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Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals
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An analytic modal expansion method combined with a transfer-matrix technique is developed to investigate
the reflection, transmission, and absorption spectra of three-dimensional layer-by-layer metallic photonic crys-
tals working in a regime from microwave to infrared wavelengths. The eigenmodes for electromagnetic fields
within each layer of the crystal are solved analytically by matching boundary conditions. The eigenmodes are
then projected onto a plane wave basis, so that the scattering problem for a multilayer structure can be cast into
the framework of transfer-matrix method. In addition, the structural symmetry between different layers of the
crystal is fully exploited to connect the transfer matrix for different layers and significantly reduce the com-
putation effort on the light scattering problem. Fast convergence of numerical result has been obtained and
excellent agreement of theoretical results with experimental measurements has been achieved, indicating the
effectiveness and efficiency of the developed analytical modal expansion method.
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I. INTRODUCTION

Photonic crystals, a class of material giving rise to a ran
of frequency called a photonic band gap~PBG! within which
electromagnetic~EM! waves cannot propagate along any
rection, provide a powerful way to manipulate and cont
the flow of photons in much the same way as conventio
semiconductors do to electrons.1,2 In recent years metallic
photonic crystals have attracted much attention becaus
the large PBG present3–10 and potential applications in mi
crowave regimes such as filters. Most experimental wo
were done in the microwave regime, and metal in this reg
can be assumed as a perfect reflector. Very recently, a th
dimensional~3D! metallic photonic crystal working in the
midinfrared ~IR! wavelength was successfully achieved
means of state-of-the-art lithographic techniques10 under a
layer-by-layer stacking scheme.11–14Even in this long wave-
length regime, the absorptive and dispersive properties
metal has already become apparent.10 It is the aim of this
paper to present a simple, efficient, and rigorous theore
model to investigate the propagation behavior of EM wa
through this important class of metallic photonic crys
structures in a regime from microwave to infrared wav
lengths.

For a metallic photonic crystal structure, the usual pla
wave expansion method15,16 becomes ineffective. Other the
oretical approaches have been employed as an alterna
such as the finite-difference time-domain method6 and the
multiscattering method9,17,18 based on the Korringa-Kohn
Rostoker theory~which is limited to photonic crystals mad
of particles inscribed to nonoverlapping spheres or cy
ders!. The propagation of EM waves through a 3D photon
crystal slab with a finite thickness can be cast into the fram
work of scattering of EM waves by a 2D grating. EM a
proaches such as the coupled-wave method19–21 in the Fou-
rier space and the real-space transfer-matrix method22,23have
been developed to study the transmission and reflection s
tra of 1D and 2D gratings. However, severe converge
difficulty is found in both methods for a highly conductin
2D grating due to a skin depth two orders of magnitu
0163-1829/2003/67~16!/165104~15!/$20.00 67 1651
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smaller than the incident wavelength. A large number
plane waves in the coupled-wave method or very fine m
of grid point in the real-space transfer-matrix method is
quired to account for this small skin depth effect. To atta
the theoretical challenge for a 2D metallic layer-by-lay
grating scaled from mid-IR to microwave wavelengths, w
have developed an EM approach which combines a serie
techniques ranging from analytic modal expansion meth
to the transfer-matrix method, and to the application of str
tural symmetry. A fast-convergent solution of the spectra
been obtained and excellent agreement with experime
measurements has been achieved.

Before we move into the very detailed discussions on h
the developed method is working for a metallic photon
crystal slab, we will first present here a brief description
the general idea. Let us first take a close look at a layer-
layer photonic crystal. A 3D schematic picture of the crys
structure is shown in Fig. 1~a!. The top-view picture of this
photonic crystal from the~001! direction is also displayed in
Fig. 1~b!. The metallic photonic crystal is formed by stackin
rectangular metallic rods layer by layer consecutively alo
the ~001! direction. Rods in each layer are arrayed into
one-dimensional periodic structure—a lamellar grating w
a pitch ofd. Rods in one layer are perpendicular to those
the adjacent layers, while rods in one layer are shifted byd/2
with respect to those in the second-nearest neighboring
ers. The primitive unit cell of the photonic crystal is array
into a face-centered tetragonal~fct! lattice. In Figs. 1~a! and
1~b!, we have assumed that rods in the first layer are al
the y axis, and rods in the second layer are along thex axis
direction, and so on. The rods each has a width ofw, a
thickness ofh, and form a square lattice with a lattice spa
ing of d in the ~001! plane. Every four layers of rods com
prise a repeating unit cell along the~001! direction of the
crystal.

The layer-by-layer photonic crystal is an interconnec
topological network with a complex surface geometry, the
fore, the usual method to match boundary conditions at ev
air-metal wall of the whole crystal is quite troublesome.
overcome this difficulty, several tricks have been used in
©2003 The American Physical Society04-1
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method developed in this work. First, as one has noti
above, each layer of the photonic crystal is just a 1D lame
grating. This specific configuration allows us to use anal
cal solution of EM modes inside each 1D lamellar gratin
Second, for a multilayer photonic crystal slab, we can tr
the wave scattering by each single layer separately, and
combine all layers using the transfer-matrix technique. T
enables us to examine the scattering problem of a multila
structure in a systematical manner, and brings great flex
ity. Third, one can further notice that there are several str
tural symmetries between different layers of the crystal
fully considered and exploited, these symmetries can sig
cantly reduce the scattering problem for all different lay
into that for only one single layer. Therefore, virtually only
1D scattering problem needs to be attacked. This is ano
big saving of theoretical and numerical efforts from those
a general 2D scattering problem.

Following the general ideas outlined above, we arran
this paper as follows. In Sec. II we will deal with gener
scattering problem for a 1D perfect-conducting lamellar gr
ing under off-plane conical wave incidence. Modal expa
sion and moment techniques will be used. This will lay do
a basis for our later discussions on general 2D scatte
problems. In Sec. III we will move forward to consider sca
tering by a 2D layer-by-layer photonic crystal grating ma
up of perfect-conducting metallic materials. The transf
matrix method will be introduced in combination with th
modal expansion techniques. In addition, application
structural symmetries to the transfer-matrix method will

FIG. 1. ~a! Schematical configuration of a 3D layer-by-lay
photonic crystal composed of rectangular metallic rods in air.~b!
Top-view picture of~a! from the~001! direction, the stacking direc
tion of the crystal layers.
16510
d
r

i-
.
t
en
is
er
il-
c-
f
fi-
s

er
r

e

t-
-

g

-

f

discussed. In Sec. IV, we will follow the similar theoretic
framework to solve the scattering problem of a meta
layer-by-layer photonic crystal grating working in th
mid-IR wavelengths, where the metallic material is high
conducting. In Sec. V, we will apply the developed theore
cal tools to examine two experiments on metallic layer-b
layer photonic crystals in order to demonstrate the power
efficiency of the developed method. One experiment is c
cerned with the microwave regime, the other is working
the mid-IR regime. Finally in Sec. VI, we will present som
concluding remarks.

II. EM WAVES SCATTERING BY 1D PERFECT-
CONDUCTING LAMELLAR GRATINGS

As we have noticed in the Introduction, each layer of t
considered layer-by-layer photonic crystal is a 1D lame
grating along the stacking direction. This reminds us tha
our first step we should have a clear understanding on ho
solve this 1D scattering problem. To correspond well to
scattering problem of 2D grating, we must consider gene
incidence condition~so-called off-plane conical incidence!
for the 1D grating, namely, arbitrary incident angles and p
larizations. However, it is helpful to first start from the sim
plest case of in-plane incidence, where the incident w
vector lies in the plane perpendicular to the grating axis~di-
rection where the dielectric function keeps constant!. In this
situation we have two eigenmodes for the scattering pr
lem, the TE and TM modes, in which either the electric
the magnetic field is parallel to the grating axis. This pro
lem has been investigated extensively in literatures,24–27and
useful ideas and techniques have been developed, there
we will not repeat it here. Interested readers can refer
original literatures. In the following, we will extend the idea
and techniques to general off-plane conical incidence si
tions.

The schematic configuration of the scattering problem
depicted in Fig. 2, where the 1D perfect-conducting grat
is supposed to extend along they-axis direction, and repea
its unit cell along thex-axis direction every distance ofd.
The air-metal interface is located atx50 andx5a, respec-
tively. In the situation of general off-plane conical incidenc
a plane wave is incident on the 1D grating from up to do
along the 2z direction with a wave vector k0

FIG. 2. Schematical configuration of a plane EM wave scatte
by a 1D metallic lamellar grating. The grating has a pitch ofd,
thickness ofh, and an air-domain size ofa. The dielectric constant
for the air and metal domain ise1 ande2, respectively.E0 , Er , and
Et are the incident, reflection, and transmission waves, respectiv
4-2
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5(k0x ,k0y ,k0z)5k0(sinu cosf, sinu sinf, cosu), wherek0
5(v/c) is the wave number,v is the angular frequency,c is
the light speed in vacuum.u andf are the incident polar and
azimuthal angles, withp/2<u,p, and 0<f,2p. In the
conical incidence, the TE and TM modes are no longer
eigenmodes of a 1D grating, instead, they are coupled w
each other. Since the grating is homogeneous along
y-axis direction, they-axis wave vector component is a co
stantk0y in the process of the wave scattering.

