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Bethe-Salpeter equation for quantum-well exciton states in an inhomogeneous magnetic field

Z. G. Koinov,* P. Nash, and J. Witzel
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The trapping of excitons in a single quantum well due to the presence of a strong homogeneous magnetic
field and a weak inhomogeneous cylindrical symmetric magnetic field, created by the deposition of a magne-
tized disk on top of the quantum well, both applied perpendicular to thex-y plane of confinement is studied
theoretically. The numerical calculations are performed for GaAs/AlxGa12xAs quantum wells and the forma-
tion of bound exciton states with nonzero values for the center-of-mass exciton wave function only in a small
area is predicted.
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I. INTRODUCTION

The purpose of the present paper is to apply the nonr
tivistic Bethe-Salpeter~BS! approach to the problem of ex
citons in a single quantum well~SQW!, trapped by a cylin-
drical symmetric inhomogeneous magnetic field. The fi
attempts to calculate the energy and the wave function
excitons in a quantum well, trapped due to an inhomo
neous magnetic field, were based on the Schro¨dinger equa-
tion for magnetoexcitons.1 The main difference betwee
those papers and our work is that we assume the high-
regime~when exciton cyclotron energy is much larger th
the Coulomb energy!. All calculations in Ref. 1 are done
assuming the weak-field regime, and therefore, all magne
field-dependent terms in the exciton Hamiltonian can
treated within the perturbation theory. If we define the tra
ping energy as the difference between the exciton energ
the inhomogeneous applied magnetic field~consists of ho-
mogeneous and inhomogeneous fields! and the energy of the
exciton in the homogeneous applied field for the same e
ton state, then in the weak-field case the trapping energ
positive.1 That means the exciton states are unbound exc
states and a large part of the center-of-mass exciton w
function is extended into a sufficiently large region of spa
In the high-field regime case, which is under consideration
this paper, we can apply~i! the lowest Landau level~LLL !
approximation and~ii ! treat the Coulomb interaction by pe
turbation theory. Under those assumptions we have ca
lated a negative trapping energy. This corresponds to
bound exciton states. For the bound states the center-of-m
exciton wave function has nonzero values only in a su
ciently small area. The other important difference betwe
the papers cited in Ref.1 and our work is that we apply
approach instead of using the well-known Schro¨dinger equa-
tion for magnetoexcitons. In view of the fact that usually t
excitons in the presence of a magnetic field are describe
solving the corresponding Schro¨dinger equation, there ma
be a need to clarify the motivations for our approach. Fi
the great progress in possibilities of modern experime
technique in obtaining extremely high magnetic fields
quires more accurate calculations and obviously, one p
sible way to improve the two-particle bound-state-ene
calculations is to use the powerful methods, developing
the framework of quantum electrodynamics~QED!2–4 Sec-
0163-1829/2003/67~15!/155318~7!/$20.00 67 1553
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ond, a phenomenon, known as magnetic catalysis, wh
cannot be described by using the Schro¨dinger-equation-based
approach, has been predicted in field theories such as Q
and quantum chromodynamics.5 The magnetic catalysis
manifests itself as a generation of an energy gap in the s
trum of fermions in an external constant magnetic field
any arbitrary weak attractive interaction between fermio
Quite recently, the nonrelativistic BS equation for tw
particle electron-hole bound states in semiconductor qu
tum wells in the presence of a homogeneous magnetic fi
was solved, and it was shown that the phenomenon o
magnetic catalysis also takes place in exciton physics:
homogeneous magnetic field induces an energy gap in
exciton spectrum.6 Third, calculated from the Schro¨dinger
equation in-plane effective exciton mass in SQW or coup
quantum wells~CQW! does not depend on the electron a
hole effective masses. For example, let us consider the
of CQW with finite QW widths Lc,v . According to the
Ref. 7, in strong magnetic fields the effect of finite widt
is wery weak. Thus, one can use the expression for
in-plane exciton mass, derived for pure two-dimensio
magnetoexcitons:8

