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Electron spin relaxation in a semiconductor quantum well
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A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel type spin-orbit coupling is
developed for a semiconductor quantum well in an ambient magnetic field applied perpendicular to the plane
of the well. We derive Bloch equations for an electron spin in the well and determine explicit microscopic
expressions for the spin relaxation times. The dependencies of the electron spin relaxation rates on magnetic
field strength, temperature, and the lowest subband energy of the quantum well are analyzed.
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[. INTRODUCTION Our analysis involves the explicit recognition of the two
stages in the relaxation process corresponding to the relax-
Spin phenomenology in semiconductor structures hastion time hierarchies involved i@ electron thermalization
been at the focal point of research interest over the past fe@ue to interaction with phonons, arid) spin relaxation. In
years in connection with proposals for spin-based quanturthe first stage of solutiofa) we determine the relaxation
devicest Spin implementation of quantum computation, op- rates and fluctuation characteristics of electron orbital motion
tical switches, magnetic memory cells, etc., calls for a predue to coupling to the phonon bath. Spin relaxation dynam-
cise knowledge of spin dynamics and, in particular, the spirics (the slowest process in the sysfeoan be neglected in
relaxation rates. The basic mechanisms responsible for spihis stage.
relaxation are those of D’yakonov-Perel(DP)?3 The second stagéh) proceeds with analysis of the spin
Elliott-Yafet,* and Bir-Aronov-Pikus. It was showfithat for  relaxation process due to spin-orbit interaction, wherein the
-V and II-VI compounds, which are the most promising orbital degrees of freedom are considered as an effective heat
materials for device purposes, the DP mechanism dominatdzth, having the characteristics determined in the first stage.
at moderate temperatures and low hole concentrations. Th& standard set of Bloch equations with two distinct relax-
spin relaxation time due to the DP mechanism has generallgtion times(longitudinal relaxation timé {, responsible for

been expressed in the semiphenomenological ¥rm spin magnetic moment relaxation, and transverse relaxation
time T,, responsible for decoherenas derived in this sec-
1 a? 3 ond stage. In both stages of our analyses we employ the
—=Q 2 ol 1) method proposed in Ref. 7 and developed in Refs. 8 and 9.
Ts h &g
for bulk semiconductors, and Il FORMULATION
1 a¥p?)? The Hamiltonian of parta) is given by
—= S, Tpl (2
Ts  2h°m €g
H=Ho+U(r, ,t)+Hpp, 3

for quantum well structures, wheke describes conduction

band spin splitting due to lack of inversion symmetry ( Where the spin and its interactions are neglected in the first
=0.07 for GaAs$, ¢4 is the band gap, and is the Kelvin stage, and

temperature Kg=1). The numerical coefficien® depends

on the orbital scattering mechanism, aipg) is the average hwg MVe mVi

square of momentum in the quantum well growth direction. Ho= 2 + 2 2 )

It should be noted that these formulas involve the aver-

age momentum relaxation timg, as a phenomenological is the Hamiltonian of a two-dimensional electron in a quan-
parameter. tum well with harmonic confinement in thedirection hav-

In the present paper we develofutly microscopicheory  ing a frequencywy. We assume the temperature to be low
of spin dynamics and apply it to a quantum well structure inenough so that only the lowest energy subband of the quan-
the presence of an external magnetic field, directed along theim well is occupied. In this case the motion of an electron
well growth direction, taking account of various scatteringcan be described by means of two electron in-plane velocity
mechanisms. Our theory facilitates the microscopic determieomponents, which in the presence of a constant, uniform
nation of 7, and its temperature and magnetic field depenmagnetic field directed along tlzeaxisB=(0,0B) are given
dencies in terms of the fundamental material parameters. by
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1 e 1 e —(1
szﬁ<px_ EAX)’ Vy:m(py_ EAV)’ Py=(3 [Uk,U_]4). (13)
In summary,
o
VeVyl-== = ® U(r ) =Ue_pn(r )+ Ue_i(r.)