The E and H fields in the incidence and transmissio
regions are both composed of three components. We
consider EM fields in the incidence regionEr andHr . In the
plane-wave basis, the tangential components ofEr are writ-
ten in general forms as

Ex~r !5 (
i 52`

`

Ei j ,x~z!eikixx1 ik jyy

5 (
i 52`

`

@Ei j ,x
1 ~z!1Ei j ,x

2 ~z!#eikixx1 ik jyy, ~2.1a!

Ey~r !5 (
i 52`

`

Ei j ,y~z!eikixx1 ik jyy

5 (
i 52`

`

@Ei j ,y
1 ~z!1Ei j ,y

2 ~z!#eikixx1 ik jyy. ~2.1b!

Here kix5k0x1 i2p/d, kjy5k0y , Ei j ,x(y)
1 (z)

5Ei j ,x(y)
1 eib i j (z2h), Ei j ,x(y)

2 (z)5Ei j ,x(y)
2 e2 ib i j (z2h), where

b i j 52(k0
22kix

2 2kjy
2 )1/2 for k0

22kix
2 2kjy

2 >0, and
b i j 52 i (kix

2 1kjy
2 2k0

2)1/2 for k0
22kix

2 2kjy
2 ,0. The defini-

tion of b i j are in consistence with the fact that the incide
wave is propagating along the2z direction.

The z componentEz(r ) can be obtained from¹•E(r )
50. The magnetic field can be derived fromH5(1/ik0)¹
3E, and the tangential components are written as

Hx~r !5 (
i 52`

`

Hi j ,x~z!eikixx1 ik jyy (
i 52`

`

@Hi j ,x
1 ~z!

1Hi j ,x
2 ~z!#eikixx1 ik jyy, ~2.2a!

Hy~r !5 (
i 52`

`

Hi j ,y~z!eikixx1 ik jyy

5 (
i 52`

`

@Hi j ,y
1 ~z!1Hi j ,y

2 ~z!#eikixx1 ik jyy, ~2.2b!

where Hi j ,x(y)
1 (z)5Hi j ,x(y)

1 eib i j (z2h), Hi j ,x(y)
2 (z)

5Hi j ,x(y)
2 e2 ib i j (z2h). For each wave vector we

have the following relation between theH and E
fields: (Hi j ,x

1 ,Hi j ,y
1 )T5T0,i j (Ei j ,x

1 ,Ei j ,y
1 )T and (Hi j ,x

2 ,Hi j ,y
2 )T

52T0,i j (Ei j ,x
2 ,Ei j ,y

2 )T, where the superscript ‘ ‘T’ ’ denotes
matrix transposition. The 232 matrix T0,i j has matrix ele-
ments T0,i j

11 52kixkjy /(k0b i j ), T0,i j
12 5(kix

2 2k0
2)/(k0b i j ),

T0,i j
21 5(k0

22kjy
2 )/(k0b i j ), and T0,i j

22 5kixkjy /(k0b i j ). It can
16510
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be seen thatE1(H1) and E2(H2) correspond to the inci-
dent and reflected waves, respectively.

The EM fields in the transmission regionEt andHt have
the same general form of expansion

Ex~r !5 (
i 52`

`

Ui j ,x~z!eikixx1 ik jyy

5 (
i 52`

`

@Ui j ,x
1 ~z!1Ui j ,x

2 ~z!#eikixx1 ik jyy, ~2.3a!

Ey~r !5 (
i 52`

`

Ui j ,y~z!eikixx1 ik jyy

5 (
i 52`

`

@Ui j ,y
1 ~z!1Ui j ,y

2 ~z!#eikixx1 ik jyy. ~2.3b!

Hx~r !5 (
i 52`

`

Vi j ,x~z!eikixx1 ik jyy

5 (
i 52`

`

@Vi j ,x
1 ~z!1Vi j ,x

2 ~z!#eikixx1 ik jyy, ~2.4a!

Hy~r !5 (
i 52`

`

Vi j ,y~z!eikixx1 ik jyy

5 (
i 52`

`

@Vi j ,y
1 ~z!1Vi j ,y

2 ~z!#eikixx1 ik jyy, ~2.4b!

whereUi j ,x(y)
1 (z)5Ui j ,x(y)

1 eib i j z, Ui j ,x(y)
2 (z)5Ui j ,x(y)

2 e2 ib i j z.
Vi j ,x(y)

1 andVi j ,x(y)
2 are also connected toUi j ,x(y)

1 andUi j ,x(y)
2

through the 232 matrix T0,i j . Obviously U1(V1) and
U2(V2) correspond to forward and backward propagat
waves in the transmission region, respectively. Tempora
we assume that both waves coexist in the transmission
gion. In reality,U2(V2) should vanish, since only transmi
ted waves exist in this region for our 1D lamellar gratin
But we will see in later sections that the introduction
U2(V2) into a single-layer 1D grating will bring us grea
convenience and flexibility to the scattering problem of
general multilayer 2D grating, because they are one of
central elements in the transfer-matrix method.

As noted above, they component of the wave vector is
constant during the process of EM waves scattering by
1D grating, therefore, the EM fieldsEm and Hm inside the
grating domain can be written as

Ey~r !5 (
m51

`

~Am
j cosmmz1Bm

j sinmmz!Xm~x!eik jyy,

~2.5!

Ex~r !5 (
m50

`

~Em
j cosmmz1Fm

j sinmmz!Ym~x!eik jyy,

~2.6!
4-3
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Ez~r !5 (
m51

`

@mm
21~ ik jyBm

j 2Fm
j sm!cosmmz

1mm
21~2 ik jyAm

j 1Em
j sm!sinmmz#Xm~x!eik jyy,

~2.7!

where sm5mp/a, a being the width of the air domain
Xm(x)5(2/a)1/2sin(smx), Ym(x)5(2/a)1/2cos(smx) for m
.0, and Y0(x)5(1/a)1/2. mm is defined asmm5(k0

22sm
2

2kjy
2 )1/2 if sm

2 1kjy
2 <k0

2 , and mm5 i (sm
2 1kjy

2 2k0
2)1/2 if sm

2

1kjy
2 .k0

2 . It can be shown that each expansion term in E
~2.5!–~2.7! is a solution to Maxwell’s equations in the rec
angular air slit satisfying the boundary conditions that
tangential componentsEy50 andEz50 at bothx50 and
x5a. From Maxwell’s equationik0H5¹3E, we can de-
rive the tangentialHm components as

ik0Hx~r !5
]

]y
Ez2

]

]z
Ey

5 (
m51

`

~kjy
2 mm

211mm!sinmmzAm
j 2~kjy

2 mm
211mm!

3cosmmzBm
j 1~ ik jymm

21sm!sinmmzEm
j

2~ ik jymm
21sm!cosmmzFm

j , ~2.8!

ik0Hy~r !5
]

]z
Ex2

]

]z
Ez

5 (
m51

`

@~ ik jymm
21sm!sinmmzAm

j

2~ ik jymm
21sm!cosmmzBm

j

2~sm
2 mm

211mm!sinmmzEm
j

1~sm
2 mm

211mm!cosmmzBm
j #Ym~x!eik jyy
-

r.

i-

16510
.

e

1~2m0 sinm0zE0
j 1m0 cosm0zF0

j !Y0~x!eik jyy.

~2.9!

Now that we have finished the expansion of EM fields
the incidence, grating, and transmission regions, we can
straightforward to find out the unknown field expansion c
efficients in the three regions through match of bound
conditions atz5h andz50. From this we have

Er
tan~z5h!5Em

tan~z5h!, 0,x,d, ~2.10a!

Hr
tan~z5h!5Hm

tan~z5h!, 0,x,a, ~2.10b!

Et
tan~z50!5Em

tan~z50!, 0,x,d, ~2.10c!

Hr
tan~z50!5Hm

tan~z50!, 0,x,a, ~2.10d!

where the superscript ‘‘tan’’ means the tangential comp
nents of fields. Using the technique of moments atz5h and
z50 for the electric field, we have projected both hand sid
of Eqs. ~2.10a! and ~2.10c! onto the basis of plane-wav
functions. From this we arrive at the following matrix equ
tion after truncation over the infinite linear equations:

dZ0
j 5P1Zm

j . ~2.11!

