Ng)-dimensioned block-diagonal matrix consisting

of {To;j,i=—N,N} at its diagonal positions En=> Eij(z)eikijvxx-t—ikijyyy 3.1)
i
Tonj -+ O -+ 0
. H(r)= H.(z eikij,xXHkij,yy_ 32
T%): 0 TO.Oj 0 () % |]() ( )

As we have noted in Sec. Il, each layer is a 1D grating, so
0 s 0 - Topj the wave vector parallel to the axis of this 1D grating is kept
constant. This means we can directly utilize the result for 1D
gratings developed in Sec. Il. For the layer in which the rods
are along they axis, we rewrite the EM fields into

For a one-layer 1D gratmg slab, we recognize ttz:ﬁt E'
+El, s =EL—E!, X =X “=E!l, whereE}, E!, andEJ
are column vectors conS|st|ng of the coeff|C|ents for the in-
cident, reflected, and transmitted waves. Since in the usual © [ o

diﬁrgction problem only zero-order wave is incident on the En=> | > Eij(2)e™iuelkigy |, 3.3
grating, we can setEy=(0,0, ... 0,0Eq,Eoy.0.0,. = |57
0,0), wherek,, andE,, are the amplltudes of the |nC|dent
electric field components. From E(R.14) we find thatEJ o [ ‘ _
andE! satisfy Hin= 2 | 2 Hj@ekiekiv|. (3.4
J_—oo |:—oo
I1+PLTH  —PLTL\ [E!
S0 1270 ) ' Each term inside the brackef 1" has the same form as Egs.
PLTL  1=PLTy/\E (2.1) and (2.2), whose solutions we have known in Sec. II.
- - i Therefore, we can directly write down the following matrix
i Ti_ i Tl i - '
_ PllTO _ ! PlZTO EO (PLTh—1)EY equation for the tangential components of the EM fields as
PhTh  Phh—1/1 o/ PhTiEL [
(2.15 (Qg): M1 rlZ)(QO) 3.5
N _ :
wherel is a unit matrix. The simultaneous linear equations O Far T22) \ Qg

Eq. (2.195 can be solved via the standard Gaussian elimina- n i _ _ 2 .
tion method. Numerical experiences indicate that the numeri= hl eldg, 'deO ' :':)dﬂl are now Np-dimensioned
cal convergence for the off-plane scattering problem is a§°'Umn vectors defined by

fast as for the in-plane incidence situation, where usage of 11

Q+ — ( + + +)T
plane waves and 11 modes has already led to converged re- 0= Nyl N
sult of transmission and reflection spectra for both the TE

and TM polarization modes. This verifies the powerful Qo= n, ooty s )T,

strength of this analytical modal method.
+_ o+ + T
Ill. METALLIC LAYER-BY-LAYER PHOTONIC CRYSTAL Q=m0 )
GRATINGS IN MICROWAVE REGIMES -, - _ T
Qp=(X-n+ X0 0 XN)
Now that we have developed a powerful tool which en-
ables us to solve accurately and efficiently EM waves scatr,,(m,n=1,2) is each a (|2|0)><(2NO) block-diagonal ma-

tering by a 1D perfect-conducting grating under general intrix, which are defined as
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(a) PBG Grating and transmission regions. The key point of this technique is
as follows. Suppose we have obtained via numerical calcu-
ot o lations the overallR matrix for the firstn layers R("
0 n =R ,RY R RYY), which satisfies
0;| (R RY) (05 e
o ) o; )7 IRy rRY/lo, ) |
0
n and theR matrix r("*%) for the (n+1),, layer, which satis-
1 «oo § i+l n fies
(b) Layer i ( Qq )_(r‘ﬂ“) r&%“’)( Q, ) a7
Qi-1+ Qi+ nel Y g, '
whereQg () andQ, (2,,) are column vectors for waves
in the upper side of the 1st and ¢ 1), layer of the grating,
Q- o while O (Q;) and Q,,,(Q,,,) are column vectors for
i-1

i waves in the lower side. We can straightforwardly prove that
7.z the overallR-matrix R"* Y for the totaln+ 1 layers is given
by the following recursion formula
FIG. 3. () Schematical configuration of a multilayer layer-by-

layer photonic crystal grating. An overdf matrix can be defined RIVTY=RMY+ROrT*V-RPIRE, (3.8a
connecting the waves in the incident regid,() and the transmis-
sion region {2;7) in the transfer-matrix method for this multilayer R(lg+ V= _ R(lg)[r(lryr n_ R(Zg)]—lr(lg+ D (3.8
grating. (b) A R matrix can be defined for a single layer of the
layer-by-layer photonic crystal grating. R(2nl+ 1)_ r(ZT’ 1)[r(1nl+ 1) R(zg)]_lR(znl) ’ (3.89
~NT—N
PonTo - 0 EE 0 R = p (1) p (0 D (0+1) _ R~ 1 (0+1)
(3.80
I'n= Ex 0o PYTS O e ) Therefore, the procedure to calculate the oveRathatrix for

a grating can be summarized as follows: First calculatéRthe
N matrix for the first layer ) and selR™")=r(). Then calcu-
0 o 0 - Pmnlo late theR matrix for the second layer?), and use the recur-

. . sion algorithm Eqgs(3.89—(3.80 to calculate the overaR
One can recognize that the matriagg, are the so-calle® = B(2) ; :
. - ; 50 28y matrix R'“’ for the first two layers. Repeat this procedure
matrix familiar to the grating communify:? This is one of . ' .
ntil the final layer of the grating.

several powrtl numerical technigues thatcan veat e sl 102 T et hanc, e can soe the
J . yag 9 ylarg reflection and transmission coefficients by

ness in a numerically stable manner.

