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Phonons in a nanoparticle mechanically coupled to a substrate

Kelly R. Patton and Michael R. Geller
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451
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The discrete nature of the vibrational modes of an isolated nanometer-scale solid dramatically modifies its
low-energy electron and phonon dynamics from that of a bulk crystal. However, nanocrystals are usually
coupled—even if only weakly so—to an environment consisting of other nanocrystals, a support matrix, or a
solid substrate, and this environmental interaction will modify the vibrational properties at low frequencies. In
this paper we investigate the modification of the vibrational modes of a spherical insulating nanoparticle caused
by a weak mechanical coupling to a semi-infinite substrate. The phonons of the bulk substrate act as a bath of
harmonic oscillators, and the coupling to this reservoir shifts and broadens the nanoparticle’s modes. The
vibrational density of states in the nanoparticle is obtained by solving the Dyson equation for the phonon
propagator, and we show that environmental interaction is especially important at low frequencies. As a probe
of the modified phonon spectrum, we consider nonradiative energy relaxation of a localized electronic impurity
state in the nanoparticle, for which good agreement with a recent experiment is found.

DOI: 10.1103/PhysRevB.67.155418 PACS number~s!: 63.22.1m, 78.67.Bf
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I. INTRODUCTION

There is currently great interest in properties
nanometer-scale mechanical systems, such as cantile
nanoparticles, and resonators.1 Because of the extremel
small size and volume-to-surface ratio of these systems
teractions with their surroundings can dramatically alter th
properties. In particular, it is well known that the vibration
spectrum of an isolated nanometer-scale crystal, being
crete, is qualitatively different than that of the same bu
solid, leading to important changes in any property dep
dent on the phonon density of states~DOS!. The differences
between the vibrational DOS in a nanoparticle and a b
solid are most evident at low frequencies: A spherical na
particle with diameterd and characteristic bulk sound velo
ity v cannot support a mode with frequency less than ab
pv/d. Thus an acoustic energy ‘‘gap’’ in the low-energ
phonon spectrum is present in contrast with that of the b
which has a continuous spectrum down to zero energy. H
ever, mechanical interaction with the environment w
modify the vibrational modes.

In an interesting experiment by Yang and co-workers,2 the
phonon DOS deep inside this gap was measured in insula
Y2O3 nanoparticles. The experiment used nanopartic
whose sizes ranged from 7 to 23 nm in diameter and
performed by measuring the nonradiative lifetimes of an
cited electronic state of a Eu31 dopant. The lowest vibra
tional mode, referred to as the Lamb mode, for a nanop
ticle with the mean size3 of 13 nm has a frequency o
approximately 9 cm21. At 3 cm21 the DOS measured wa
more than 100 times smaller than that of bulk Y2O3 at 3
cm21.

In this paper we propose and investigate a mechanism
could be responsible for the observed broadening of a na
particle’s phonon modes. Several broadening mechani
could be responsible for the observed effect. For exam
anharmonicity leads to broadening and therefore to a l
energy DOS, but anharmonicity is ineffective at low ener
and was found to be too small to account for t
0163-1829/2003/67~15!/155418~10!/$20.00 67 1554
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experiment.4 Another possibility could be adsorbed ‘‘dirt’’ on
the outside of the nanoparticle. This might lower the qua
factor Q of the nanoparticle, regarding it as a resonator,
flecting a broadening of the vibrational modes. A third, a
in our opinion more likely mechanism, follows from the re
alization that these nanoparticles are not isolated, but ins
were prepared in a powered form. Thus each nanopartic
in weak contact with a cluster of other nanoparticles. B
cause the cluster is relatively large, including at least sev
hundred nanoparticles, each nanoparticle is mechanic
coupled to a reservoir that has a continuous vibrational D
at low energy. This interaction broadens the modes and
lows phonons in the nanoparticle to escape and be abso
into the cluster. We will investigate the effect this mechani
environmental interaction has on the nanoparticle’s pho
spectrum.

Because we are only interested in determining the cor
origin of the observed broadening,5 and do not hope to be
able to exactly reproduce the experimental results of Ref
we propose the following simplified model: The cluster
nanoparticles is replaced by a semi-infinite elastic substr
and one nanoparticle is placed in weak mechanical con
with it. The weak contact is imagined to be a few atom
bonds or small neck of elastic material, which we model
a harmonic spring. For simplicity, we take the substrate a
the nanoparticle to be made out of the same isotropic ela
material. Because we are interested in the low-energy
gime, continuum elasticity theory will be used to descri
the dynamics of the nanoparticle and substrate. After de
ing and analyzing our simplified model, in Secs. II–V, w
explain in Sec. VI how the model can be adapted to addr
the experiment of Ref. 2, and good agreement is obtaine

The simple model we study is related to, but differe
than, models used to study energy relaxation by molecu
adsorbed on surfaces.6 However, in surface science the inte
est is usually in the relaxation of rigid translational motio
rotational motion, or simple internal vibrations of adsorbat
In contrast, we investigate the broadening of complex in
nal vibrational modes of much larger objects~which are
©2003 The American Physical Society18-1
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crystalline!. Our work also has much in common with that
Gurevich and Schober,7 where many of the same conside
ations and modeling were used to study the Lamb-mode
cay rate of nanoparticles caused by both anharmonicity
coupling to an enviroment of other nanoparticles.