Z0
j andZm

j are column vectors composed of the field expa
sion coefficients, where the superscript ‘ ‘j ’ ’ refers to thekjy
component of the incident wave vector. They are defined

Z0
j 5@Ei j ,x~h!,Ei j ,y~h!,Ui j ,x~0!,Ui j ,y~0!#T,

Zm
j 5~Am

j ,Bm
j ,E0

j ,Em
j ,F0

j ,Fm
j !T,

where Ei j ,x(y)(h)5@E2N j ,x(y)(h), . . . ,E0 j ,x(y)(h), . . . ,
EN j ,x(y)(h)#, Am

j 5(A1
j ,A2

j , . . . ,AM21
j ), etc. The corre-

sponding dimension is 4N0 and 4M22, where N052N
11 and M is the plane wave and modal numbers in t
incidence and grating regions. The (4N0)3(4M22) dimen-
sioned matrixP1 is
P15S 0 0 cos~m0h!Ji0* cos~mmh!Jim sin~m0h!Ji0* sin~mmh!Jim

cos~mmh!I im* sin~mmh!I im* 0 0 0 0

0 0 Ji0* Jim* 0 0

I im* 0 0 0 0 0

D ,
where each element@such as cos(mmh)Jim* ] represents a ma
trix, and the multiplication such as cos(mmh)Jim* Em

j in P1Zm
j

of Eq. ~2.11! implies summation over the index ‘‘m, ’’ which
is just the multiplication of a matrix and a column vecto
Here I im and Jim are defined asI im5*0

aeikixxXm(x)dx and
Jim5*0

aeikixxYm(x)dx. When we match the boundary cond
tions for the magnetic field at the interfacesz5h and z
50, we project both hand sides of Eq.~2.10b! and Eq.
~2.10d! onto the basis of modal functionsXm(x) andYm(x).
From this we obtain

ik0P2Z1
j 5P3Zm

j , ~2.12!

where

Z1
j 5@Hi j ,x~h!,Hi j ,y~h!,Vi j ,x~0!,Vi j ,y~0!#T.

P2 is a (4M22)3(4N0) matrix defined by
4-4
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P25S I im 0 0 0

0 Jim 0 0

0 Ji0 0 0

0 0 I im 0

0 0 0 Ji0

0 0 0 Jim

D ,

whereI im denotes a (M21)3N0 matrix, and multiplication
such asI imHi j ,x(h) in P2Z1

j of Eq. ~2.12! should be under-
stood as the multiplication of a matrix and a column vect
on which summation over the index ‘‘i ’ ’ is imposed. Others
have similar implications.

P3 is a (4M22)3(4M22) matrix defined by

P35S Q11 Q12 0 Q14 0 Q16

Q21 Q22 0 Q24 0 Q26

0 0 Q33 0 Q35 0

0 Q42 0 0 0 Q46

0 0 0 0 Q55 0

0 Q62 0 0 0 Q66

D ,

where each block matrixQi j is diagonal. The diagonal ele
ments are Q11,mm5(kjy

2 mm
211mm)sin(mmh), Q12,mm

52(kjy
2 mm

211mm)cos(mmh), Q14,mm5 ik jymm
21sm sin(mmh),

Q16,mm52 ik jymm
21sm cos(mmh), Q21,mm

5 ik jymm
21sm sin(mmh), Q22,mm52 ik jymm

21sm cos(mmh),
Q24,mm52(sm

2 mum
211mm)sin(mmh), Q26,mm5(sm

2 mum
21

1mm)cos(mmh), Q33,mm52m0 sin(m0h), Q35,mm

5m0 cos(m0h), Q42,mm52(kjy
2 mm

211mm), Q46,mm

52 ik jymm
21sm , Q55,mm5m0 , Q62,mm52 ik jymm

21sm , and
Q66,mm5sm

2 mm
211mm .

To solve the transmission and reflection spectra, one
first delete the modal variables from Eqs.~2.11! and ~2.12!.
This can be done by first calculating the inverse ofP3 by
means of analytical manipulation, then substitutingZm

j back
into Eq. ~2.11!. We finally obtain the following linear equa
tions satisfied by the plane-wave expansion coefficients:

Z0
j 5PjZ1

j , ~2.13!

where the (4N0)3(4N0) coefficient matrix reads

Pj5S P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

D .

The block matricesPi j ( i , j 51,4) each is of dimensionN0
3N0. They are defined as
16510
r,

an

P11
i i 852~ ik0 /d! (

m51

M21

ctan~mmh!Zm
(21)Jim* I i 8m ,

P12
i i 852~ ik0 /d!m0

21ctan~m0h!Ji0* Ji 80

2~ ik0 /d! (
m51

M21

ctan~mmh!Zm
(22)Jim* Ji 8m ,

P13
i i 85~ ik0 /d! (

m51

M21

csc~mmh!Zm
(21)Jim* I i 8m ,

P14
i i 85~ ik0 /d!m0

21csc~m0h!Ji0* Ji 80

2~ ik0 /d! (
m51

M21

csc~mmh!Zm
(22)Jim* Ji 8m ,

P21
i i 852~ ik0 /d! (

m51

M21

ctan~mmh!Zm
(11)I im* I i 8m ,

P22
i i 852~ ik0 /d! (

m51

M21

ctan~mmh!Zm
(12)I im* Ji 8m ,

P23
i i 85~ ik0 /d! (

m51

M21

csc~mmh!Zm
(11)I im* I i 8m ,

P24
i i 85~ ik0 /d! (

m51

M21

csc~mmh!Zm
(12)I im* Ji 8m ,

where

Zm
(11)5~sm

2 mm
211mm!/k0

2 , Zm
(12)5 ik jymm

21sm /k0
2 ,

Zm
(21)52 ik jymm

21sm /k0
2 , Zm

(22)52~kjy
2 mm

211mm!/k0
2 .

Other matrices are given according to the following symm
try relations

P31
i i 852P13

i i 8 , P32
i i 852P14

i i 8 ,

P33
i i 852P11

i i 8 , P34
i i 852P12

i i 8 ,

P41
i i 852P23

i i 8 , P42
i i 852P24

i i 8 ,

P43
i i 852P21

i i 8 , P44
i i 852P22

i i 8 .

Now inserting into Eq.~2.13! the definition ofZ0
j andZ1

j

with respect to Ei j ,x(h), Ei j ,y(h), Ui j ,x(0), Ui j ,y(0),
Hi j ,x(h), Hi j ,y(h), Vi j ,x(0), andVi j ,y(0), andusing the re-
lation betweenEi j andHi j , Ui j , andVi j , we get

S c j
1

x j
1 D 5S P11

j T0
j P12

j T0
j

P21
j T0

j P22
j T0

j D S c j
2

x j
2 D , ~2.14!

wherec j
1 , x j

1 , c j
2 , andx j

2 are 2N0-dimensioned column
vectors defined by
4-5
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c j
15~ . . . ,E0 j ,x

1 ,E0 j ,y
1 , . . . ,Ei j ,x

1 ,Ei j ,y
1 , . . . !T

1~ . . . ,E0 j ,x
2 ,E0 j ,y

2 , . . . ,Ei j ,x
2 ,Ei j ,y

2 , . . . !T,

c j
25~ . . . ,E0 j ,x

1 ,E0 j ,y
1 , . . . ,Ei j ,x

1 ,Ei j ,y
1 , . . . !T

2~ . . . ,E0 j ,x
2 ,E0 j ,y

2 , . . . ,Ei j ,x
2 ,Ei j ,y

2 , . . . !T,

x j
15~ . . . ,U0 j ,x

1 ,U0 j ,y
1 , . . . ,Ui j ,x

1 ,Ui j ,y
1 , . . . !T

1~ . . . ,U0 j ,x
2 ,U0 j ,y

2 , . . . ,Ui j ,x
2 ,Ui j ,y

2 , . . . !T,

x j
25~ . . . ,U0 j ,x

1 ,U01j ,y
1 , . . . ,Ui j ,x

1 ,Ui j ,y
1 , . . . !T

2~ . . . ,U0 j ,x
2 ,U0 j ,y

2 , . . . ,Ui j ,x
2 ,Ui j ,y

2 , . . . !T.

The index i ranges inside 2N< i<N. T0
j is a

(2N032N0)-dimensioned block-diagonal matrix consistin
of $T0,i j ,i 52N,N% at its diagonal positions

T0
j 5S T0,2N j ••• 0 ••• 0

••• ••• ••• ••• •••

••• 0 T0,0j 0 •••

••• ••• ••• ••• •••

0 ••• 0 ••• T0,N j

D .

For a one-layer 1D grating slab, we recognize thatc j
15E0

j

1Er
j , c j

25E0
j 2Er

j , x j
15x j

25Et
j , whereE0

j , Er
j , andEt

j

are column vectors consisting of the coefficients for the
cident, reflected, and transmitted waves. Since in the u
diffraction problem only zero-order wave is incident on t
grating, we can setE0

j 5(0,0, . . . ,0,0,E0x ,E0y ,0,0, . . . ,
0,0), whereE0x and E0y are the amplitudes of the inciden
electric field components. From Eq.~2.14! we find thatEr

j

andEt
j satisfy

S I 1P11
j T0

j 2P12
j T0

j

P21
j T0

j I 2P22
j T0

j D S Er
j

Et
j D

5S P11
j T0

j 2I P12
j T0

j

P21
j T0

j P22
j T0

j 2I
D S E0

j

0
D 5S ~P11

j T0
j 2I !E0

j

P21
j T0

j E0
j D ,

~2.15!

where I is a unit matrix. The simultaneous linear equatio
Eq. ~2.15! can be solved via the standard Gaussian elimi
tion method. Numerical experiences indicate that the num
cal convergence for the off-plane scattering problem is
fast as for the in-plane incidence situation, where usage o
plane waves and 11 modes has already led to converge
sult of transmission and reflection spectra for both the
and TM polarization modes. This verifies the power
strength of this analytical modal method.