When we deal with a grating consisting of many layers, as

(n+1) (n+1)
schematically depicted in Fig(&®, we can assume that each EotE _ Ri1 Ri2 (EO_Er) (3.9
layer is surrounded by two imaginary infinitely-thin air films E, RFH RO E, '
in its both sides, as displayed in Figib3 Now there is an _
overall R matrix connecting waves in the incident and trans-°" finally
mission region of the multilayer grating. Furthermore, we
can define & matrix for each layer, as we have done in the I+R{Y —REV (E, B (R -1E,
above for a single-layer lamellar grating. The introduction of R(ZT 1 | — R(ZT 1) E, B R(zrl+ 1)E0

these extra air thin films generates no physical contamination (3.10
to the scattering problem, because the thickness of all films is ] _ ]

set to zero, and because the tangential components of the ERere! is an unit matrix, and

fields are continuous at the interface. But these imaginary air

films will enable us to treat each grating layer separately in a Eo=(E%\, ... B0, ... B}, ... EDT,
systematical manner. All that leave is to combine all these
single layers into a whole. Great convenience and flexibility E=(Elyn,... Eb, .- Ef, ... . EWT,
are a natural result brought from such a technique. To appre-
ciate the numerical stability for arbitrarily thick gratings, we E=(E y,... B}, ... E} EDT

use theR-matrix recursion algorithA??® to calculate the
overallR matrix connecting the plane waves in the incidenceEach componeriF_]Q etc. is a column vector, defined by
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0 0 0 0 0 0
Ej:(E—Nj,X’E—Nj,y’ ""EOj,vaOj,y! ""Eij,X’ and
11 12 11 12 -
Edy: - ENjEnjy) s Qgdki| (rE G i) Qodkn)
El=(E" \i,,E" EL. . E" E' Qqy(ki ;) i3 1@ B 2| Qo(kmn)
j_( —Njx'E==Nj,yr - - F0j,x F0jy - - 0B xo . ! — (11) (12) (11) (12) - ’
E' E' = )T le(ki,j) o1 M1 ) ri le(km,n)
ij,yr = =Njx=Njy/ 21 22 21 22 -
. . . . . . ny(ki,j) r§39 2 P Q1 (Kmn)
Ej:(E—Nj,X’E—Nj,y’ ""EOj,x'EOJ,y’ ""Eij,X' (314)
Here the subscript 1"’ (i,j=1,2) denote four block sub-
Elys o Bl Eliy) s ptij” (i,j=12)

. N _ matrices of theR matrix, while the superscript {j’" (1i,]
and so on. Notice-N<i,j<N. Obviously, here we have =1 2) are for thex andy components of the electric field.
selected an index sequence gfif to designate the plane /(IU=r'(D(j j:mn), etc., are matrix elements of tHe
wave componentsk(; ,kj; ;). All numerical manipulations  matrix in which the indices,j,m,n have been neglected.

take this sequence as the universal basis. _ Transforming Eq.(3.14 into the rotated coordinates, we
Until now we have only derived thR matrix for the first  phayve

layer of the photonic crystal grating, in which the rods are

parallel to they axis. Under a proper plane-wave basis, fhe Q4 (K0 rh 2 ey 32
matrix is block diagonal. We can follow the same procedure QL (K ) (2D (22 @) (22)
to calculate theR matrix for the second layer, and other L O I 1 12 12
layers, but generally they do not appreciate the superior fea- —Q5, (k) ri (12 0D (12)

ture of a b_Iock-diagonaI_matrix. However, the symmetry of_ QiK' ) P2 (22) (21)  (22)

the photonic crystal grating suggests that we adopt an easier AR v T T2 T2

way to obtain theR matrix for other layers. We see that the 04 (K )

second layer, with rods parallel to theaxis, is just a 90° o,

rotation from the first layer. The third layer is translated by % Qox (Kopm) (3.15
d/2 from the first layer along the axis, and the fourth layer - (k) '

. . 1y n,m

is translated from the second layer @2 along they axis. In Q- (K

another words, the third and fourth layers as a whole are 1x (KZnm)

translated from the first and second layers loy2( d/2). Note that ki; in Eqg. (3.14 is a compact form of
Therefore, under a straightforward transformation of coordi{k;; ,,k;; ;) = (kox+i2m/d,koy+j27/d). When transformed
nates, we can derive thie matrix for any layer in a much jnto the new coordinate, it becomes- Ky K 0= (=Ko,

simpler way. _ . , —j2mld kg, +i27/d), which is written into a compact form
Let's first consider the 90° rotation transformation. The ¢ |/ Eq. (3.15. Here the Bloch's wave vector

