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Collapse of odd-integer Hall gaps in double quantum wells due to edge effects
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We show, within the Hartree-Fock approximation, that the quantum Hall effect for total filling factor
=1, 3,5, and 7 can be destroyed due to many-body effects induced by the edges of a bilayer sysitem. For
=1, we also study the correlation effects, in addition to the exchange interaction, which are mainly related to
the edge-state screening. Calculation results explain quite well the experimental behavior observed in double-
qguantum-well structures with rather large tunnel splittiag,s=0.5 K.
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I. INTRODUCTION the influence of strong correlations, induced by the edge
states, on the collapse of the=1 Hall gap in the DQW by
The quantum Hall effedtQHE) in bilayer systems, espe- using a generalized local-density approximati@LDA).*
cially in double-quantum-wel(DQW) structures, has at- In addition, for v=1 we show that correlations, coming
tracted great attention because remarkable new quantum phHgem, which we call a quasiresonance screening, which is
nomena have been discoveredn symmetric DQW'’s essential, in particular, when the cyclotron frequenay
besides the Coulomb interaction between electrons in differ>Agas/#, in the inner part of the DQW channel, contribute
ent quantum wells, there is a new energy scale associated to inhibit the Hall gap collapse. However, the latter effect is
the symmetric-antisymmetrilSAS) energy gaphsas due to  typically much weaker than the effect of correlations related
interwell tunneling. IfAgas is much larger than the thermal with the edge-state screening. We show that particle correla-
energy, new steps in the Hall conductance are expected t®ns do not restore the=1 Hall gap when it was already
appear at the odd total filling factor in the absence of collapsed within the HFA. Furthermore, correlations can lead
Coulombic effects. However, magnetotransport measureto the collapse of Hall gaps unpredictable within the HFA.
ments show the collapse of integer QHE’s associated with We extend the GLDA for a realistic DQW modéinite
the SAS gap at large well separatidns Theoretical inves- thickness of barriers and wells, the interwell tunneling,)etc.
tigations forr=15"%andv=3, 5, 7 (Ref. 6 predict that in- to treat in a self-consistent way the effect of correlations
teraction effects may destroy this gap because the chargéduced by the edge-state screening. We calculate the group
density excitation spectrum develops a soft mode when thegelocity of the edge states renormalized by exchange and
well separation is on the order of the magnetic length. Incorrelations. We make a detailed comparison with the experi-
particular, forv=1 the combined effect of single-particle mental results of the seminal works of Refs. 2 and 5. We find
tunneling and many-body interactions can enhance as well & good agreement with our calculation results.
destroy the QHE, and quantum phase transitions should be The paper is organized as follows. In Sec. Il we present
created from a regime dominated by inter-well tunneling intothe one-electron spectrum of the Landau levels of a DQW
one where highly correlated liquids and Wigner crystals carthannel. In Sec. Il we study the destruction of the QHE
be developed>°°To our best knowledge, theoretical cal- States showing that exchange effects from the edges of a
culations for the collapse of odd integer Hall gaps in a DQWDQW can lead to the collapse of=1, 3, 5, and 7 Hall gaps
system are fully “bulklike” in the sense that effects coming and the experimental results of Ref. 2 are analyzed within the
from edge statéd are completely ignored. HFA. In Sec. IV the exchange-correlation effects at the edge
In this paper, we investigate the edge-state effects on thand at the bulk of symmetric DQW's, on the=1 Hall gap
collapse of the odd integer Hall effect in the DQW systemsare studied and the possibility of the destruction of the
Firstly, we show that even in the Hartree-Fock approxima-=1 QHE state due to correlations is investigated. In Sec. V
tion (HFA) that does not include electron correlations, thewe summarize our results.
combined effect of the lateral confinement and the exchange
interagtion may I(_aad to the collapse of the 1, 3, 5, 7 Hall Il. DOW CHANNEL IN A STRONG MAGNETIC FIELD
gaps in DQW's, i.e., the edge states due to the lateral con-
finement induce drastic changes in the bulklike properties of We consider a two-dimensiongPD) electron system
the whole wide DQW channel. The present calculation de{2DES in the presence of a strong magnetic fiBldlong the
scribes quite well the experimental results for all threeperpendicular directionz(axis confined in a DQW channel
samples of the seminal workor the v=1, 3,5, 7 QHE re-  of width W and lengthL,=L. We treat the electrons in the
gime, going beyond the results of the single-mode-effective-mass approximation characterized by an effective
approximation calculatiorsSecondly, we take into account massm* moving in a medium with a dielectric constaat
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that is assumed constant across the DQW structure. It cori~ermi energy; superscripi stands for the Hartree approxi-

