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Electromagnetic characteristics of bilayer quantum Hall systems in the presence
of interlayer coherence and tunneling

K. Shizuya
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 17 September 2002; published 29 April 2003!

The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence
and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the
single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode
responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collec-
tive mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response
that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer
systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through
their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.
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I. INTRODUCTION

The Chern-Simons~CS! theories, both bosonic1–3 and
fermionic,4–6 realize the composite-boson and compos
fermion descriptions7 of the fractional quantum Hall effect8,9

~FQHE! and have been successful in describing various
tures of the FQHE. They, however, have some subtle lim
tions as well.10 In particular, when applied to bilayer sys
tems, they differ significantly in collective-excitatio
spectrum from the magnetoroton theory of Girvin, Ma
Donald, and Platzman,11 based on the single-mode approx
mation ~SMA!.

The quantum Hall effect exhibits a variety of physics f
bilayer ~and multilayer! systems.12–22 In a previous paper23

we studied within the SMA theory the electromagnetic ch
acteristics of bilayer systems in the absence of interlayer
herence and derived a long-wavelength effective theory
properly embodies the SMA spectrum of collective exci
tions. The effective theory was constructed from the elec
magnetic response of the systems through functio
bosonization,24 without referring to the composite bosons
composite fermions. Thereby the relation between the S
theory and the CS theories was examined.

The purpose of the present paper is to extend the prog
of looking into quantum Hall systems through their respon
to situations of particular interest, bilayer systems in
presence of interlayer coherence as well as tunneling, w
phenomena such as a crossover between the tunneling
coherence regimes14,22and Josephson-like effects15,16,25,26at-
tract attention. We study the electromagnetic characteris
of bilayer systems by means of~i! a pseudospin-texture ef
fective theory and~ii ! an algebraic framework of the single
mode approximation, with essentially the same results.
analysis shows that proper account of the Landau-level
jection is indispensable for deriving a low-energy effecti
theory of gauge-invariant form. The presence of interla
coherence modifies even the leading long-wavelength
tures of the bilayer systems, and we critically examine
CS approach to clarify its validity and limitations.

In Sec. II we consider the projection of a bilayer syste
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into the Landau levels. We study the electromagnetic cha
teristics of the bilayer system in Secs. III and IV. In Sec.
we comment on the CS approach. Section VI is devoted
summary and discussion.

II. BILAYER SYSTEMS

Consider a bilayer system with average electron dens
rav

(a)5(rav
(1) ,rav

(2)) in the upper (a51) and lower (a52) lay-
ers. The two layers, each extending in thex5(x1 ,x2) plane,
are taken to be situated at positionz(1)5zc1 1

2 d and z(2)

5zc2 1
2 d with separationd in the vertical~z! direction. The

system is placed in a common strong perpendicular magn
field Bz5B.0. We suppose that the electron fieldsc (a) in
each layer are fully spin polarized and assemble them in
pseudospin20 doublet spinorC5(c (1),c (2)) tr. Our task in
this paper is to study how the system responds to weak e
tromagnetic potentialsAm(x;z) and Az(x;z) in three-
dimensional space.@We supposem runs over (0,1,2) or
(t,x1 ,x2) and denoteAk5(A1 ,A2)5A and x5(t,x) for
short.# We thus write the one-body Lagrangian in the form

L15E d2xC†~ i ] t2H!C, ~2.1!

H5
1

2M
~p1AB1A11A2s3!21A0

11A0
2s3 , ~2.2!

where Am
6(x)5 1

2 $Am(x;z(1))6Am(x;z(2))% in terms of the
potentials acting on each layer, or explicitly,

Am
1~x!5Am~x;zc!1•••,

Am
2~x!5~d/2!]zc

Am~x;zc!1•••; ~2.3!

AB5eB(2x2,0) supplies a uniform magnetic fieldB; the
electric chargee.0 has been suppressed by rescalingeAm
→Am . @For conciseness, we shall writec (a)(x)
5c (a)(x,z(a),t), etc., and suppress reference to thez coor-
dinate or zc unless necessary.# Let us denote the numbe
density and pseudospin densities as
©2003 The American Physical Society22-1
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$r~x!,Sa~x!%5C†~x!H 1,
1

2
saJ C~x! ~2.4!

with the Pauli matricessa (a51,2,3). TheA0
1 coupled to

r5r (1)1r (2) probes the in-phase density fluctuations of t
two layers whileA0

2 coupled toS35 1
2 (r (1)2r (2)) probes

the out-of-phase density fluctuations.
The electrons in the two layers are coupled through

intralayer and interlayer Coulomb potentialsVp
115Vp

22 and
Vp

125Vp
21, respectively; Vp

115e2/(2eupu) and Vp
12

5e2dupuVp
11 with e being the dielectric constant of the su

strate. The pseudospin structure of the Coulomb interac
is made manifest by rewriting it as

HC5
1

2 (
p

~Vp
1r2prp14Vp

2S2p
3 Sp

3!, ~2.5!