III. METALLIC LAYER-BY-LAYER PHOTONIC CRYSTAL
GRATINGS IN MICROWAVE REGIMES

Now that we have developed a powerful tool which e
ables us to solve accurately and efficiently EM waves s
tering by a 1D perfect-conducting grating under general
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cidence conditions, we can proceed to consider a m
complex 2D layer-by-layer perfect-conducting photon
crystal grating, each layer of which is a 1D lamellar gratin
A metallic grating working in the microwave regime can b
assumed as a perfect-conducting grating. In this 2D str
ture, the EM fields should be projected onto the 2D pla
wave basis, namely, we have nowk5(ki j ,x ,ki j ,y ,b i j ),
where ki j ,x5k0x1 i2p/d, ki j ,y5k0y1 j 2p/d, b i j 52(k0

2

2ki j ,x
2 2ki j ,y

2 )1/2 for k0
22ki j ,x

2 2ki j ,y
2 >0, and b i j 52 i (ki j ,x

2

1ki j ,y
2 2k0

2)1/2 for k0
22ki j ,x

2 2ki j ,y
2 ,0. In principle, the indi-

ces i , j should both run from2` to 1`, but in practice,
truncations must be used and we take2N< i<N and 2N
< j <N whereN is an integer number. LetN052N11, the
total plane wave number is thenN0

2. The EM fields are ex-
panded into

E~r !5(
i , j

Ei j ~z!eiki j ,xx1 iki j ,yy, ~3.1!

H~r !5(
i , j

H i j ~z!eiki j ,xx1 iki j ,yy. ~3.2!

As we have noted in Sec. II, each layer is a 1D grating,
the wave vector parallel to the axis of this 1D grating is ke
constant. This means we can directly utilize the result for
gratings developed in Sec. II. For the layer in which the ro
are along they axis, we rewrite the EM fields into

E~r !5 (
j 52`

` F (
i 52`

`

Ei j ~z!eiki j ,xxeiki j ,yyG , ~3.3!

H~r !5 (
j 52`

` F (
i 52`

`

H i j ~z!eiki j ,xxeiki j ,yyG . ~3.4!

Each term inside the bracket ‘‘@ #’’ has the same form as Eqs
~2.1! and ~2.2!, whose solutions we have known in Sec.
Therefore, we can directly write down the following matr
equation for the tangential components of the EM fields

S V0
1

V1
1D 5S r 11 r 12

r 21 r 22
D S V0

2

V1
2D , ~3.5!

whereV0
1 , V1

1 , V0
2 , and V1

2 are now 2N0
2-dimensioned

column vectors defined by

V0
15~c2N

1 , . . . ,c0
1 , . . . ,cN

1!T,

V0
25~c2N

2 , . . . ,c0
2 , . . . ,cN

2!T,

V1
15~x2N

1 , . . . ,x0
1 , . . . ,xN

1!T,

V1
25~x2N

2 ,•••,x0
2 ,•••,xN

2!T.

r mn(m,n51,2) is each a (2N0
2)3(2N0

2) block-diagonal ma-
trix, which are defined as
4-6
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r mn5S Pmn
2NT0

2N
••• 0 ••• 0

••• ••• ••• ••• •••

••• 0 Pmn
0 T0

0 0 •••

••• ••• ••• ••• •••

0 ••• 0 ••• Pmn
N T0

N

D .

One can recognize that the matricesr mn are the so-calledR
matrix familiar to the grating community.20,28 This is one of
several powerful numerical techniques that can treat the s
tering of EM waves by a grating with arbitrarily large thick
ness in a numerically stable manner.

When we deal with a grating consisting of many layers,
schematically depicted in Fig. 3~a!, we can assume that eac
layer is surrounded by two imaginary infinitely-thin air film
in its both sides, as displayed in Fig. 3~b!. Now there is an
overall R matrix connecting waves in the incident and tran
mission region of the multilayer grating. Furthermore, w
can define aR matrix for each layer, as we have done in t
above for a single-layer lamellar grating. The introduction
these extra air thin films generates no physical contamina
to the scattering problem, because the thickness of all film
set to zero, and because the tangential components of the
fields are continuous at the interface. But these imaginary
films will enable us to treat each grating layer separately
systematical manner. All that leave is to combine all the
single layers into a whole. Great convenience and flexibi
are a natural result brought from such a technique. To ap
ciate the numerical stability for arbitrarily thick gratings, w
use theR-matrix recursion algorithm20,28 to calculate the
overallR matrix connecting the plane waves in the inciden

FIG. 3. ~a! Schematical configuration of a multilayer layer-b
layer photonic crystal grating. An overallR matrix can be defined
connecting the waves in the incident region (V0

6) and the transmis-
sion region (Vn

6) in the transfer-matrix method for this multilaye
grating. ~b! A R matrix can be defined for a single layer of th
layer-by-layer photonic crystal grating.
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and transmission regions. The key point of this technique
as follows. Suppose we have obtained via numerical ca
lations the overallR matrix for the first n layers R(n)

5(R11
(n) ,R12

(n) ,R21
(n) ,R22

(n)), which satisfies

S V0
1

Vn
1D 5S R11

(n) R12
(n)

R21
(n) R22

(n)D S V0
2

Vn
2D , ~3.6!

and theR matrix r (n11) for the (n11)th layer, which satis-
fies

S Vn
1

Vn11
1 D 5S r 11

(n11) r 12
(n11)

r 21
(n11) r 22

(n11)D S Vn
2

Vn11
2 D , ~3.7!

whereV0
1(V0

2) andVn
1(Vn

2) are column vectors for wave
in the upper side of the 1st and (n11)th layer of the grating,
while V1

1(V1
2) and Vn11

1 (Vn11
2 ) are column vectors for

waves in the lower side. We can straightforwardly prove t
the overallR-matrix R(n11) for the totaln11 layers is given
by the following recursion formula

R11
(n11)5R11

(n)1R12
(n)@r 11

(n11)2R22
(n)#21R21

(n) , ~3.8a!

R12
(n11)52R12

(n)@r 11
(n11)2R22

(n)#21r 12
(n11) , ~3.8b!

R21
(n11)5r 21

(n11)@r 11
(n11)2R22

(n)#21R21
(n) , ~3.8c!

R22
(n11)5r 22

(n11)2r 21
(n11)@r 11

(n11)2R22
(n)#21r 12

(n11) .
~3.8d!

Therefore, the procedure to calculate the overallR matrix for
a grating can be summarized as follows: First calculate thR
matrix for the first layerr (1) and setR(1)5r (1). Then calcu-
late theR matrix for the second layerr (2), and use the recur
sion algorithm Eqs.~3.8a!–~3.8d! to calculate the overallR
matrix R(2) for the first two layers. Repeat this procedu
until the final layer of the grating.

With the final overallR matrix at hand, we can solve th
reflection and transmission coefficients by

S E01Er

Et
D 5S R11

(n11) R12
(n11)

R21
(n11) R22

(n11)D S E02Er

Et
D ~3.9!

or finally

S I 1R11
(n11) 2R12

(n11)

R21
(n11) I 2R22

(n11)D S Er

Et
D 5S ~R11

(n11)2I !E0

R21
(n11)E0

D .

~3.10!

Here I is an unit matrix, and

E05~E2N
0 , . . . ,E0

0 , . . . ,Ej
0 , . . . ,EN

0 !T,

Er5~E2N
r , . . . ,E0

r , . . . ,Ej
r , . . . ,EN

r !T,

Et5~E2N
t , . . . ,E0

t , . . . ,Ej
t , . . . ,EN

t !T.

Each componentEj
0 etc. is a column vector, defined by
4-7
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Ej
05~E2N j ,x

0 ,E2N j ,y
0 , . . . ,E0 j ,x

0 ,E0 j ,y
0 , . . . ,Ei j ,x

0 ,

Ei j ,y
0 , . . . ,EN j ,x

0 ,EN j ,y
0 !T,

Ej
r5~E2N j ,x

r ,E2N j ,y
r , . . . ,E0 j ,x

r ,E0 j ,y
r , . . . ,Ei j ,x

r ,

Ei j ,y
r , . . . ,EN j ,x

r ,EN j ,y
r !T,

Ej
t5~E2N j ,x

t ,E2N j ,y
t , . . . ,E0 j ,x

t ,E0 j ,y
t , . . . ,Ei j ,x

t ,

Ei j ,y
t , . . . ,EN j ,x

t ,EN j ,y
t !T,

and so on. Notice2N< i , j <N. Obviously, here we have
selected an index sequence of (j ,i ) to designate the plan
wave components (ki j ,x ,ki j ,y). All numerical manipulations
take this sequence as the universal basis.

