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Electron spin relaxation in a semiconductor quantum well
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A fully microscopic theory of electron spin relaxation by the D’yakonov-Perel’ type spin-orbit coupling is
developed for a semiconductor quantum well in an ambient magnetic field applied perpendicular to the plane
of the well. We derive Bloch equations for an electron spin in the well and determine explicit microscopic
expressions for the spin relaxation times. The dependencies of the electron spin relaxation rates on magnetic
field strength, temperature, and the lowest subband energy of the quantum well are analyzed.
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I. INTRODUCTION

Spin phenomenology in semiconductor structures
been at the focal point of research interest over the past
years in connection with proposals for spin-based quan
devices.1 Spin implementation of quantum computation, o
tical switches, magnetic memory cells, etc., calls for a p
cise knowledge of spin dynamics and, in particular, the s
relaxation rates. The basic mechanisms responsible for
relaxation are those of D’yakonov-Perel’~DP!,2,3

Elliott-Yafet,4 and Bir-Aronov-Pikus.5 It was shown6 that for
III-V and II-VI compounds, which are the most promisin
materials for device purposes, the DP mechanism domin
at moderate temperatures and low hole concentrations.
spin relaxation time due to the DP mechanism has gene
been expressed in the semiphenomenological form2,3

1

ts
5Q

a2

\2«g

tpT3 ~1!

for bulk semiconductors, and

1

ts
5

a2^pz
2&2

2\2m2«g

tpT ~2!

for quantum well structures, wherea describes conduction
band spin splitting due to lack of inversion symmetrya
50.07 for GaAs!, «g is the band gap, andT is the Kelvin
temperature (kB51). The numerical coefficientQ depends
on the orbital scattering mechanism, and^pz

2& is the average
square of momentum in the quantum well growth directio
It should be noted that these formulas involve the av
age momentum relaxation timetp as a phenomenologica
parameter.

In the present paper we develop afully microscopictheory
of spin dynamics and apply it to a quantum well structure
the presence of an external magnetic field, directed along
well growth direction, taking account of various scatteri
mechanisms. Our theory facilitates the microscopic deter
nation of tp and its temperature and magnetic field dep
dencies in terms of the fundamental material parameters
0163-1829/2003/67~15!/155309~9!/$20.00 67 1553
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Our analysis involves the explicit recognition of the tw
stages in the relaxation process corresponding to the re
ation time hierarchies involved in~a! electron thermalization
due to interaction with phonons, and~b! spin relaxation. In
the first stage of solution~a! we determine the relaxation
rates and fluctuation characteristics of electron orbital mot
due to coupling to the phonon bath. Spin relaxation dyna
ics ~the slowest process in the system! can be neglected in
this stage.

The second stage~b! proceeds with analysis of the spi
relaxation process due to spin-orbit interaction, wherein
orbital degrees of freedom are considered as an effective
bath, having the characteristics determined in the first sta
A standard set of Bloch equations with two distinct rela
ation times~longitudinal relaxation timeT1, responsible for
spin magnetic moment relaxation, and transverse relaxa
time T2, responsible for decoherence! is derived in this sec-
ond stage. In both stages of our analyses we employ
method proposed in Ref. 7 and developed in Refs. 8 and

II. FORMULATION

The Hamiltonian of part~a! is given by

H5H01U~r' ,t !1Hph , ~3!

where the spin and its interactions are neglected in the
stage, and

H05
\v0

2
1

mVx
2

2
1

mVy
2

2
~4!

is the Hamiltonian of a two-dimensional electron in a qua
tum well with harmonic confinement in thez direction hav-
ing a frequencyv0. We assume the temperature to be lo
enough so that only the lowest energy subband of the qu
tum well is occupied. In this case the motion of an electr
can be described by means of two electron in-plane velo
components, which in the presence of a constant, unifo
magnetic field directed along thez axisB5(0,0,B) are given
by
©2003 The American Physical Society09-1



d
il

im

-

r.
a

ity

in-

s-
In
es
the

its

on-
-

PULLER et al. PHYSICAL REVIEW B 67, 155309 ~2003!
Vx5
1

m S px2
e

c
AxD , Vy5

1

m S py2
e

c
AyD ,

@Vx ,Vy#252
i\vc

m
, ~5!

