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Phonons in a nanoparticle mechanically coupled to a substrate
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The discrete nature of the vibrational modes of an isolated nhanometer-scale solid dramatically modifies its
low-energy electron and phonon dynamics from that of a bulk crystal. However, nanocrystals are usually
coupled—even if only weakly so—to an environment consisting of other nanocrystals, a support matrix, or a
solid substrate, and this environmental interaction will modify the vibrational properties at low frequencies. In
this paper we investigate the modification of the vibrational modes of a spherical insulating nanoparticle caused
by a weak mechanical coupling to a semi-infinite substrate. The phonons of the bulk substrate act as a bath of
harmonic oscillators, and the coupling to this reservoir shifts and broadens the nanoparticle’s modes. The
vibrational density of states in the nanoparticle is obtained by solving the Dyson equation for the phonon
propagator, and we show that environmental interaction is especially important at low frequencies. As a probe
of the modified phonon spectrum, we consider nonradiative energy relaxation of a localized electronic impurity
state in the nanoparticle, for which good agreement with a recent experiment is found.
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I. INTRODUCTION experiment: Another possibility could be adsorbed “dirt” on
the outside of the nanoparticle. This might lower the quality

There is currently great interest in properties offactor Q of the nanoparticle, regarding it as a resonator, re-
nanometer-scale mechanical systems, such as cantilevefigcting a broadening of the vibrational modes. A third, and
nanoparticles, and resonatdr8ecause of the extremely in our opinion more likely mechanism, follows from the re-
small size and volume-to-surface ratio of these systems, imalization that these nanoparticles are not isolated, but instead
teractions with their surroundings can dramatically alter theifvere prepared in a powered form. Thus each nanoparticle is
properties. In particular, it is well known that the vibrational in weak contact with a cluster of other nanoparticles. Be-
spectrum of an isolated nanometer-scale crystal, being digause the cluster is relatively large, including at least several
crete, is qualitatively different than that of the same bulkhundred nanoparticles, each nanoparticle is mechanically
solid, leading to important changes in any property depencoupled to a reservoir that has a continuous vibrational DOS
dent on the phonon density of stat@0S). The differences  at low energy. This interaction broadens the modes and al-
between the vibrational DOS in a nanoparticle and a bulkows phonons in the nanoparticle to escape and be absorbed
solid are most evident at low frequencies: A spherical nanointo the cluster. We will investigate the effect this mechanical
particle with diameted and characteristic bulk sound veloc- environmental interaction has on the nanoparticle’s phonon
ity v cannot support a mode with frequency less than aboupectrum.
wv/d. Thus an acoustic energy “gap” in the low-energy  Because we are only interested in determining the correct
phonon spectrum is present in contrast with that of the bulkorigin of the observed broadenifigand do not hope to be
which has a continuous spectrum down to zero energy. Howable to exactly reproduce the experimental results of Ref. 2,
ever, mechanical interaction with the environment will we propose the following simplified model: The cluster of
modify the vibrational modes. nanoparticles is replaced by a semi-infinite elastic substrate,

In an interesting experiment by Yang and co-workells2  and one nanoparticle is placed in weak mechanical contact
phonon DOS deep inside this gap was measured in insulatingith it. The weak contact is imagined to be a few atomic
Y,0; nanoparticles. The experiment used nanoparticleponds or small neck of elastic material, which we model by
whose sizes ranged from 7 to 23 nm in diameter and waa harmonic spring. For simplicity, we take the substrate and
performed by measuring the nonradiative lifetimes of an exthe nanoparticle to be made out of the same isotropic elastic
cited electronic state of a Bt dopant. The lowest vibra- material. Because we are interested in the low-energy re-
tional mode, referred to as the Lamb mode, for a nanopargime, continuum elasticity theory will be used to describe
ticle with the mean siZeof 13 nm has a frequency of the dynamics of the nanoparticle and substrate. After defin-
approximately 9 cm?®. At 3 cm ! the DOS measured was ing and analyzing our simplified model, in Secs. 1=V, we
more than 100 times smaller than that of bulkO§ at 3  explain in Sec. VI how the model can be adapted to address
cm L, the experiment of Ref. 2, and good agreement is obtained.