Vp
65

1

2
~16e2dupu!Vp

11, ~2.6!

whererp andSp
a stand for the Fourier transforms ofr(x) and

Sa(x) with obvious time dependence suppressed.
Note here that the electromagnetic gauge transformat

in space induce two sets of intralayer gauge transformat
Am(x;z(a))→Am(x;z(a))1]mu (a)(x) and c (a)(x)
→e2 iu(a)(x)c (a)(x) with u (a)(x)[u(x;z(a)), which can be
regarded as totally independent~for dÞ0) sinceu(x;z) may
have arbitrary dependence onz. The transformation laws
read dAm

6(x)5]mu6(x) in terms of u65 1
2 $u (1)6u (2)%.

Thus, for bilayer systems electromagnetic gauge invaria
turns into two separate U~1! gauge symmetries
U(1)em.U(1)13U(1)2. @We refer to this U(1)2 as ‘‘inter-
layer’’ gauge invariance below. Note that it disappears in
d→0 limit.#

The tunneling phenomena must respect electromagn
gauge invariance. A naive choice of interlayer couplingS1

1 iS25c (1)†c (2) should be promoted to a gauge-invaria
form27

H tun52nSASE d2x
1

2
$c (1)†e2 iGzc (2)1H.c.% ~2.7!

with the line integral

Gz~x!5E
z(2)

z(1)

dzAz~x;z!5dAz~x;zc!1•••, ~2.8!

connecting the two layers for eachx. HereGz has the trans-
formation law dGz52u2(x). The coupling strengthnSAS
characterizes the energy gap between the symmetric and
tisymmetric states.

It is possible to gauge awayGz by settingGz85Gz12u2

50 so that the transformed fields

c8(1)~x!5ei ~1/2!Gzc (1)~x!,

c8(2)~x!5e2 i ~1/2!Gzc (2)~x!,
15532
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Am8
2~x!5Am

2~x!2 1
2 ]mGz5~d/2!~]zAm2]mAz!1•••,

~2.9!

and A8m
1(x)5Am

1(x) are inert under U(1)2 gauge transfor-
mations. Thec8(a)(x) stand for the electron fields ‘‘pro
jected’’ onto the common planez5zc and undergo only the
U(1)1 gauge transformations. Note thatA8m

2(x) is gauge
invariant and actually denotes a vertical electric fieldA80

2

'(d/2)Ez and in-plane magnetic fields (A81
2 ,A82

2)
'(d/2)(B2 ,2B1).

In view of this structure it is advantageous to restart w
the Lagrangian written in terms of thesec8(a) andA8m

6 , and
recover the effect ofGz at the very end. The interlayer gaug
invariance is thereby kept exact. Accordingly, we shall fro
now on regardc (a) and Am

6 as denoting the transforme
fields c8(a) andA8m

6 .
In addition, it is rather natural and convenient to combi

the one-body LagrangianL1 and H tun into a formally U(1)
3SU(2) gauge symmetric form by setting

Am
2s3→Am

a 1

2
sa ~2.10!

in H of Eq. ~2.2! and by identifying the SU~2! gauge field
Am

a [(Am
1 ,Am

2 ,Am
3 ) with

Am
1 52nSASdm0 , Am

2 50, Am
3 52A8m

2 . ~2.11!

This SU~2! gauge symmetry, of course, is only superfici
The system has a global pseudospin SU~2! symmetry in the
ideal limit nSAS→0 andVp

2→0 with A8m
250; it gets bro-

ken to U~1! either fornSAS50 or for Vp
250.

The ‘‘interlayer’’ gauge invariance has to do with inte
layer out-of-phase U~1! rotations induced by thez variation
of u(x;z), i.e., u2}]zu(x;z). They are thusdistinct from
global U~1! rotations~with constantu2) about theS3 axis,
which have to do with charge conservation. As a result,
tunneling interactionH tun}S81(x) defined in terms ofc8(a)

is gauge invariant but transforms covariantly~i.e., breaks in-
variance! under global U(1)2 rotations.~This in turn implies
that there is no loss of generality in choosingH tun}S81.!

Let us now project our system onto the Landau levels.
uN&5un,y0& denote the Landau levels of a freely orbitin
electron of energyvc(n1 1

2 ) with n50,1,2, . . . , and y0

5,2px , wherevc[eB/M and,[1/AeB; we frequently set
,→1 below. We first pass intoN5(n,y0) space via a unitary
transformationC(x,t)5(N^xuN&Fn(y0 ,t) and, by a subse-
quent unitary transformationFn(y0 ,t)→Cm(y0 ,t), make
the one-body Hamiltonian diagonal in level indices; the r
evant transformation is constructed in powers ofAm

1 andAm
a .

The resulting projected Hamiltonian is an operator inr
[(r 1 ,r 2)5( i ,2]/]y0 ,y0) with uncertainty @r 1 ,r 2#5 i ,2.
Such a systematic procedure of projection, develop
earlier,23,28 is readily adapted to the present SU~2! case. As a
matter of fact, fornSAS!vc the result is essentially the
same as in the single-layer case.