. . —ii
coordinates is transformed as (kox o) is also transformed into -k}, kp,). Similarly,

y—x', x—-y’, (3.1) ki in Eq.(3.13 is a compact form ofK;; , ,k{; ;) =(—ko,
+i2m/d,ky,+j27/d). Comparing Eg.(3.15 with Eq.
(3.13, we obtain the following transformation of tiema-
rix under a 90° coordinate rotation:

wherex,y andx’,y’ are coordinates in the laloriginal) and
crystal (rotated frames. It also means that both the wave
vectors and the amplitude of the EM field vectors should bé

transformed in the same way, (11)

r@(—j,i;—nm—rii,j;mn),
(ke k)= (—K) KL, (Ey,Ep)—(—E},E}). (312

Supposeg’ andr are theR matrix in the rotated and original
coordinates, respectively. Let us write down E8.5) in a
more explicit form for the two tangential components of the
fieldsE, andE,:

—t/@Y(—j,i;—n,m)—rii j;mn),

—r'E(—j,i;—n,m)—ri,j;mn),

r=ii-nm—r$6,j;mn). (3.1

T, (11)  r(12) (1) (12 ) _
Qo (ki j) rntorit rn ' The same transformation rule applies to other block subma-
Q4 (ki) r'@ @ @ @ tricesry, ry1, andr,. . _
QK ) = a2 oan 2 The transformation of th&k matrix under a coordinate
Ix AR 21 21 22 12 translation is much simpler compared to the transformation

Q15 (ki) rr@h prZ2) @ pr(22) under a coordinate rotation. Under axis translation

Qox (Kin,n) x—=X'=Xo, Y=Y VYo, (3.17

Qoy (Kmn) the field amplitude<including directions and Bragg wave

X QI (k ) (3.13 vectors keep unchanged
1x m,n
Q4 (Kmn) (ky . ky)—(ky k), (Ex,Ey)—(E4,Ep). (3.18
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Each plane-wave component of the electric field is trans-IV. METALLIC LAYER-BY-LAYER PHOTONIC CRYSTAL

formed according tOE(k )e"‘ ix+ikj_ g (k’ )elk x’+ikj’y’ GRATINGS IN MIDINFRARED REGIMES
=E’(k{ )e'kitikyeikixo™ K%, This leads to When a metallic grating is working in the mid-IR regime,
the metal is finite conducting but has a very small skin depth.
E(k; j)HE’(ki’j)e_ikixo_iijO_ (3.19  We can still use the analytic modal method to solve the scat-

tering problem by such a highly-conducting layer-by-layer
Looking into the definition of thek matrix, we find the fol- ~ 9rating, however, the solution now becomes much more

lowing transformation of theR matrix under a coordinate Ccomplicated. . o
translation: The key point is to solve the eigenmodes inside each 1D

lamellar grating under arbitrary incident conditions. To

achieve this, we use the following trial function as an eigen-

mode in a metallic grating consisting of infinitely-long rect-
(3.20 angular rods along thg-axis direction,

i (K~ ki) o+ (K

rig(i,j;mnje K)oy (i, j;m,n),

andr 5, roq, andr,, follow the same transformation rule.

According to the above analysis, we see that if the EM Ey(r):elkzz+lkyy[A1 sin(B1x)+ By cod B1x) ], (4.1)
wave is normally incident on the 2D grating, then tRe o
matrix of the second layer is just a 90° coordinate-rotation E(r)=e*" W[ C, sin(B1x) + Dy cog B1x)], (4.2
transformation from that for the first layer, which is block
diagonal. TheR matr.ix for the third and four_th layers are Ex(r)zeikzﬁikyy[—(ikyBl+ikzD1),81‘15in(ﬁlx)
obtained by performing a coordinate-translation transforma-
tion over theR matrix for the first and second layer, respec- +(ikyA; +ik,By) 87 * cog B1X)], (4.3

tively. Therefore, in this normal incident situation, only tRe
matrix for the first layer is needed. This greatly releases the  jk H, (r)=e*2*kW[k,(k,B;+k,D;)B7 * sin( 8;1X)
numerical efforts. The overaR matrix for the 2D photonic o ZyEL !