In this paper we propose and investigate a mechanism that The simple model we study is related to, but different
could be responsible for the observed broadening of a nandhan, models used to study energy relaxation by molecules
particle’s phonon modes. Several broadening mechanisnedsorbed on surfac84dowever, in surface science the inter-
could be responsible for the observed effect. For examplesst is usually in the relaxation of rigid translational motion,
anharmonicity leads to broadening and therefore to a lowrotational motion, or simple internal vibrations of adsorbates.
energy DOS, but anharmonicity is ineffective at low energyln contrast, we investigate the broadening of complex inter-
and was found to be too small to account for thenal vibrational modes of much larger objedishich are
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crystalline. Our work also has much in common with that of ( )
Gurevich and Schobérwhere many of the same consider- a
ations and modeling were used to study the Lamb-mode de

cay rate of nanoparticles caused by both anharmonicity anc
coupling to an enviroment of other nanoparticles.

II. NANOPARTICLE AND SUBSTRATE MODEL

3

As discussed in the introduction, the model we study is
that of a single nanoparticle in weak mechanical contact with
a semi-infinite substrate. Linear elasticity theory will be used
to describe the phonons of this system. We assume the nan
particle and substrate to be made of an isotropic nonpola
dielectric. Because we take the nanoparticle and substrate
be made of the same material, we will use the same densit;\\\
p and Lamecoefficients\ and u for both. The Lagrangian
for the entire system is

_ 3,11 2_ 1y 12— 12
= [ @ripow-tag-wdl, @ (b) -
whereu(r,t) is the displacement field, and §
—
UijE(ﬁin‘f'ajUi)/z (2) § l
N |
is the strain tensoV is the combined volume of the nano- §
particle, substrate, and connecting material, as shown in Fig §
1. §
Because the Lagrangian density is local, the integration N
volume in Eq.(1) can be split into three independent parts: —d.
the nanoparticle, the substrate, and the connecting region. In
the limit of weak couplingdiameterd, of connecting region FIG. 1. (8) Model of nanoparticle, substrate, and connecting

much smaller thaml), the surface area on the nanoparticleregion.d is the diameter of the nanoparticis) Expanded view of
and substrate over which the actual boundary conditions difcylindrical connecting region with dimensiorg and . In our

fer from stress-free conditions are negligible, and the Hamilhumerical study we assume=10 nm, I;=2.5nm, andd.

tonian can be written as =0.5 nm.

H=H panst Heugt 6H, (3  wherev=y(\+2u)/p is the bulk longitudinal sound veloc-
ity andv,= \u/p is the transverse velocity. To solve Hg)
whereH panois the Hamiltonian for an isolated nanoparticle the displacement field can be decomposed into longitudinal
(with stress-free boundarigdd s is that for an isolated sub- and transverse parts,
strate, andSH is the interaction between the two. The con-
necting region is taken to be a few atomic bonds or small u=u,+u, (5)
neck of material, as shown in Fig. 1, and is discussed further
below. where
Our analysis will require the vibrational normal modes
and spectra of the isolated nanoparticle and semi-infinite VXxu=0 (6)
substrate, calculated with stress-free boundary conditions.
The long-wavelength modes of interest here may be obtaine%lnd
from elasticity theory, to which we now turn. _
V-u=0. (7)

A. Isolated nanoparticle With harmonic time dependence, the equation of mot@n
Here we derive the normal modes of an isolated elasti(}hen separates into two vector Helmholtz equations for the

sphere. The method we shall use is different thanot ongitudinal and transverse parts,
equivalent td that used in the classic paper by Lafhibuyt is

24 22V — -
better suited for our purposes. The equation of motion given (VZHp9u=0, p=wlv, ®)
by Eq.(1) is and

d2u—v2V(V-u)+v2VXVxXu=0, (4) (V2+9?)u=0, gq=olv,. 9
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The longitudinal equatiofB) can be solved by introducing a
scalar potential

u=vge®, (10

where ¢P is a solution of the scalar Helmholtz equation
(V2+p?) ¢P=0. The transverse equatidd) has two lin-
early independent solutiong,=M andN, where

M=V @@ xr (1)
and

N

1
aVXM. (12

Here ¢@ is a solution of §F2+q?) ¢®=0. The prefactor

1/gq is included for dimensional convenience. The scalar
Helmholtz equations are separable in spherical coordinates

and the solutions can be written as

dim(N=jiI(kNYn(6,¢), k=p,q (13
where
) T
hi(x)= \/%JH—%(X) (14

is a spherical Bessel function of the first kiicegular at
origin) and

21+1 (I—m)! .
Yim(6,0)=(—1)" I mpm(cosﬁ)e'm“’.
(15
Here

S
Pim(X)=(1=x%)2—5Pi(x), (16)
where theP,(x) are Legendre polynomials.