where A= (A,,A,,0) is the vector potentialB=(d/dx)A
—(a/ﬁy)AX(, )z(uc=y|e)|B/mc is the cy?:lotron freql(Jencyz, ;nd - _; (Qu() + Ui Xk(D). (14)
[...,...]- denotes a commutator. The phonon Hamil-

tonian has the form
I1l. ORBITAL DYNAMICS

1
thzZ ﬁwk<bk+bk+§, (6) Employing the Hamiltonian of Eq.(3), we obtain
k

Langevin-like operator equations of motion determining in-
wherefiw, is the phonon energy arzf andb, are creation plane e!ectron dynamics, as given (iie derivation is pre-
and annihilation operators, respectively. The téfn, ,t) in  Sented in Appendix A
Eq. (3) describes the electron coupling to phonons and im-
purities. . B

The electron-phonon interaction is given by &VX(tHwcvy(t)+GX[VX(t)’Vy(t)]_gx(t)'

Ue t)=- t) X, (t d
11D 3 QUOXAY G (D= 0V D+ G VDV (D]=§,(1), (15

1

=—— > Qu(t)f(k,)etkire, (7)  with fluctuation sourcesé, (t) and collision terms

L=k Gy V«(1);Vy(1)] given by Egs.(A8) and(A9). It should be

where emphasized that the expressions for fluctuation soUfegs
(A8)] are obtained from microscopic analysis, and it is pos-
Qu(t)=i{[by(t)—bF(1)] (8)  sible to calculate their correlation functions of any order. In

particular, the correlation function of the fluctuation sources
(in the case of weak coupling or Gaussian statistics of the
unperturbed phonon variab)eis given by

is the phonon heat bath variabl¢ {s the strength of the
electron-phonon couplingand the electron variable conju-
gate to this operator is defined as

1
Xy (1) = L%Zf(kz)eiwn, © Kaﬁa,tl):<§[§a<t>,fﬁ<tl>]+>
HereL? is the volume of the crystal,, =(x,y), andf(k,) _ i 2 K kf2(k,)
=exp(—ﬁk§/4mwo) is the electron confinement form factor. m2 & R

The response function of uncoupled phonon heat bath vari-
ables,p,(t;t;), and their correlation functiori  (t;t,), are

1
given by X (Mk(tvtl)+q)k)<§[xk(t)1xk(tl)]+>
i 0 0 1
e(tit)= %[Qﬁ )(1),Q9(t)]- ) ®(t—t)) (10 R 5 XD, X ()] ) ], (16)
and whereR(t—t;) = #[ oy (t—t;) + @ (t;— 1) 1/2i.
1 We can separate the electron velocity operator into its
Mk(t;tl):<E[Q(kO)(t)’Q(—OIZ(tl)]Jr>v (11)  average and fluctuation parts,
where Q{%(t) are theunperturbedphonon variables@ (t V(D =(Vyey (D) + V(). 17
—1,) is the Heavyside unit step function, apd. ., ...],
denotes an anticommutator. Due to relaxation processes only the fluctuating part is non-
The electron-impurity interaction is described by zero,(Vy (t))=0, and the equations of motion for the fluc-
tuating components take the forms
+ ik, r
Ue-ilr) =~ 35 2 Uid(kpe'r, (12)

d_ ~

&Vx(t) + wcvy(t) + Gx[vx(t);vy(t)]
whereU are the spatial Fourier components of the impurity

potential with correlation function — (G Vx(1); V(D) ]y =&(1),
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d. ~
avy(t) — V(1) + Gy[Vx(t);Vy(t)]

—(Gy[ Vu(1); Vy(1) ]) = £y(1).

To further simplify Egs.(18), we have to calculate the
(anticommutators involved in Eqg.16), (A8), and (A9).