where A5(Ax ,Ay,0) is the vector potential,B5(]/]x)Ay
2(]/]y)Ax , vc5ueuB/mc is the cyclotron frequency, an
@ . . . , . . .#2 denotes a commutator. The phonon Ham
tonian has the form

Hph5(
k

\vkS bk
1bk1

1

2D , ~6!

where\vk is the phonon energy andbk
1 andbk are creation

and annihilation operators, respectively. The termU(r' ,t) in
Eq. ~3! describes the electron coupling to phonons and
purities.

The electron-phonon interaction is given by

Ue2ph~r' ,t !52(
k

Qk~ t !Xk~ t !

52
1

L3/2 (
k

Qk~ t ! f ~kz!e
ik'r', ~7!

where

Qk~ t !5 i z@bk~ t !2b2k
1 ~ t !# ~8!

is the phonon heat bath variable (z is the strength of the
electron-phonon coupling!, and the electron variable conju
gate to this operator is defined as

Xk~ t !5
1

L3/2
f ~kz!e

ik'r'(t). ~9!

Here L3 is the volume of the crystal,r'5(x,y), and f (kz)
5exp(2\kz

2/4mv0) is the electron confinement form facto
The response function of uncoupled phonon heat bath v
ables,wk(t;t1), and their correlation function,M k(t;t1), are
given by

wk~ t;t1!5 K i

\
@Qk

(0)~ t !,Q2k
(0)~ t1!#2L Q~ t2t1! ~10!

and

M k~ t;t1!5 K 1

2
@Qk

(0)~ t !,Q2k
(0)~ t1!#1L , ~11!

where Qk
(0)(t) are theunperturbedphonon variables,Q(t

2t1) is the Heavyside unit step function, and@ . . . , . . .#1

denotes an anticommutator.
The electron-impurity interaction is described by

Ue2 i~r'!52
1

L3/2 (
k

Uk f ~kz!e
ik'r', ~12!

whereUk are the spatial Fourier components of the impur
potential with correlation function
15530
-
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Fk5^ 1
2 @Uk ,U2k#1&. ~13!

In summary,

U~r ,t !5Ue2ph~r' ,t !1Ue2 i~r'!

52(
k

~Qk~ t !1Uk!Xk~ t !. ~14!

III. ORBITAL DYNAMICS

Employing the Hamiltonian of Eq.~3!, we obtain
Langevin-like operator equations of motion determining
plane electron dynamics, as given by~the derivation is pre-
sented in Appendix A!

d

dt
Vx~ t !1vcVy~ t !1Gx@Vx~ t !;Vy~ t !#5jx~ t !,

d

dt
Vy~ t !2vcVx~ t !1Gy@Vx~ t !;Vy~ t !#5jy~ t !, ~15!

with fluctuation sources jx,y(t) and collision terms
Gx@Vx(t);Vy(t)# given by Eqs.~A8! and ~A9!. It should be
emphasized that the expressions for fluctuation sources@Eq.
~A8!# are obtained from microscopic analysis, and it is po
sible to calculate their correlation functions of any order.
particular, the correlation function of the fluctuation sourc
~in the case of weak coupling or Gaussian statistics of
unperturbed phonon variables! is given by

Kab~ t,t1!5 K 1

2
@ja~ t !,jb~ t1!#1L

5
1

m2 (
k

kakb f 2~kz!

3S ~M k~ t,t1!1Fk!K 1

2
@Xk~ t !,X2k~ t1!#1L

1Rk~t!K 1

2
@Xk~ t !,X2k~ t1!#2L D , ~16!

whereRk(t2t1)5\@wk(t2t1)1wk(t12t)#/2i .
We can separate the electron velocity operator into

average and fluctuation parts,

Vx,y~ t !5^Vx,y~ t !&1Ṽx,y~ t !. ~17!