Me f f~B!5
MB

S 11
d2

l 2 D expS d2

2l 2D erfcS d

A2l
D 2A2

p

d

l

,

whered is a distance between the centers of the two laye
MB522/3e0\2/Ape2l , and l 5Ac\/eB is the magnetic
length. In a magnetic field of 4 T, the calculated in-pla
mass in the case of CQW withe0512.5 andd511.5 nm is
Me f f(4 T)50.29m0, while the measured value in
GaAs/Al0.33Ga0.67As CQW isMe f f50.58m0.7 This discrep-
ancy definitely indicates that the Schro¨dinger approach can
not provide the correct value of the in-plane exciton mass
contrast, according to the BS approach the excitons in S
acquire a finite in-plane mass not only due to the Coulo
interaction, but also due to an additional effective interact
Ve f f as well ~see Ref. 6!.

The layout of the paper is as follows. In the followin
section, we derive the BS equation for magnetoexcitons
quantum wells in the presence of a strong external homo
neous magnetic field and a weak cylindrical symmetric m
©2003 The American Physical Society18-1
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netic field, created by a magnetized disk on top of a quan
well. In Sec. III, some numerical results for the trappi
energy and the corresponding center-of-mass wave func
of magnetoexcitons in a GaAs/AlxGa12xAs single quantum
well are presented.

II. BETHE-SALPETER EQUATION FOR EXCITONS IN A
QUANTUM WELL IN A NONHOMOGENEOUS

MAGNETIC FIELD

We consider the electron-hole bound states in the p
ence of an inhomogeneous magnetic field in a quantum
of width L made with direct-gap semiconductor with nond
generate and isotropic bandsEc(k)5Eg1k2/2mc and
Ev(k)5k2/2mv @Ec(k) and Ev(k) are the dispersion law
for electrons and holes, respectively,Eg is the semiconducto
band gap,mc (mv) is the electron~hole! effective mass and
we set\51 throughout this paper#. According to the BS
theory2–4 the electron-hole bound states are described by
BS wave functionC(r c ,zc ,t1 ;r v ,zv ,t2). This function de-
termines the probability amplitude to find the electron at
point (r c ,zc) at the momentt1 and the hole at the poin
(r v ,zv) at the momentt2. Thex-y plane has been taken to b
the plane of confinement,r c andr v are the two-dimensiona
~2D! electron and hole radius,zc andzv are the correspond
ing z coordinates. In what follows, we will neglect the Ellio
exchange interaction. In this approximation, the electr
hole bound states are known as mechanical excitons. The
wave function of mechanical excitonsC(r1 ,zc ,t1 ;r2 ,zv ,t2)
satisfies the two-particle BS equation

H ı
]

]t1
2Eg2

1

2mc
F2ı“ rc

1
e

c
A~r c!G2

2
1

2mcz

]2

]zc
2

2Uc~zc!J H ı
]

]t2
2

1

2mv
F2ı¹rv

2
e

c
A~r v!G2

2
1

2mvz

]2

]zv
2

2Uv~zv!J C~r c ,zc ,t1 ;r v ,zv ,t2!

52ıI C~r c ,zc ,t1 ;r v ,zv ,t2!C~r c ,zc ,t1 ;r v ,zv ,t2!.

~1!

Here,Uc,v(z) denotes the corresponding confinement pot
tial, mc(mv) and mcz(mvz) are the electron~hole! in plane
andz-axis effective masses, respectively. The irreducible k
nel I C represents the Coulomb attraction between electr
and holes that constitute the excitons. The vector potentia
the magnetic field is denoted byA(r ). The magnetic field is
B(r )5rotA(r ) and we have chosen the gauge such t
divA(r )50. In what follows, we will assume that the ele
tron and hole motions alongz direction are quantized into
discrete levels due to the presence of confinement poten
In our calculations, we take into account only the first ele
tron E0c and holeE0v confinement levels.