II. NANOPARTICLE AND SUBSTRATE MODEL

As discussed in the introduction, the model we study
that of a single nanoparticle in weak mechanical contact w
a semi-infinite substrate. Linear elasticity theory will be us
to describe the phonons of this system. We assume the n
particle and substrate to be made of an isotropic nonp
dielectric. Because we take the nanoparticle and substra
be made of the same material, we will use the same den
r and Lame´ coefficientsl andm for both. The Lagrangian
for the entire system is

L5E
V
d3r @ 1

2 r~] tu!22 1
2 luii

2 2mui j
2 #, ~1!

whereu(r ,t) is the displacement field, and

ui j [~] iuj1] jui !/2 ~2!

is the strain tensor.V is the combined volume of the nano
particle, substrate, and connecting material, as shown in
1.

Because the Lagrangian density is local, the integra
volume in Eq.~1! can be split into three independent par
the nanoparticle, the substrate, and the connecting regio
the limit of weak coupling~diameterdc of connecting region
much smaller thand), the surface area on the nanopartic
and substrate over which the actual boundary conditions
fer from stress-free conditions are negligible, and the Ham
tonian can be written as

H5Hnano1Hsub1dH, ~3!

whereHnano is the Hamiltonian for an isolated nanopartic
~with stress-free boundaries!, Hsub is that for an isolated sub
strate, anddH is the interaction between the two. The co
necting region is taken to be a few atomic bonds or sm
neck of material, as shown in Fig. 1, and is discussed fur
below.

Our analysis will require the vibrational normal mod
and spectra of the isolated nanoparticle and semi-infi
substrate, calculated with stress-free boundary conditi
The long-wavelength modes of interest here may be obta
from elasticity theory, to which we now turn.

A. Isolated nanoparticle

Here we derive the normal modes of an isolated ela
sphere. The method we shall use is different than~but
equivalent to! that used in the classic paper by Lamb,8 but is
better suited for our purposes. The equation of motion gi
by Eq. ~1! is

] t
2u2v l

2
“~“•u!1v t

2
“3“3u50, ~4!
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wherev l[A(l12m)/r is the bulk longitudinal sound veloc
ity andv t[Am/r is the transverse velocity. To solve Eq.~4!
the displacement field can be decomposed into longitud
and transverse parts,

u5ul1ut , ~5!

where

“3ul50 ~6!

and

“•ut50. ~7!

With harmonic time dependence, the equation of motion~4!
then separates into two vector Helmholtz equations for
longitudinal and transverse parts,

~¹21p2!ul50, p[v/v l ~8!

and

~¹21q2!ut50, q[v/v t . ~9!

FIG. 1. ~a! Model of nanoparticle, substrate, and connecti
region.d is the diameter of the nanoparticle.~b! Expanded view of
cylindrical connecting region with dimensionsdc and l c . In our
numerical study we assumed510 nm, l c52.5 nm, and dc

50.5 nm.
8-2
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The longitudinal equation~8! can be solved by introducing
scalar potential

ul5“f (p), ~10!

where f (p) is a solution of the scalar Helmholtz equatio
(¹21p2)f (p)50. The transverse equation~9! has two lin-
early independent solutions,ut5M andN, where

M5“f (q)3r ~11!

and

N5
1

q
“3M . ~12!

Here f (q) is a solution of (¹21q2)f (q)50. The prefactor
1/q is included for dimensional convenience. The sca
Helmholtz equations are separable in spherical coordin
and the solutions can be written as

f lm~r ![ j l~kr !Ylm~u,w!, k5p,q ~13!

where

j l~x![Ap

2x
Jl 1 1

2
~x! ~14!

is a spherical Bessel function of the first kind~regular at
origin! and

Ylm~u,w![~21!mA2l 11

4p

~ l 2m!!

~ l 1m!!
Plm~cosu!eimw.

~15!

Here

Plm~x![~12x2!
m
2

]m

]xmPl~x!, ~16!

where thePl(x) are Legendre polynomials.
Now we use thef lm to construct three linearly indepen

dent solutions of Eq.~4!,

L lm[
1

p
“f lm~pr !, ~17!

M lm[“f lm~qr !3r , ~18!

Nlm[
1

q
“3M lm . ~19!

The general solution is a linear combination ofL lm , M lm ,
andNlm ,

u~r !5(
lm

@almL lm1blmM lm1clmNlm#. ~20!