Due to relaxation processes only the fluctuating part is n
zero,^Vx,y(t)&50, and the equations of motion for the fluc
tuating components take the forms

d

dt
Ṽx~ t !1vcṼy~ t !1Gx@Vx~ t !;Vy~ t !#

2^Gx@Vx~ t !;Vy~ t !#&5jx~ t !,
9-2
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d

dt
Ṽy~ t !2vcṼx~ t !1Gy@Vx~ t !;Vy~ t !#

2^Gy@Vx~ t !;Vy~ t !#&5jy~ t !. ~18!

To further simplify Eqs.~18!, we have to calculate the
~anti!commutators involved in Eqs.~16!, ~A8!, and ~A9!.
This procedure is presented in Appendix B resulting in
following simplified equations:

S d

dt
1g0D Ṽx~ t !1~vc1d!Ṽy~ t !5jx~ t !,

S d

dt
1g0D Ṽy~ t !2~vc2d!Ṽx~ t !5jy~ t !, ~19!

where the damping rate,g05gx5gy , and the frequency
shift, d5dx5dy , are given by

gx,y5
1

mL3 (
k

kx,y
2 f 2~kz!

3E
0

1`

dttH ~M k~t!1Fk!
2

\
sinS \k'

2

2m
t D

1wk~t!cosS \k'
2

2m
t D J expH 2

t2

2tc
2~k'!

J ~20!

and

dx,y5
1

mL3 (
k

kxkyf 2~kz!

3E
0

1`

dttH ~M k~t!1Fk!
2

\
sinS \k'

2

2m
t D

1wk~t!cosS \k'
2

2m
t D J expH 2

t2

2tc
2~k'!

J . ~21!

Here,t5t2t1 andtc
2(k') is given by Eq.~B11!. It follows

from Eq. ~19! that the Fourier transforms of velocity corre
lation functions are given by

K 1

2
@Va~v!;Vb#1L 5E dteivtK 1

2
@Va~ t1t!,Vb~ t !#1L ,

a,b5x,y, ~22!

K 1

2
@Vx~v!;Vx#1L 5 K 1

2
@Vy~v!;Vy#1L

5
K~v!

2 S 1

~v2vc!
21g0

2

1
1

~v1vc!
21g0

2D , ~23!

and
15530
e

K 1

2
@Vx~v!;Vy#1L 52 K 1

2
@Vy~v!;Vx#1L

5
K~v!

2i S 1

~v2vc!
21g0

2

2
1

~v1vc!
21g0

2D , ~24!

where we neglected terms of the of orderd/vc!1. The cor-
relation function of the fluctuation forces is defined
K(v)5Kaa(v), where

Kab~v!5E dtteivtKab~ t1t,t !

5
1

m2E d3k

~2p!3
kakb f 2~kz!

3E
0

1`

dttH ~M k~t!1Fk!sinS \k'
2

2m
t D

2 iRk~t!cosS \k'
2

2m
t D J expH 2

t2

2tc
2~k'!

J .

~25!

To carry out thet2 andk2 integrations in Eqs.~20! and
~25!, we have to employ explicit expressions for the respo
and correlation functions for a particular scattering mec
nism. In the present paper we consider polar optical phon
deformational acoustic phonons and charged impurities
possible scattering mechanisms. Their corresponding
sponse and correlation functions are listed below.

Optical phonons

wk
OP~t!5

4pV0e2

k2e*
sin~V0t!h~t!,

M k
OP~t!5

\

2

4pV0e2

k2e*
cos~V0t!cothS \V0

2kBTD , ~26!

where V0 is the optical phonon frequency, 1/e* 51/e`

21/e0, (e` ande0 are the hf and static permittivities of th
crystal, respectively!.

