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Bethe-Salpeter equation for quantum-well exciton states in an inhomogeneous magnetic field
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The trapping of excitons in a single quantum well due to the presence of a strong homogeneous magnetic
field and a weak inhomogeneous cylindrical symmetric magnetic field, created by the deposition of a magne-
tized disk on top of the quantum well, both applied perpendicular toc#igolane of confinement is studied
theoretically. The numerical calculations are performed for GaAS4al_,As quantum wells and the forma-
tion of bound exciton states with nonzero values for the center-of-mass exciton wave function only in a small
area is predicted.
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[. INTRODUCTION ond, a phenomenon, known as magnetic catalysis, which
cannot be described by using the Scinger-equation-based
The purpose of the present paper is to apply the nonreleapproach, has been predicted in field theories such as QED
tivistic Bethe-SalpetefBS) approach to the problem of ex- and quantum chromodynamitsThe magnetic catalysis
citons in a single quantum welBQW), trapped by a cylin- manifests itself as a generation of an energy gap in the spec-
drical Symmetric inhomogeneous magnetic field. The ﬁrsltrum of fermions in an external constant magnetic field for
attempts to calculate the energy and the wave function ofny arbitrary weak attractive interaction between fermions.
excitons in a quantum well, trapped due to an inhomogeQUite recently, the nonrelativistic BS equation for two-
neous magnetic field, were based on the Sdimger equa- particle electron-hole bound states in semiconductor quan-
tion for magnetoexcitons.The main difference between tum wells in the presence of a homogeneous magnetic field
those papers and our work is that we assume the high-fielyas solved, and it was shown that the phenomenon of a
regime (when exciton cyclotron energy is much larger thanmagnetic catalysis also takes place in exciton physics: the
the Coulomb energy All calculations in Ref. 1 are done homogeneous magnetic field induces an energy gap in the
assuming the weak-field regime, and therefore, all magnetic@xciton spectrunfi. Third, calculated from the Schuenger
field-dependent terms in the exciton Hamiltonian can beeduation in-plane effective exciton mass in SQW or coupled

treated within the perturbation theory. If we define the trap-duantum wellSCQW) does not depend on the electron and
ping energy as the difference between the exciton energy iRole effective masses. For example, let us consider the case
the inhomogeneous applied magnetic fiébdnsists of ho- 0of CQW with finite QW widthsL,. According to the
mogeneous and inhomogeneous f|§3m$d the energy of the Ref. 7, in strong magnetic fields the effect of finite widths
exciton in the homogeneous applied field for the same excils wery weak. Thus, one can use the expression for the
ton state, then in the weak-field case the trapping energy i§-plane exciton mass, derived for pure two-dimensional
positive! That means the exciton states are unbound excitofagnetoexcitond:

states and a large part of the center-of-mass exciton wave

function is extended into a sufficiently large region of space. Mg

In the high-field regime case, which is under considerationin =~ Mef(B)= 12 42 q 54

this paper, we can applfy) the lowest Landau levelLL) 14+ — |exg — | erfd — | — \ﬁ_
approximation andii) treat the Coulomb interaction by per- 12 212 NA |

turbation theory. Under those assumptions we have calcu-

lated a negative trapping energy. This corresponds to thehered is a distance between the centers of the two layers,
bound exciton states. For the bound states the center-of-mabks = 2%%¢,%%/\Jwe?l, and |=\/ch/eB is the magnetic
exciton wave function has nonzero values only in a suffi-length. In a magnetic field of 4 T, the calculated in-plane
ciently small area. The other important difference betweenmass in the case of CQW witty=12.5 andd=11.5 nm is

the papers cited in Ref.1 and our work is that we apply BaM¢s(4 T)=0.29m,, while the measured value in
approach instead of using the well-known Salinger equa- GaAs/Ab 3Ga AS CQW isM¢;=0.58m,.” This discrep-

tion for magnetoexcitons. In view of the fact that usually theancy definitely indicates that the Schimger approach can-
excitons in the presence of a magnetic field are described hyot provide the correct value of the in-plane exciton mass. In
solving the corresponding Schiioger equation, there may contrast, according to the BS approach the excitons in SQW
be a need to clarify the motivations for our approach. Firstacquire a finite in-plane mass not only due to the Coulomb
the great progress in possibilities of modern experimentainteraction, but also due to an additional effective interaction
technique in obtaining extremely high magnetic fields re-Vq¢; as well(see Ref. &