(18)

This procedure is presented in Appendix B resulting in the

following simplified equations:

d ~ ~
gi o/ Vx(O+ (@c+ 9V, ()= &(),

gt 70| Vy(D = (0= V() = £,(1),

+v0 (19

where the damping ratey,= y,= vy, and the frequency
shift, 6= éy=6,, are given by

1
— 2 £2
7X’y_mL3 ; I(x,yf (ko)
hk?
2m

ex 2 Tg( ki)

1
ssx,y:ﬁ Ek} ki, F2(k,)

[aronin o
X . 77 (M (7)+ k)%sm

hk?
2m’

(20

+ qok(r)cos(

and

oo 2 ,(ﬁkf )
Xfo drr (Mk(T)-l-CI)k)gSIn om 7
2

ex4'_273kL>

Here,7=t—t, and 72(k ) is given by Eq.(B11). It follows
from Eq. (19) that the Fourier transforms of velocity corre-
lation functions are given by

hk?
+(pk(T)CO ﬁT

} . (2D

1 iwT -
<§[Va(a));Vﬂ]+>=dee <§[Va(t+7'),V,3(t)]+>,

a,B=X,Y, (22
1 1
E[Vx(w);vx]+ = E[Vy(w);vy]+
_K(w) 1
2 (w-w)?+ 93
; (23)
(w+wc)2+'yé ,

and
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1 1
E[Vx(w);vy]Jr == E[Vy(w);vx]+

B K(w) 1

2i

(w_wc)2+ 73

1
(w+wc)2+ ’}’S

, (29)

where we neglected terms of the of ord¥tw.<1. The cor-
relation function of the fluctuation forces is defined as
K(w)=K,,(w), where

Kop(w)= f dtre' K ,4(t+ 7,t)

1f 4% K,k ;F2(k,)
m2) (2m3 P

+oo s
Xfo dr7my (M (7)+®)sin sm T
ﬁki ) 72
2m’ 272(k,)

To carry out ther— andk—integrations in Eqs(20) and
(25), we have to employ explicit expressions for the response
and correlation functions for a particular scattering mecha-
nism. In the present paper we consider polar optical phonons,
deformational acoustic phonons and charged impurities as
possible scattering mechanisms. Their corresponding re-
sponse and correlation functions are listed below.

Optical phonons

—iRk(r)cos( }

(29

4779062 .
PR (1)= ——5——sin Qo) 7(7),
k<e
ﬁ 4779082

MEP(7)

= gr)cott] 220 26
=2 K2e* cog(2y7)cO m , (20
where Q is the optical phonon frequency, et/=1/e.,
—1/e, (€, and eq are the hf and static permittivities of the
crystal, respectively

Deformational acoustic phonons

D%k
¢l (1) =~ sin(ukn) (1),

e 1 D% e cot huk )
K (T)—EP—UCO$U T)CO m s ( 7)
whereD is the deformation potentiap, is the crystal density,
andu is the sound velocity.
Static charged impurities have only a correlation function,
given by
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P 2¢'n; (28  KAP(w)= !
=, w)—
“ 776(2)(k2+r62)2 827 m?pu

f dk, k3f dkkre(k, ) F2(ky)

wherer is the screening radiusnszanazg, n, is the

impurity concentration for speciaes, andZ,, is their charge

number. 1
We neglect the cross correlations of scattering processes +ex;{ — ~(w—w, —uk)?72(k,)

and, consequently, they are additive in both the damping rate 2

and in the correlation function of the fluctuation sources:

x| (N +1)

1 2.2
ex —E(a)-l—wl-i-uk) To(ky)

|

ex;{ - %(erwL—uk)zrg(kl)}

|

ﬁnd, finally, the contributions of the charged impurities as

+ Ny

OoP | AP
Yo=%Yo TYot Yo s

L 2 2
R(w)IROP(w)-FR'(w)+RAP(w), (29) +ex[{ 2(“’ o, +uk)“rc(k,)

Substituting the corresponding response and correlatio
functions in Eqs(20) and (25), we obtain the contributions

of polar optic phonons as 7{) 1 e'nf fwd'&kif dk, C(ki) 7(2 2
272\27 m?el (K2+152)2
1 Qoe 3 k )f (k) w’ 5(k
%o = f dkkf di, = Xexp(_%ﬁ) a0
1 » 2 and
X1 (No+1)(w, +Q¢p)ex _E(wi_'—‘Q'O) To(K,)
1 R'(w) ! e4nt*f+wdk k3f+oodk M
+No(wl—Qo)eX[{—E(wi—Qo)zfg(kl) ] (30) 272\27 m?él o T (K412
1 2 2
and X\ ex _E(w—’—wL) Te(Ky)
ROP() = L M0 (77 o (77 Telk)T(Ke) +ex;{—l(w—wi)zrz(kl) ) (35)
(w)_Z 27 m2e* Jo o ‘ k2 2 ¢