crystal grating with arbitrary layers can be calculated on the —k,(k,A;+Kk,C1)B1 L cog B1%)
basis of the first layer using tHe@ matrix recursion algorithm )
shown in Eq.(3.8). For arbitrary incidence angles, tie —B1C1co8 B1x) + B1DysiN(B1X)], (4.4

matrix of the second layer is no longer a simple coordinate- o

rotation transformation from the first layer. Instead, we ikgH,(r)=e*Z kW[ — Ky(kyBy+ kZDl),B’I1 sin( 81x)
should first make a transformation so that in the 90°-rotated -1

coordinate the incident wave vector witnessed by the second +ky(kyA1+k,C1) B cOgB1X)

layer is (Kox,Koy) =(—Koy,Kox). Then we calculate th&® + B1A, COS B1X) — BB i X)
matrixr’ (which is block diagonalin this rotated coordinate P c08 By A1BsiA)].
using the same procedure for the first layer. Finally we back : _ aik,z ik r .
transform this block-diagonal matrix to obtain tRamatrix r koHx(r)=e YL(kyC1 =Tk AL SIN(B1X)

in the original coordinate according to E&.16. As a com- +(ikyD1—ik,By)cog B1x)], (4.9
parison, it is obvious that the transformation rule under a

coordinate translation keeps the same for any incident anglépr the E field andH fields in the air domain &x<a. Here

whether normal or not. K2+ B2+ k2— ek3, Im(B1)>0, ande;=1 is the dielectric
After we have obtained the coefficients for the reﬂeCt'Onconstant Of the air domain. The EM fields in the metal do-

and transmission waves, the transmission and reflection c@naina<x<d are
efficients are calculated by

Ey(r)zeikzz+ikyy[AzeiB2(x7a)+Bzefiﬁz(xfd)], (4.6)
|Eij Ik

T=> Ti=> ——° 3.2 izt B B
iZj ] ; |E0| |koZ| ( :D Ez(r):elkzz+|kyy[C2e|,82(x a)+D2e iBo(x d)]’ (47)

and Ex(r) =€ "] — (k Ay +k,Cy) B; te!Palx—a)

+(k,By+k,Dy)B; te A=, (4.9

k;
=E Rj=2 |E|| ||k" Z|| (3.22
ij _ _ _
0 0z ikoHy(r):elkZZ+lkyy[_ ikyszElAzelﬂz(X7a)
where the summation is run over those homogeneous Bragg

+ikyk B, 1B 12D
waves with a lateral wave vectdiko,+i(27/d)]?+[Ko, vKaB2 B2

+j(277/d)]2<k2 Et and Er are the amplitudes of the —(ik§,32—1+i52)czeiﬁz(x—a)
transmission and reflection Bragg wave in the){, order, PR B, (x—d)
respectively. +(ik3B, 1 +iB2)Doe P2 (4.9
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ikoH (1) = ek [ik kB, 1Coe P2~ Pol —kyk,B1 Ay~ (K281 '+ B1)C4]
—ikyk,B; 'De” P =ikyk,B; "Bo+ (K285 M+ B2)D2, (4.18
+(ikyBy 1 +iBo) Age! P2l
- (ik§ﬁ2’1+ iB,)Bye P20 (410 Pol kykzB1 'Cy— (ksﬂfl"‘ B1)A1]
= —ikyk,B; ‘Do~ (K;B; '+ B2)B,. (4.19

ikon(r) — eikzz+ikyy[(ikyC2_ iszz)eiﬁz(X‘a)

+ (ikyD,— ik,B,)e 1F2- D], 4.11) Defining 2X2 matrices

-1 2np-1

HerekZ+ B5+ki=€,k3, Im(B,)>0, ande; is the dielectric T —kykoB, 7 — (KB T+ B1) o

constant of the metal domain, which has strong dispersion. In SN Ry kK87 (4.20
. . . . yF1 1 yhzP1

writing down the above trial solution, we have noticed that

k, is a tangential wave vector component along the metanq

wall, and assumed to be invariant across this air-metal inter-

face in order to match the boundary condition at the inter- : _ . _

face. Y 1o ikykBo " —i(K2By '+ Ba) .21
To determine the amplitudes in the trial solution, bound- 2 LiK2By M+ B) ikjk, 820 ) '

ary conditions at metal walls located xata andx=d are
used.E,,E,, H, and H, are continuous across the metal

we can derive from Eq94.12—(4.19 the following equa-
walls. So we have

tions:
A, sin( B;a) + By cog B1a) =A,, (4.12 A, Ay B;
(Cz) =T21T1( Cl) cos(,Bla)—Tle1< D1> sin(B,a),
C,sin(B,a)+D; cogBia)=C,, (4.13 (4.22
PoB1=B,, (4.14 A\ (AL B,
c,] ~le, sin(B,a) + D, cogpia), (423
PoD1=D5>, (4.19
for the E-field continuity, wherep,=e'*o is the Bloch’s By - Aq 42
phase factor. In deriving Eq$4.14 and (4.195, we have D, -2 el ) (4.24

used Bloch’s theorem to relate fields»at0 andx=d. In

addition, we have neglected terms with a facehf2(d-2), DesignatingT=T; 1T, and deletingd, and D, from Eqs
which is a small number due to the far larger metal domain(4 22?_(4 2?]) wezﬁnaﬁi have ! ! as-
width compared to the skin depth of metal in the midinfrared" ™ = y
wavelength regime. The continuity of ti¢field leads to