Although they are linearly independent, the vector fie
L lm , M lm , andNlm are not orthogonal in space. Howeve
they can be rewritten in terms of orthogonal vector spher
harmonicsPlm , Blm , andClm , defined as

Plm~V![Ylm~V!er , ~21!
15541
r
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s

l

Blm~V![
1

Al ~ l 11!
S ]uYlm~V!eu1

imYlm~V!

sinu
ewD ,

~22!

Clm~V![
1

Al ~ l 11!
S imYlm~V!

sinu
eu2]uYlm~V!ewD ,

~23!

with the following properties:

E dV X lm* •X l 8m85d l l 8dmm8 ~24!

for XPB,C,P and

E dV X lm* •X l 8m8
8 50 ~25!

for XÞX8. Expressed in terms of orthogonal vector sphe
cal harmonics,L lm , M lm , andNlm are given by

L lm5 j l8~pr !Plm~V!1
Al ~ l 11!

pr
j l~pr !Blm~V!, ~26!

M lm5Al ~ l 11! j l~qr !Clm~V!, ~27!

and

Nlm5
l ~ l 11!

qr
j l~qr !Plm~V!1

Al ~ l 11!

qr

3@ j l~qr !1qr j l8~qr !#Blm~V!, ~28!

where prime denotes differentiation with respect to the ar
ment.

Next we impose stress-free boundary conditions

s i j nj50 ~29!

at the surfacer 5R of the nanoparticle. Heren is an outward
pointing normal vector ands i j is the strain tensor. In an
isotropic elastic continuum,

s i j 5l~“•u!d i j 12mui j . ~30!

In spherical coordinates~29! implies

s rr 5sur5swr50. ~31!

The three conditions~31! require that

l~“•u!12murr 50, ~32!

uur50, ~33!

and

uwr50. ~34!

In terms of the displacement field,

urr 5] rur , ~35!
8-3
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uur5
1
2 S ] ruu2

1

r
uu1

1

r
]uur D , ~36!

uwr5
1
2 S 1

r sinu
]wur1] ruw2

1

r
uwD . ~37!

The boundary-condition equations~31! then become

alm@2lp j l~pR!Ylm12mp j l9~pR!Ylm#

1clm2m l ~ l 11!EYlm50, ~38!

alm2D]uYlm1blmimEYlmcscu1clmF]uYlm50, ~39!

and

alm2imDYlmcscu1blmE]uYlm1clmimFYlmcscu50,
~40!
te

n-

a

T

15541
where

D[
j l8~pR!

R
2

j l~pR!

pR2
, ~41!

E[
j l8~qR!

R
2

j l~qR!

qR2
, ~42!

F[q j l9~qR!1
l ~ l 11!

qR2
j l~qR!2

2 j l~qR!

qR2
. ~43!

Finally, we rewrite Eqs.~38!–~40! in matrix form as
S 2lp j l~pR!Ylm12mp j l9~pR!Ylm 0 2m l ~ l 11!EYlm

2D]uYlm imEYlmcscu F]uYlm

2imDYlmcscu E]uYlm imFYlmcscu
D S alm

blm

clm

D 50. ~44!
nc-
q.
ode
r

-

dial
del.

ce-

he
he-
For a nontrivial solution of Eqs.~38!–~40! to exist, the de-
terminant of the above matrix must vanish. Taking the de
minant and simplifying we obtain

@2lp j l~pR!12mp j l9~pR!#EF24m l ~ l 11!E2D50.
~45!

This implies that either

E5
j l8~qR!

R
2

j l~qR!

qR2
50 ~46!

or

@2lp j l~pR!12mp j l9~pR!#F24m l ~ l 11!ED50.
~47!

If condition ~46! is met, then this imposes certain co
straints onalm ,blm , and clm , which requirealm5clm50.
This can easily be seen in the matrix of Eq.~44! by setting
E50. If Eq. ~47! is met,blm has to be zero.

In conclusion, we have two branches of vibration
modes: The branch in which Eq.~46! is satisfied,

u~r !5blmnM lmn~r !, ~48!

is referred to as thetorsional branch, wheren specifies the
radial quantum number@nth solution of Eq.~46!#. These
modes have no radial component@see Eq.~27!# and arenot
broadened by the mechanism considered in this paper.
other branch is found when Eq.~47! is satisfied,

u~r !5almnL lmn~r !1clmnNlmn~r !, ~49!

which is called thespheroidalbranch.
r-

l

he

We define the Lamb mode to be the vibrational eigenfu
tion associated with the lowest frequency solution of E
~45!. For the cases considered in this paper, the Lamb m
is a fivefold degeneratel 52 torsional mode with angula
frequency

vL5j0

v t

R
, ~50!

where, according to Eq.~46!, j0'2.50 is the smallest posi
tive solution of

j 28~j!2
1

j
j 2~j!50. ~51!