In all these formulas we use the notatikr \/kf +kZ2 and

o, =hk?12m. No=[exp(-#Qy/T)—1]"* and N =[exp

(—AhukiT)—1]"* are Bose distribution functions for the opti-
cal and acoustic phonons, respectively. The level of thermal

) velocity fluctuations, (V2), can be determined self-

consistently usingV2)=K(w¢)/2v.2

1
X4 (Np+1) exp{— E(w-l— wl-i-Qo)zTg(ki)

1 2 2
+ex _E(w_wL_QO) Te(K,)

+Ng

1 2 2
exp — s (ot+w, —Qg°7e(K,)

N

IV. SPIN DYNAMICS

(3D interaction between spin and electron orbital motion. The
corresponding spin interaction Hamiltonian is giverf-by

1 In the second stage we analyze spin relaxation due to DP
+ex ——(a) w, +Q )27' (k)

the contributions of deformational acoustic phonons as 5
Hspin:MB(U’B)"’E(O”Q), (36)

1 D? [+= +eo
AP 2|k | Takkato
0

Y
0 Aqr+\2a MpU Jo

X4 (Ng+ 1)(wl+uk)exp[— ;(wﬁuk)zri(kg

Where,uB(E- I§) is the Zeeman splitting Hamiltonian term,
Mg is the Bohr magneton, and

>

o ax
O=——, (37)
1 ﬁmglzx/ng
+Nk(wi—uk)ex;{—E(wl—uk)zrﬁ(kl) } 32 uith
and 1= MV,(VE= V), xy=m3V (V- V2),
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=MV, (V= V7). (38) 16007
For a quantum well strongly confined in th@01) direction, 14007 )]
Hpp can be simplified &s £ 1200
2 ]
Hpp= —0xQx(t) — oyQy(1), (39 £ 1000 T=40K
(]
- 4 7
where 5 507 P
S 600 Ve
Qu(t) =AVy(1), Qy(t)=—AV(1) (40) 2 ] Pid
©
ﬁ 400 + . e
and 3 _ -7 —B=0
(p2) © 20 - - — -B=300Gs
a T -
= i, (41) 0 = T T T T T T T 1
2 \/WSQI 0.00 c:.-oz ) o.o4bb do.oe (o‘.;;z 0.10
owest z-subband energy (e
with (p2)=m# wy/2 if the confinement is parabolic.
Considering orbital motion to play the role of an effective S0
heat bath with correlation functions given by E¢&3) and
(24), and employing a second application of the method of T (b)
Refs. 7-9, we obtain a set of Bloch equations for the average —~ 40
spin projections as 2
d (oy(1)) £" 30- T=300K
_<Ux(t)>:_—_(wB+§x)<0'y(t)>a 9
dt T, =
2
d (ay(1)) 2
a(ay(t)>:(w8+5y)<o'x(t)>_ T ) (42) s
2 8 q0-
&
d ad—(o,(1)) ]
a(az(t)> :%’ 0 T T T T T T T T T 1
1 0.00 0.02 0.04 0.06 0.08 0.10
where o,,0y,,0, are the Pauli matrices andro= Lowest z-subband energy (eV)

—tanh{wg/2T) is the equilibriumz-component of spinwg FIG. 1. Dependencies of the relaxation rate on the energy of the

=0gueBl/f, ug= |el#i/2mc is the Bohr magneton, and tee |, est level of the quantum wel(@) for temperaturel =40 K and
factor is —0.44 for GaAs. It should be emphasized that wey,,, magnetic field strengthsb) for temperatureT =300 K (the

determine the relaxation timd§ andT, microscopically as  game curve for both magnetic field strengths