In what follow, we will use 2D relativer5r c2r v and
center of massR5acr c1avr v coordinates. Here,ac,v
5mc,v /M andM5mc1mv is the exciton in-plane mass. T
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simplify the above BS equation, we assume the so-ca
adiabatic approximation, which is correct in the case wh
the exciton radius is smaller than the length scale over wh
the magnetic field varies. In the adiabatic approximation
vector potential can be expanded intor power series:

A~r c,v!5A~R6ac,vr !'A~r !6ac,vr•@,RA~R!#1••• .

In the adiabatic approximation the solution of the B
equation is found by separation of variables:

C~r c ,zc ,t1 ;r v ,zv ,t2!

5expH 2ıFe

c
r•A~R!1E~act11avt2!G J

3F~R,r ;t12t2!w0~zc!f0~zv!. ~2!

HereE is the energy of the magnetoexcitons, andw0(zc) and
f0(zv) are the wave functions corresponding to the first co
finement electron and hole levels. After some tedious
straightforward calculations, which are almost the same a
Ref. 6, we find the following effective interaction for the B
wave function:

ĤF~R,r !1E d2r 8E d2R8I e f f~R,r ;R8,r 8;E!F~R8,r 8!

5~E2E0c2Eov2Eg!F~R,r !. ~3!

The HamiltonĤ is defined as follows:

Ĥ52
1

2M
¹R

2 2
1

2m
¹ r

22
2pe2

e0
E d2q

~2p!2

f ~ uqu!
uqu

exp@ ıq•r #

1
ıe

Mc
@$“RA~R!%•r2r•$“RA~R!%#•“R

2
ıeg

mc
@r•$“RA~R!%#•“ r1

ıe

2Mc
nR@A~R!•r #

1
e2

2Mc2
@$“RA~R!%•r2r•$“RA~R!%#2

1
e2g2

2mc2
@r•$“RA~R!%#2, ~4!

whereg5(mv2mc)/M and f (uqu) is the well-known struc-
ture factor. The effective potentialI e f f has the form

I e f f~R,r ;R8,r 8;E!5E d2p

~2p!2E d2q

~2p!2E d2P

~2p!2

3E d2Q

~2p!2
exp$ı@P•R2Q•R8

1p•r2q•r 8#%I e f f~P,p;Q,q;E!,

~5!

where
8-2
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I e f f~P,p;Q,q;E!5
@Ec~p1acP!2Ec~q1acQ!#Zv

A~P,p;Q,q!2Zcv
A ~P,p;Q,q!

E2E0c2E0v2Ec~p1acP!2Ev~q2avQ!1ı01

1
@Ev~p2avP!2Ev~q2avQ!#Zc

A~P,p;Q,q!2Zcv
A ~P,p;Q,q!

E2E0c2E0v2Ec~q1acQ!2Ev~p2avP!1ı01
. ~6!

where the following notations have been used:

Zc,v
A ~P,p;Q,q!5E d2rE d2Rexp$ı@~Q2P!•R1~q2p!•r #%Zc,v„Q,q,r ,¹RA~R!…,

Zcv
A ~P,p;Q,q!5E d2rE d2Rexp$ı@~Q2P!•R1~q2p!•r #%Zcv~Q,q,r ,¹RA~R!!,

Zc„Q,q,r ,¹RA~R!…5
e

Mc
$avr•@“RA~R!#2ac@“RA~R!#•r%•Q1

e

Mc H av

ac
r•@“RA~R!#2@“RA~R!#•r J •q

1
e2

2Mc2ac

$ac@“RA~R!#•r2avr•@“RA~R!#%2,

Zv~Q,q,r ,“RA~R!!5
e

Mc
$acr•@“RA~R!#2av@“RA~R!#•r%•Q1

e

Mc H ac

av
r•@¹RA~R!#2@¹RA~R!#•r J •q

2
e2

2Mc2av
$av@“RA~R!#•r2acr•@“RA~R!#%2.
e
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In the gauge divA(R)50 the following relation takes plac
@(“RA(R))•r2r•„“RA(R)…#5r3B(R). We can simplify
Eq. ~3! by applying the following transformation:

F~R,r !→expH 2ı
ge

2c
r•@“RA~R!#•r J F~R,r !.