A A
72 i _
KBy ot Bra) A + Ky r tsin BBy T )< cl>s'”(ﬁ ®) ZT( cl> cosp), (429
—(kzB1 "+ B1)cod f1a)Cy+ (K B1 + B1)sin(£,2)D; AL AL
= —ikyk,B5 "As— (K2B5 1+ B2)Cy, (4.16 tg(B12) Cl) =2(l —Tz)‘lT(Cl)- (4.26
kykzﬁfl cog3,a)Cq— kykzﬂl_l sin(B,a)D; Equation(4.26) is recognized to be a standard eigenequation

for the matrixQ=2(I —T?) 1T, with tg(8,a) being the ei-
+(k§,81’1+ Bl)cos(ﬁla)Al—(ki/Bl’lJr B1)sin(B,a)B; genvalue. It will be shown that this eigenequation can be
) 4 S analytically solved. Notic&) and T has the same eigenvec-
=ikykzB; "Bo+(KyB, "+ B2)D2, (417 tor, it suffices to work orl, whose explicit form is

g T [KEB BB BBy kyka(By B By ) w2
2 k2l Kk(BLBa— BB KBy B+ KEBaBL i) '

165104-10
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After some algebraic manipulations, we find that the —2ie,6,81 5
eigenequation Bia=— 5 5 5
€281+ €153

A1 A1 whose nonzero  solution is B;={-[ae’(BY)?
Tl =X o (4.28
1 1

+2i B¢, €,/ a€3]} Y2, where )= (e, €;)¥%kq. To im-
] ) . prove the accuracy of solution, we can do search in a small
responding to eigenvectorsA{,C;)=(1,—k,/k,) and +2iB(0)6162]/[a62]}1/2_
(A1,Cy)=(ky/k,,1), respectively. From this, the eigenval- 2 2
ues of Eq.(4.26) are directly calculated as

(4.33

What happens ik, is infinite? Obviously, for the lowest
mode,3,— 0. For higher modes, we have double-degenerate
solutions as tg8,a)=0, which yields 8,=mm/a=s,,m

—2iB1B> =1. The eigenvectors are the same as in the finite-
tg(Bla):W (4.29 conducting situationsA7,C}) and (AZ,C?). However, the
Loz amplitudes in the metal domai,,B,,C,,D, are all zero,
and due to the infinitely largél, matrix. Since these two modes

are double degenerate, we can reorganize the eigenvectors
Diee,B1p such that A;,C,)=(1,0) _and A;,C)=(0,2). This_we see
tg(3,2) :%. (430 has returned to the solution for a perfect-conducting grating.
esB1+ €185 For the lowest mode wherg;=0, the eigenvector is still
(A%,C%). However, from Eq(4.3) E, has infinite large am-
The corresponding eigenvectors are stiRj(C1)=(1, plitude. So, if we set the amplltude &, to unity, the am-
—k,/k,) and AZ,cH= (ky/k;,1), respectively. We have plitude of E, (A;) and E, (C,) are both zero in effect.
deS|gnated these two modes as mode 1 and mode 2. EquBherefore, |n this case, we also return to the solution of
tions (4.29 and(4.30 are both complex transcendent equa-eigenmode in a perfect-conducting grating.
tions with an infinite number of roots in the complex plane, Now we can write down the EM fields inside the grating
which need to be numerically solved by searching the wholgegion using eigenmode expansions. The tangential field
complex plane. To avoid this numerical difficulty, we start components are
from solutions for a perfect-conducting metal wall. We keep
in mind that with a large number of, in the midinfrared
regime, the eigenmodes within the grating should not depart
far away from those within the corresponding perfect-

Ex(r) =2 [Ane™zm?X i (%) +Bpezm?X o (x)
m

conducting structure, which we have known in the above +Cprekzm?X " (X) + D pekzm?X —o(x) €Y,
sections. Therefore, we can use simple iteration techniques to (4.34
find the accurate solutions ¢, in Egs.(4.29 and (4.30. '
For higher modesn=1, we set the initial value o8, to be o o
=s,,, then the following iteration algorithm is followed: ~ E,(r)= Zn: [Ape zm?Y ! () +Bpezm?Y ()
—Ziﬁ(n)ﬂ(n) Cum ik} 22y D. ekzm2?Yy = ikyy
o B Va)=— bt P2 (4.31) + Cye2m2?Y 1p(X) + D€ 2me?Y p(x) J €'Y,
(B4 817 (4.39
—9i (n) g(n o N
g 5 Ve 2ie €81 By 432 Hy(r)= > [Ame*zm?U 5 (X) +Byezam?U - ()
1 62[B(n)]2+62[ﬁ(n)]2’ ) m
2LMF1 1LP2 . B
+Cekzam?U () + D ekzm2?U _,(x) ey,
where n=0,12..., [BM]?=(e;—e)k3+[BM]% In " mo(X)+ Dim mo(X)]
practice, several iteration loops are enough to bring us to a (4.30
convergent solution o8, with considerable accuracy. Every
. - : +1) _ (n)
solution corre_sponds to a fixed pojg§"" V= , and good Hy(r)= > (AL elky m?\/* (X)+ B e zlele(x)
convergence is due to the correct guess of |n|t|al value from
physical consideration. o . - - ”
The iteration technique can not be applied to the lowest + Ce"zm2?V [,(X) + D e zm2?V, 5 (x) 1™y,
mode by starting fromg{?)=s,=0. It is easy to find that 4.3