_Ts - cause of deviations of electron effective mass gffiactor in

Tl y Tz Ts» (43) i

2 semiconductors from the free electron values. The tempera-
ture dependence can also be separated into two gartsa
electron thermal fluctuationghis contribution is linear with

1 2)\2 K (wg) increasing temperatureand(ii) via temperature dependence

- —Bz' (44)  of the momentum relaxation rateo= y,(T).

s h? (0~ w)*t v In the absence of a magnetic field{=wg=0, (V2)

While this result is reminiscent of a formula obtained by =~ K(0)/2yo=T/m), we recover Eq(2) as the zero field
Ivchenko for bulk semiconductor§, that differs from the ~ limit:

present quantum well case under consideration here in that - ) )

the Ivchenko result has a sum of several Lorentzians and 1| ~_4A" 1 K(0) 4\ 1 . 4\"1 T
involves numerical constants in place of our relaxation rate B=0_ 52 Yo 27 - 52 v X %2 yom

vo and numerator functiol (») which have magnetic field

and temperature dependencies that are explicitly determined a2<p§)2 1
by Eq.(29) on the microscopic basis. It is evident from Eq. = 252m2s. Yo
(44), that the effect of magnetic field on spin relaxation is ¢
twofold: First, there is magnetic field dependence of the ﬂUCWherein our microscopic ana|ysis y|e|ds the phenomenok)gi-
tuation source correlatok (wg), associated with electron cal constantr, of Egs.(1) and(2) as r,— 1/y,.

transitions between energy levels having different spin. Sec- Figures 1a) and Xb) exhibit the dependence of the relax-
ond, the difference between the frequencigs and w. is  ation rate on the energy of the lowest electronic subband of
involved in the denominator of Eq44), which occurs be- the quantum wellwhich is given byE,=7% w/2 for the case

where

(45)
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FIG. 2. Dependence of the relaxation rate on magnetic field FIG. 3. Temperature dependence of the relaxation rate for vari-
strength for various temperatures. ous magnetic field strengths.

of harmonic confinemepfor various temperatures and mag- ing in suppression of the relaxation_ rate._ It is important tq

netic field strengths. It is evident from these figures that afote that in the temperature range in which phonons domi-
low temperature the applied magnetic field suppresses spfi@te, the relaxation rate is almost independent of the mag-
relaxation, whereas at higher temperatures the momentufftic field, whereas at low temperatures the magnetic field
relaxation rate dominates in the denominator of @d), and ShIfFS the peak and gives rise to deviations from linear be-
there is a negligible magnetic field dependence in this cas&@Vvior.

In these calculations we have employed the following set of

parameters for a GaAs-based quantum well: electron effec- V. CONCLUSIONS
tive massm=0.067m,, 1/e* =0.0069, optical phonon en-
ergy 71Q,=0.035 eV, deformation potentiaD=28.6 eV, In conclusion, we have developed a fully microscopic

density p=5.4 gcm 3, sound velocityu=5x10° cms 1, theory of electron-spin relaxation in semiconductors by the
impurity concentratiom? =10'" cm™3, and static permittiv-  D’yakonov-Perel’ mechanism. We have applied this theory to
ity eo=13. It should be emphasized that our microscopicd quantum well structure with a magnetic field in the growth
calculations yield ajuantitativeagreement with the experi- direction. A set of Bloch equations for a spin system has
mental results of Ref. 6. The full magnetic field dependencdeen derived with microscopically determined longitudinal,
(up to 1000 G of the spin relaxation rate is presented in T1, and transversd,, relaxation times, which are related as
Fig. 2 for Awy=0.01eV. This dependence has the T1=T>/2 for the quantum well structure grown in tk@01)
well-knowrf Lorentzian shape, evident in E@t4), and for a direction® The well-known semiphenomenological expres-
reasonable range of magnetic field strength it is not affectegion for the spin relaxation rateemerges as the zero-
by the magnetic field dependence of the velocity fluctuationsinagnetic field limit of our result. Furthermore, we have ana-
which are embedded in the functi&(wB). [However, for lyzed the dependencies of the electron-spin relaxation rate on
the case of dilute magnetic semiconductors having a |arggwe_en_ergy of the lowest quantum well subban.d,. on the. mag-
electrong factor, to which our general analysis is also appli- "€tic field strength, and on temperature, obtaininguanti-