This transformation leads to the appearance ofr 23 terms.
They should be neglected in the adiabatic approximat
After this transformation the BS equation~3! assumes the
form

ĤF~R,r !1E d2r 8E d2R8expH ı
ge

2c
r•@“RA~R!#•r J

3I e f f~R,r ;R8,r 8;E!

3expH 2ı
ge

2c
r 8•@“R8A~R8!#•r 8J F~R8,r 8!

5~E2E0c2Eov2Eg!F~R,r !, ~7!

where
15531
n.

Ĥ52
1

2M
¹R

2 2
1

2m
¹ r

22
2pe2

e0
E d2q

~2p!2

f ~ uqu!
uqu

exp@ ıq•r #

1
ıe

Mc
r•@B~R!3“R#2

ıe

2Mc
r•@“R3B~R!#

2
ıeg

2mc
B~R!•~r3“ r !2

ıeg

4mc
[ $“RA~R!%•r

1r•$~“RA~R!%#1
e2

8mc2
@r3B~R!#2. ~8!

The Eq.~7! is our BS equation for the exciton wave fun
tion. In comparison to the well-known Schrodinger equati
used in Ref. 1, the above BS equation contains ad
tionally: ~i! an effective nonlocal interactionI e f f , which
depends on the exciton energy;~ii ! an additional term
2ıeg/(4mc)@„“RA(R)…•r1r•(“RA(R)…#. In the case of a
constant magnetic field the last term is equal to zero, bu
should be taken into account, when the inhomogeneous m
netic field is applied.

Let us first consider the case of a homogeneous magn
field B05(0,0,B0). The vector potential in Cartesian coord
nates R5(X,Y,0) in the gauge divA(R)50 is given by
A(R)5$21/2B0Y,1/2B0X,0% and the relationr•@“RA(R)#
5(1/2)B03r takes place. In the case of a homogeneo
8-3
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magnetic field the exciton center of mass moves thro
the crystal with a constant momentumQ and the wave
function F(R,r ;t12t2) can be written asF(R,r ;t12t2)
5exp(ıQ•R)FQ(r ;t12t2).Thus, the BS equation for the ex
citon wave functionFQ(r ;t12t250)5FQ(r ) assumes the
form

H Q2

2M
2

1

2m
¹ r

22
2pe2

e0
E d2q

~2p!2

f ~ uqu!
uqu

exp@ ıq•r #

1
e

Mc
~B03r !•Q2

ıeg

2mc
~B03r !•“ r1

e2

8mc2
@r

3B0#2J FQ~r !1E d2r 8Ve f f„r ;r 8;Q;E~Q!…FQ~r 8!

5@E~Q!2Eg2E0c2E0v#FQ~r !, ~9!

where the exact form of the effective potenti
Ve f f(r ;r 8;Q;E) is derived in Ref. 6.

From now on we limit ourselves to the case of an inh
mogeneous cylindrical symmetric magnetic field.
this case, it is more convenient to use cylindrical coord
ates B5(X,Y,0)5(R cosw,Rsinw,0) and r5(x,y,0)
5(r cosu,r sinu,0). We assume that the cylindrical symme
ric magnetic field is along thez direction and can be written
as a sum of a homogeneous magnetic fieldB05(0,0,B0) and
a cylinder symmetric partB1(R)5(0,0,B1(R)). The total
magnetic field is B(R)5B01B1(R)5„0,0,B(R)…, where
B(R)5B01B1(R) and R25AX21Y2. In the case unde
consideration the vector potential is given by

A~R!5$2B0Y/22A~R!Y/R,B0X/22A~R!X/R,0!%,

where A(R) is a function of the cylindrical coordinateR.
From the relationB5rotA(R), we find B1(R)5dA/dR
1A(R)/R.