Deformational acoustic phonons

wk
AP~t!5

D2k

ru
sin~ukt!h~t!,

M k
AP~t!5

\

2

D2k

ru
cos~ukt!cothS \uk

2kBTD , ~27!

whereD is the deformation potential,r is the crystal density,
andu is the sound velocity.

Static charged impurities have only a correlation functio
given by
9-3
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Fk5
2e4nt*

pe0
2~k21r 0

22!2
, ~28!

where r 0 is the screening radius,nt* 5(anaZa
2 , na is the

impurity concentration for speciesa, andZa is their charge
number.

We neglect the cross correlations of scattering proce
and, consequently, they are additive in both the damping
and in the correlation function of the fluctuation sources:

g05g0
OP1g0

I 1g0
AP,

K̃~v!5K̃OP~v!1K̃ I~v!1K̃AP~v!. ~29!

Substituting the corresponding response and correla
functions in Eqs.~20! and ~25!, we obtain the contributions
of polar optic phonons as

g0
OP5

1

A2p

V0e2

me*
E

0

1`

dk'k'
3 E

0

1`

dkz

tc
3~k'! f 2~kz!

k2

3H ~N011!~v'1V0!expF2
1

2
~v'1V0!2tc

2~k'!G
1N0~v'2V0!expF2

1

2
~v'2V0!2tc

2~k'!G J ~30!

and

K̃OP~v!5
1

2A2p

\V0e2

m2e*
E

0

1`

dk'k'
3 E

0

1`

dkz

tc~k'! f 2~kz!

k2

3H ~N011!S expF2
1

2
~v1v'1V0!2tc

2~k'!G
1expF2

1

2
~v2v'2V0!2tc

2~k'!G D
1N0S expF2

1

2
~v1v'2V0!2tc

2~k'!G
1expF2

1

2
~v2v'1V0!2tc

2~k'!G D J ; ~31!

the contributions of deformational acoustic phonons as

g0
AP5

1

4pA2p

D2

mruE0

1`

dk'k'
3 E

0

1`

dkzktc
3~k'! f 2~kz!

3H ~Nk11!~v'1uk!expF2
1

2
~v'1uk!2tc

2~k'!G
1Nk~v'2uk!expF2

1

2
~v'2uk!2tc

2~k'!G J ~32!

and
15530
es
te

n

K̃AP~v!5
1

8pA2p

\D2

m2ru
E

0

1`

dk'k'
3 E

0

1`

dkzktc~k'! f 2~kz!

3H ~Nk11!S expF2
1

2
~v1v'1uk!2tc

2~k'!G
1expF2

1

2
~v2v'2uk!2tc

2~k'!G D
1NkS expF2

1

2
~v1v'2uk!2tc

2~k'!G
1expF2

1

2
~v2v'1uk!2tc

2~k'!G D J ; ~33!

and, finally, the contributions of the charged impurities as

g0
I 5

1

2p2A2p

e4nt*

m2e0
2E0

1`

dk'k'
5 E

0

1`

dkz

tc
3~k'! f 2~kz!

~k21r 0
22!2

3expS 2
v'

2 tc
2~k'!

2 D ~34!

and

K̃ I~v!5
1

2p2A2p

e4nt*

m2e0
2E0

1`

dk'k'
3 E

0

1`

dkz

tc~k'! f 2~kz!

~k21r 0
22!2

3S expF2
1

2
~v1v'!2tc

2~k'!G
1expF2

1

2
~v2v'!2tc

2~k'!G D . ~35!

In all these formulas we use the notationk5Ak'
2 1kz

2 and
v'5\k'

2 /2m. N05@exp(2\V0 /T)21#21 and Nk5@exp
(2\uk/T)21#21 are Bose distribution functions for the opt
cal and acoustic phonons, respectively. The level of ther
velocity fluctuations, ^Vx

2&, can be determined self

consistently usinĝVx
2&5K̃(vc)/2g0.8

IV. SPIN DYNAMICS

In the second stage we analyze spin relaxation due to
interaction between spin and electron orbital motion. T
corresponding spin interaction Hamiltonian is given by2,3

Hspin5mB~sW •BW !1
\

2
~sW •VW !, ~36!

wheremB(sW •BW ) is the Zeeman splitting Hamiltonian term
mB is the Bohr magneton, and

VW 5
a W̧

\m3/2A2«g

, ~37!

with

¸x5m3Vx~Vy
22Vz

2!, ¸y5m3Vy~Vz
22Vx

2!,
9-4
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¸z5m3Vz~Vx
22Vy

2!. ~38!