Now we use thep,,, to construct three linearly indepen-
dent solutions of Eq(4),

1
LImEBVCbIm(pr)v (17)
MImEV¢Im(qr)er (18)

1
N.mzav><|v|.m (19

The general solution is a linear combinationlgf,, M,
andN,,,

U(I’):% [ambim* BimMim+ CimNim]. (20)
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B ()= 1 v (O imYm(Q)
im( )=m IYim(D) €+ —o 6 |,
(22)
1 |mY|m(Q)
(23
with the following properties:
f dQ X Xirme = 817 Smp (24)
for XeB,C,P and
f dQ XX/, =0 (25

for X# X'. Expressed in terms of orthogonal vector spheri-
cal harmonicsL,,, M,, andN,,, are given by

JVI(+1
L|m=J|'(Df)P|m(Q)+%h(pf)&m(ﬂ), (26)
Mim=VI(1+1)j;(qr)Cin(L2), (27)
and
I(1+1) VI(I+1)
Im= (qr J|(qr)F’|m(Q)+(q—r
X[ji(an+arj(qr)]1Bim(Q), (28)

where prime denotes differentiation with respect to the argu-
ment.
Next we impose stress-free boundary conditions
Tij nj =0 (29)
at the surface =R of the nanoparticle. Hene is an outward
pointing normal vector andr;; is the strain tensor. In an
isotropic elastic continuum,

Although they are linearly independent, the vector fields

Lim,» Mim, andN,,, are not orthogonal in space. However,

they can be rewritten in terms of orthogonal vector spherical

harmonicsP,, B, andC,,,, defined as

Pm()=Y|n(Q)e, (21

ai;=N(V-u)+2uu; . (30
In spherical coordinate®9) implies
o =0g=04,=0. (32
The three condition§31) require that
ANV-u)+2uu,=0, (32
Uy =0, (33
and
U, =0. (34)
In terms of the displacement field,
Uy =4, Uy, (35
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L 1 1
Ugr=3| drlp= U™ T4l |, (36)
1 1
Upr=73 m%uﬁr&ru@— FU¢, . (37
The boundary-condition equatiof31) then become
Aml = APHI(PR)Yim+21pj/ (PR)Yim]
+em2ul (1+1)EY|,=0, (39

a|m2D§0Y|m+ b|mi mEY,,cs®¥+ C|mF(90Y|m: 0, (39)

and

a|m2i mDY|mCS(ﬁ+ b|mE(90Y|m+ C|mi mFY|mCSCﬂ: 0,
(40)

AP iI(PR)Ym+2upj/(PR)Ym
2D3yYim
2imDY,,,cs

For a nontrivial solution of Eq9.38)—(40) to exist, the de-
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where
(bR (DR
_ IR P )' 41
R pRZ
il(qR R
_Ji@R (g ), 42
R qu
. I(1+1) 2ji(gR)
F=qj/(gR)+ R)— . 43
ajj(aR) e hi(@R) e (43
Finally, we rewrite Eqs(38)—(40) in matrix form as
0 2,LL|(|+1)EY|m Am
imEY,,csdd FagYim bm | =0. (44)
EdyYim imFY,,cscd Cim

We define the Lamb mode to be the vibrational eigenfunc-

terminant of the above matrix must vanish. Taking the detertion associated with the lowest frequency solution of Eq.

minant and simplifying we obtain

[—Apji(PR +2upj{(pPR)JEF—4ul (1 +1)E?D=0.
(45)

This implies that either

_1i@R) (@R
R qu

=0 (46)

or

[=Apji(PR) +2upj{(pPR)JF—4ul(1+1)ED=0.
(47)

(45). For the cases considered in this paper, the Lamb mode
is a fivefold degeneraté=2 torsional mode with angular
frequency

o =tog (50

where, according to Eq46), &~
tive solution of

2.50 is the smallest posi-

J2(6)~ Jz(f) 0. (51

Thus the Lamb frequency is simply

If condition (46) is met, then this imposes certain con-
straints ona,, b, andc,,, which requirea;,=c¢;,=0. w ~1. 59><ﬂ (52)
This can easily be seen in the matrix of E44) by setting d
E=0. If Eq. (47) is met,b;,, has to be zero.

In conclusion, we have two branches of vibrational
modes: The branch in which E(6) is satisfied,

u(r) =DbymaMimn(r),

is referred to as théorsional branch, wheren specifies the

radial quantum numbefnth solution of Eq.(46)]. These

modes have no radial compondsee Eq.(27)] and arenot
broadened by the mechanism considered in this paper. Thehere
other branch is found when E(7) is satisfied,

u(r)=aymnLimn(r) + CimaNimn(r), (49
which is called thespheroidalbranch.

We emphasize, however, that the Lamb mode has no radial
displacement component and is not broadened in our model.