Let us focus on the lowest Landau leveln50 in a strong
magnetic field. The projected one-body Hamiltonian
O(A2) readsH̄cyc1H̄em1H̄ tun with
2-2



u
on

n

v-

-

etic
es

the

ll

tron

s,
ons
ive,
both
be-
r-
the
ll

he
rther
the

yer
yer
the

e

l

at

ELECTROMAGNETIC CHARACTERISTICS OF BILAYER . . . PHYSICAL REVIEW B67, 155322 ~2003!
H̄cyc5 (
a51

2

(
p

H vc

2
dp,01U p

(a)J r̄2p
(a) ,

H̄em5(
p

$xp
1r̄2p12xp

2S̄2p
3 %,

H̄ tun52nSASS̄p50
1 , ~2.12!

with xp
65(A0

6)p1(1/2M )(A12
6 )p and A12

6 5]1A2
62]2A1

6 ;
(Am

6)p stands for the Fourier transform ofAm
6(x). Here the

projected chargesr̄p5 r̄p
(1)1 r̄p

(2) , S̄p
35 1

2 ( r̄p
(1)2 r̄p

(2)), etc.,
are defined by

r̄p[E dy0 C0
†~y0 ,t !e2~1/4!p2

e2 ip•rC0~y0 ,t !, ~2.13!

S̄p
a[E dy0C0

†~y0 ,t !e2~1/4!p2
e2 ip•r

sa

2
C0~y0 ,t !,

~2.14!

where the two-spinorC0, defining the true lowest Landa
level, obeys the canonical commutation relati
$C0(y0 ,t),C0

†(y08 ,t)%5d(y02y08). The U p
(a) denote the

contributions quadratic inAm
(a) , and are given~for p50) by

U pÄ0
(a) 5*d2x U (a)(x) with

U (a)5
1

2
Am

(a)Demnr]nAr
(a)2

1

2vc
Ak0

(a)DAk0
(a)1•••,

~2.15!

whereD5vc
2/(vc

21] t
2); Amn5]mAn2]nAm , andemnr is a

totally antisymmetric tensor withe01251. Here we have re-
tained terms toO(¹2/vc); see Ref. 23 for an expressio
exact to all powers of]k .

The charges (r̄p ,S̄p
a) obey an SU~2!3W` algebra20

@ r̄p ,r̄k#522is~p,k!r̄p1k , @ r̄p ,S̄k
a#522is~p,k!S̄p1k

a ,

@S̄p
a ,S̄k

b#5c~p,k!i eabcS̄p1k
c 2dab

i

2
s~p,k!r̄p1k ,

~2.16!

where

s~p,k!5sinS p3k

2 De~1/2!p•k, ~2.17!

c(p,k) is given bys(p,k) with sin→cos. It is important to
note here that the projected charges themselves, (r00

(a))p

5 r̄p
(a)1n r̄p

(a) , differ slightly23 from r̄p
(a) by

Am
(a)-dependent correctionsn r̄p

(a) , which derive from the
field-dependent projection employed.~See the Appendix.! As
a result, the projected Coulomb interaction

H̄C5
1

2 (
p

~Vp
1r̄2pr̄p14Vp

2S̄2p
3 S̄p

3!1nH̄C ~2.18!

acquires a field-dependent piecenH̄C, which plays a crucial
role, as we shall see.
15532
The dynamics within the lowest Landau level is now go
erned by the HamiltonianH̄5H̄C1H̄cyc1H̄em1H̄ tun. Sup-
pose now that an incompressible many-body stateuG& of
uniform density (rav

(1) ,rav
(2)) is formed. Then, setting

^Gur̄Àp
(a)uG&5rav

(a)(2p)2d2(p) in H̄em one obtains the effec
tive action toO(A2):

Scycl52E dtd2x(
a

rav
(a)U (a)~x!, ~2.19!

which summarizes the response due to the electromagn
inter-Landau-level mixing, i.e., due to the cyclotron mod
~one for each layer!.

The electromagnetic interaction inH̄ also gives rise to
intra-Landau-level transitions. For single-layer systems
intra-Landau-level excitations are only dipole inactive11 ~i.e.,
the response vanishes faster thank2 for k→0) as a result of
Kohn’s theorem,29 and the incompressible quantum Ha
states show universalO(k) and O(k2) long-wavelength
electromagnetic characteristics determined by the cyclo
mode alone.23

The situation changes drastically for bilayer system
where both in-phase and out-of-phase collective excitati
arise. In-phase excitations generally remain dipole inact
as a consequence of invariance under translations of
layers. Out-of-phase collective excitations, in contrast,
come dipole active10,17 ~in the absence of interlayer cohe
ence! and modify the electromagnetic characteristics of
bilayer systems substantially.23 Incompressible quantum Ha
states well described by the Halperin (m,m,n) wave
functions,12 in particular, belong to this class of states. T
presence of interlayer coherence is expected to cause fu
substantial changes in the systems, which we study in
following section.

III. INTERLAYER COHERENCE AND
ELECTROMAGNETIC RESPONSE

In this section we study how the presence of interla
coherence affects the electromagnetic properties of bila
systems. The particular set of states of our concern are
ground states at fillingn51/m for odd integersm, believed
to have total pseudospinS5Ne/2, with their orbital wave
functions well approximated by the Laughlin wav
functions9 or Halperin (m,m,m) wave functions.12 For defi-
niteness we shall concentrate on then51 ground state, but
our analysis will apply to other cases as well.