For a quantum well strongly confined in the^001& direction,
HDP can be simplified as3

HDP52sxQx~ t !2syQy~ t !, ~39!

where

Qx~ t !5lVx~ t !, Qy~ t !52lVy~ t ! ~40!

and

l5
a^pz

2&

2A2m«g

, ~41!

with ^pz
2&5m\v0/2 if the confinement is parabolic.

Considering orbital motion to play the role of an effecti
heat bath with correlation functions given by Eqs.~23! and
~24!, and employing a second application of the method
Refs. 7–9, we obtain a set of Bloch equations for the aver
spin projections as

d

dt
^sx~ t !&52

^sx~ t !&
T2

2~vB1dx!^sy~ t !&,

d

dt
^sy~ t !&5~vB1dy!^sx~ t !&2

^sy~ t !&
T2

, ~42!

d

dt
^sz~ t !&5

sz
02^sz~ t !&

T1
,

where sx ,sy ,sz are the Pauli matrices andsz
05

2tanh(\vB/2T) is the equilibriumz-component of spin.vB
5gmBB/\, mB5ueu\/2m0c is the Bohr magneton, and theg
factor is 20.44 for GaAs. It should be emphasized that
determine the relaxation timesT1 andT2 microscopically as

T15
ts

2
, T25ts , ~43!

where

1

ts
5

2l2

\2

K̃~vB!

~vB2vc!
21g0

2
. ~44!

While this result is reminiscent of a formula obtained
Ivchenko for bulk semiconductors,10 that differs from the
present quantum well case under consideration here in
the Ivchenko result has a sum of several Lorentzians
involves numerical constants in place of our relaxation r
g0 and numerator functionK̃(v) which have magnetic field
and temperature dependencies that are explicitly determ
by Eq. ~29! on the microscopic basis. It is evident from E
~44!, that the effect of magnetic field on spin relaxation
twofold: First, there is magnetic field dependence of the fl
tuation source correlator,K̃(vB), associated with electron
transitions between energy levels having different spin. S
ond, the difference between the frequenciesvB and vc is
involved in the denominator of Eq.~44!, which occurs be-
15530
f
e

at
d

e

ed

-

c-

cause of deviations of electron effective mass andg factor in
semiconductors from the free electron values. The temp
ture dependence can also be separated into two parts:~i! via
electron thermal fluctuations~this contribution is linear with
increasing temperature!, and~ii ! via temperature dependenc
of the momentum relaxation rate,g05g0(T).

In the absence of a magnetic field (vc5vB50, ^Vx
2&

5K̃(0)/2g05T/m), we recover Eq.~2! as the zero field
limit:

1

ts
U

B50

5
4l2

\2

1

g0

K̃~0!

2g0
5

4l2

\2

1

g0
^Vx

2&5
4l2

\2

1

g0

T

m

5
a2^pz

2&2

2\2m2«g

1

g0
T, ~45!

wherein our microscopic analysis yields the phenomenolo
cal constanttp of Eqs.~1! and ~2! astp→1/g0.