Until now we have only derived theR matrix for the first
layer of the photonic crystal grating, in which the rods a
parallel to they axis. Under a proper plane-wave basis, theR
matrix is block diagonal. We can follow the same proced
to calculate theR matrix for the second layer, and othe
layers, but generally they do not appreciate the superior
ture of a block-diagonal matrix. However, the symmetry
the photonic crystal grating suggests that we adopt an ea
way to obtain theR matrix for other layers. We see that th
second layer, with rods parallel to thex axis, is just a 90°
rotation from the first layer. The third layer is translated
d/2 from the first layer along thex axis, and the fourth laye
is translated from the second layer byd/2 along they axis. In
another words, the third and fourth layers as a whole
translated from the first and second layers by (d/2, d/2).
Therefore, under a straightforward transformation of coor
nates, we can derive theR matrix for any layer in a much
simpler way.

Let’s first consider the 90° rotation transformation. T
coordinates is transformed as

y→x8, x→2y8, ~3.11!

wherex,y andx8,y8 are coordinates in the lab~original! and
crystal ~rotated! frames. It also means that both the wa
vectors and the amplitude of the EM field vectors should
transformed in the same way,

~kx ,ky!→~2ky8 ,kx8!, ~Ex ,Ey!→~2Ey8 ,Ex8!. ~3.12!

Supposer 8 andr are theR matrix in the rotated and origina
coordinates, respectively. Let us write down Eq.~3.5! in a
more explicit form for the two tangential components of t
fields Ex andEy :

S V0x8
1~ki , j8 !

V0y8
1~ki , j8 !

V1x8
1~ki , j8 !

V1y8
1~ki , j8 !

D 5S r 811
(11) r 811

(12) r 812
(11) r 812

(12)

r 811
(21) r 811

(22) r 812
(21) r 812

(22)

r 821
(11) r 821

(12) r 822
(11) r 812

(12)

r 821
(21) r 821

(22) r 822
(21) r 812

(22)

D
3S V0x8

2~km,n8 !

V0y8
2~km,n8 !

V1x8
2~km,n8 !

V1y8
2~km,n8 !

D ~3.13!
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S V0x
1 ~ki , j !

V0y
1 ~ki , j !

V1x
1 ~ki , j !

V1y
1 ~ki , j !

D 5S r 11
(11) r 11

(12) r 12
(11) r 12

(12)

r 11
(21) r 11

(22) r 12
(21) r 12

(22)

r 21
(11) r 21

(12) r 22
(11) r 12

(12)

r 21
(21) r 21

(22) r 22
(21) r 12

(22)

D S V0x
2 ~km,n!

V0y
2 ~km,n!

V1x
2 ~km,n!

V1y
2 ~km,n!

D .

~3.14!

Here the subscript ‘ ‘i j ’ ’ ( i , j 51,2) denote four block sub
matrices of theR matrix, while the superscript ‘ ‘i j ’ ’ ( i , j
51,2) are for thex and y components of the electric field
r 811

(11)5r 811
(11)( i , j ;m,n), etc., are matrix elements of theR

matrix in which the indicesi , j ,m,n have been neglected
Transforming Eq.~3.14! into the rotated coordinates, w
have

S 2V0y8
1~k2 j ,i8 !

V0x8
1~k2 j ,i8 !

2V1y
1 ~k2 j ,i8 !

V1x
1 ~k2 j ,i8 !

D 5S r 11
(11) r 11

(12) r 12
(11) r 12

(12)

r 11
(21) r 11

(22) r 12
(21) r 12

(22)

r 21
(11) r 21

(12) r 22
(11) r 12

(12)

r 21
(21) r 21

(22) r 22
(21) r 12

(22)

D
3S 2V0y8

2~k2n,m8 !

V0x8
2~k2n,m8 !

2V1y8
2~k2n,m8 !

V1x8
2~k2n,m8 !

D . ~3.15!

Note that ki , j in Eq. ~3.14! is a compact form of
(ki j ,x ,ki j ,y)5(k0x1 i2p/d,k0y1 j 2p/d). When transformed
into the new coordinate, it becomes (2ki j ,y8 ,ki j ,x8 )5(2k0y8
2 j 2p/d,k0x8 1 i2p/d), which is written into a compact form
of k2 j ,i8 in Eq. ~3.15!. Here the Bloch’s wave vecto
(k0x ,k0y) is also transformed into (2k0y8 ,k0x8 ). Similarly,
ki , j8 in Eq. ~3.13! is a compact form of (ki j ,x8 ,ki j ,y8 )5(2k0y8
1 i2p/d,k0x8 1 j 2p/d). Comparing Eq. ~3.15! with Eq.
~3.13!, we obtain the following transformation of theR ma-
trix under a 90° coordinate rotation:

r 811
(22)~2 j ,i ;2n,m!→r 11

(11)~ i , j ;m,n!,

2r 811
(21)~2 j ,i ;2n,m!→r 11

(12)~ i , j ;m,n!,

2r 811
(12)~2 j ,i ;2n,m!→r 11

(21)~ i , j ;m,n!,

r 811
(11)~2 j ,i ;2n,m!→r 11

(22)~ i , j ;m,n!. ~3.16!

The same transformation rule applies to other block sub
trices r 12, r 21, andr 22.

The transformation of theR matrix under a coordinate
translation is much simpler compared to the transformat
under a coordinate rotation. Under axis translation

x→x82x0 , y→y82y0 , ~3.17!

the field amplitudes~including directions! and Bragg wave
vectors keep unchanged

~kx ,ky!→~kx8 ,ky8!, ~Ex ,Ey!→~Ex8 ,Ey8!. ~3.18!
4-8
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Each plane-wave component of the electric field is tra

formed according toE(ki , j )e
ikix1 ik j→E8(ki , j8 )eiki8x81 ik j8y8

5E8(ki , j8 )eikix1 ik j ye2 iki x02 ik j y0. This leads to

E~ki , j !→E8~ki , j8 !e2 iki x02 ik j y0. ~3.19!

Looking into the definition of theR matrix, we find the fol-
lowing transformation of theR matrix under a coordinate
translation:

r 118 ~ i , j ;m,n!ei (km2ki )x01 i (kn2kj )y0→r 11~ i , j ;m,n!,
~3.20!

and r 12, r 21, andr 22 follow the same transformation rule.
According to the above analysis, we see that if the E

wave is normally incident on the 2D grating, then theR
matrix of the second layer is just a 90° coordinate-rotat
transformation from that for the first layer, which is bloc
diagonal. TheR matrix for the third and fourth layers ar
obtained by performing a coordinate-translation transform
tion over theR matrix for the first and second layer, respe
tively. Therefore, in this normal incident situation, only theR
matrix for the first layer is needed. This greatly releases
numerical efforts. The overallR matrix for the 2D photonic
crystal grating with arbitrary layers can be calculated on
basis of the first layer using theR matrix recursion algorithm
shown in Eq.~3.8!. For arbitrary incidence angles, theR
matrix of the second layer is no longer a simple coordina
rotation transformation from the first layer. Instead, w
should first make a transformation so that in the 90°-rota
coordinate the incident wave vector witnessed by the sec
layer is (k0x8 ,k0y8 )5(2k0y ,k0x). Then we calculate theR
matrix r 8 ~which is block diagonal! in this rotated coordinate
using the same procedure for the first layer. Finally we b
transform this block-diagonal matrix to obtain theR matrix r
in the original coordinate according to Eq.~3.16!. As a com-
parison, it is obvious that the transformation rule unde
coordinate translation keeps the same for any incident an
whether normal or not.

After we have obtained the coefficients for the reflecti
and transmission waves, the transmission and reflection
efficients are calculated by

T5(
i j

Ti j 5(
i j

uEi j
t u2uki j ,zu

uE0u2uk0zu
~3.21!

and

R5(
i j

Ri j 5(
i j

uEi j
r u2uki j ,zu

uE0u2uk0zu
, ~3.22!

where the summation is run over those homogeneous B
waves with a lateral wave vector@k0x1 i (2p/d)#21@k0y

1 j (2p/d)#2<k0
2. Ei j

t and Ei j
r are the amplitudes of the

transmission and reflection Bragg wave in the (i j ) th order,
respectively.
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IV. METALLIC LAYER-BY-LAYER PHOTONIC CRYSTAL
GRATINGS IN MIDINFRARED REGIMES

When a metallic grating is working in the mid-IR regim
the metal is finite conducting but has a very small skin dep
We can still use the analytic modal method to solve the s
tering problem by such a highly-conducting layer-by-lay
grating, however, the solution now becomes much m
complicated.

The key point is to solve the eigenmodes inside each
lamellar grating under arbitrary incident conditions. T
achieve this, we use the following trial function as an eige
mode in a metallic grating consisting of infinitely-long rec
angular rods along they-axis direction,

Ey~r !5eikzz1 ikyy@A1 sin~b1x!1B1 cos~b1x!#, ~4.1!

Ez~r !5eikzz1 ikyy@C1 sin~b1x!1D1 cos~b1x!#, ~4.2!

Ex~r !5eikzz1 ikyy@2~ ikyB11 ikzD1!b1
21 sin~b1x!

1~ ikyA11 ikzB1!b1
21 cos~b1x!#, ~4.3!

ik0Hy~r !5eikzz1 ikyy@kz~kyB11kzD1!b1
21 sin~b1x!

2kz~kyA11kzC1!b1
21 cos~b1x!