Thus the Lamb frequency is simply

vL'1.593
pv t

d
. ~52!

We emphasize, however, that the Lamb mode has no ra
displacement component and is not broadened in our mo

To quantize the vibrational modes we write the displa
ment field as9

unano~r !5(
J
A \

2rvJ
@aJCJ~r !1aJ

†CJ* ~r !#, ~53!

where

J5@S or T,n,l ,m# ~54!

is a label uniquely specifying a nanoparticle eigenmode. T
first entry S or T specifies whether the mode is in the sp
8-4
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PHONONS IN A NANOPARTICLE MECHANICALLY . . . PHYSICAL REVIEW B67, 155418 ~2003!
roidal or torsional branch, respectively.n is the radial quan-
tum number andl and m are the usual angular-momentu
quantum numbers.a anda† are phonon annihilation and cre
ation operators which satisfy the Bose commutation rela

@aJ ,aJ8
†

#5dJJ8 . ~55!

The CJ are vibrational eigenvectors normalized such tha

E
V
uCJ~r !u2d3r 51, ~56!

whereV is the volume of the nanoparticle. Assuming~with-
out proof! that the modesCJ form a complete set,

(
J

CJ
i* ~r !CJ

j ~r 8!5d i j d~r2r 8!, ~57!

it can easily be shown thatu satisfies the correct equal-tim
canonical commutation relation withp[r] tu, namely

@ui~r !,p j~r 8!#5 i\d i j d~r2r 8!. ~58!

B. Isolated substrate

The vibrational modes for a semi-infinite isotropic elas
substrate, with a free surface at thexy plane and extending to
infinity in the negativez direction, were quantized previousl
by Ezawa.10 Therefore the details will be left out here. Th
displacement field can be written as9

usub~r !5(
I
A \

2rv I
@bI fI~r !1bI

†fI* ~r !#, ~59!

whereb and b† are the annihilation and creation operato
for the substrate phonons. The indexI, like the indexJ for
the nanoparticle, uniquely specifies a phonon mode for
substrate.fI are eigenfunctions of Eq.~4! subject to stress
free boundary conditions at thez50 plane.

In what follows we will need the spectral density of th
isolated substrate, which is defined as

Nsub~r ,v![2
1

p
Im Dsub

zz ~r ,r ,v!, ~60!

whereDsub
i j (r ,r 8,v) is the Fourier transform of the retarde

phonon Green’s function

Dsub
i j ~r ,r 8,t ![2 iu~ t !^@usub

i ~r ,t !,usub
j ~r 8,0!#& ~61!

of the substrate. The spectral density at the free surfac
silicon, regarding it as an isotropic elastic continuum, w
calculated in Appendix B of Ref. 11. There we obtained

Nsub~v!5CSiv, CSi'1.4310246 cm2 s2. ~62!

It turns out that Eq.~62! is quite close to that resulting from
the simpler Debye model for three-dimensional bulk Si.

C. Nanoparticle-substrate interaction

As discussed above, the connection between the nano
ticle and substrate is assumed to be weak, allowing pertu
15541
n

e

of
s

ar-
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tion theory to be applied. The connection consists of a sm
cylindrical neck of elastic material, with diameterdc and
length l c . In addition, we assume thatdc! l c , in which case
the dominant interaction between the nanoparticle and
substrate is mediated by the longitudinal compressi
extension of this cylinder. Thus the interaction between
nanoparticle and substrate is that of a harmonic spring

dH5
1

2
K:@unano

z ~r0!2usub
z ~r0!#2:, ~63!

whereK is an effective spring constant, andunano
z and usub

z

are thez components of the displacement field of the nan
particle and substrate at the point of contactr0. We take the
z direction to be along the upward pointing normal to t
substrate surface. The Hamiltonians we will introduce bel
@see Eq.~75!# for Hnano and Hsub are normal-ordered; it is
therefore necessary to normal orderdH as well. This opera-
tion is denoted by the colons in Eq.~63!. The force constant
K given by

K5
pdc

2

4l c
Y, ~64!

whereY'1.331012 dyn cm-2 is the Young modulus for Si.
Assuming neck dimensions ofl c52.5 nm anddc50.5 nm,
we obtain

K51.03104 erg cm-2. ~65!

Of course, Eq.~65! is just an estimate of the actual intera
tion strength and should not be taken seriously beyond
order-of-magnitude level.

III. GOLDEN-RULE LIFETIMES

The relaxation rate or inverse lifetime of the perturb
eigenmodes of the nanoparticle can be calculated using
mi’s golden rule~setting\51),

tJ
2152p(

f
u^fudHu i&u2d~v i2v f!, ~66!

where the initial and final states are

u i&5aJ
†u0& and uf&5bI

†u0&. ~67!