To quantize the vibrational modes we write the displace-
(49~ Ment field a3

h
Unand 1) =2, \ 5 @+ Wi (0], (59)

J=[S or Tn,l,m] (54)

is a label uniquely specifying a nanoparticle eigenmode. The
first entry S or T specifies whether the mode is in the sphe-
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roidal or torsional branch, respectivelyis the radial quan- tion theory to be applied. The connection consists of a small
tum number and and m are the usual angular-momentum cylindrical neck of elastic material, with diametég and
quantum numbers anda' are phonon annihilation and cre- lengthl.. In addition, we assume thdt<lI, in which case

ation operators which satisfy the Bose commutation relatiothe dominant interaction between the nanoparticle and the

. substrate is mediated by the longitudinal compression/

[a;,ay,]= 05y - (55  extension of this cylinder. Thus the interaction between the

The W, are vibrational eigenvectors normalized such that hanoparticle and substrate is that of a harmonic spring

1 , , .
jv|‘I’J(r)|2d3r:1, (56) 5H:EK:[unam{rO)_usutﬂrO)]z-a (63)

whereK is an effective spring constant, and,,,and uz,

are thez components of the displacement field of the nano-

particle and substrate at the point of contactWe take the

_ . y z direction to be along the upward pointing normal to the
2 EOW(r)=8ls(r-r"), (57)  substrate surface. The Hamiltonians we will introduce below
’ [see Eq.(75)] for Ha, and Hg,, are normal-ordered; it is

it can easily be shown that satisfies the correct equal-time therefore necessary to normal ord# as well. This opera-

whereV is the volume of the nanoparticle. Assumitwith-
out prooj that the modedl; form a complete set,

canonical commutation relation witlr=pdu, namely tion is denoted by the colons in E3). The force constant
. ) - K given by
[u'(r), @ (r")]=ikhs"S(r—r"). (58
wd?
B. Isolated substrate K= TCY’ (64)

The vibrational modes for a semi-infinite isotropic elastic,ypere Y~ 1.3x 102 dyn cmi? is the Young modulus for Si.

substrate, with a free surface at thgplane and extending to Assuming neck dimensions ¢f=2.5 nm andd.=0.5 nm
infinity in the negativez direction, were quantized previously \ve obtain

by Ezawat® Therefore the details will be left out here. The
displacement field can be written®as K=1.0x10* erg cn?’. (65)

3 Of course, Eq(65) is just an estimate of the actual interac-
Usuf 1) =2 \/ﬁ[b|f|(f)+brf|*(f)], (59 tion strength and should not be taken seriously beyond the
! P order-of-magnitude level.
whereb andb' are the annihilation and creation operators
for the substrate phonons. The indexike the indexJ for Ill. GOLDEN-RULE LIFETIMES
the nanopatrticle, uniquely specifies a phonon mode for the
substratef, are eigenfunctions of Eq4) subject to stress-
free boundary conditions at tlee=0 plane.
In what follows we will need the spectral density of the
isolated substrate, which is defined as

The relaxation rate or inverse lifetime of the perturbed
eigenmodes of the nanoparticle can be calculated using Fer-
mi's golden rule(settingfi=1),

L T;1=2w2f [(F| SHIiY|28( wi— wy), (66)
Nedl,0)=——ImDZr,r,w), (60)
™ where the initial and final states are

whereD! (r,r’,w) is the Fourier transform of the retarded
phonon Green’s function

DLr.r’ )= —i6(t)([ugdr.t),uldr'.01) (61

of the substrate. The spectral density at the free surface of _, wKZ|WE(ro)|? D [ (ro)|?
silicon, regarding it as an isotropic elastic continuum, was (N 2p2 w; |
calculated in Appendix B of Ref. 11. There we obtained

liy=aj|0) and|f)=b|0). (67)
Using Egs.(53), (59), and(63), leads td

(wy—w). (68

Noting that
Nof @)=Cgw, Cg~1.4xX10 % cn?s’. (62

It turns out that Eq(62) is quite close to that resulting from > fH(ro)|28(wy— w)) = 2pwNgyd o), (69)
the simpler Debye model for three-dimensional bulk Si. !