quires more accurate calculations and obviously, one pos- The layout of the paper is as follows. In the following
sible way to improve the two-particle bound-state-energysection, we derive the BS equation for magnetoexcitons in
calculations is to use the powerful methods, developing imquantum wells in the presence of a strong external homoge-
the framework of quantum electrodynami@@ED)?>~* Sec-  neous magnetic field and a weak cylindrical symmetric mag-
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netic field, created by a magnetized disk on top of a quantursimplify the above BS equation, we assume the so-called
well. In Sec. Ill, some numerical results for the trappingadiabatic approximation, which is correct in the case when
energy and the corresponding center-of-mass wave functiotine exciton radius is smaller than the length scale over which
of magnetoexcitons in a GaAs/&a, _,As single quantum the magnetic field varies. In the adiabatic approximation the
well are presented. vector potential can be expanded imtgower series:

Il. BETHE-SALPETER EQUATION FOR EXCITONS IN A A(re) =A(Rzac, r)~A(r) ac,r-[VRAR)]+---.
QUANTUM WELL IN A NONHOMOGENEOUS

In the adiabatic approximation the solution of the BS
MAGNETIC FIELD

equation is found by separation of variables:

We consider the electron-hole bound states in the pres-

ence of an inhomogeneous magnetic field in a quantum well W(re,ze,t13ry,2,,12)

of width L made with direct-gap semiconductor with nonde- e

generate and isotropic bandg(k)=Eg4+ k?/2m. and =exp{ —|[—r-A(R)+ E(acty+a,ty) ]
E,(k)=k?/2m, [E.(k) and E,(k) are the dispersion laws ¢

for electrons and holes, respectivetfy, is the semiconductor XD(R, It —t0) @o(Ze) do(Z,). 2)

band gapm. (m,) is the electronhole) effective mass and

we seth =1 throughout this papgrAccording to the BS HereE s the energy of the magnetoexcitons, anffz.) and
theory~* the electron-hole bound states are described by the¢o(,) are the wave functions corresponding to the first con-
BS wave functionW (r,,z,t1;f, .2, ,t5). This function de- finement electron and hole levels. After some tedious but

termines the probability amplitude to find the electron at theStraightforward calculations, which are almost the same as in
point (r.,z.) at the moment,; and the hole at the point Ref. 6, we find the following effective interaction for the BS
(r,,z,) atthe moment,. Thex-y plane has been taken to be Wave function:

the plane of confinement, andr, are the two-dimensional

(2D) electron and hole radiug,; andz, are the correspond- gq,(R'er d2r’f d2R 1 (R, IR’ I E)D(R' 1)

ing z coordinates. In what follows, we will neglect the Elliott

exchange interaction. In this approximation, the electron- —(E—En—E. —EYP(R.r 3

hole bound states are known as mechanical excitons. The BS ( 0c ™ Eoy "Eg) P(R1). ©
wave function of mechanical excitons(ry,z,t1;r2,2,,t2)  The HamiltonH is defined as follows:

satisfies the two-particle BS equation

2 1 4 H=-

exdiq-r]

1, 1 2_2we2J d?q f(q))
2M R 2u " e ) (2m)2 Iq

i E ! Vv eA
o omo| 'Vt G (re)

I__
at, 2me; 72

+ VAR 11 {VRAR)}H - Vi

e A [—V—EAr)r
C(ZC I(9t2 2mu | rU c (U Iey e
_R[r'{VRA(R)}]'Vr"_ omc LrlAR) 1]

1 4 _
_ZmUZa_Zi_UU(ZU) \I’(I’C,Zc,tl,l‘v,zv,tz) e2
+ SH{VRAR)}-T=1-{VRA(R)}]?
=—1lc(re,Ze ty;ry 2y t) W (re,Ze,t15r, 12y to). 2Mc
1) e?y? )
. . +—[r{VRA(R)}]?, e
Here,U ,(2) denotes the corresponding confinement poten- 2uc

tial, m,(m,) and m.,(m,,) are the electrorthole) in plane
andz-axis effective masses, respectively. The irreducible ker
nel I represents the Coulomb attraction between electron
and holes that constitute the excitons. The vector potential of
the magnetic field is denoted #(r). The magnetic field is loi(R.I:R’ r,.E):f
B(r)=rotA(r) and we have chosen the gauge such that ¢ ' "
divA(r)=0. In what follows, we will assume that the elec-
tron and hole motions along direction are quantized into d?Q
discrete levels due to the presence of confinement potentials. f (27)2
In our calculations, we take into account only the first elec-
tron Eq. and holeEg, confinement levels. +p-r—q-r'JHet(P,p; Q. E),