Suppose first that the SU~2! breaking Coulomb interaction
Vp

25(e2/4e)d1O(d2) is negligibly weak~i.e., d→0 and
nSASÞ0). Then then51 ground state is given by the tota
pseudospinS5Ne/2 eigenstateuG0&, fully polarized in the
S1 direction via the tunneling interaction so th

^G0uS̄p50
1 uG0&5 1

2 Ne , or

^G0uS̄p
auG0&5da1

1

2
r0dp,0 , ^G0ur̄puG0&5r0dp,0 ,

~3.1!
2-3
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where r05rav
(1)1rav

(2) and dp,0[(2p)2d2(p). We suppose
that thisSp50

1 5Ne/2 eigenstateuG0& continues to be a good
approximation to then51 ground state asVp

2 , kept weak, is
turned on. It has been argued20 and supported
experimentally22 that such uG0& well approximates the
ground state fornSAS→0 with Vp

2Þ0, where interlayer co-
herence^S1&Þ0 is realized spontaneously witĥS3&50
maintained so as to reduce the interlayer charging energ

Further characterization of thisSp50
1 5Ne/2 state is given

by the static structure factors

^G0uS̄p
a8S̄k

b8uG0&5dp1k,0~da8b81 i ea8b81!
1

4
r0e2~1/2!p2

,

^G0ur̄pr̄kuG0&5r0
2dp,0dk,0[Rp,k ,

^G0ur̄pS̄k
auG0&52^G0uS̄p

1S̄k
auG0&5da1

1

2
Rp,k , ~3.2!

whereb8 runs over (2,3). These relations are readily deriv
by rewriting r̄p andS̄p

a in terms of the eigenspinors (cS ,cA)
of S1, and by noting thatuG0& involves nocA component~of
S152 1

2 ). For the partially filledcS Landau level ofn
51/3,1/5,••• one has to retain in Rp,k a term11

r0dp1k,0s̄
1(p) with s̄1(p);O(p4), which vanishes in the

presentn51 case.
The correlations characteristic of interlayer orderS̄p50

1

5Ne/2 are involved in the structure factor

s̄2~p!5
2

Ne
^G0uS̄2p

3 S̄p
3uG0&5

1

2
e~21/2!p2

, ~3.3!

which is nonvanishing forp→0, in contrast to the case o
the Halperin (m,m,n) states where17,10 s̄2(p);p2.

Let us now study low-energy excitations over this grou
state. With polarization̂G0uS̄p50

1 uG0&5Ne/2, the Coulomb

interactionH̄Coul has an~approximate! U~1! symmetry about
the S̄1 axis, yielding two Nambu-Goldstone~NG! modes
$Vp

2(t),Vp
3(t)%. These NG modes constitute the low-ener

collective excitations in the system, and one can employ
technique20 of nonlinear realizations of the pseudospin sy
metry for their description. To this end letC0

cl(y0 ,t) denote a
classical configuration or the ground-state configurati
characterized by the expectation values in Eqs.~3.1! and
~3.2!. Let us setV@r ,t#[(a(sa/2)(pVp

a(t)eip•r ~with a
52,3) and write the electron fieldC0 in the form of a small
rotation in pseudospin fromC0

cl ,

C0~y0 ,t !5e2 iV[ r ,t]C0
cl~y0 ,t !. ~3.4!

Here the NG modes serve as pseudospin textures in w
the local pseudospin alignment varies slowly with positio
Rewriting the Lagrangian in favor ofC0

cl and Vp
a , and re-

placing the products of (C0
cl)† and C0

cl by the expectation
values~3.1! and~3.2! then yields a low-energy effective La
grangian for the NG modes (V2,V3).

To facilitate such transcription it is convenient to expre
Eq. ~3.4! in operator form
15532
d
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s

C0~y0 ,t !5PC0
cl~y0 ,t !P 21,

P5eiV•S̄cl
, V•S̄cl[(

p
e~1/4!p2

Vp
a~S̄2p

cl !a. ~3.5!

Here (S̄p
cl)a stand forS̄p

a with C0 replaced byC0
cl , and obey

the same algebra~2.16! as S̄p
a . Repeated use of the algeb

then enables one to expressS̄a5P(S̄cl)aP 21 and r̄a

5P( r̄cl)P 21 in powers ofr̄cl and (S̄cl)a. @Remember that
the characterization~3.1! and ~3.2! from now on applies to
(S̄p

cl)a andr̄p
cl .# In particular, for their expectation values on

obtains toO(V2),

^r̄p&5r0Fdp,01
1

2
gp(

k
sinS p3k

2 D e1a8b8Vk
a8Vp2k

b8 G ,
^S̄p

1&5
r0

2 Fdp,02
1

2
gp(

k
cosS p3k

2 DVk
a8Vp2k

a8 G ,
^S̄p

2&5
r0

2
gpVp

3 , ^S̄p
3&52

r0

2
gpVp

2 , ~3.6!

where ^•••&5^G0u•••uG0& for short andgp5e2
1
4 p2

; a8
and b8 run over ~2,3!. These expressions suggest us to
name, following Moonet al.,20 (m2)p5Vp

3 and (m3)p5

2Vp
2 so that their x space representativesma(x)