2b1C1 cos~b1x!1b1D1 sin~b1x!#, ~4.4!

ik0Hz~r !5eikzz1 ikyy@2ky~kyB11kzD1!b1
21 sin~b1x!

1ky~kyA11kzC1!b1
21 cos~b1x!

1b1A1 cos~b1x!2b1B1 sin~b1x!#,

ik0Hx~r !5eikzz1 ikyy@~ ikyC12 ikzA1!sin~b1x!

1~ ikyD12 ikzB1!cos~b1x!#, ~4.5!

for theE field andH fields in the air domain 0<x,a. Here
kz

21b1
21ky

25e1k0
2 , Im(b1).0, ande151 is the dielectric

constant of the air domain. The EM fields in the metal d
main a<x,d are

Ey~r !5eikzz1 ikyy@A2eib2(x2a)1B2e2 ib2(x2d)#, ~4.6!

Ez~r !5eikzz1 ikyy@C2eib2(x2a)1D2e2 ib2(x2d)#, ~4.7!

Ex~r !5eikzz1 ikyy@2~kyA21kzC2!b2
21eib2(x2a)

1~kyB21kzD2!b2
21e2 ib2(x2d)#, ~4.8!

ik0Hy~r !5eikzz1 ikyy@2 ikykzb2
21A2eib2(x2a)

1 ikykzb2
21B2e2 ib2(x2d)

2~ ikz
2b2

211 ib2!C2eib2(x2a)

1~ ikz
2b2

211 ib2!D2e2 ib2(x2d)#, ~4.9!
4-9
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ik0Hz~r !5eikzz1 ikyy@ ikykzb2
21C2eib2(x2a)

2 ikykzb2
21D2e2 ib2(x2d)

1~ iky
2b2

211 ib2!A2eib2(x2a)

2~ iky
2b2

211 ib2!B2e2 ib2(x2d)#, ~4.10!

ik0Hx~r !5eikzz1 ikyy@~ ikyC22 ikzA2!eib2(x2a)

1~ ikyD22 ikzB2!e2 ib2(x2d)#. ~4.11!

Herekz
21b2

21ky
25e2k0

2 , Im(b2).0, ande2 is the dielectric
constant of the metal domain, which has strong dispersion
writing down the above trial solution, we have noticed th
kz is a tangential wave vector component along the m
wall, and assumed to be invariant across this air-metal in
face in order to match the boundary condition at the int
face.

To determine the amplitudes in the trial solution, boun
ary conditions at metal walls located atx5a and x5d are
used.Ey ,Ez , Hy and Hz are continuous across the met
walls. So we have

A1 sin~b1a!1B1 cos~b1a!5A2 , ~4.12!

C1 sin~b1a!1D1 cos~b1a!5C2 , ~4.13!

p0B15B2 , ~4.14!

p0D15D2 , ~4.15!

for the E-field continuity, wherep05eik0xd is the Bloch’s
phase factor. In deriving Eqs.~4.14! and ~4.15!, we have
used Bloch’s theorem to relate fields atx50 andx5d. In
addition, we have neglected terms with a factoreib2(d2a),
which is a small number due to the far larger metal dom
width compared to the skin depth of metal in the midinfrar
wavelength regime. The continuity of theH field leads to

2kykzb1
21 cos~b1a!A11kykzb1

21 sin~b1a!B1

2~kz
2b1

211b1!cos~b1a!C11~kz
2b1

211b1!sin~b1a!D1

52 ikykzb2
21A22~kz

2b2
211b2!C2 , ~4.16!

kykzb1
21 cos~b1a!C12kykzb1

21 sin~b1a!D1

1~ky
2b1

211b1!cos~b1a!A12~ky
2b1

211b1!sin~b1a!B1

5 ikykzb2
21B21~ky

2b2
211b2!D2 , ~4.17!
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p0@2kykzb1
21A12~kz

2b1
211b1!C1#

5 ikykzb2
21B21~kz

2b2
211b2!D2 , ~4.18!

p0@kykzb1
21C12~ky

2b1
211b1!A1#

52 ikykzb2
21D22~ky

2b2
211b2!B2 . ~4.19!

Defining 232 matrices

T15F 2kykzb1
21 2~kz

2b1
211b1!

ky
2b1

211b1 kykzb1
21 G ~4.20!

and

T25F 2 ikykzb2
21 2 i ~kz

2b2
211b2!

i ~ky
2b2

211b2! ikykzb2
21 G , ~4.21!

we can derive from Eqs.~4.12!–~4.19! the following equa-
tions:

S A2

C2
D 5T2

21T1S A1

C1
D cos~b1a!2T2

21T1S B1

D1
D sin~b1a!,

~4.22!

S A2

C2
D 5S A1

C1
D sin~b1a!1S B1

D1
D cos~b1a!, ~4.23!

S B1

D1
D 52T2

21T1S A1

C1
D . ~4.24!

DesignatingT5T2
21T1, and deletingB1 and D1 from Eqs.

~4.22!–~4.24!, we finally have

~ I 2T2!S A1

C1
D sin~b1a!52TS A1

C1
D cos~b1a!, ~4.25!

tg~b1a!S A1

C1
D 52~ I 2T2!21TS A1

C1
D . ~4.26!

Equation~4.26! is recognized to be a standard eigenequat
for the matrixQ52(I 2T2)21T, with tg(b1a) being the ei-
genvalue. It will be shown that this eigenequation can
analytically solved. NoticeQ andT has the same eigenvec
tor, it suffices to work onT, whose explicit form is
T5T2
21T15

2 i

e2k0
2 Fkz

2b2
21b11ky

2b2b1
211b1b2 kykz~b1

21b22b2
21b1!

kykz~b1
21b22b2

21b1! ky
2b2

21b11kz
2b2b1

211b1b2
G . ~4.27!
4-10
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After some algebraic manipulations, we find that t
eigenequation

TS A1

C1
D 5xS A1

C1
D ~4.28!

has eigenvalues ofx52 i e1b2 /e2b1 andx52 ib1 /b2, cor-
responding to eigenvectors (A1 ,C1)5(1,2ky /kz) and
(A1 ,C1)5(ky /kz ,1), respectively. From this, the eigenva
ues of Eq.~4.26! are directly calculated as

tg~b1a!5
22ib1b2

b1
21b2

2
~4.29!

and

tg~b1a!5
22i e1e2b1b2

e2
2b1

21e1
2b2

2
. ~4.30!

The corresponding eigenvectors are still (A1
1 ,C1

1)5(1,
2ky /kz) and (A1

2 ,C1
2)5(ky /kz ,1), respectively. We have

designated these two modes as mode 1 and mode 2. E
tions ~4.29! and ~4.30! are both complex transcendent equ
tions with an infinite number of roots in the complex plan
which need to be numerically solved by searching the wh
complex plane. To avoid this numerical difficulty, we sta
from solutions for a perfect-conducting metal wall. We ke
in mind that with a large number ofe2 in the midinfrared
regime, the eigenmodes within the grating should not de
far away from those within the corresponding perfe
conducting structure, which we have known in the abo
sections. Therefore, we can use simple iteration technique
find the accurate solutions ofb1 in Eqs. ~4.29! and ~4.30!.
For higher modesm>1, we set the initial value ofb1 to be
b1

(0)5sm , then the following iteration algorithm is followed

tg@b1
(n11)a#5

22ib1
(n)b2

(n)

@b1
(n)#21@b2

(n)#2
, ~4.31!

tg@b1
(n11)a#5

22i e1e2b1
(n)b2

(n)

e2
2@b1

(n)#21e1
2@b2

(n)#2
, ~4.32!

where n50,1,2, . . . , @b2
(n)#25(e22e1)k0

21@b1
(n)#2. In

practice, several iteration loops are enough to bring us
convergent solution ofb1 with considerable accuracy. Ever
solution corresponds to a fixed pointb1

(n11)5b1
(n) , and good

convergence is due to the correct guess of initial value fr
physical consideration.

The iteration technique can not be applied to the low
mode by starting fromb1

(0)5s050. It is easy to find that
b150 is a solution of both Eqs.~4.29! and~4.30!. However,
it can be shown that this solution is unphysical unlesse2 is
infinite. Since Eq.~4.28! has only solution ofb150, it is
excluded. Noticing thatb1 is a small number, we find from
Eq. ~4.30! as an approximation the following formula:
16510
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le
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b1a5
22i e1e2b1b2

e2
2b1

21e1
2b2

2
, ~4.33!

whose nonzero solution is b15$2@ae1
2(b2

(0))2

12ib2
(0)e1e2#/@ae2

2#%1/2, whereb2
(0)5(e22e1)1/2k0. To im-

prove the accuracy of solution, we can do search in a sm
region on the complex plane aroundb15$2@ae1

2(b2
(0))2

12ib2
(0)e1e2#/@ae2

2#%1/2.
What happens ife2 is infinite? Obviously, for the lowes

mode,b1→0. For higher modes, we have double-degener
solutions as tg(b1a)50, which yieldsbm5mp/a5sm ,m
>1. The eigenvectors are the same as in the fin
conducting situations (A1

1 ,C1
1) and (A1

2 ,C1
2). However, the

amplitudes in the metal domainA2 ,B2 ,C2 ,D2 are all zero,
due to the infinitely largeT2 matrix. Since these two mode
are double degenerate, we can reorganize the eigenve
such that (A1 ,C1)5(1,0) and (A1 ,C1)5(0,1). This we see
has returned to the solution for a perfect-conducting grati
For the lowest mode whereb150, the eigenvector is still
(A1

2 ,C1
2). However, from Eq.~4.3! Ex has infinite large am-

plitude. So, if we set the amplitude ofEx to unity, the am-
plitude of Ey (A1) and Ez (C1) are both zero in effect.
Therefore, in this case, we also return to the solution
eigenmode in a perfect-conducting grating.