Using Eqs.~53!, ~59!, and~63!, leads to9

tJ
215

pK2

2r2

uCJ
z~r0!u2

vJ
(

I

u f I
z~r0!u2

vJ
d~vJ2v I !. ~68!

Noting that

(
I

u f I
z~r0!u2d~vJ2v I !52rvNsub~v!, ~69!

we obtain~reinstating factors of\)

tJ
215

pK2

\r

Nsub~vJ!

vJ
uCJ

z~r0!u2. ~70!
8-5
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Using K51.03104 erg cm22 and r52.3 g cm23, which
are appropriate~see above! for our model, the resulting re
laxation rates and quality factors are given in Table I
some low-lying modes. The quality factorQ is defined here
as the lifetimet divided by the periodT,

Q[
t

T
5

\v

2pg
, ~71!

whereg[\t21 is an energy width.
The values of theQ factors we obtain for the low lying

modes are incredibly large, reflecting the fact that the re
voir ~substrate! is extremely ineffective at absorbing energ
at these low frequencies. As we will discuss below in S
VI, the lifetimes ~and Q factors! for the model considered
here cannot be directly compared with the experiment
Ref. 2 without accounting for the difference in sound spe
between a solid Si substrate and a weakly bound nanopar
cluster~as well as some other less important modification!.
There we shall show that the coefficientC in Eq. ~62! should
be enhanced by a factor of about 103 before making such a
comparison, which decreases theQ factors by this same fac
tor. However, theQ factors corrected in this way are sti
huge, and the good agreement with the observed l
frequency DOS~see below! suggests that theQ factors of the
nanoparticles studied experimentally in Ref. 2 are also v
large.

In Ref. 12 we used the golden-rule result~70! to estimate
the phonon DOS at low energies. This is achieved by rep
ing, in accordance with Fermi’s golden rule, each discr
mode in the isolated nanoparticle by a Lorentzian with
width given by Eq.~70!. ~More precisely, this amounts t
approximating the energy-dependent phonon self-energy
each modeJ with its value atv5vJ , a procedure often
called the quasiparticle-pole approximation.! However, this
procedure is unreliable at low energies because the ac
line shapes of the broadened modes are non-Lorentzia
the tails. Nevertheless, we obtained a DOS at 3 cm21 that
was only 20 times smaller than that observed.13

IV. MANY-BODY THEORY OF THE DOS

A. Local DOS

To leading order in the electron-phonon interacti
strength, the electronic population relaxation rate due to p
non emission~for example, as measured in Ref. 2! is given
by Fermi’s golden rule,5 which states that the rate~for a
deformation potential electron-phonon interaction! is propor-

TABLE I. A few representative relaxation rates and quality fa
tors. Only them50 spheroidal modes are broadened by the mec
nism considered in this paper.

(S,l ,m,n) v ~rad s21) t21(s21) Q factor

(S,2,0,1) 3.131012 2.531024 2.231015

(S,1,0,1) 3.431012 1.031028 7.831019

(S,0,0,1) 1.031013 3.631024 4.931015

(S,0,0,2) 1.631013 1.131023 2.531015
15541
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tional to the square of the electron-phonon coupling stren
times the phonon DOS. In a translationally invariant syst
the DOS does not have any position dependence, but
nanoparticle one must distinguish between theglobal DOS
~the DOS relevant for thermodynamics! and the local
eigenfunction-weighted DOS, which is the one that det
mines phonon emission rate. We will call this positio
dependent DOS the local DOS and denote it byg(r ,v). The
precise definition ofg(r ,v) will be given below in Eq.~77!.

From a theoretical point of view, the quantity describin
the local vibrational dynamics in the nanoparticle is the~re-
tarded! phonon Green’s function

DR
i j ~r ,r 8,t ![2 iu~ t !^@ui~r ,t !,uj~r 8,0!#&H , ~72!

where

^•&H[
Tr~e2bH

• !

Tre2bH
, ~73!

with the Hamiltonian given by

H5H01dH. ~74!

HereH0 is the Hamiltonian of the isolated nanoparticle a
substrate,

H05(
J

vJaJ
†aJ1(

I
v IbI

†bI , ~75!

and, as mentioned in Sec. II,dH is a harmonic spring poten
tial given in Eq.~63!.

In this section the phonon Green’s functionD always re-
fers to the nanoparticle, and the label ‘‘nano’’ will be su
pressed. The imaginary part of the Fourier transform
DR

i j (r ,r ,t) defines the nanoparticle’s phonon spectral den

Ni j ~r ,v![2
1

p
Im DR

i j ~r ,r ,v!. ~76!