In what follow, we will use 2D relativer=r.—r, and )
center of massR=ar.+a,r, coordinates. Herea,,
=m,/M andM =m,+m, is the exciton in-plane mass. To where

where y=(m,—m.)/M andf(|q|) is the well-known struc-
ture factor. The effective potentidl has the form

d’p d?q d?p
(2m?) (2m)?) (2m)?

exp{i[P-R—Q-R’
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[Ec(p+ acP) —Ec(q+ aQ)]1Z(P,p;Q,0) — Z¢,(P,p;Q,q)
E—Eoc—Eoy—Ec(p+ @cP)—E,(q—@,Q)+10"
L [Eu(p—aP)—Ey(q- @,Q)1Z8(P,p;Q,q) — Z¢,(P.p;Q,q)
E—Eoe—Eg,— Ec(q+ Q) —E,(p— a,P)+10* '
where the following notations have been used:

Ieff(Pap;Qaq; E) -

(6

Z’é,,,(P,p;Q,q)=f derdzRexp{l[(Q—P)-R+(q—p)-r]}Zc,U(Q,q,r,VRA(R)),
ZQU<P,p;Q,q)=J erJ d?Rexp{I[(Q—P)-R+(q—p) - r1}Z.,(Q.q,r, VRA(R)),

Z:Q.01 TRA(R) = 1 —{a, 1 [VRA(R) - ae VRA(R) ] 1}-Q+ %|%r-[VRAm)]—[VRA(R)]-r] q

2

* ot VRAR)] T [VRA(R)Y,

Z,(Q,q,r,VrA(R)) {acr [VRAR)] = a,[VRA(R)] 1} Q+—C —f [VRA(R) ][ VRA(R)]-T ] q

2

" e, (e VRARIT e [VRAR)Y

In the gauge di&(R)=0 the following relation takgs pl_ace R 1, 1, 2.2 2q f(|ql)
[(VRA(R))-r—r-(VRA(R))]=rxB(R). We can simplify H=—WVR—2—Vr— f 2 Tq| exg1q-r]
Eq. (3) by applying the following transformation: M €o (2m)< 19

e e
+ e [BRIX V] = 51 [VRXB(R)]

e
q>(R,r)Hexp[—|Z—Cr-[vRA(R)]-r O(R,r). o
=~ . BR): (XY= r SUVRAR)}-T
This transformation leads to the appearance of terms. e?
They should be neglected in the adiabatic approximation. +f'{(VRA(R)}]+8 =
After this transformation the BS equatidB) assumes the K
form

[rxXB(R)]% 8

The Eq.(7) is our BS equation for the exciton wave func-
tion. In comparison to the well-known Schrodinger equation
used in Ref. 1, the above BS equation contains addi-

@(R’r)Jrf d2r’f dZR’exp<|7—er~[VRA(R)]~r] tionally: (i) an effecti\_/e nonlocal__interactiom_e_ff, which
2¢ depends on the exciton energyij) an additional term
—1ey/(4uc)[ (VRA(R))-r+r-(VRA(R))]. In the case of a

Xer(RIRTTTE) constant magnetic field the last term is equal to zero, but it

ye should be taken into account, when the inhomogeneous mag-
xexp{ —|—r [Vr/AR)]r ] (R",r") netic field is applied.
Let us first consider the case of a homogeneous magnetic
=(E—Ege—Eoy—Eg)®(R,1), (7)  field By=(0,0B,). The vector potential in Cartesian coordi-