we obtain(reinstating factors ofi)
C. Nanoparticle-substrate interaction
mK? Nsuf @3)

hp oy

As discussed above, the connection between the nanopar- -1

- : , 7 |W3(ro)l?. (70
ticle and substrate is assumed to be weak, allowing perturba-
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TABLE I. A few representative relaxation rates and quality fac- tional to the square of the electron-phonon coupling strength
tors. Only them=0 spheroidal modes are broadened by the mechatimes the phonon DOS. In a translationally invariant system

nism considered in this paper. the DOS does not have any position dependence, but in a
nanoparticle one must distinguish between ghabal DOS
(Sl,m,n) o (rad s7) T (s Q factor (the DOS relevant for thermodynamjcsand the local
(S,2,0,1) 3.1 1012 2 5% 10~ 2 2% 1015 eigenfunﬁtion-weighted DOS, which isil the”onhe that deter-
2 -8 9 mines phonon emission rate. We will call this position-
22(1)83 ii 18113 ;gi 18_4 Z:gi igs dependent DOS the local DOS and denote igly, »). The
(S.0,0.2) 16102 11x10°3 2 5 1015 precise definition of(r,) will be given below in Eq(77).

From a theoretical point of view, the quantity describing
the local vibrational dynamics in the nanoparticle is the
tarded phonon Green'’s function

Using K=1.0x10" erg cni ? and p=2.3 g cm 3, which
are appropriatésee abovefor our model, the resulting re-
laxation rates and quality factors are given in Table | for
some low-lying modes. The quality fact@ is defined here where
as the lifetimer divided by the period,

DA(r,r , )=—i0()([u'(r,t),ui(r' 0]}y, (72

Tr(e BH.
T ho (n Trie ™)

= — 7BH
T~ 2y’ (71 Tre

(73

Q

with the Hamiltonian given b

wherey=7%7"1 is an energy width. g y
The valu_es of FheQ factors we c_)btain for the low lying H=Hqy+ 6H. (74)

modes are incredibly large, reflecting the fact that the reser- ) o ] _

at these low frequencies. As we will discuss below in SecSubstrate,

VI, the lifetimes (and Q factorg for the model considered

here cannot be directily compareq with thg experiment of Ho=>, wJa}aJJrE wb'b,, (75)

Ref. 2 without accounting for the difference in sound speeds J [

between a solid Si substrate and a weakly bound nanopatrtic

cluster(as well as some other less important modifications

There we shall show that the coefficighiin Eq. (62) should

be enhgnced bk?{ %?Ctor of abo:f]l?aforte) Tﬁ‘.kmg sucfh 2 fers to the nanoparticle, and the label “nano” will be sup-

comparison, which decreases t@dactors by this same fac- pressed. The imaginary part of the Fourier transform of

tor. However, theQ factors corrected in this way are still i . S .
huge, and the good agreement with the observed IOWI_DR(r,r,t) defines the nanoparticle’s phonon spectral density

frequency DOSsee belowsuggests that th® factors of the 1 )
nanoparticles studied experimentally in Ref. 2 are also very N(r,w)=— ;Im DR (r,r,o). (76)
large.
In Ref. 12 we used the gOlden-rUle reS(lTIO) to estimate For an electron Systemr any system of par“c]ésthe spec-
the phonon DOS at low energies. This is achieved by replagya| density in Eq(76) is precisely the local DOS. However,
ing, in accordance with Fermi's golden rule, each discretgyecause the elasticity theory equation of motidnis second
mode in the isolated nanoparticle by a Lorentzian with aorder in time, the spectral density and D@$th local and
width given by Eq.(70). (More precisely, this amounts to gloha) differ by a factor of 2 w. In addition, the vibrational
approximating the energy-dependent phonon self-energy fafpectral density76) is a tensor, whereas the phonon emis-
each mode] with its value atw=w;, a procedure often gjon rate probes some coupling-constant-weighted sum of
called the quasiparticle-pole approximatiohiowever, this  tensor elements. Because we are ascribing the observed re-
procedure is unreliable at low energies because the ?‘Ctuahction in phonon emissiofin going from bulk to nanopar-
line shapes of the broadened modes are non-Lorentzian iile) to a reduction in the local DOS, our results are not
the tails. Nevertheless, we obtained a DOS at 3 tihat  sensitive to the precise way in which a scalar quantity is
was only 20 times smaller than that observéd. constructed from the tensor, as long as the same measure is
used in both the nanoparticle and bulk. It will be most con-
IV. MANY-BODY THEORY OF THE DOS venient to investigate the trace of the local DOS tensor.
Therefore the quantity we calculate in this paper is

<Lfnd, as mentioned in Sec. BH is a harmonic spring poten-
tial given in Eq.(63).
In this section the phonon Green’s functiBnalways re-

A. Local DOS

To leading order in the electron-phonon interaction ;
strength, the electronic population relaxation rate due to pho- g(hw)EZPwiZl N"(r,w), (77)
non emission(for example, as measured in Rej. i given
by Fermi’s golden rulg, which states that the rator a  which we shall refer to as the local DO§(r,w) character-
deformation potential electron-phonon interaciienpropor-  izes the number of states per unit energy per unit volume