For an electron system~or any system of particles!, the spec-
tral density in Eq.~76! is precisely the local DOS. Howeve
because the elasticity theory equation of motion~4! is second
order in time, the spectral density and DOS~both local and
global! differ by a factor of 2rv. In addition, the vibrational
spectral density~76! is a tensor, whereas the phonon em
sion rate probes some coupling-constant-weighted sum
tensor elements. Because we are ascribing the observe
duction in phonon emission~in going from bulk to nanopar-
ticle! to a reduction in the local DOS, our results are n
sensitive to the precise way in which a scalar quantity
constructed from the tensor, as long as the same measu
used in both the nanoparticle and bulk. It will be most co
venient to investigate the trace of the local DOS tens
Therefore the quantity we calculate in this paper is

g~r ,v![2rv(
i 51

3

Nii ~r ,v!, ~77!

which we shall refer to as the local DOS.g(r ,v) character-
izes the number of states per unit energy per unit volu

a-
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near positionr . In a bulk material with Debye spectrum, E
~77! reduces at low frequency to

g~r ,v!5
v2

2p2 S 1

v l
3

1
2

v t
3D , ~78!

independent ofr . Equation~78! is the well-known Debye
formula for the vibrational DOS of a three-dimensional bu
crystal.

The local DOSg(r ,v) controls the phonon emission ra
for an impurity atom sitting at positionr . Although the im-
purity locations in a real nanoparticle are assumed to be
dom, dopants near the surface are known to be optic
inactive. Hence most optical experiments~including that of
Ref. 2! do not probe impurities near the nanoparticle’s s
face. Therefore we introduce a particular volume-avera
DOS

ḡ~b,v![

E
r<b

d3rg~r ,v!

4

3
pb3

, ~79!

which characterizes the averageg(r ,v) within a sphere of
radiusb. In the limit b→R, in which case the local DOS i
averaged over the full nanoparticle volume, we obtain
global~or thermodynamic! DOS, which for anisolatednano-
particle would be simply

ḡ~R,v!5
1

V (
J

d~v2vJ!. ~80!

Physically, we expectb to be somewhere betweenR/2 andR.

B. Perturbative calculation of the local DOS

The retarded Green’s function~72! for the nanoparticle
can be obtained by calculating the Euclidean time-orde
~or imaginary time! Green’s function defined by

Di j ~r ,r 8,t!52^Tui~r ,t!uj~r 8,0!&H . ~81!

In the interaction representation,

Di j ~r ,r 8,t!52
^Tui~r ,t!uj~r 8,0!e2*0

bdH(t8)dt8&H0

^e2*0
bdH(t8)dt8&H0

,

~82!

where the expectation values are with respect toH0. By
expanding the exponentials to leading order in the pertu
tion ~63! and Fourier transforming, Eq.~82! can be written as

Di j ~r ,r 8,v!5D0
i j ~r ,r 8,v!1(

kl
E D0

ik~r ,r 9,v!

3Pkl~r 9,r-,v!D0
l j ~r-,r 8,v!d3r 9d3r-,

~83!

where
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D0
i j ~r ,r 8,v!5(

J

CJ
i ~r !CJ

j* ~r 8!

2rvJ
F 1

iv2vJ
2

1

iv1vJ
G
~84!

is the free propagator andP i j is the leading-order phonon
self-energy, given at zero temperature by9

P i j ~r ,r 8,v!5
K2

2r (
I

u f I
z~r0!u2

v I
F 1

iv2v I
2

1

iv1v I
G

3d izd jzd~r2r0!d~r 82r0!. ~85!

The fI(r ) are substrate eigenfunctions discussed in Sec
andr0 is the point at which the nanoparticle is connected
the substrate. The self-energy~85! is correct away from the
centers of the vibrational modes, but ignores smallelastic
scattering contributions that shift the modes without bro
ening them. Retarded quantities are obtained by analytic
continuingiv→v1 i01.

To calculate the local DOS~77! we need to solve the
Dyson equation for the nanoparticle Green’s function, w
ten symbolically as

D5D01D0PD. ~86!

The solution to Eq.~86! can be obtained by introducing ma
trix representations forD, D0, andP, in which case

D5~D0
212P!21. ~87!

The matrix representation we use is defined by

O~J,J8![(
i j

E
V
d3rd3r 8CJ

i* ~r !Oi j ~r ,r 8!CJ8
j

~r 8!,

~88!

whereO5D, D0, or P. In Eq. ~88! the integration is over
the volumeV of the nanoparticle, and theCJ(r ) are the
nanoparticle eigenfunctions. The inverse transformation

Oi j ~r ,r 8!5(
JJ8

CJ
i ~r !O~J,J8!CJ8

j* ~r 8!. ~89!

A nanoparticle with a diameter of 10 nm has approximat
8000 atoms in it. Thus, there are roughly 24000 acou
vibrational modes. By knowing the total number of modes
Debye energy can be defined: The Debye energy is the
ergy at which there are 24000 elasticity-theory modes tha
below in energy. For our nanoparticle, the Debye energy
about 320 cm21. The Debye energy cutoff truncates the H
bert space, which leads to finite-size matrices.14 This enables
every modeJ of the nanoparticle to be included in the ca
culation of the Green’s function~87!.