natesR=(X,Y,0) in the gauge dik(R)=0 is given by
A(R)={—1/2B,Y,1/2ByX,0} and the relatiorr -[ VRA(R) ]
where =(1/2)ByXr takes place. In the case of a homogeneous
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magnetic field the exciton center of mass moves through . 1 (1 9 P 1 2
the crystal with a constant momentu@ and the wave H2=—2—‘——( —) 2}
function ®(R,r;t;—t,) can be written asb(R,r;t;—t,) ra o a0
=exp(Q-R)Py(r;t;—t,).Thus, the BS equation for the ex- 1eyB(R) 4
citon wave function®o(r;t;—t,=0)=®dy(r) assumes the olqr)— =R 2
form 2pc J0
e’B*R) ,
2 1 2me? [ d?gq f r
Q¥ 1 . 2T f q (|q|)exr[|q-r] 802
2M 2u (2m? |4
) f |eB(R)r[ o ) 1 {9 )
e _ley e Y Sin(0—¢) -5 — gCO ©)—
+MC(BO><r)-Q 2MC(BOXr)~Vr+8,uC2[r
ler dB(R) 1ey [ A(R) dA(R)
om0 O R T 2uc| TR AR
X Bo]? ®Q(r)+fdzr’Veff(r;r’;Q;E(Q))%(r’)
d
Xisin2(6— cp)]r—+co$2(0 ¢)]— ] (10
=[E(Q)—Eg—Eoc—Eq, | Po(r), 9) a6

whereJy(qgr) is the Bessel function.

To simplify the calculations we will assumé;) the ho-
mogeneous magnetic fieB, is a strong magnetic field and
mogeneous cylindrical symmetric magnetic field. In EIL)L| BO|>|B.1(R).|' Thoge assumprt]loncs alllowbu_s to apply tge
this case, it is more convenient to use cylindrical coordin- approximation and to treat the Nou omb interaction by
ates B=(X,Y,0)=(Rcose¢Rsing,0) and r=(xy.0) perturbation theory. By replacing(R)=~ B, in the term
=(r cosé,r sin 6,0). We assume that the cylindrical symmet-

where the exact form of the effective potential
Vess(r;r'; Q;E) is derived in Ref. 6.
From now on we limit ourselves to the case of an inho-

ric magnetic field is along the direction and can be written J er/f dzR’exp{ I Er . [VRA(R)]‘r]
as a sum of a homogeneous magnetic figjer (0,0B,) and 2c
a cylinder symmetric parB;(R)=(0,0B1(R)). The total X1y (R,IR1:E)
magnetic field is B(R)=By+B,(R)=(0,0B(R)), where effi T
B(R)=B,+B;(R) and R?=X?+YZ. In the case under ye o
consideration the vector potential is given by xexp —1o5 1 [Ve AR ] (@(RY,r),
A(R)={—BoY/2— A(R)Y/R,BoX/2— A(R)X/R,0)}, we obtain the following approximation for it:
where A(R) is a function of the cylindrical coordinat®. f d2r’ fdz J' exp{lK (R—R')}
From the relationB=rotA(R), we find B;(R)=dA/dR
+A(R)/R. L L
It can be proved that the following relation, X Ve, r";KSE)P(R' 1),
r-[VrRA(R)]=(1/2)Bo X1 +F, takes place, where the com- \ye gre looking for a solution of the BS equatiéh in the
ponents of the vectdF=(F,,F,,0) are form:

_ dA(R) A(R) Cspnf R, 1) =V (R)eXH —15¢) (T, 6;R),
Fi=—rsingcog6— o) iR —T COSg Sin(6— <p)—

Gam(T, 0;R)=exp(imé) nn(r;R),

dA(R
F,=r cos¢ cog 6— ¢) d(R ) —r sing sin(#— ¢) —=— ( ) b (1:R)= \/ n! [ r }'”ﬂ i r2
e 2+ on+ mHHR) " | 212(R)
In cylindrical coordinates the Hamiltoniaf®) assumes the r2
form - ,
412(R)
H=Hi+H,+Hj, where s=0+1+2, ..., n=01,..., m=0,x1,%2,...,
I(R)=c/eB(R) is the magnetic length, add{“'(x) are the
1 (1 49 3 1 52 Laguerre polynomials. The functiong,(r,6;R) are the
Hy=———{= _( _) — wave functions of the Hamiltonian of the 2D electron-hole
2M |RJR\ dR] R? pair in a perpendicular magnetic fieR(R):
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1(19( o\ 1 é*| 1eyB(R) 4
HZD:__ — | r— +__ - T A - A
2urar\ ar] (2 592 2uc 960
e’B*R) ,
+ ——Fr".
8uc?
The corresponding energy is W, (R)=Q(R){n

+3[|m|+ym+ 1]}, whereQ (R) = (eB(R)/uc) denotes the

distance between Landau levels. In the LLL approximation

s=n=m=0 and the wave function of the ground state is

given by
1 1 B
\/_I(R) '

In this approximation the center-of-mass motion wave func
tion ¥(R) satisfies the Schrdinger equation