Figures 1~a! and 1~b! exhibit the dependence of the rela
ation rate on the energy of the lowest electronic subband
the quantum well~which is given byE05\v0/2 for the case

FIG. 1. Dependencies of the relaxation rate on the energy of
lowest level of the quantum well;~a! for temperatureT540 K and
two magnetic field strengths,~b! for temperatureT5300 K ~the
same curve for both magnetic field strengths!.
9-5
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of harmonic confinement! for various temperatures and ma
netic field strengths. It is evident from these figures tha
low temperature the applied magnetic field suppresses
relaxation, whereas at higher temperatures the momen
relaxation rate dominates in the denominator of Eq.~44!, and
there is a negligible magnetic field dependence in this c
In these calculations we have employed the following se
parameters for a GaAs-based quantum well: electron ef
tive massm50.067m0 , 1/e* 50.0069, optical phonon en
ergy \V050.035 eV, deformation potentialD58.6 eV,
density r55.4 g cm23, sound velocityu553105 cm s21,
impurity concentrationnt* 51017 cm23, and static permittiv-
ity e0513. It should be emphasized that our microsco
calculations yield aquantitativeagreement with the experi
mental results of Ref. 6. The full magnetic field depende
~up to 1000 Gs! of the spin relaxation rate is presented
Fig. 2 for \v050.01 eV. This dependence has t
well-known2 Lorentzian shape, evident in Eq.~44!, and for a
reasonable range of magnetic field strength it is not affec
by the magnetic field dependence of the velocity fluctuatio
which are embedded in the functionK̃(vB). @However, for
the case of dilute magnetic semiconductors having a la
electrong factor, to which our general analysis is also app
cable, the magnetic field dependence of the functionK̃(vB)
can be of crucial importance.# The magnetic field depen
dence for the case of bulk semiconductors~represented by a
sum of several Lorentzians! was obtained in Ref. 10 and i
also reconfirmed by our microscopic analysis.11

The temperature dependence of the spin relaxation ra
shown in Fig. 3. The nonmonotonic behavior is due to
dominance of different scattering mechanisms in differ
temperature ranges. At low temperatures~before the peak!,
the momentum scattering rate is determined by impuri
and is almost independent of temperature, and, conseque
we have almost linear growth of the spin relaxation rate w
increasing temperature, as predicted by Eq.~2!. However, as
temperature further increases, optical phonons become
dominant scattering mechanism and, with this, the mom
tum scattering time becomes temperature dependent, re

FIG. 2. Dependence of the relaxation rate on magnetic fi
strength for various temperatures.
15530
t
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f
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ing in suppression of the relaxation rate. It is important
note that in the temperature range in which phonons do
nate, the relaxation rate is almost independent of the m
netic field, whereas at low temperatures the magnetic fi
shifts the peak and gives rise to deviations from linear
havior.

V. CONCLUSIONS

In conclusion, we have developed a fully microscop
theory of electron-spin relaxation in semiconductors by
D’yakonov-Perel’ mechanism. We have applied this theory
a quantum well structure with a magnetic field in the grow
direction. A set of Bloch equations for a spin system h
been derived with microscopically determined longitudin
T1, and transverse,T2, relaxation times, which are related a
T15T2/2 for the quantum well structure grown in the^001&
direction.3 The well-known semiphenomenological expre
sion for the spin relaxation rate3 emerges as the zero
magnetic field limit of our result. Furthermore, we have an
lyzed the dependencies of the electron-spin relaxation rat
the energy of the lowest quantum well subband, on the m
netic field strength, and on temperature, obtaining aquanti-
tative agreement with the experimental results.

APPENDIX A

The derivation of Langevin-like equations for electron v
locity operators, Eq.~15! presented here follows the ap
proach developed in our previous works.7–9 We start from
Heisenberg equations of motion for electron position and
locity operators for the Hamiltonian of Eq.~3!, as

d

dt
x~ t !5

1

i\
@x~ t !,H#25Vx~ t !,

d

dt
y~ t !5

1

i\
@y~ t !,H#25Vy~ t !, ~A1!

d FIG. 3. Temperature dependence of the relaxation rate for v
ous magnetic field strengths.
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d

dt
Vx~ t !5

1

i\
@Vx~ t !,H#2

52vcVy~ t !1
1

m (
k

ikx@Qk~ t !1Uk#Xk~ t !,

d

dt
Vy~ t !5

1

i\
@Vy~ t !,H#2

5vcVx~ t !1
1

m (
k

iky@Qk~ t !1Uk#Xk~ t !.