V. RESULTS

In this section we present our results for the phonon D
in a 10-nm Si nanoparticle, obtained by solving the Dys
equation~86! for the phonon Green’s function, as explaine
above. As we have discussed, the DOSg(r ,v), defined in
Eq. ~77!, is a local quantity that varies with position withi
the nanoparticle, and, as mentioned in the previous sec
8-7
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the quantity we are interested in isḡ(b,v), which isg(r ,v)
averaged over a sphere of radiusb positioned at the center o
the nanoparticle. Because we have found no significant
pendence ofḡ(b,v) on b, for the physically relevant value
of b betweenR/2 andR, we plot simplyḡ(R,v). As stated
above in Sec. IV A,ḡ(R,v) is just theglobal phonon DOS
in the nanoparticle.

For simplicity we assume both the nanoparticle and
substrate to be made of Si; this allows us to use the sur
spectral density~62! calculated in Appendix B of Ref. 11
where Si is treated as an isotropic elastic continuum w
longitudinal and transverse sound velocities

v l58.53105 cm s21,

v t55.93105 cm s21, ~90!

and mass densityr52.3 g cm23. In the final section of this
paper, where we compare our results to the experimen
Ref. 2, we will introduce an important correction to accou
for the differences between a solid Si substrate and a n
particle cluster.

In Fig. 2 the global DOSḡ(R,v) of a 10-nm diameter
nanoparticle is given up to 100 cm21. The ~unbroadened!
Lamb mode has a frequency@see Eq.~52!# of 15.7 cm21, but
is obscured by the nearby (l 52,m50,n51) spheroidal
mode at 16.5 cm21. The modes above 100 cm21 were in-
cluded in the calculation, but the long-wavelength appro
mation of elasticity theory becomes invalid at high ener
Thus only the lower part of the spectrum is shown. Figur
shows the low-energy phonon DOS up to about 23 cm21. An
expanded view of the low-energy DOS is given in Fig.
The phonon DOS at 3 cm21 is approximately 4.531010

states per wave number per cm3.

FIG. 2. The phonon DOS, given in states per wave number
cm3, of a 10-nm Si nanoparticle, weakly coupled to a semi-infin
Si substrate.
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VI. COMPARISON WITH EXPERIMENT

In this section we compare our results to the experim
of Ref. 2, where the one-phonon emission rate~and therefore
the phonon DOS at 3 cm21) in a cluster of Y2O3 nanopar-
ticles was observed to be 8.231023 times that in bulk Y2O3.
In particular, the excited5D1(II) state of Eu31 in the nano-
particles had a phonon-emission lifetime of 27ms, compared
with a bulk value of 221 ns. In order to make a comparis
of our results to that of the experiment, two modifications
our calculation have to be performed.

~i! In our model, the cluster of nanoparticles has be
replaced by a solid substrate. However, the spectral den
~62! of the substrate, which at long wavelengths is det
mined by the sound speeds and mass density of Si, is m
smaller than that of the nanoparticle cluster. Treating
long-wavelength modes of the cluster with elasticity theo
~or, even simpler, approximating the random cluster by
ordered cubic lattice!, shows that the spectral density~62!

er FIG. 3. Vibrational DOS at low energies.

FIG. 4. Expanded view of the low-energy DOS. Note that t
DOS vanishes at zero energy, as expected.
8-8
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should be replaced by~the subscript ‘‘cl’’ referring to cluster!

Ncl~v!5Cclv, ~91!

where15

Ccl5
vSi

3 rSi

vcl
3rcl

CSi . ~92!

Herevcl is a characteristic sound speed in the cluster andrcl

is its mass density. The 1/vcl
3 dependence in Eq.~92! comes

from the well-known velocity dependence of the Deb
DOS, and the 1/rcl factor comes from the definition of spec
tral density@see the discussion following Eq.~76!#. Approxi-
mating the cluster by an ordered cubic array with lattice c
stantd ~the nanoparticle diameter! yields

vcl'AK

M
d ~93!

and

rcl'
p

6
rSi , ~94!

whereK is the effective spring constant connecting the na
particles, given in Eq.~65!, and

M5
4

3
prSiS d

2D 3

~95!

is the mass of one nanoparticle. Usingd513 nm ~the mean
nanoparticle diameter in Ref. 2!, we obtain an enhancemen
factor of

Ccl

CSi
59.83102. ~96!

This factor increases the nanoparticle DOS~at frequencies
below the Lamb mode! by nearly three orders of magnitud
We emphasize that this correction originates from the
creased spectral density of the environment—the nano
ticle cluster—compared with that of a solid substrate.

There are several other marginally important correctio
most of which will be ignored, and one that will be include
for completeness.