5@m1(x),m2(x),m3(x)# stand for the pseudospin densi
@with normalization(a51

3 (ma)2'1 classically#. Actually it
is possible to generalize Eq.~3.6! to all powers ofma , if one
ignores their derivatives]kma :

^S̄1~x!&'
r0

2
cosumu, ^S̄2~x!&'

r0

2

m2

umu
sinumu, ~3.7!

wherem5@m2(x),m3(x)#; ^r̄(x)&'r0, etc.
Moon et al.20 earlier made such a pseudospin-texture c

culation and showed that the Coulomb interaction leads
the following low-energy effective Hamiltonian toO(V2)
andO(p2),

^H̄C&5(
p

H b@p#u~m3!pu21
1

2
rs

Ep2u~m2!pu2J , ~3.8!

with

rs5
1

8
r0(

p
Vp

11p2e~21/2!p2
5

e2

4pe,

n

16A2p
,

rs
E5rs$12A8/pd̂1~3/2!d̂21•••%,

b@p#5rs$~c0 /,2!1~c1 /, !upu1 1
2 ~11c2!p2%,

c0'd̂2, c1'2A2/pd̂2, c2'2A8/pd̂~12d̂2/3!,
~3.9!
2-4
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where we have used the pseudospin stiffnessrs as a common
factor and recorded some corrections in powers ofd̂[d/,;
rs

E is given by the same expression asrs with Vp
11→Vp

12.
SubstitutingC05e2 iV[ r ,t]C0

cl into the electronic kinetic
term ^C0

†i ] tC0& yields Berry’s phase,30 which turns into the
kinetic term of the NG modes

Lkin52
1

4
r0(

k
eab1V2k

a ] tVk
b ~3.10!

to O(V2). This shows thatV252m3 is canonically conju-
gate toV35m2.

Substitution of Eqs.~3.6! and~3.7! into H̄em1H̄ tun yields
the coupling of the NG modes to external fields,^G0uH̄em

1H̄ tunuG0&5*d2xHA with

HA5r0H A0
11

1

2
x1e i j ] im2] jm31x2gm3

2
1

2
nSAScosumuJ ~3.11!

to O(m2) andO(]2), wherem5(m2 ,m3), g5e(1/4)¹2
, and

x65A0
61(1/2M )A12

6 .

Similarly, the field-dependent Coulomb interactionnH̄C

leads to the effective interaction

^nH̄C&52rs
EE d2x$m2] jAj

21~Aj
2!21•••%; ~3.12!

see the Appendix for details.
Collecting terms so far obtained yields the effective act

Seff
coll5*dtd2xL coll with

L coll5
r0

2
m3~ṁ222A0

2!2m3~b@p#1 1
4 r0nSAS!m3

2
1

2
rs

E~] jm222Aj
2!21

1

2
r0nSAScosm2

2r0A0
1~11 1

2 e i j ] im2] jm3!, ~3.13!

wherep→2 i¹ in b@p#. Here we have simplified the resu
slightly by retaining only terms that contribute to theO(¹2)
electromagnetic response eventually. TheL coll is essentially
the Lagrangian of a nonlinear sigma model that supp
classical topological excitations,31,32 Skyrmions, which con-
stitute the low-lying charged excitations of the system;
Eq. ~5.3! in Sec. V. Note that Eq.~3.13! correctly involves
the topological charge density32 (r0/2)e i j ] im2] jm3, which
implies that the Skyrmions carry electric charge of a multi
of ne.

Let us here focus on the neutral collective excitations
scribed by the fieldm2 or m3. Eliminating m3 from L coll

yields the Lagrangian of the neutral fieldm2
15532
n

ts

e

-

L m2

coll5
1

2
rs

EF 1

v2 ~] tm222A80
2!22~] jm222A8 j

2!2G
1

1

2
r0nSAScosm2 , ~3.14!

with

v252~rs
E/r0

2!~4b@0#1r0nSAS!,

2A8m
252Am

22]mG'd~]zAm2]mAz!. ~3.15!

Here we have indicated explicitly thatAm
2 so far used actu-

ally stands forA8m
2 ; we have also isolated ther0A0

1 term
that detects the charge of the ground stateuG0&.

This collective modem2 gives rise to an electromagnet
response of the form

L em
coll52rs

E~Aj 0
2DAj 0

2 2v2A12
2DA12

2 !

1r0nSAS~A80
2DA80

22v2A8 j
2DA8 j

2! ~3.16!

in compact notation, whereD51/$vp
22( i ] t)

2% and

vp
25H nSAS1

4

r0
b@p#J H nSAS1

2rs
E

r0
p2J ~3.17!

with p→2 i“. Here we have recoveredb@p# to obtain the
dispersion more accurately. In terms of the field strength
three-dimensional space one can writeL em

coll as

L em
coll'

1

2
rs

Ed2~]zEiD]zEi2v2]zB'D]zB'!

1
r0

4
nSASd

2~E'DE'2v2BiDBi! ~3.18!

in obvious notation.
The response due to the cyclotron modes in Eq.~2.19! is

generally suppressed by powers of 1/vc compared with the
collective-mode contribution, except for the Hall-drift o
Chern-Simons term

L A2
cyc

52
r0

2
Am

2
vc

2

vc
22v2

emnr]nAr
21•••, ~3.19!

which thus combines withL em
coll to form the principal out-of-

phase response of the system at long wavelengths. Note
that the collective mode gives rise to no such Hall-drift ter
unlike for the (m,m,n) states.23 This implies that no appre
ciable interlayer Hall drag is expected for the presentn51
state, in contrast to the case33 of the ~gapful! (m,m,n) states.
~Note that the cyclotron modes alone yield no interlayer H
drag.!