3
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near positiorr. In a bulk material with Debye spectrum, Eq. i W)W (r) 1 1
(77) reduces at low frequency to Do(r,r' @ =§ 2pw; fo— o, - ot o,
g(r,w)=—|—3+3| (78) s the free propagator and'! is the leading-order phonon
2m\vi vy self-energy, given at zero temperaturé by

independent of. Equation(78) is the well-known Debye K2 1521 o) 2 1 1

formula for the vibrational DOS of a three-dimensional bulk mirr,w)=— AN —.

crystal. 2p 9 ) iw—w (iot+o

The local DOSg(r,w) controls the phonon emission rate X 8282 5(r — 1) S(F' —ro) (85

— 1o —1o)-

for an impurity atom sitting at position. Although the im-
purity locations in a real nanoparticle are assumed to be rarfhe f,(r) are substrate eigenfunctions discussed in Sec. II,
dom, dopants near the surface are known to be opticallandr, is the point at which the nanoparticle is connected to
inactive. Hence most optical experimertiscluding that of  the substrate. The self-ener(85) is correct away from the
Ref. 2 do not probe impurities near the nanoparticle’s sur-centers of the vibrational modes, but ignores sneddistic
face. Therefore we introduce a particular volume-averagedcattering contributions that shift the modes without broad-

DOS ening them. Retarded quantities are obtained by analytically
continuingi w— w+i0".
3 To calculate the local DO%77) we need to solve the

d>rg(r,w) . . , . .
_ r< Dyson equation for the nanoparticle Green’s function, writ-
g(b,0)=—7F—, (79 ten symbolically as

—ab®

3 D=Dgy+ DoIID. (86)

which characterizes the averagér,) within a sphere of The solution to Eq(86) can be obtained by introducing ma-
radiusb. In the limit b—R, in which case the local DOS is trix representations fob, Do, andIl, in which case
averaged over the full nanoparticle volume, we obtain the

global (or thermodynamicDOS, which for arisolatednano- D= (Dgl— It (87)

particle would be simply The matrix representation we use is defined by

— 1
g(R,(U):\_/; (o= wy). (80) O(J,J,)EE f d3rd3r’\PiJ*(r)O”(r,r’)\Ifj,(r’),
7 Jv
Physically, we expedi to be somewhere betwe&i2 andR. (88)
whereO=D, Dy, orIl. In Eq. (88) the integration is over
B. Perturbative calculation of the local DOS the volumeV of the nanoparticle, and th¥,(r) are the

The retarded Green’s functiof72) for the nanoparticle nanoparticle eigenfunctions. The inverse transformation is
can be obtained by calculating the Euclidean time-ordered

(or imaginary time Green'’s function defined by oll(r,r’y=>, \IfiJ(r)O(J,J’)\Ifg’f(r’). (89)
- _ _ 3y
I ! — | !
DA(r.r, )= =(TU(r, DU, 0y G A nanoparticle with a diameter of 10 nm has approximately
In the interaction representation, 8000 atoms in it. Thus, there are roughly 24000 acoustic
vibrational modes. By knowing the total number of modes, a
<Tui(r,7.)uj(rr,o)effé‘&H(f’)df’>H Debye energy can be defined: The Debye energy is the en-
Di(r,r',7)=— o ergy at which there are 24000 elasticity-theory modes that lie
<e*fgf5H(T’)dr’>Ho below in energy. For our nanoparticle, the Debye energy is

(82) about 320 cm?. The Debye energy cutoff truncates the Hil-
bert space, which leads to finite-size matrit&Shis enables

where the expectation values are with respecHp By  every model of the nanoparticle to be included in the cal-

expanding the exponentials to leading order in the perturbaculation of the Green’s functio(87).

tion (63) and Fourier transforming, E¢82) can be written as

V. RESULTS
ij ’ — i ’ ik " . .
DE(r,r’,@)=Do(r.r ""H%: JDO(” @) In this section we present our results for the phonon DOS
_ in a 10-nm Si nanoparticle, obtained by solving the Dyson
><Hk'(r”,r”’,w)DH(r”’,r’,w)d3r”d3r’”, equation(86) for the phonon Green’s function, as explained

83) above. As we have discussed, the DO@,w), defined in
Eq. (77), is a local quantity that varies with position within
where the nanoparticle, and, as mentioned in the previous section,
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FIG. 2. The phonon DOS, given in states per wave number per
cn?®, of a 10-nm Si nanoparticle, weakly coupled to a semi-infinite

Si substrate. VI. COMPARISON WITH EXPERIMENT

FIG. 3. Vibrational DOS at low energies.