~ii ! In the model analyzed above, the nanoparticle w
connected to its surroundings by only a single contact po
whereas a nanoparticle in a cluster most likely has more t
one connection. As the number of contacts increases,
simply scales the DOS~away from the peaks! linearly with
the number of contact points. Conservatively, we expect
the multiple contact points present in the real system w
increase the decay rate of the nanoparticles’ modes,
hence the phonon DOS well below the Lamb mode, b
factor of 2.

The following additional corrections have also been co
sidered and were found not to be significant~and are not
included in our final results!:

~iii ! The actual experiment of Ref. 2 was done on an
semble of nanoparticles with mean diameter3 13 nm and
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standard deviation of 5 nm. To understand the effects of
size distribution, we have calculated the DOS at 3 cm21

averaged over a Gaussian distribution of diameters cent
at 10 nm. Even for very wide distributions~standard devia-
tions up to 8 nm!, the ensemble averaged DOS at 3 cm21 is
increased by no more than a factor of 2.16 In addition, the
correction for re-centering the size distribution from 10 n
to the experimentally observed 13-nm average size lead
corrections only of order unity.

~iv! Our calculations were done for a nanoparticle a
substrate made of Si, while the experiment was done
Y2O3 nanoparticles, which, of course, have different ma
density and sound velocities. The differences in sound spe
and mass only shift the modes of the nanoparticle by a sm
amount.17 This has the same effect as a small change in
diameter of the nanoparticles, which we have found to
negligible. As for the substrate~or more precisely the re
placement of the substrate with a cubic lattice of nanop
ticles!, the change in mass density does effect the spec
function ~62! by changing the velocity~93! and mass density
~94!, but this change is only of order unity.

~v! The nanoparticles of Ref. 2 were immersed in H
either liquid~for T,4.21 K) or gas (T.4.21 K). However,
the results were found not to change through the liquid-
transition, presumably because of the large sound-speed
match between superfluid He and Y2O3. Therefore we have
ignored the presence of He in our theory.

~vi! The experiment of Ref. 2 was done at temperatu
between 1.5 and 10 K~excluding the interval 2.17–4.21 K!,
whereas our calculations assume zero temperature. Th
fect of finite temperature is to stimulate phonon emiss
into the bath~substrate or cluster!. However, this is not im-
portant until the Bose distribution function of the bath at t
Lamb mode frequency~approximately 9 cm21) becomes of
order unity, which does not occur until the temperature
ceeds about 13 K.

Taking into account the first two modifications, and igno
ing the others, we obtain a 3-cm21 DOS given by

ḡ~R,3cm21!54.531010
states

wave number cm3
398032

58.831013
states

wave number cm3
. ~97!

The DOS of bulk Si is given by

(
l

e2

2p2\3vl
3

53.931015E2
states

wave number cm3
, ~98!

whereE is the energy in wave numbers. Thus the theoreti
ratio of the DOS of the nanoparticle to that of the bulk m
terial at 3 cm21 is 2.531023. As stated above, the exper
mental ratio of nanoparticle to bulk DOS was found to
approximately 8.231023. The agreement between ou
theory and the experiment of Ref. 2 is excellent consider
the simplicity and robustness of our model. We conclude t
the low-energy phonon DOS observed in Ref. 2 is consis
with our enviromental broadening mechanism.
8-9
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VII. CONCLUSIONS

Motivated by an interesting experiment2 measuring the
low-energy phonon DOS in a insulating nanoparticle,
have thoroughly investigated a simplified model of a sin
nanoparticle weakly coupled to its environment, a se
infinite substrate. The environmental interactions were fou
to significantly affect the DOS at energies below the La
mode.

Additionally, we have used the results of our model
predict the effect of environmental interaction in a cluster
nanoparticles like that studied in Ref. 2. Although it is ne
essary to estimate the value of several quantities appearin
the model, we believe that we can do this accurately eno
to obtain a final result that is correct at the order-
magnitude level, with no free parameters. Because our
sults for the 3-cm21 DOS is only about three times smalle
than that observed in Ref. 2, our broadening mechanism
the resulting phonon spectrum is clearly consistent with t
experiment.

Our theory makes several predictions that could be inv
tigated in future experiments: The vibrational DOS as a fu
tion of energy at energies below the Lamb mode could
measured by observing the one-phonon emission rate fro
magnetic impurity, whose energy splitting can be chang
.
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away from 3 cm21 by varying an external magnetic field
Also, the predicted sensitivity of the low-energy DOS to t
sound velocity~and hence spectral density! of the environ-
ment could be probed by modifying the mechanical prop
ties of the nanoparticle cluster, say, by applying exter
pressure and measuring the cluster sound velocity along
the phonon emission rate. The lifetime of the broadened
brational modes could be directly measured as well~by neu-
tron scattering, for example!, but splitting of the~degenerate!
vibrational modes caused by deviations from spherical sy
metry would then be important. We hope that detailed inv
tigations such as these will be carried out in the future.
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