Some comments are in order here. First, the effective
grangian ~3.14! essentially agrees with that derive
earlier20,27 if one setsm25m̂22Gz , where m̂2 is taken to
undergo the gauge transformationdm̂252u2. The earlier
derivations focused on the spectrum of the low-lying mo
and its coupling to weak external electromagnetism was o
guessed on the ground of gauge invariance. A direct der
2-5
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tion of such electromagnetic coupling, as shown in our
proach, is quite nontrivial, since it requires proper accoun
the Landau-level projection, especially the field-depend
Coulomb interaction.

Second, in our approach electromagnetic gauge inv
ance is kept exact at each step of discussion by use o
gauge-covariant fieldsc8(a)(x) andA8m

2(x) in Eq. ~2.9!. Re-

call that the pseudospin densitiesS8̄a are gauge invarian
while S1 andS2, defined in terms ofc (a), are gauge varian
so that S̄11 iS̄25eiGz(S8̄11 iS8̄2). Our characterization o
interlayer coherencêG0uS8̄p50

1 uG0&5 1
2 Ne therefore is a

sensible gauge-invariant statement and, as a result, th
lated order parameters

^S̄p50
1 &5

1

2
Ne cosGz , ^S̄p50

2 &5
1

2
Ne sin Gz ,

~3.20!

rotate in the pseudospin 1-2 plane under electromagn
gauge transformationsGz→Gz12u2, or under the action of
in-plane magnetic fields] jGz . In other words, a naive choic

^S̄p50
a &}da1 is not physically acceptable unless layer spac

d→0. This is the real reason why we have restarted w
c8(a)(x) andA8m

2(x) after Eq.~2.9!.
We have handled two NG modes (m2 ,m3) associated

with SU(2)→U(1) breaking. They, being gauge invarian
are neutral physical fields. They, however, happen to for
pair of canonical conjugates and thus actually describe o
one physical modem2. Note here that, sincem2;V3 , a
shift m2→m21const induces a rotation about theS3 axis so
that

i @S̄p50
3 ,m2#51Þ0. ~3.21!

This shows thatm2 can also be interpreted as an NG mo
associated with the spontaneous breaking of the global U~1!
symmetry about theS3 axis.15,16 Because this global U(1)2

is only approximate,m2 is a pseudo-NG mode and acquir
a finite energy gap}nSAS. In the absence of tunnelin
(nSAS50 but Vp

2Þ0), the U(1)2 becomes exact but spon
taneously broken; the energy gap closes andm2 disperses
linearly.

Unlike the global U(1)2, the gauged U(1)2 or U(1)em is
kept exact, as seen clearly from the gauge-invariant resp
~3.16!. This implies, in particular, that there is no Anderso
Higgs mechanism or no Meissner effect working in t
present bilayer system. Here we see a peculiar instanc
spontaneous breaking of a global symmetry with the rela
gauge symmetry kept exact; this derives from the spe
character of the ‘‘interlayer’’ gauge invariance remarked
Sec. II.

Finally, one can use the effective theory to discuss
tunneling phenomena. The equation of motion ofm2 implies
the conservation law for the three-current2]L m2

coll/]Am
2

5 j m
(1)2 j m

(2) , from which one can read off the tunneling cu
rent j z

tun;2] tr
(1) as
15532
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j z
tun5

1

2
er0nSASsinm2 . ~3.22!

Adding a source termazj z
tun to L m2

coll and calculating the re-

sponse yields the tunneling current

j z
tun5

1

2
er0nSAS

1

v22vp
2
] tVz ~3.23!

in response to an alternating interlayer voltageVz522A08
'2dE' .

IV. RELATION TO THE SINGLE-MODE APPROXIMATION

In this section we present a derivation of the electrom
netic response~3.16! by an alternative means, the singl
mode approximation~SMA!. Let us first suppose thatVp

2

50, in which case the ground state is exactly given by
S8̄p50

1 5Ne/2 eigenstateuG0& in Eq. ~3.1!.
We consider the phonon-roton mode coupled toA0

2 and

represent it asufk
2&;S̄k

3uG0&. The basic quantity in the SMA

is the static structure factors̄2(k);^fk
2ufk

2&, which, in
view of Eq. ~3.3!, is given by

s̄2~k!5~1/2!e~21/2!k2
. ~4.1!

To determine the collective-excitation spectrum in t
SMA one considers the~projected! oscillator strength

f̄ 2~k!5~2/Ne!^G0uS̄2k
3 @H̄,S̄k

3#uG0&, ~4.2!

which is calculable10,17 by the use of algebra~2.16!. With
H̄ tun52nSASS8p50

1 included, it is given toO(k2) by

f̄ 2~k!5
1

2
e~21/2!k2

@nSAS12~rs
E/r0!k21•••#. ~4.3!