. ) o o In this section we compare our results to the experiment
the quantity we are interested ing¢b,w), which isg(r,®)  of Ref. 2, where the one-phonon emission rated therefore
averaged over a sphere of radlupositioned at the center of the phonon DOS at 3 cnt) in a cluster of %05 nanopar-
the nanoparticle. Because we have found no significant deicles was observed to be &2.0 3 times that in bulk %Os;.
pendence of(b,w) onb, for the physically relevant values In particular, the eXCite(fDl_(ll) state of Ed* in the nano-
of b betweenR/2 andR, we plot simplyE(R,w). As stated Particles had a phonon-emission lifetime of 28, compared

above in Sec. IV A_(R ©) is just theglobal phonon DOS with a bulk value of 221 ns. In order to make a comparison
in the nanopairticle’g ' J 9 P of our results to that of the experiment, two modifications of
For simplicity we assume both the nanoparticle and the!! calculation have to be performed.

substrate to be made of Si; this allows us to use the :;urfacree (||;C|: d obur ;nsgl%’ stl:]t?st(; !:tztelr_ig\];vg\?enrol?ﬁglgleesct?:f dgﬁg{:
spectral density62) calculated in Appendix B of Ref. 11, P y : ' P Y

where Si is treated as an isotropic elastic continuum with(6.2) of the substrate, which at long wavelengths !s.deter-
longitudinal and transverse sound velocities mined by the sound speeds and mass density of Si, is much

smaller than that of the nanoparticle cluster. Treating the
long-wavelength modes of the cluster with elasticity theory
v,=8.5x10° cm s %, (or, even simpler, approximating the random cluster by an
ordered cubic lattice shows that the spectral densit§2)

v=5.9x10° cm s, (90) DOS of nanoparticle

~ 0.01
g

and mass density=2.3 g cm °. In the final section of this § o.0of

paper, where we compare our results to the experiment 0", g 00s}

Ref. 2, we will introduce an important correction to account 3

for the differences between a solid Si substrate and a nano E 0.007F

particle cluster. g 0.006F

In Fig. 2 the global DOSy(R, ) of a 10-nm diameter  § 005}

nanoparticle is given up to 100 ¢rh. The (unbroadenex Vi

Lamb mode has a frequenfsee Eq(52)]of 15.7 cnm*, but & *0%f

is obscured by the nearbyl€2,m=0,n=1) spheroidal 3"’ 0.003}

mode at 16.5 cm'. The modes above 100 cthwere in- 2 |

cluded in the calculation, but the long-wavelength approxi- g’ '

mation of elasticity theory becomes invalid at high energy. o 0.001F

Thus only the lower part of the spectrum is shown. Figure 3 o —

shows the low-energy phonon DOS up to about 23 trin ° 1 Eﬁergy (w:ve num;er) 5 6
expanded view of the low-energy DOS is given in Fig. 4.
The phonon DOS at 3 cnt is approximately 4.%10% FIG. 4. Expanded view of the low-energy DOS. Note that the

states per wave number per tm DOS vanishes at zero energy, as expected.
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should be replaced bghe subscript “cl” referring to cluster  standard deviation of 5 nm. To understand the effects of this
size distribution, we have calculated the DOS at 3 ¢m
Ne(w)=Cqo, (91 averaged over a Gaussian distribution of diameters centered
wherd?® at 10 nm. Even for very wide distributioristandard devia-
tions up to 8 nmy the ensemble averaged DOS at 3 ¢nis

v30g; increased by no more than a factor ot®2n addition, the
Co= ? 'Csi. (920  correction for re-centering the size distribution from 10 nm
UclPel to the experimentally observed 13-nm average size leads to

corrections only of order unity.

(iv) Our calculations were done for a nanoparticle and
substrate made of Si, while the experiment was done on
Y03 nanoparticles, which, of course, have different mass

t[r)eail,eillzi(:yt[zz\:eli?léagit:gucsosrircl)isfcf;lﬁxvit:egg(lsr)]]ltlz\n orfosxpi)_ec— density and sound velocities. The differences in sound speeds
g YD) APP and mass only shift the modes of the nanoparticle by a small

mating the cluster by_ an o_rdered C.Ub'c array with lattice CONamount” This has the same effect as a small change in the
stantd (the nanoparticle diameteyields

diameter of the nanoparticles, which we have found to be
\/? negligible. As for the substratéor more precisely the re-
—d
M