If the coupling between the electron subsystem and heat
is weak, or in the case of Gaussian statistics of unpertur
heat bath variables, the fully coupled Heisenberg heat b
variable is given by7

Qk~ t !5Qk
(0)~ t !1E

2`

t

dt1wk~ t;t1!X2k~ t1!, ~A2!

where the response function of the phonon heat bathwk(t;t1)
is defined by Eq.~10!. Substituting Eq.~A2! into Eq. ~A1!,
we have to take into account the fact that only the fu
coupled heat bath variable commutes with the electron v
able taken at equal times. Accordingly, we perform a sy
metrization of both terms of Eq.~A2! with the electron vari-
ables, with the results

d

dt
Vx~ t !1vcVy~ t !

5
1

m (
k

ikxS 1

2
@Uk ,Xk~ t !#11

1

2
@Qk

(0)~ t !,Xk~ t !#1

1E
2`

t

dt1wk~ t;t1!
1

2
@Xk~ t !,X2k~ t1!#1D ,

d

dt
Vy~ t !2vcVx~ t !

5
1

m (
k

ikyS 1

2
@Uk ,Xk~ t !#11

1

2
@Qk

(0)~ t !,Xk~ t !#1

1E
2`

t

dt1wk~ t;t1!
1

2
@Xk~ t !,X2k~ t1!#1D . ~A3!

To eliminate the unperturbed phonon/impurity variables
employ the Furutsu-Novikov theorem12

K 1

2
@Qk

(0)~ t !,Xk~ t !#1L 5E
2`

1`

dt1M k~ t;t1!K dXk~ t !

dQ2k
(0)~ t1!

L ,

~A4!

where the correlation functionM k(t;t1) of free phonon vari-
ables is given by Eq.~11!, andd/dQ(0)(t1) is the functional
derivative with respect to the uncoupled heat bath varia
Q(0)(t1). Equation~A4! can be derived by an application o
the Wick theorem, assuming the operatorXk(t) to be a func-
tional of $Q(0)(t1)% with t1<t ~see Ref. 7!. This expression
15530
th
ed
th

i-
-

e

le

is exact only for Gaussian statistics of the variablesQ(0)(t),
and it also can be applied in the case of weak coupling.
the case of strong coupling, Eq.~A4! requires modification to
include functional derivatives of all orders. The function
derivative on the right-hand side of Eq.~A4! is proportional
to the commutator7 in the form

K dXk~ t !

dQ2k
(0)~ t !

L 5 K i

\
@Xk~ t !,X2k~ t1!#2L Q~ t2t1!, ~A5!

with the following result:

K 1

2
@Qk

(0)~ t !,Xk~ t !#1L 5E
2`

t

dt1M k~ t;t1!

3K i

\
@Xk~ t !,X2k~ t1!#2L .

~A6!

An analogous treatment of the electron-impurity correlat
term yields

K 1

2
@Uk~ t !,Xk~ t !#1L 5E

2`

t

dt1FkK i

\
@Xk~ t !,X2k~ t1!#2L ,

~A7!

whereFk is the impurity potential correlation function give
by Eq. ~13!. We also introduce fluctuation source operato
defined as

jx,y~ t !5
1

m (
k

ikx,yS 1

2
@Qk

(0)~ t !1Uk ,Xk~ t !#1

2E
2`

t

dt1@M k~ t;t1!1Fk#
i

\
@Xk~ t !,X2k~ t1!#2D ,

~A8!

with zero average,̂jx,y(t)&50, and collision terms defined
as

Gx,y@Vx~ t !;Vy~ t !#

52
1

m (
k

ikx,yE
2`

t

dt1S @M k~ t;t1!1Fk#

3
i

\
@Xk~ t !,X2k~ t1!#21wk~ t;t1!

1

2
@Xk~ t !,X2k~ t1!#1D ,

~A9!

resulting in the Langevin-like equations of Eq.~15!.