It can be proved that the following relation
r•@“RA(R)#5(1/2)B03r1F, takes place, where the com
ponents of the vectorF5(F1 ,F2,0) are

F152r sinw cos~u2w!
dA~R!

dR
2r cosw sin~u2w!

A~R!

R
,

F25r cosw cos~u2w!
dA~R!

dR
2r sinw sin~u2w!

A~R!

R
.

In cylindrical coordinates the Hamiltonian~8! assumes the
form

Ĥ5Ĥ11Ĥ21Ĥ3 ,

Ĥ152
1

2M H 1

R

]

]R S R
]

]RD1
1

R2

]2

]w2J ,
15531
h
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Ĥ252
1

2m H 1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2J
2

2pe2

e0
E dq f~ uqu!J0~qr !2

ıegB~R!

2mc

]

]u

1
e2B2~R!

8mc2
r 2,

Ĥ35
ıeB~R!r

Mc H sin~u2w!
]

]R
2

1

R
cos~u2w!

]

]wJ
1

ıer

2Mc
sin~u2w!

dB~R!

dR
1

ıeg

2mc H A~R!

R
2

dA~R!

dR J
3H sin@2~u2w!#r

]

]r
1cos@2~u2w!#

]

]uJ , ~10!

whereJ0(qr) is the Bessel function.
To simplify the calculations we will assume:~i! the ho-

mogeneous magnetic fieldB0 is a strong magnetic field an
~ii ! uB0u@uB1(R)u. Those assumptions allow us to apply th
LLL approximation and to treat the Coulomb interaction
perturbation theory. By replacingB(R)'B0 in the term

E d2r 8E d2R8expH ı
ge

2c
r•@“RA~R!#•r J

3I e f f~R,r ;R8,r 8;E!

3expH 2ı
ge

2c
r 8•@“R8A~R8!#•r 8J F~R8,r 8!,

we obtain the following approximation for it:

E d2r 8E d2R8E d2K

~2p!2
exp$ıK•~R2R8!%

3Ve f f~r ,r 8;K ;E!F~R8,r 8!,

We are looking for a solution of the BS equation~7! in the
form:

Fsnm~R,r !5C~R!exp~2ısw!fnm~r ,u;R!,

fnm~r ,u;R!5exp~ ımu!fnm~r ;R!,

fnm~r ;R!5A n!

2umu11p~n1umu!!
F r

l ~R!G
umu

Ln
umuS r 2

2l 2~R!
D

3expH 2
r 2

4l 2~R!
J ,

where s50,61,62, . . . , n50,1, . . . , m50,61,62, . . . ,
l (R)5Ac/eB(R) is the magnetic length, andLn

umu(x) are the
Laguerre polynomials. The functionsfnm(r ,u;R) are the
wave functions of the Hamiltonian of the 2D electron-ho
pair in a perpendicular magnetic fieldB(R):
8-4
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H2D52
1

2m H 1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2J 2
ıegB~R!

2mc

]

]u

1
e2B2~R!

8mc2
r 2.

The corresponding energy is Wnm(R)5V(R)$n
1 1

2 @ umu1gm11#%, whereV(R)5(eB(R)/mc) denotes the
distance between Landau levels. In the LLL approximat
s5n5m50 and the wave function of the ground state
given by

Fs50n50m50~R,r !5C~R!
1

A2p

1

l ~R!
expH 2

r 2

4l 2~R!
J .

In this approximation the center-of-mass motion wave fu
tion C(R) satisfies the Schro¨dinger equation

2
1

2M H d2

dR2
1

1

R

d

dRJ C~R!1V~R!C~R!

5~E2Eexc
0 !C~R!, ~11!

whereEexc
0 is the exciton energy in a homogeneous magn

field B05(0,0,B0). According to the results, obtained in Re
6, the exciton energy can be written in the form

Eexc
0 5Eg1E0c1E0v1V0F1

2
1DG2dEC ,

whereV05(eB0 /mc) is the exciton cyclotron energy in
homogeneous magnetic fieldB0 . D is the energy gap gener
ated by the homogeneous magnetic field anddEC is the first-
order correction in Coulomb interaction. The effective pote
tial of the center-of-mass motion of the excitonV(R) to the
first-order in the inhomogeneous magnetic fieldB1(R)/B0 is
given by

V~R!