Herev is a characteristic sound speed in the cluster @nd
is its mass density. Thezﬁ, dependence in E492) comes
from the well-known velocity dependence of the Debye

(93 placement of the substrate with a cubic lattice of nanopar-
ticles), the change in mass density does effect the spectral

and function (62) by changing the velocity93) and mass density
(94), but this change is only of order unity.
T (v) The nanoparticles of Ref. 2 were immersed in He,
Per™ g Psis 94 either liquid (for T<4.21 K) or gas 7>4.21 K). However,

_ _ _ _ the results were found not to change through the liquid-gas
whereK is the effective spring constant connecting the nanotransition, presumably because of the large sound-speed mis-

particles, given in Eq(65), and match between superfluid He ang®;. Therefore we have
3 ignored the presence of He in our theory.
M= pr (9) (95) (vi) The experiment of Ref. 2 was done at temperatures
3PSl 2 between 1.5 and 10 Kexcluding the interval 2.17—4.21)K

whereas our calculations assume zero temperature. The ef-
fect of finite temperature is to stimulate phonon emission
into the bath(substrate or clustgrHowever, this is not im-

is the mass of one nanoparticle. Usidg 13 nm(the mean
nanoparticle diameter in Ref),2ve obtain an enhancement

factor of portant until the Bose distribution function of the bath at the
C Lamb mode frequencyapproximately 9 cm?) becomes of
=9 —9.8x 10%. (96)  order unity, which does not occur until the temperature ex-
Csi ceeds about 13 K.

This factor increases the nanoparticle DG frequencies Taking into account the first two modifications, and ignor-

below the Lamb modeby nearly three orders of magnitude. ing the others, we obtain a 3-cth DOS given by
We emphasize that this correction originates from the in-
creased spectral density of the environment—the nanopar- 9(R.3cm 1) =4.5x 101 states < 980X 2
ticle cluster—compared with that of a solid substrate. wave number cfh
There are several other marginally important corrections,
most of which will be ignored, and one that will be included states
— 3
for completeness. =8.8x10" bor off (97
(i) In the model analyzed above, the nanoparticle was wave number
connected to its surroundings by only a single contact pointThe DOS of bulk Si is given by
whereas a nanopatrticle in a cluster most likely has more than
one connection. As the number of contacts increases, this
simply scales the DO%way from the peakdinearly with z
the number of contact points. Conservatively, we expect that
the multiple contact points present in the real system willwhereE is the energy in wave numbers. Thus the theoretical
increase the decay rate of the nanoparticles’ modes, an@tio of the DOS of the nanoparticle to that of the bulk ma-
hence the phonon DOS well below the Lamb mode, by derial at 3 cm! is 2.5<10 3. As stated above, the experi-
factor of 2. mental ratio of nanoparticle to bulk DOS was found to be
The following additional corrections have also been con-approximately 8.X10 3. The agreement between our
sidered and were found not to be significdahd are not theory and the experiment of Ref. 2 is excellent considering
included in our final resuljs the simplicity and robustness of our model. We conclude that
(iii) The actual experiment of Ref. 2 was done on an enthe low-energy phonon DOS observed in Ref. 2 is consistent
semble of nanoparticles with mean diam&t@8 nm and  with our enviromental broadening mechanism.

€ states
———— =3.9x 10E2 . (98)
2mh303 wave number crh
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VIl. CONCLUSIONS away from 3 cm?! by varying an external magnetic field.
Motivated by an interesting experiménineasuring the Also,dthe lpre.;jmteg .;,]ensmwty oftthle Jow—ine{ﬁy DO.S to the
low-energy phonon DOS in a insulating nanoparticle, Wesount velgcllay(an b Snk;:e SpZ‘? ra tehnslgf he gn\/llron-
have thoroughly investigated a simplified model of a singler.nen could be probed by mo ifying the mec anical proper-
-ties of the nanoparticle cluster, say, by applying external

nanoparticle weakly coupled to its environment, a semi- d ing the clust d velocity al ith
infinite substrate. The environmental interactions were found©SSUr€ and measuring the cluster sound velocity along wi

to significantly affect the DOS at energies below the Lambthe phonon emission rate. The lifetime of the broadened vi-
mode. brational modes could be directly measured as ¥siineu-

Additionally, we have used the results of our model toron scattering, for examplebut splitting of the(degenerate

predict the effect of environmental interaction in a cluster ofwbratlonal mades caused by deviations from spherical sym-

nanoparticles like that studied in Ref. 2. Although it is nec-Metry would then be important. We hope that detailed inves-

essary to estimate the value of several quantities appearing figations such as these will be carried out in the future.
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