Now we can write down the EM fields inside the gratin
region using eigenmode expansions. The tangential fi
components are

Ex~r !5(
m

@Ameikz,m1
1 zXm1

1 ~x!1Bmeikz,m1
2 zXm1

2 ~x!

1Cmeikz,m2
1 zXm2

1 ~x!1Dmeikz,m2
2 zXm2

2 ~x!#eikyy,

~4.34!

Ey~r !5(
m

@Ameikz,m1
1 zYm1

1 ~x!1Bmeikz,m1
2 zYm1

2 ~x!

1Cmeikz,m2
1 zYm2

1 ~x!1Dmeikz,m2
2 zYm2

2 ~x!#eikyy,

~4.35!

Hx~r !5(
m

@Ameikz,m1
1 zUm1

1 ~x!1Bmeikz,m1
2 zUm1

2 ~x!

1Cmeikz,m2
1 zUm2

1 ~x!1Dmeikz,m2
2 zUm2

2 ~x!#eikyy,

~4.36!

Hy~r !5(
m

@Ameikz,m1
1 zVm1

1 ~x!1Bmeikz,m1
2 zVm1

2 ~x!

1Cmeikz,m2
1 zVm2

1 ~x!1Dmeikz,m2
2 zVm2

2 ~x!#eikyy.

~4.37!

Here Xm1
1 (x) is the modal function of theE-field x compo-

nent connected to mode 1 under the upwardskz wave vector
kz,m1

1 , see the definition in the square brackets in Eqs.~4.3!
and ~4.8!. Others are similarly defined.Am ,Bm ,Cm ,Dm are
4-11
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modal coefficients. For the lowest modem50, since only
mode 2 is present,Am andBm vanish.

To solve the scattering of a plane EM wave by the
metallic lamellar grating, we use the boundary conditions
the two interfaces ofz5h andz50. We also use the metho
of moment similar to that employed in the case of a perfe
conducting grating. We project theE field onto the plane
wave basis and obtain

C0eikz,02
1 hI i ,0

(3)1D0eikz,02
2 hI i ,0

(4)1 (
m>1

@Ameikz,m1
1 hI i ,m

(1)

1Bmeikz,m1
2 hI i ,m

(2)1Cmeikz,m2
1 hI i ,m

(3)1Dmeikz,m2
2 hI i ,m

(4)#

5dExi~h!, ~4.38!

C0eikz,02
1 hJi ,0

(3)1D0eikz,02
2 hJi ,0

(4)1 (
m>1

@Ameikz,m1
1 hJi ,m

(1)

1Bmeikz,m1
2 hJi ,m

(2)1Cmeikz,m2
1 hJi ,m

(3)1Dmeikz,m2
2 hJi ,m

(4)#

5dEyi~h!, ~4.39!

C0I i ,0
(3)1D0I i ,0

(4)1 (
m>1

@AmI i ,m
(1)1BmI i ,m

(2)1CmI i ,m
(3)1DmI i ,m

(4)#

5dExi~0!, ~4.40!

C0Ji ,0
(3)1D0Ji ,0

(4)1 (
m>1

@AmJi ,m
(1)1BmJi ,m

(2)1CmJi ,m
(3)1DmJi ,m

(4)#

5dEyi~0!. ~4.41!

Here the moment between a plane wave function an
modal function is defined as

I i ,m
(1)5E

0

d

e2 ikxixXm1
1 ~x!dx, I i ,m

(2)5E
0

d

e2 ikxixXm1
2 ~x!dx,

I i ,m
(3)5E

0

d

e2 ikxixXm2
1 ~x!dx, I i ,m

(4)5E
0

d

e2 ikxixXm2
2 ~x!dx.

Ji ,m
(k) , Mi ,m

(k) , andNi ,m
(k) (k51,2,3,4) are obtained by replacin

X(x) by Y(x), U(x), and V(x) in the integration, respec
tively.

The boundary condition for the H-field is matched by pr
jecting theHx field onto the modal functions of mode 1
while projecting theHy field onto the modal functions o
mode 2. This results in

C0eikz,02
1 hSm,0

(3) 1D0eikz,02
2 hSm,0

(4) 1 (
m8>1

@Am8e
ik

z,m81
1

hSm,m8
(1)

1Bm8e
ik

z,m81
2

hSm,m8
(2)

1Cm8e
ik

z,m82
1

hSm,m8
(3)

1Dm8e
ik

z,m82
2

hSm,m8
(4)

#5(
i

Hxi~h!M 2 i ,m
(1) , ~4.42!

m51,2, . . . ,
16510
t
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-

C0eikz,02
1 hTm,0

(3) 1D0eikz,02
2 hTm,0

(4) 1 (
m8>1

@Am8e
ik

z,m81
1

hTm,m8
(1)

1Bm8e
ik

z,m81
2

hTm,m8
(2)

1Cm8e
ik

z,m82
1

hTm,m8
(3)

1Dm8e
ik

z,m82
2

hTm,m8
(4)

#5(
i

Hyi~h!N2 i ,m
(3) , ~4.43!

m50,1,2, . . . ,

C0Sm,0
(3) 1D0Sm,0

(4) 1 (
m8>1

@Am8Sm,m8
(1)

1Bm8Sm,m8
(2)

1Cm8Sm,m8
(3)

1Dm8Sm,m8
(4)

#5(
i

Hxi~0!M 2 i ,m
(1) , ~4.44!

m51,2, . . . ,

C0Tm,0
(3) 1D0Tm,0

(4) 1 (
m8>1

@Am8Tm,m8
(1)

1Bm8Tm,m8
(2)

1CmTm,m8
(3)

1Dm8Tm,m8
(4)

#5(
i

Hyi~0!N2 i ,m
(3) , ~4.45!

m50,1,2, . . . . Themoment between two modal functions
defined as

Sm,m8
(1)

5E
0

d

Um1
1 ~x!Um81

1
~x!dx,

Sm,m8
(2)

5E
0

d

Um1
1 ~x!Um81

2
~x!dx,

Sm,m8
(3)

5E
0

d

Um1
1 ~x!Um82

1
~x!dx,

Sm,m8
(4)

5E
0

d

Um1
1 ~x!Um82

2
~x!dx,

Tm,m8
(1)

5E
0

d

Vm2
1 ~x!Vm81

1
~x!dx,

Tm,m8
(2)

5E
0

d

Vm2
1 ~x!Vm81

2
~x!dx,

Tm,m8
(3)

5E
0

d

Vm2
1 ~x!Vm82

1
~x!dx,

Tm,m8
(4)

5E
0

d

Vm2
1 ~x!Vm82

2
~x!dx.

From Eqs.~4.38!–~4.45! we can delete the unknown var
ables for the modal amplitude, and obtain the following m
trix equation that connect theE andH fields in both sides of
the grating
4-12
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S Exi~h!

Eyi~h!

Exi~0!

Eyi~0!

D 5S P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

D S Hxi~h!

Hyi~h!

Hxi~0!

Hyi~0!

D ,

~4.46!

whereExi(h), etc., implies a column vector with the inde
‘‘ i ’ ’ ranging between2N< i<N. This directly leads to the
R-matrix formula for the scattering of a singleky5ky j com-
ponent of plane wave by one single layer of the 2D layer-
layer metallic grating

S V0,j
1

V1,j
1 D 5S r 11

( j ) r 12
( j )

r 21
( j ) r 22

( j )D S V0,j
2

V1,j
2 D . ~4.47!

For the whole 2D scattering problem, we directly write dow

S V0
1

V1
1D 5S r 11 r 12

r 21 r 22
D S V0

2

V1
2D , ~4.48!

where V0,j
1 , V0

1 , etc., have the same definition as in t
perfect-conducting case@see Eqs.~3.5! and~2.14!#. Now that
we have already derived theR matrix for a single layer of the
2D grating, we can use theR-matrix technique of the
transfer-matrix method to solve the scattering problem b
multilayer highly conducting 2D metallic grating slab. Th
can yield the transmission, reflection, and absorption spe
under an arbitrary plane EM wave incidence. The transm
tanceT and reflectanceR are calculated by means of Eq
~3.21! and~3.22!. The absorptance is calculated according
A512T2R.

In our above solution for a highly conducting grating, w
have omitted terms with a factoreib2(d2a), assuming a smal
skin depth. To maintain better accuracy, one can include
factor. After some tedious algebra@the detail not shown here
but close to the procedure from Eq.~4.12! to Eq.~4.28!#, we
find that the eigenvalueb1 satisfies the following complex
transcendent equations

cos~b1a!cos@b2~d2a!#2cos~k0xd!