B1=0 is a solution of both Eqs{4.29) and(4.30. However,

it can be shown that this solution is unphysical unlesss ~ Here Xy, (x) is the modal function of th&-field x compo-
infinite. Since Eq.(4.28 has only solution of3;=0, itis  nent connected to mode 1 under the upwdigeave vector
excluded. Noticing thaB; is a small number, we find from K, T 1, see the definition in the square brackets in E4<3)

Eqg. (4.30 as an approximation the following formula: and (4.8). Others are similarly defined\,,B,,C,,,D,, are

165104-11
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modal coefficients. For the lowest mode=0, since only
mode 2 is present\,, and B, vanish.

To solve the scattering of a plane EM wave by the 1D
metallic lamellar grating, we use the boundary conditions at
the two interfaces of=h andz=0. We also use the method
of moment similar to that employed in the case of a perfect-
conducting grating. We project the field onto the plane
wave basis and obtain

Coeik;,ozhli(so)+Doeik;°£1|i(%)+ D [Ameikzmlhli(lr%
) ! m=1 '

Cossri)o"_DOS;rﬁ)"' E [Am’S(l) +Bm’S(2) +Cm’s(3)

. L+
+ erelkz,m’lhTET?)m, + Cm/elkz,m’ZhT(?))

PHYSICAL REVIEW B 67, 165104 (2003

o+ ik ik,
Coelkz’oéq-rg?‘%)_l_ DOeIkZVOZhTEnAl,%)_l— 2 [Am/e|kz,m/1hTET:::)mr

m'=1

m,m’

+Dm,eik£mfthm,]:Z Hy(mWN® o (4.43

m=0,1,2 ...,

- B o p m,m’ m,m’ m,m’
+ Bme'kz,mlhl I(zr%-i- Cme'kz,mzhl |(3r’21+ Dme'kz,m2h| |(4n)]] m=1
=dE,(h), (4.39 1= 2 Ha(OM %, (4.44
Coe'k202 33+ D ge'kz0d 3D+ mzl [AnekzmnI®) m=12,...,
- . - 1 2 3
+ Bpekzmn @)1 C etkzme" 3 + D ek meg4)] CoTE)+ DT+ m2>1 [An T +Bu T +CuTS)
=dE(h), (4.39 @
+Dm,vam,]=§i: Hyi(ON®) (4.45
Col @+ Dol D+ >, [A B +BLI A+ Crl O+ Dl (4]
OO T EOTLO T ey Bmim T B m  Emem L m m=0,1,2 ... . Themoment between two modal functions is

defined as

=dE,;(0), (4.40

Cod3+Dd %+ mZ)l [And{D+ BB+ Crd®+D 34

=dE(0). (4.40)

Here the moment between a plane wave function and a
modal function is defined as

a d
Il(’:l'n?]: J;) e—ukxiXXrTﬂ(X)dX, ||(’2m: fo e_lkXiXX;ﬂ_(X)dX,

a . d
Ii(’Bn)q= fo e kXX 1 (x)dX, Ii(,4n)1= fo e kXX —(x)dx.

IM MK andN®) (k=1,2,3,4) are obtained by replacing
X(x) by Y(x), U(x), andV(x) in the integration, respec-
tively.

The boundary condition for the H-field is matched by pro-
jecting theH, field onto the modal functions of mode 1,
while projecting theH, field onto the modal functions of
mode 2. This results in

- L L

Coelkzozhsa?’)o_*' DoelkZ!O?SEi)o—’_ E [Am,elkzymrlhsgh)mr
m'=1 Y
ik ha(3)

+Cpy€%zm2 Sm'm,

+ ereikz,m’lhsg’)m/

m,m’

s Ut (x)Ut (x)d
0 ml m’l(X) Xl

5@~ ["Ur 00U, 00d
m,m’ 0 ml(X) m’l(X) X,

@ _ [+ ov-
Tom = Osz(x)Vm,l(x)dx,

(3) d + +
T . Vim2(X)V o (X)dX,

mm’

@ _ (%4 -
T fo Vim2(X)V o (X)dX.

mm’

From Eqgs.(4.38—(4.45 we can delete the unknown vari-

ik _,ha(4) 7 (1)
+ Dy €*zm2 Sm‘m,]—zi Hyi (MM o, (442 aples for the modal amplitude, and obtain the following ma-
trix equation that connect the andH fields in both sides of