Here the coefficient of thek2 term derives from the genera
expression

1

2 (
p

p2Vp
12$s̄2~p!2 s̄1~p!% ~4.4!

upon substitution ofs̄2(p) above;s̄1(p)50 for n51. Satu-
rating f̄ 2(k) with the single modeufk

2& then yields the SMA

excitation spectrumek
25 f̄ 2(k)/ s̄2(k) or

ek
25nSAS12~rs

E/r0!k21•••. ~4.5!

This agrees with the spectrum derived by the pseudos
texture calculation in Eq.~3.17! with Vp

2→0.
To calculate the electromagnetic response one may re

to the previous SMA analysis,23 which, though developed
originally for the case of a dipole-active responses̄2(k)
5(c2/2)k21•••, is adapted to the present case as well: O
may simply replace 2s̄2(k)ek

2 in Eq. ~3.20! of Ref. 23 by

2 f̄ 2(k)5nSASe
2(1/2)k2

12(rs
E/r0)k2 and c2e0

2 in Eq.
~3.28! of Ref. 23 by Eq.~4.4! or 2rs

E/r0. Then our result
2-6
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~3.16! is correctly reproduced, apart from thev2A12
2
•••A12

2

and v2A8 j
2
•••A8 j

2 terms, which, beingO(v2);O(@H̄C#2)
higher in the Coulomb interaction, were not covered in
previous SMA treatment.

It is possible to include the effect ofVp
2 and make the

agreement complete if one appeals to the low-energy ef
tive theory in Eq. ~3.13!. With the identification S̄p

3

5(r0/2)gp(m3)p , as implied by Eq.~3.6!, one can calculate
s̄2(k) from the vacuum expectation valu
}(gk)

2^0u(m3)Àk(m3)ku0&. The task is thus reduced to de
termining the uncertaintŷ 0u(m3)2u0& for a collection of
harmonic oscillators described by the Hamiltonian

Hcoll'(
k

1

4
@g(12)u~m2!ku21g(11)u~m3!ku2#, ~4.6!

where g(12)[r0nSAS12rs
Ek2 and g(11)[r0nSAS14b@k#.

Via rescaling (m3)2(r0/2)Ag(11)/g(12) is seen to attain the
minimum uncertainty (\/2)*d2x, yielding

s̄2~k!5
1

2
e~21/2!k2Ag(12)/g(11). ~4.7!

The f̄ 2(k) in Eq. ~4.3!, being already exact toO(Vp
2), re-

mains unmodified. The excitation spectrum and the respo
thereby agree with those in Eq.~3.16!. The s̄2(k) above
neatly summarizes the effect of squeezing34 in pseudospin of
the ground state due to two competing sources of SU~2!
breaking,Vp

2 and nSAS. It is seen from^(m3)2&/^(m2)2&
5g(12)/g(11)}@ s̄2(k)#2 that ^(m3)2& gets rapidly squeeze
with decreasingnSAS, i.e., in passing from the tunnelin
regime to the correlation regime~where s̄2(k)}uku for
nSAS50). It is an advantage of the pseudospin-textu
theory that it accommodates different types of correlation
a single framework.

V. COMPARISON WITH THE CHERN-SIMONS
APPROACH

In this section we examine the bilayer system within t
Chern-Simons theory. For then51 quantum Hall state, a
naively described by the (1,1,1) state, one introduce
-
r-

15532
e

c-

se

e
n

a

single CS field16 to convert the electron fieldsc8(a) @of Eq.
~2.9!# into the composite-boson fieldsccb

(a) .

Let us setccb
(a)(x)5Ar (a)(x)eih(a)(x), rewrite the La-

grangian in favor ofr65r (1)6r (2) and h65h (1)6h (2),
and expand it around the mean fieldr1(x);r0. Then the
(r1,h1) sector, coupled toAm

1 , is seen to be essentially th
same as in the single-layer case. The (r2,h2) sector, on the
other hand, is sensitive to the SU~2! breaking interactions
}Vp

2 or nSAS. Integration overr2 leads to a low-energy
Lagrangian, that takes essentially the same form asL m2

coll in

Eq. ~3.14! with m2→h2, apart from some differences i
scale.

The difference is subtle for the (]0m222A08)
2 term

v2/rs
E↔4Vp50

2 12nSAS/r0 . ~5.1!

These coincide ifVp50
2 readsVp50

2 2(1/r0)(pVp
2e2(1/2)p2

;
this shows the importance of Landau-level projection,
which no explicit account is taken in the CS approach. F
the (] jm222Aj8)

2 term the discrepancy is

rs
E↔~r0/4M !5vc /~8p!. ~5.2!

Here we see that the CS approach attributes the pseudo
stiffness improperly to inter-Landau-level processes. Anot
difficulty is that an important Hall-drift response~3.19! is
missing from the CS theory.

All these subtleties derive from the fact that the CS a
proach, because of the lack of the Landau-level project
fails to distinguish between the cyclotron modes and the c
lective modes. The flux attachment in the CS approach pr
erly introduces some crucial correlations among electro
but unfortunately not all of them.