V0
5

B1~R!

B0
H 1

2
2

l 0

2a0
E

0

1`

dy fS uqu→y
L

l 0
D

3y2expS 2
y2

2 D J , ~12!

wherel 05Ac/eB0 is the magnetic length in a homogeneo
magnetic fieldB0 anda05e0 /me2 is the effective Bohr ra-
dius. We will use the magnetic lengthl 0 for the unit length
and the exciton cyclotron energyV0 for the energy unit. The
exciton trapping energy«5(E2Eexc

(0) )/V0 is defined as the
difference between the exciton energyE/V0 in the inhomo-
geneous magnetic fieldB(R)5B01B1 and the exciton en-
ergy Eexc

(0) in the homogeneous applied fieldB0 for the same
exciton state.

In what follows, we will consider the case when a ma
netized disk of radiusa on the top of the quantum we
creates an inhomogeneous magnetic fieldB1. The distance of
15531
n

-

ic

-

-

the magnetized disk to thex-y plane is denoted byd. In this
case, the magnetic fieldB1(R) is given by the following
equation:1

B1~R!54B1

~a1R!a

~a1R!21d2
Aa

R

1

p F2E1~p2!

1S 12
p2

2 DK~p2!G1
~a22R21d2!a

R2ARa

3p3F2
dE1~p2!

dp2
2

1

2
K~p2!1S 12

p2

2 DdK~p2!

dp2 G ,

where p52AaR/@(a1R)21d2#, B15hMa, h is the disk
thickness andM is the magnetization of the disk.K(x) and
E(x) are the elliptic integrals of first and second type, r
spectively.

III. NUMERICAL RESULTS FOR EXCITONS IN A GaAs Õ
AlGaAs QUANTUM WELL IN A NONHOMOGENEOUS

MAGNETIC FIELD

Let us first discuss the exciton energyEexc
0 5Eg1E0c

1E0v1V0@1/21D#2dEC in a homogeneous magnetic fie
B05(0,0,B0). In Table I of Ref. 6 the calculated values o
E0c , E0v , dEC , and V0@1/21D# in the case of a single
GaAs quantum-well sandwiched between two AlxGa12xAs
layers for various well widthsL and magnetic fieldsB0
5(0,0,B0) are presented. The corresponding calculatio
were done assuming the following parameters:e0512.5,
mc5mcz50.067m0 , Eg51.52 eV at T50 K and Eg

FIG. 1. The effective potential of the center-of-mass motion
the heavy-hole excitonV(R) for the GaAs/Al0.3Ga0.7As single
quantum well (mc50.067m0 , g157.36, andg252.57) of width
L54.03 nm as a function ofR. The homogeneous magnetic field
B0520 T and the magnetized disk parameters are as followsa
52 mm, d50.2 mm, B1520.05 T. We use the magnetic lengt
l 050.005 736mm for the unit length and the exciton cyclotron e
ergy V050.05756 eV for the energy unit.
8-5
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51.512 eV atT555 K. Two different groups of Luttinger
parameters were used:~1! g156.9 andg252.7 ~Ref. 9! and
~2! g156.9 andg252.7.10 The parameters characterizin
the magnetized disk are chosen to beB1520.05 T,
a52 mm andd50.2 mm. The homogeneous magnetic fie
is assumed to beB0520 T. For the GaAs/Al0.3Ga0.7As
single quantum well of widthL54.03 nm the calculated ex
citon energy isEexc

0 51.646 eV (g156.9 andg252.7). The
effective potential of the center-of-mass motion of the ex
ton V(R) defined by Eq.~12! is plotted in Fig. 1.