m=12,..., the grating
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E,i(h) Pi1 Pip Piz P4\ [ Hy(h) complete set of basis for EM fields in our conical scattering
E.,.(h) P.. P.. Po. P Hyi(h) problem. It can be found from Eq§t.29), (4.30, (4.49, and
yi I vi (4.50 that the eigenvalueg, and 3, have no dependence
Exi(0) Psi Pax Psz Pa|| Hyi(0) |’ on the off-plane wave vectok,. Therefore, the virtual
E,i(0) Py Ps Pas Pasl | Hyi(0) eigenproblem is same for both the in-plane incidence and
off-plane conical incidence, a beautiful characteristic for a
(4.46 . . .
o ) _ 1D grating that has been strongly emphasized on in Ref. 29.
Y}/h’(,areExi.(h) ,be;c., |mplll\(lai_a<cl\(l)lu_lr_1;1n \:jgctotrl vvllth (;chejt |r][ﬂex When k,=0, (Al,Ci):(l,O), (A2,C§)=(O,1), modes 1
I” ranging between—N=<I<N. This directly leads 1o theé - 34 2 are exactly the TE and TM modes, respectively. There-
R-matrix formula for the scattering of a singig=Kky; cOm-  fqre  Egs.(4.29 and (4.49 are eigenequation for the TE
ponent of plane wave by one single layer of the 2D Iayer-by—mode, while Eqs(4.30 and (4.50 are for the TM mode.
layer metallic grating Equations(4.49 and(4.50 are applicable to any value of
ar M) 0\ (- €, in the lamellar grating, either dielectric or metallic. For a
0| _ ryg riz 0, (4.47) highly conducting metallic grating working in the mid-IR
QIJ r ' regime, Eqs(4.49 and(4.50 will reduce to Eqs(4.29 and
. . ) (4.30), for which fast convergent iteration technique is avail-
For the whole 2D scattering problem, we directly write downab|e in Egs.(4.31) and (4.32. However, for more general

+ . metallic gratings, such as those working in the optical wave-

21 r(2‘2) Ql_,j.

(4.48 lengths, where the skin depth of metal is not too small, one
must turn to Eqs(4.49 and(4.50 for solution. The iteration

N N o ] technique fails completely, other accurate and efficient but
where Q,;, Qg , etc., have the same definition as in the yych more complicated numerical tools such as the one de-
perfect-conducting cagsee Eqs(3.5) and(2.14]. Now that  yeloped in Ref. 31 can be used to find the eigenvalues. On
we have already derived tiiematrix for a single layer of the  the other hand, since the dielectric constant for a metal in the
2D grating, we can use th&matrix technique of the gptical wavelengths is only modeh order from 1 to 100
transfer-matrix method to solve the scattering problem by &ne can use other more flexible numerical schemes such as
can yield the transmission, reflection, and absorption spectf@ansfer-matrix method to solve the scattering problem. The

under an arbitrary plane EM wave incidence. The transmitiatter two methods seem to be more suitable and efficient for
tanceT and reflectanc® are calculated by means of EQs. this task?122:32

(3.2 and(3.22. The absorptance is calculated according to
A=1-T—-R.

In our above solution for a highly conducting grating, we V. RESULTS AND DISCUSSIONS
have omitted terms with a factet?2(~®  assuming a small
skin depth. To maintain better accuracy, one can include thi§e
factor. After some tedious algebjihe detail not shown here
but close to the procedure from E¢..12 to Eq.(4.28], we
find that the eigenvalug@, satisfies the following complex
transcendent equations

N _
Q4 Fa1 Ta2/\ Qg

To demonstrate the effectiveness and efficiency of the de-

loped method, we take into account two experiments on

' the layer-by-layer metallic photonic crystal as examples. The
first example we consider is the experiment reported in Ref.
8, where two different structures of layer-by-layer aluminum
photonic crystals working in the microwave regime are ex-

N amined. In one structure, the rectangular aluminum rods are
cog B1a)cog Bo(d—a)]—cogkoyd) stacked into a fct lattice; in another structure, the rods are
1 _ B, B stacked into a simple tetragon@l) lattice, which is similar
— 5 Sin(B12)sin B(d—a)] E+E):O’ (449  to the fct lattice, except that rods in the third and fourth

layers do not have @/2 shift relative to those in the first and
T second layers. The measured transmission spectra under nor-
cog B1a)cog Bo(d—a)]—cogkod) mal incidence are shown in Fig(a} (reproduced from Ref.
eB1 €182 8) for six-layer samples with a rod-to-rod spacing, rod width
e + 625’1) =0, (450  and thickness of 7.6, 0.8, and 2.5 mm, respectively. A wide
stop band gap and 7—8 dB per layer attenuation are found in
for modes 1 and 2, respectively. The corresponding eigertoth lattices. In addition, there is a significant relative shift
vectors are still A;,C1)=(1,—k,/k;) and (A7,C%5)  of the band gap edge between the @2 GH2 and st(20
=(ky/k;,1). It should be noted that different approachesGHz) lattices. We have performed numerical simulations on
have been used in earlier literatude® to solve the scatter- these two structures, assuming aluminum a perfect conduc-
ing problem for a general lamellar grating under conical in-tor. Good convergence has been reached using only 81 plane
cidence, leading to the same result of E¢s49 and(4.50.  waves and 81 modes, and the results are displayed in Fig.
In Ref. 29, the mathematical problem such as the completed(b). Excellent agreement with the experimental data can be
ness and orthogonality of the eigenmodes has been addresdednd: Not only the band edge position and relative shift, but
in great detail. According to Ref. 29, the eigenmodes of Eqgsalso the attenuation ratio are correctly reproduced. The 2
(4.29 and(4.30, or Egs.(4.49 and(4.50 will comprise a  GHz relative shift suggests that the global lattice structure