Finally, it will be instructive to refer to the full effective
Lagrangian to make it clear what is missing. Let us emp
the decomposition31 ccb

(a)(x)5Ar(x)Za(x) in terms of a
CP1 field Z5(Z1,Z2)tr with Z†Z51, particularly suited for
studying the dynamics of Skyrmions and vortices. Maki
use of the dual transformation of Lee and Zhang2 then en-
ables one to rewrite the Lagrangian in terms ofZa and a
vector fieldbm ~representing the cyclotron mode coupled
Am

1):
L CS52~Am
B1Am

12 iZ†DmZ!~r0d0m1emnr]nbr!1
p

n H bmemnr]nbr1
1

vc
~bk0!2J 2

1

2
K$uDkZ

au21~Z†DkZ!2%

1
1

2
r0nSASZ

†s1Z1•••, ~5.3!
where only the principal terms are shown;Dm5]m

1 iAm
2s3 andbk05]kb02]0bk . The last two terms, consti

tuting a CP1 nonlinear sigma model with a breaking inte
action, essentially coincide with ourL coll in Eq. ~3.13! if one
replaces the stiffnessK5r0 /M in this CS theory byK
54rs @in accordance with Eq.~5.2! # and includes some
SU~2! breaking terms coming fromVp

2 . The full effective
Lagrangian is obtained by supplying to this modifiedL CS the
2-7
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missing cyclotron-mode contribution with another vec
field bm

2 :

L 252Am
2emnr]nbr

21
p

n Fbm
2emnr]nbr

21
1

vc
~bk0

2 !2G1•••.

~5.4!

VI. SUMMARY AND DISCUSSION

In this paper we have studied the electromagnetic cha
teristics of bilayer quantum Hall systems in the presence
interlayer coherence and tunneling by means of
pseudospin-texture effective theory and the single-mode
proximation~SMA!. It will be clear from the analysis that
proper choice of the fields to start with, as well as prop
account of the Landau-level mixing, is crucial for deriving
long-wavelength effective theory in gauge-invariant for
We have seen from the response that electromagnetic g
invariance is kept exact, this, in particular, implying the a
sence of the Anderson-Higgs mechanism or the Meissne
fect in bilayer systems. The response also shows tha
appreciable Hall drag is expected for then51 state, in con-
trast to the case of the gapful (m,m,n) states. We have fur
ther seen that the identification of the low-lying neutral c
lective mode with a~pseudo! Nambu-Goldstone mode offer
a peculiar instance of a spontaneously broken~approximate!
global symmetry with the related gauge symmetry kept
tact. Our approach offers a critical look into the Cher
Simons theories, and we have observed that the lack of
Landau-level projection is the principal source of subtlet
inherent to them.

The idea underlying our approach is to explore the qu
tum Hall systems via their electromagnetic response, wh
in some cases is calculable without the details of the mic
scopic dynamics. An immediate example is the case
single-layer systems where it is generally known that
tintra-Landau-level collective excitations are dipole inactiv
the leading long-wavelength response of the single-layer
tems toO(k2), therefore, is governed by the cyclotron mo
alone. The second example is offered by bilayer syste
~without interlayer coherence!, for which one can construc
from the response an effective gauge theory properly rea
ing the SMA spectrum of collective excitations. The thi
example is the analysis of the effects of interlayer cohere
and tunneling given in the present paper. These would c
bine to enforce again the fact that incompressibility is
key character of the quantum Hall states and prove
studying the response offers not only a fresh look at
15532
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quantum Hall systems but also a practical means for c
structing effective theories without referring to compos
bosons and fermions.
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APPENDIX: FIELD-DEPENDENT COULOMB
INTERACTION

In this appendix we display some expressions related
the field-dependent Coulomb interactionnH̄C. The charge
densitiesrp

(a) projected unto the lowest Landau level re

r̄p
(a)1n r̄p

(a) with

n r̄p
(a)5(

k
up,k

(a)r̄p2k
(a) 1(

q,k
wp,q,k

(a) r̄p2q2k
(a) 1•••,

up,k
(a)5 i e0 jkpj~Ak

(a)!k1•••,

wp,q,k
(a) 52

1

4
p2(

q,k
~Ai

(a)!q~Ai
(a)!k1•••, ~A1!

where we have retained only terms with no derivatives act
on Am

(a) , the portion relevant to our discussion. They gi

rise to the field-dependent piecenH̄C in the Coulomb inter-
action. See Ref. 23 for the explicit form of theO(A) contri-
bution, which involves operator products of the form

Ī p,k
1 5$r̄2p ,r̄p2k%, Ī p,k

2 52$r̄2p ,S̄p2k
3 %, ~A2!

and those withr̄↔2S̄3 in the above.
In Sec. III we evaluate the expectation value^nH̄C&

5^G0unH̄CuG0& to derive an effective electromagnetic co
pling following from nH̄C. A direct calculation toO(V)
shows that̂ Ī p,k

2 &52^ Ī k2p,k
2 &}VÀk

3 , while ^ Ī p,k
1 &}dk,0 and

^S̄2p
3 S̄p2k

3 &}dk,0 fail to contribute. As a result, theO(A)
coupling is written as

r0(
p,k

up,k
2 Vp

12gpgk2psinS p3k

2 DV2k
3 . ~A3!

The calculation of theO(A2) term is somewhat tedious
though straightforward, eventually leading to Eq.~3.12!.
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