I,2

q)s On=0m= O(R I’) \P(R) 4|2—(F\’)

d2
dR2

1

Y(R)+V(R)¥(R)

RdR]

=(E-EJ)¥(R), (11)

0
whereEg, . i

field Bo=(0,0B;). According to the results, obtained in Ref.
6, the exciton energy can be written in the form

1
EC —4+A|—

exc

=Eq+ oot Eoy+ Qo 5 + 4|~ 5Ec,

where Q= (eBy/uc) is the exciton cyclotron energy in a
homogeneous magnetic fieR},. A is the energy gap gener-
ated by the homogeneous magnetic field &4&¢ is the first-

order correction in Coulomb interaction. The effective poten-

tial of the center-of-mass motion of the excitviiR) to the
first-order in the inhomogeneous magnetic fiBIR)/B is
given by

V(R)
Qo

lo

1 +°°d ¢ L
3" 2ag), Wflldl—yi

|

wherely= {c/eBy is the magnetic length in a homogeneous
magnetic fieldB, anday= €,/ u€? is the effective Bohr ra-
dius. We will use the magnetic length for the unit length
and the exciton cyclotron enerdy, for the energy unit. The
exciton trapping energy=(E—E(e()X)g/QO is defined as the
difference between the exciton energi(), in the inhomo-
geneous magnetic fielB(R)=By+B; and the exciton en-
ergy Eexc in the homogeneous applied fiek} for the same
exciton state.

In what follows, we will consider the case when a mag-
netized disk of radiusa on the top of the quantum well
creates an inhomogeneous magnetic fig]ldThe distance of

_Bi(R)
-~

2

Xyzexy{ -=

5 12
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the magnetized disk to they plane is denoted bg. In this
case, the magnetic fiel8,(R) is given by the following
equationt

B.(R)—48 (a+R)a \Fl CEo?)
T @+ R)2+d? VRp (P
p? (a’>—R?>+d?)a
(1= G T RRa
dEqy( pz) 1 ( ) dK(p?)
3| _ 2
R LALEAL L vt

where p=2\aR/[(a+R)?+d?], B;=hMa, h is the disk
thickness andV is the magnetization of the disk(x) and

E(x) are the elliptic integrals of first and second type, re-

spectively.

Ill. NUMERICAL RESULTS FOR EXCITONS IN A GaAs /
AlGaAs QUANTUM WELL IN ANONHOMOGENEOUS
MAGNETIC FIELD

Let us first discuss the exciton enerdg,.=E g1 Eoc

is the exciton energy in a homogeneous magneticy g, + ([ 1/2+ A]— SE¢ in a homogeneous magnet|c field

By=(0,0B;). In Table | of Ref. 6 the calculated values of
Eoc, Eoy, OEc, and Qg[1/2+A] in the case of a single
GaAs quantum-well sandwiched between twq @4, _,As
layers for various well widthd and magnetic fieldB,
=(0,0B,) are presented. The corresponding calculations
were done assuming the following parametesg= 12.5,
m.=m,=0.06M,, Eyz=152eV at T=0K and E,

FIG. 1. The effective potential of the center-of-mass motion of
the heavy-hole exciton/(R) for the GaAs/A}Ga -As single
quantum well (n,=0.06Mny, y,=7.36, andy,=2.57) of width
L=4.03 nm as a function dR. The homogeneous magnetic field is
Bo=20 T and the magnetized disk parameters are as follawvs:
=2 um, d=0.2 um, By 0.05 T. We use the magnetic length
I,=0.005 736.m for the unit length and the exciton cyclotron en-
ergy ,=0.05756 eV for the energy unit.
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FIG. 2. The potentiaV(R) and the numerical calculated func- FIG. 3. The potentiaV(R) and the numerical calculated func-
tion ¥(R) for heavy-hole excitons in GaAs/MGa -As single  tion W (R) for heavy-hole excitons in GaAs/MGa, ,As single
quantum well (m,=0.067,, y,=7.36, andy,=2.57) of width  quantum well (n.=0.06"n,, y,=7.36 andy,=2.57) of widthL
L=4.03 nm as a function dR. The homogeneous magnetic field is =4.03 nm as a function dR. The homogeneous magnetic field is
By=20 T and the magnetized disk parameters are as follawvs: By=20 T and the magnetized disk parameters are as follaws:
=2 pum, d=0.2 um, B;=—-0.05 T. We use the magnetic length =2 um, d=0.2 um, B;=0.05 T. We use the magnetic lendth
1,=0.005 736um for the unit length and the exciton cyclotron en- =0.005 736um for the unit length and the exciton cyclotron en-
ergy 1,=0.057 56 eV for the energy unit. ergy 1,=0.057 56 eV for the energy unit.