1
— 5 Sin(Ba)sin B(d—a)]
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FIG. 4. Transmission spectra for six-layer microwave layer-by-
layer aluminum photonic crystals stacked in fct and st latti¢as. FIG. 5. Transmission, reflection, and absorption spectra for a
Experimental results(b) theoretical results. The two crystals each four-layer mid-IR layer-by-layer tungsten photonic crystal under
has a rod-to-rod spacing of 7.6 mm, a rod width and thickness ofiormal incidence of an unpolarized plane wa(e. Experimental
0.8 and 2.5 mm, respectively. results,(b) theoretical results. The crystal is stacked by rectangular
tungsten rods with a rod-to-rod spacing of 4.8, a rod width and

. . . thickness of 1.2 and 1.5m, respectively.
(the PBG effedtplays an important role in the formation of

this lowest stop band gap. incident plane wave is taken. A stop band gap extends from
We now turn to the mid-IR metallic photonic crystal about 6 um to zero frequency. Above that band gap edge,
structuré® made of four-layer rectangular tungsten rods ar-two high transmission bands are observed corresponding to
rayed in a fct lattice. The crystal has a rod-to-rod spacingthe pass bands of the metallic photonic crystal. The two
rod width and thickness of 4.2, 1.2, and 1u3n, respec- transmission peaks are located at 4.6 andubrg excellently
tively. The measured transmission, reflection, and absorptioagreeing with the experimental data. Two high reflection
spectra are shown in Fig(& for an unpolarized plane wave bands peaked at around 5 andud accord well with the
incident along the001) direction of the crystal. A high re- oscillation pattern in the experimental reflection spectrum.
flection and low transmission range appears abave More impressively, there is indeed a strong absorption peak
~6 um, which is recognized to be the stop band gap. Belowwith a value 18% located at 5.7um, the same as the ex-
this wavelength, the reflectance exhibits oscillations, and periment. Present in both experiment and theory, this absorp-
distinct high-transmission band stands out with two peaksion peak should be an intrinsic characteristic of the layer-
located at about 5.5 and 4/m. Surprisingly, a sharp ab- by-layer metallic photonic crystal structure. As the metal
sorption peakiup to 20.5% is observed at about 5.4m, itself shows negligible absorption at 5ufn, we ascribe this
near the photonic band edge, where the absorption by a bubibsorption enhancement to the slow down of wave propaga-
tungsten(say, a homogeneous tungsten $lshould be neg- tion near the photonic band gap and the high transmission of
ligible (the reflection coefficient for tungsten at @m is  wave at this wavelength. Both mechanisms increase the flow
about 98%. of wave through the whole metallic structure, and thus en-
To understand these interesting features, we have dorteance the absorption. Indeed, the absorption peak is close to
simulations using the analytical modal method for this highlythe band edge and the 5.8m transmission peak. The other
conducting photonic crystal grating structure. The experitwo lower absorption peaks centered at 4.6 andu$8in the
mental data of the dielectric function of tungsten have beettheoretical curve can also be explained by these two mecha-
used in the calculations. AN=6 um, tungsten has nisms. Despite the good agreement between experiment and
e=—T748+205, the corresponding skin depth is about 35theory regarding the transmission, reflection, and absorption
nm, two orders of magnitude smaller than the incident wavepeak positions, there is a quantitative difference in the abso-
length. Good convergence has been achieved also using orilyte value. For example, the maximum experimental trans-
81 plane waves and 81 modes. The results are displayed mittance and reflectance are much lower than the theoretical
Fig. 5(b), where an average over two polarizations of thevalues. This quantitative inconsistence can be attributed to
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the fact that in our calculations, no scattering effects due t@utation effort on the wave scattering problem. With the aid
disorders and surface roughness of metal rods are considf this developed electromagnetic approach, fast conver-
ered. Scattering will reduce the transmission and reflectiongence of numerical result has been obtained and excellent
and increase the absorption. Such a scattering is apparentagreement of theoretical results with experimental measure-
the experimental data: The sum of transmittance, reflectancejents has been achieved from the microwave to the infrared
and absorbance is well below unity. wavelength regimes. This indicates that the developed elec-
tromagnetic method is effective and efficient in handling
wave propagation problem for the important class of 3D pho-

) tonic crystals: layer-by-layer metallic photonic crystals.
In summary, we have developed an analytic modal expan-

sion method in combination with a transfer-matrix technique
to examine the reflection, transmission, and absorption spec-
tra of 3D layer-by-layer metallic photonic crystal gratings
working in the microwave and infrared wavelengths. In ad- Ames Laboratory is operated for the US Department of
dition, the structural symmetry between different layers ofEnergy(DOE) by lowa State University under Contract No.
the crystal is fully exploited to connect the transfer matrix W-7405-Eng-82. The authors thank Dr. S. Y. Lin for helpful
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