APPENDIX B:

In this appendix we determine the commutato
@Xk(t),X2k(t1)#6 involved in Eqs.~16!, ~A8!, and~A9!. We
assume that there is finite correlation time,tc , of the
electron-phonon interaction~which will be obtained self-
consistently!. For the case of weak coupling, the commu
tors can be calculated using the free, uncoupled evolutio
the electron velocity operators duringtc , as given by
9-7
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x~ t !5x~ t1!1Vx~ t1!
sin@vc~ t2t1!#

vc

2Vy~ t1!
12cos@vc~ t2t1!#

vc
, ~B1!

y~ t !5y~ t1!1Vx~ t1!
12cos@vc~ t2t1!#

vc

1Vy~ t1!
sin@vc~ t2t1!#

vc
.

This allows to us determine the following commutator:

@ ik'r'~ t !,2 ik'r'~ t1!#252
i\k'

2

mvc
sin@vc~ t2t1!#,

~B2!

wherek'5uk'u5Akx
21ky

2 is the magnitude of the transvers
wave vector. With the operator equation~Baker-Campbell-
Hausdorff identity!

eÂeB̂5eÂ1B̂e21/2[Â,B̂] 2, ~B3!

~which is valid, when@Â,B̂#2 is a c number! we obtain

i

\
@Xk~ t !,X2k~ t1!#25

2

\L3
f 2~kz!exp$ ik'@r'„t…2r'„t1…#%

3sinS \k'
2

2mvc
sin@vc~ t2t1!# D ,

1

2
@Xk~ t !,X2k~ t1!#15

1

L3
f 2~kz!exp$ ik'@r'„t…2r'„t1…#%

3cosS \k'
2

2mvc
sin@vc~ t2t1!# D .

~B4!

We assume the coordinate fluctuations to be approxima
Gaussian~see Ref. 8 for the corresponding discussion! and,
consequently, obtain

^exp$ ik'@r'„t…2r'„t1…#%&

5expH 2
1

2
^~k'@r'„t…2r'„t1…# !2&J ~B5!
S.
.

nd

15530
ly

and

exp$ ik'@r'„t…2r'„t1…#%2^exp$ ik'@r'„t…2r'„t1…#%&

' ik'~r'„t…2r'„t1…!^exp$ ik'@r'„t…2r'„t1…#%&.

~B6!

With these simplifications we have

Gx,y@Vx~ t !;Vy~ t !#2^Gx,y@Vx~ t !;Vy~ t !#&

52
1

mL3 (
k

ikx,yf 2~kz!E
2`

t

dt1H @M k~ t;t1!1Fk#

3
2

\
sinS \k'

2

2mvc
sin@vc~ t2t1!# D

1wk~ t;t1!cosS \k'
2

2mvc
sin@vc~ t2t1!# D J

3 ik'@r'„t…2r'„t1…#^exp$ ik'@r'„t…2r'„t1…#%&.

~B7!

We make the further assumption that the correlation time
the electron-phonon interaction,tc , is much less than the
period of the cyclotron oscillations, i.e.vctc!1 ~the same
approximation was used in Ref. 10!. This is reasonable for
semiconductors at moderate magnetic fields and not too
temperatures, and it leads to

k'@r'„t…2r'„t1…#'kxVx~ t !~ t2t1!1kyVy~ t !~ t2t1!,
~B8!

i\k'
2

2mvc
sin@vc~ t2t1!#'

i\k'
2

2m
~ t2t1!, ~B9!

and

^exp$ ik'@r'„t…2r'„t1…#%&5expH 2
~ t2t1!2

2tc
2~k'!

J ,

~B10!

where

tc
22~k'!5kx

2^Vx
2~ t !&1ky

2^Vy
2~ t !&1kxky^@Vx~ t !,Vy~ t !#1&.

~B11!

The resulting simplified stochastic equations for the fluctu
ing velocity components take the form given by Eq.~19!.
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