2
1

2
sin~b1a!sin@b2~d2a!#S b2

b1
1

b1

b2
D50, ~4.49!

cos~b1a!cos@b2~d2a!#2cos~k0xd!

2
1

2
sin~b1a!sin@b2~d2a!#S e2b1

e1b2
1

e1b2

e2b1
D50, ~4.50!

for modes 1 and 2, respectively. The corresponding eig
vectors are still (A1

1 ,C1
1)5(1,2ky /kz) and (A1

2 ,C1
2)

5(ky /kz,1). It should be noted that different approach
have been used in earlier literatures29,30 to solve the scatter
ing problem for a general lamellar grating under conical
cidence, leading to the same result of Eqs.~4.49! and~4.50!.
In Ref. 29, the mathematical problem such as the compl
ness and orthogonality of the eigenmodes has been addre
in great detail. According to Ref. 29, the eigenmodes of E
~4.29! and ~4.30!, or Eqs.~4.49! and ~4.50! will comprise a
16510
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complete set of basis for EM fields in our conical scatter
problem. It can be found from Eqs.~4.29!, ~4.30!, ~4.49!, and
~4.50! that the eigenvaluesb1 and b2 have no dependenc
on the off-plane wave vectorky . Therefore, the virtual
eigenproblem is same for both the in-plane incidence
off-plane conical incidence, a beautiful characteristic fo
1D grating that has been strongly emphasized on in Ref.
When ky50, (A1

1 ,C1
1)5(1,0), (A1

2 ,C1
2)5(0,1), modes 1

and 2 are exactly the TE and TM modes, respectively. The
fore, Eqs.~4.29! and ~4.49! are eigenequation for the TE
mode, while Eqs.~4.30! and ~4.50! are for the TM mode.

Equations~4.49! and~4.50! are applicable to any value o
e2 in the lamellar grating, either dielectric or metallic. For
highly conducting metallic grating working in the mid-IR
regime, Eqs.~4.49! and~4.50! will reduce to Eqs.~4.29! and
~4.30!, for which fast convergent iteration technique is ava
able in Eqs.~4.31! and ~4.32!. However, for more genera
metallic gratings, such as those working in the optical wa
lengths, where the skin depth of metal is not too small, o
must turn to Eqs.~4.49! and~4.50! for solution. The iteration
technique fails completely, other accurate and efficient
much more complicated numerical tools such as the one
veloped in Ref. 31 can be used to find the eigenvalues.
the other hand, since the dielectric constant for a metal in
optical wavelengths is only modest~in order from 1 to 100!,
one can use other more flexible numerical schemes suc
the Fourier-space coupled-wave method and the real-s
transfer-matrix method to solve the scattering problem. T
latter two methods seem to be more suitable and efficient
this task.21,22,32

V. RESULTS AND DISCUSSIONS

To demonstrate the effectiveness and efficiency of the
veloped method, we take into account two experiments
the layer-by-layer metallic photonic crystal as examples. T
first example we consider is the experiment reported in R
8, where two different structures of layer-by-layer aluminu
photonic crystals working in the microwave regime are e
amined. In one structure, the rectangular aluminum rods
stacked into a fct lattice; in another structure, the rods
stacked into a simple tetragonal~st! lattice, which is similar
to the fct lattice, except that rods in the third and four
layers do not have ad/2 shift relative to those in the first an
second layers. The measured transmission spectra unde
mal incidence are shown in Fig. 4~a! ~reproduced from Ref.
8! for six-layer samples with a rod-to-rod spacing, rod wid
and thickness of 7.6, 0.8, and 2.5 mm, respectively. A w
stop band gap and 7–8 dB per layer attenuation are foun
both lattices. In addition, there is a significant relative sh
of the band gap edge between the fct~22 GHz! and st~20
GHz! lattices. We have performed numerical simulations
these two structures, assuming aluminum a perfect cond
tor. Good convergence has been reached using only 81 p
waves and 81 modes, and the results are displayed in
4~b!. Excellent agreement with the experimental data can
found: Not only the band edge position and relative shift, b
also the attenuation ratio are correctly reproduced. Th
GHz relative shift suggests that the global lattice struct
4-13
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 67, 165104 ~2003!
~the PBG effect! plays an important role in the formation o
this lowest stop band gap.

We now turn to the mid-IR metallic photonic cryst
structure10 made of four-layer rectangular tungsten rods
rayed in a fct lattice. The crystal has a rod-to-rod spaci
rod width and thickness of 4.2, 1.2, and 1.5mm, respec-
tively. The measured transmission, reflection, and absorp
spectra are shown in Fig. 5~a! for an unpolarized plane wav
incident along the~001! direction of the crystal. A high re-
flection and low transmission range appears abovel
;6 mm, which is recognized to be the stop band gap. Be
this wavelength, the reflectance exhibits oscillations, an
distinct high-transmission band stands out with two pe
located at about 5.5 and 4.5mm. Surprisingly, a sharp ab
sorption peak~up to 20.5%! is observed at about 5.7mm,
near the photonic band edge, where the absorption by a
tungsten~say, a homogeneous tungsten slab! should be neg-
ligible ~the reflection coefficient for tungsten at 6mm is
about 98%!.

To understand these interesting features, we have d
simulations using the analytical modal method for this hig
conducting photonic crystal grating structure. The expe
mental data of the dielectric function of tungsten have b
used in the calculations. Atl56 mm, tungsten has
e527481205i , the corresponding skin depth is about
nm, two orders of magnitude smaller than the incident wa
length. Good convergence has been achieved also using
81 plane waves and 81 modes. The results are displaye
Fig. 5~b!, where an average over two polarizations of t

FIG. 4. Transmission spectra for six-layer microwave layer-
layer aluminum photonic crystals stacked in fct and st lattices.~a!
Experimental results,~b! theoretical results. The two crystals ea
has a rod-to-rod spacing of 7.6 mm, a rod width and thicknes
0.8 and 2.5 mm, respectively.
16510
-
,

n

a
s

lk

ne

i-
n

-
nly
in

incident plane wave is taken. A stop band gap extends fr
about 6mm to zero frequency. Above that band gap ed
two high transmission bands are observed correspondin
the pass bands of the metallic photonic crystal. The t
transmission peaks are located at 4.6 and 5.6mm, excellently
agreeing with the experimental data. Two high reflecti
bands peaked at around 5 and 3mm accord well with the
oscillation pattern in the experimental reflection spectru
More impressively, there is indeed a strong absorption p
~with a value 18%! located at 5.7mm, the same as the ex
periment. Present in both experiment and theory, this abs
tion peak should be an intrinsic characteristic of the lay
by-layer metallic photonic crystal structure. As the me
itself shows negligible absorption at 5.7mm, we ascribe this
absorption enhancement to the slow down of wave propa
tion near the photonic band gap and the high transmissio
wave at this wavelength. Both mechanisms increase the
of wave through the whole metallic structure, and thus
hance the absorption. Indeed, the absorption peak is clos
the band edge and the 5.6mm transmission peak. The othe
two lower absorption peaks centered at 4.6 and 3.3mm in the
theoretical curve can also be explained by these two me
nisms. Despite the good agreement between experiment
theory regarding the transmission, reflection, and absorp
peak positions, there is a quantitative difference in the ab
lute value. For example, the maximum experimental tra
mittance and reflectance are much lower than the theore
values. This quantitative inconsistence can be attributed

-

of

FIG. 5. Transmission, reflection, and absorption spectra fo
four-layer mid-IR layer-by-layer tungsten photonic crystal und
normal incidence of an unpolarized plane wave.~a! Experimental
results,~b! theoretical results. The crystal is stacked by rectangu
tungsten rods with a rod-to-rod spacing of 4.2mm, a rod width and
thickness of 1.2 and 1.5mm, respectively.
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the fact that in our calculations, no scattering effects due
disorders and surface roughness of metal rods are con
ered. Scattering will reduce the transmission and reflect
and increase the absorption. Such a scattering is appare
the experimental data: The sum of transmittance, reflecta
and absorbance is well below unity.

VI. SUMMARY AND CONCLUSION

In summary, we have developed an analytic modal exp
sion method in combination with a transfer-matrix techniq
to examine the reflection, transmission, and absorption s
tra of 3D layer-by-layer metallic photonic crystal gratin
working in the microwave and infrared wavelengths. In a
dition, the structural symmetry between different layers
the crystal is fully exploited to connect the transfer mat
for different layers. This has significantly reduced the co
s

s

lis

.

.

,

.

.
,

nc

16510
to
id-
n,
t in
e,

n-
e
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putation effort on the wave scattering problem. With the a
of this developed electromagnetic approach, fast con
gence of numerical result has been obtained and exce
agreement of theoretical results with experimental meas
ments has been achieved from the microwave to the infra
wavelength regimes. This indicates that the developed e
tromagnetic method is effective and efficient in handli
wave propagation problem for the important class of 3D p
tonic crystals: layer-by-layer metallic photonic crystals.
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