Equation ~11! was solved numerically using a shootin
method described by Pruess and Fulton.11 The approach
begins by explicitly writing the eigenvalue problem
Sturm-Liouville form 2(d/dx)$p(x)dc/dx%1q(x)c(x)
5Ew(x)c(x). Then one defines an initial mesh on@0,̀ )
comprised ofN subintervals 05x1,x2,•••,xN,`, and
the coeffcient functionsp(x),q(x), and w(x) are approxi-
mated by piecewise constant functions on each subinte
This ‘‘piecewise-constant’’ approximation to the Sturm
Liouville equation can be solved exactly, which leads to
algorithm for propagatingcn outward from the origin. For a
fixed mesh, we iterate on the approximate eigenvalue u
the boundary condition at̀ is satisfied.12 This algorithm
gives a ground state energy eigenvalue ofEground5
24.00 001 for the two-dimensional Coulomb problem, w
potentialV(x)522/x and other parameters set to unity. T
analytical value for the ground-state energy eigenvalue
24. In these calculations, parameters were adjusted u
this algorithm yielded the same energy eigenvalue to f
significant places for both the radial form of the Schro¨dinger
equation, and its pseudo-Cartesian form obtained from
substitutionc(r )→f(r )/A(r ).

FIG. 2. The potentialV(R) and the numerical calculated func
tion C(R) for heavy-hole excitons in GaAs/Al0.3Ga0.7As single
quantum well (mc50.067m0 , g157.36, andg252.57) of width
L54.03 nm as a function ofR. The homogeneous magnetic field
B0520 T and the magnetized disk parameters are as followsa
52 mm, d50.2 mm, B1520.05 T. We use the magnetic leng
l 050.005 736mm for the unit length and the exciton cyclotron e
ergy V050.057 56 eV for the energy unit.
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We have applied the above-described numerical met
to the case when the homogeneous and the inhomogen
magnetic fields point in different directions, i.e
B1520.05 T, and we have found that the exciton trappi
energy is«520.0113. The potentialV(R) and the numeri-
cally calculated functionC(R) are shown in Fig. 2. In the
case when the homogeneous and the inhomogeneous
netic fields point in the same direction, i.e.,B150.05 T, the
potential V(R) and the numerically calculated functio
C(R) are shown in Fig. 3. In this case the exciton trappi
energy is calculated to be«520.0057. Notice that for both
cases, the trapping energies are negative, so we have ex
bound states. In the case of a weak constant magnetic
B0, discussed in Ref. 1, the exciton trapping energy w
found to be positive~i.e., unbound states!. As a result in the
weak-field regime case, a large part of the center-of-m
exciton wave function is extended into a large area. In
high-field regime case, we have nonzero values for
center-of-mass exciton wave function only in a small a
(1.377mm<R<1.721mm for B1520.05 T, and
2.008mm<R<2.581mm for B150.05 T).

IV. SUMMARY

We have applied the Bethe-Salpeter formalism for
problem of excitons in a single quantum well in the presen
of an external strong constant magnetic field and a w
cylindrical symmetric magnetic field, created by a magn
tized disk on top of the quantum well. We have predicted
formation of bound exciton states with nonzero values
the center-of-mass exciton wave function only in a su
ciently small area. This effect of exciton trapping can be us
to design new functional nanoelectronic devices. A new

FIG. 3. The potentialV(R) and the numerical calculated func
tion C(R) for heavy-hole excitons in GaAs/Al0.3Ga0.7As single
quantum well (mc50.067m0 , g157.36 andg252.57) of widthL
54.03 nm as a function ofR. The homogeneous magnetic field
B0520 T and the magnetized disk parameters are as followsa
52 mm, d50.2 mm, B150.05 T. We use the magnetic lengthl 0

50.005 736mm for the unit length and the exciton cyclotron e
ergy V050.057 56 eV for the energy unit.
8-6
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vice can be designed on the base of existence of a gro
bound exciton state and a number of excited bound sta
For example, we have calculated that in the case whenB1
520.05 T, the excited exciton energies are«15
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