o = tative agreement with the experimental results.
cable, the magnetic field dependence of the funcdmwg) g P
can be of crucial importanceThe magnetic field depen-

dence for the case of bulk semiconduct@epresented by a APPENDIX A
sum of several Lorentziahsvas obtained in Ref. 10 and is he derivati ¢ ik . for el
also reconfirmed by our microscopic analysis. The derivation of Langevin-like equations for electron ve-

The temperature dependence of the spin relaxation rate |9ty operators, Eq(15) presented here follows the ap-
shown in Fig. 3. The nonmonotonic behavior is due to theprqach developeq In our previous works. we start from
dominance of different scattering mechanisms in diﬁeremlHe!senberg equations of motion for electron position and ve-
temperature ranges. At low temperatutbsfore the peak  |OCity operators for the Hamiltonian of E(S), as
the momentum scattering rate is determined by impurities
and is almost independent of temperature, and, consequently, d 1
we have almost linear growth of the spin relaxation rate with &x(t)= ﬁ[x(t)’H]* = Vi),
increasing temperature, as predicted by &4. However, as
temperature further increases, optical phonons become the g .
dominant scattering mechanism and, with this, the momen- _ _
tum scattering time becomes temperature dependent, result- &y(t)— E[y(t)’H]‘_Vy(t)’ (A1)
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1 is exact only for Gaussian statistics of the varialé®(t),
gr Vx(O = [Vx(),H]- and it also can be applied in the case of weak coupling. For
the case of strong coupling, E@4) requires modification to
1 ) include functional derivatives of all orders. The functional
=—oVy(H+ — ; ik [ Qi(t) + U] X, (1), derivative on the right-hand side of EGA4) is proportional
to the commutatdrin the form

iVt—inH OXk(t) [
gt U= 7 V(0. H1- <5Q+%>=<%[xk(t),xk(tl)]>®(t—t1), (A5)
= w V(1) + % Ek: iKy[ Qr(t) + U ]X(1). with the following result:

dt;M(t;tq)

If the coupling between the electron subsystem and heat bath <1[Q£°)(t),xk(t)]+> = ft
is weak, or in the case of Gaussian statistics of unperturbed 2
heat bath variables, the fully coupled Heisenberg heat bath

variable is given bf X<;L—[Xk(t).xk(t1)]>-

t
Qut=Q(t) + J dtie(tt) Xk (t),  (A2) (A6)
o An analogous treatment of the electron-impurity correlation
where the response function of the phonon heat batkt,) ~ term yields
is defined by Eq(10). Substituting Eq(A2) into Eq. (Al), 1 t i
we have to take into account the fact that only the fully [~ _ =
coupled heat bath variable commutes with the electron vari-< Z[Uk(t)'xk(t)]+> fwdtl®k<h [Xk(t)’xk(tl)]>’
able taken at equal times. Accordingly, we perform a sym- (A7)
metrization of both terms of EqA2) with the electron vari-

ables, with the results where®, is the impurity potential correlation function given

by Eg. (13). We also introduce fluctuation source operators
d defined as
avx(t) + a)ch(t)

1 1
buy(D= 0 2 ikx,y(g[Q&O’aHuk,xk<t>]+

1 1 1
> ikx(g[uk X+ S0, X (D]«

. .
- f_mdtl[Mk(t;tl)+(I)k]il;L_[Xk(t)vx—k(tl)]— ,

t 1
+ledtl‘»pk(t;tl)z[xk(t)vx—k(tl)]+ ; (A8)

d with zero averageqé, (t))=0, and collision terms defined
avy(t) - wcvx(t) as

Gyl Vx(1);Vy(1)]