We have applied the above-described numerical method
to the case when the homogeneous and the inhomogeneous
magnetic fields point in different directions, i.e.,
B,=-0.05T, and we have found that the exciton trapping
energy ise=—0.0113. The potentia (R) and the numeri-
cally calculated functionV' (R) are shown in Fig. 2. In the
single quantum well of width. =4.03 nm the calculated ex- ﬁaefi?: ]xverllgg ;gfmhi?]n:r? 322?:; Zli?:(gi gr]f Ilgti”éogg rjr(?ott;lse mag

citon energy '£eXC_1'646 eV (1=6.9 and72,_ 2.7). The _potential V(R) and the numerically calculated function
effective potential of the center-of-mass motion of the EXCI-\I,(R) are shown in Fig. 3. In this case the exciton trapping
ton V(R)_deflned by Eq(|12)d|s pIotte_d 'l'? F|g.. 1 hooi energy is calculated to he= —0.0057. Notice that for both
Er?uatlon(l;) was solved numerica ?’/tbuskng as ootlhng cases, the trapping energies are negative, so we have exciton
method described by Pruess and Fuftorthe approach g states. In the case of a weak constant magnetic field

begins by explicitly writing the eigenvalue problem in B,, discussed in Ref. 1, the exciton trapping energy was
Sturm-Liouville form —(d/dX){p(x)d¢/dx;+a(x)¥(X)  found to be positivei.e., unbound statesAs a result in the

=Ew(x)#(x). Then one defines an initial mesh §8.)  \eak field regime case, a large part of the center-of-mass
comprised ofN subintervals 8 x;<xp<---<xy<<=, and  gycjton wave function is extended into a large area. In the
the coeffcient function(x),q(x), andw(x) are approxi-  pigh field regime case, we have nonzero values for the

mated by piecewise constant functions on each subintervalener-of-mass exciton wave function only in a small area
This “piecewise-constant” approximation to the Sturm- (1.377 um<R<1.721um for B;=—0.05T and
Liouville equation can be solved exactly, which leads to anZ.OO&Lms R=2.581um for B;=0.05 T). '

algorithm for propagating),, outward from the origin. For a

fixed mesh, we iterate on the approximate eigenvalue until
the boundary condition a¢ is satisfied? This algorithm

gives a ground state energy eigenvalue Bf o We have applied the Bethe-Salpeter formalism for the
—4.00001 for the two-dimensional Coulomb problem, with problem of excitons in a single quantum well in the presence
potentialV(x) = — 2/x and other parameters set to unity. The of an external strong constant magnetic field and a weak
analytical value for the ground-state energy eigenvalue iscylindrical symmetric magnetic field, created by a magne-
—4. In these calculations, parameters were adjusted untilzed disk on top of the quantum well. We have predicted the
this algorithm yielded the same energy eigenvalue to fouformation of bound exciton states with nonzero values for
significant places for both the radial form of the Salinger  the center-of-mass exciton wave function only in a suffi-
equation, and its pseudo-Cartesian form obtained from theiently small area. This effect of exciton trapping can be used
substitutiony(r)— ¢(r)/(r). to design new functional nanoelectronic devices. A new de-

=1.512 eV atT=55 K. Two different groups of Luttinger
parameters were use() y,=6.9 andy,=2.7 (Ref. 9 and
(2) v;=6.9 andy,=2.7.1% The parameters characterizing
the magnetized disk are chosen to MBy=-0.05T,
a=2 um andd=0.2 um. The homogeneous magnetic field
is assumed to béB,=20 T. For the GaAs/Al.Ga /As

IV. SUMMARY
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vice can be designed on the base of existence of a ground0.0102, e,= —0.0093, e3=—0.0085. In the case when
bound exciton state and a number of excited bound statethe homogeneous and inhomogeneous magnetic fields point
For example, we have calculated that in the case wBgen in the same direction, i.eB;=0.05 T, the excited exciton
=—0.05T, the excited exciton energies are,= energies are,;= —0.0046, e,= —0.0038, £3=—0.0031.
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