1o, (1 1 0
=5 2 k| FLUGXD T4+ S0, X(D] 1< [
:_EZK |kx'yfmdtl([Mk(t;tl)+(Dk]

t 1
+f dtl@k(t;t1)§[Xk(t),X-k(tl)L)- (A3) i 1
- X2 X, Xkt ]+ (6 1) 5 X0, X k() ]+
To eliminate the unperturbed phonon/impurity variables we
employ the Furutsu-Novikov theoréfm (A9)

resulting in the Langevin-like equations of E4J5).
<}[Q(0)(t) X (t)] >=J+wdt M (t;ty) L(t)

20k BRI ) L TR 5Q0(ty) [ APPENDIX B:

(A4) In this appendix we determine the commutators

where the correlation functiol (t;t1) of free phonon vari- [ X, (t),X_(t;)]+ involved in Eqs.(16), (A8), and(A9). We
ables is given by Eq11), and 8/ Q(%)(t,) is the functional assume that there is finite correlation time,, of the
derivative with respect to the uncoupled heat bath variablelectron-phonon interactiofwhich will be obtained self-
Q)(t,). Equation(A4) can be derived by an application of consistently. For the case of weak coupling, the commuta-
the Wick theorem, assuming the operaXg(t) to be a func- tors can be calculated using the free, uncoupled evolution of
tional of {Q©(t;)} with t;<t (see Ref. . This expression the electron velocity operators during, as given by
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sifwq(t—ty)]

1-cod w(t—tq1)]

X(t)=x(ty) + V(ty)

—Vy(ty) (B1)

c

1-codwe(t—ty)]

y(t)=y(ty)+Vy(ty)

We

sifwc(t—1y)]

c

+Vy(ty)

This allows to us determine the following commutator:

2
L

i%
[ik r (t),—ik,r (t)]-=— m siM o (t—ty)],

(B2)

We

wherek, =k, |= VkZ+ ky2 is the magnitude of the transverse

wave vector. With the operator equati¢Baker-Campbell-
Hausdorff identity

AgB_

efe A+Bo—12[AB]-

e (B3)

(which is valid, wher{A,B]_ is ac numbe} we obtain

i 2
Ig[xk(t),x—k(tl)]— Zsz(kz)eXp[i K [ro®—r )1}

2
L

2Mw,

X sin

Sif‘[wc(t—tl)]),

1 1
5 X0, Xk(t) ]+ :Ffz(kz)exp{i k [r (®)—r ()]}

hk?
X o 2mwcsw{wc(t—tl)] .

(B4)

We assume the coordinate fluctuations to be approximately

Gaussian(see Ref. 8 for the corresponding discusiand,
consequently, obtain

(explik [r (O)—r (D]}
1
=exp{ - 5(('&[&(0— rot))?  (B5)
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and

explik [ (t)—r, (t)]}—(exp{ik [r (t)—r (t)]})
~iky (rp () —r(t))(explik, [r O—r )]}
(B6)
With these simplifications we have
Gx,y[vx(t);vy(t)]_<Gx,y[vx(t);vy(t)]>
1 t
== 5 2 ik (k) fxdtl[wk(t;tm@k]

mL3

2 ( hk?
X=—SIn
2Mw,

- sin[wcu—tl)])

2
L

2Moy

+qok(t;t1)003( sir{wc(t—tl)])}

Xik [rp@—r (t)](explik [r () —r (t)]}).
(B7)
We make the further assumption that the correlation time of
the electron-phonon interaction,, is much less than the
period of the cyclotron oscillations, i.e.7.<1 (the same
approximation was used in Ref. LOrhis is reasonable for

semiconductors at moderate magnetic fields and not too low
temperatures, and it leads to

K [r =1 E)]=kVi (D (t=t) +k V(D) (t—ty),
(B8)

ifik? ik
sifwe(t—ty)]~ 5= (t-ty),

(B9)

2Mw,

and

~ (t—n)z]

<exp{ikl[u(t)—rl(tl)]}>=exp{ 272(k,)

(B10)
where
75 2(k, ) =KE(VAD)) +KEVA(1) + ek ([Vi(1), V(D)1 1).

(B11)

The resulting simplified stochastic equations for the fluctuat-
ing velocity components take the form given by E#9).
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