sists of two finite square well&epthU) along thez axis,
with widthsd, andd, , and separated by a potential barrier of
width d,,. In the model the interwell tunneling is implicitly

mation. The edge of the LSL is denoted iy, ;= €3k";

wherek?; =k, +k27 , andW=2y,, ;. Similar characteristic
wave vectorky'. can be written forv=3, 5, 7. We assume

included by considering two closely located levels due to thgnat\ws ¢ such that when many-body interactions are taken

ground levels of the leftl) and right(r) isolated QW'’s. For
weak barrier penetration, the DQW wave functions can b
written ag®14

{-(2)=N{X\(2) - [2T/(A+A7)]X(2)},

{+(2)=N{X\(2) +[2T/(A+ A7) ]X((2)}, &)

where the normalization factdt= (A +A+)/2A+. The en-
ergy gapAr= JAZ+4T?, whereA is the energy splitting of
the isolated andr levels and the tunneling matrix element
T=—Teexp(—«dy) (To~2m?h2/m* kd¥%d¥?) with «?
~fhly2m*U. For the most studied symmetric DQW4,
=0, A;=Agas—e,— &5 IS the SAS gap in the one-electron
approximation and _ (z)={s4(z) are the symmetric and
antisymmetric wave functions.

We consider a lateral confinement model described by a

symmetric potential given by, =0 in the inner part of the
channel and/yzm*Qz(y—yr)%/z, y=y, at the right edge.
V, is assumed to be smooth on the scale &f

= (h/m* w;)Y? such thatQ<w., where w.=|e|B/m*c is
the cyclotron frequency. Choosing the Landau gaufje,
=(—By, 0, 0), the electron wave function in the plane is
given by W, (x,y) ¢, =€"“*y(y—Yo) b,/ \L, where b,
represents spin states for spin up @nd down () of thez
component of the spin operator with eigenvalves 1 and
o=—1, ¥,(y) is a harmonic oscillator function ang,
Eyo(kx)=€§kx. The energy eigenvalues for the bulk or
right-edge region of the channel, are well approximatel by

8n,o(kx):(n'f_ %)ﬁwc"' %[m*QZ(yO_yr)2®(y0_yr)
+0'90,LLBB], (2)

where® (x) is the step functiongy(<0) is the bare Landg
factor, ug is the Bohr magneton, anﬁ,=k,€§. Summariz-

into account, the energy spectrum at the right edge of the

QW is totally independent of the left edge. In particular,
kP =K% €o>1 and we will use notatiok,= k¢

Ill. COLLAPSE OF ODD QHE STATES IN THE DQW
DUE TO EXCHANGE EFFECTS AT THE EDGES

It is well known that we can obtain exchange and corre-
lations contributions for the self-energy of an interacting sys-
tem by considering the exchange contribution to first order of
ro=eel jhw, in the screened Hartree-Fock
approximation® In the DQW channel, the electron self-
energy takes the forth

4

— XC
Eok,.0i=€00,i(Kd) T €0k o

where(for v=1, 3)

1 _ Qi
2 J’ir,o'

- (2m)3 >0

Xc
8 . —_
0k, ,0,i

dk;

X

f:

< | daaqazazg@i @)

0,
kr,a—

X VS(K_ ;0,0 ;2,2")(0k,|e'%Y|0ky)

X (Oky| €Y' 0k, ), (5)
and V%(ay;qy,dy;2,2") is the 2D Fourier transform of the
screened Coulomb interactiok, =k,*+k; and the matrix
element (®&|e'Y|0k;)=exp{—[K* +d;—2iq,kJe5/4}. The

summation ovejj includes only occupied LSL's. If neglect
by screening inVS(qX;qy,q;,;z,z’), substituting the bare

ing the results, the total electron wave function is given byeleéctron-electron interaction

Yok oi(XY) =Wk (XY) d,4i(2), wherei stands for lev-

els (—,+), with the corresponding energies, , i(Kky)
=gn (ke t&;, wheree.=*A/2.

Throughout the paper, if otherwise is not stated, we will

2,2

Vbard Gx:dly 0y 12.2) = s(ay+a)e 9= (6)

€q

considerv=1 and assume that all the electrons are in thénto Eq. (5), we obtain the exchange contributierf,
KoL)

lowest Landau sublevélLSL) (n=0, o=1,i=—). Thenin
the independent-particle modg@fartree approximation the

total energy spectrum in the bulk or in the right-edge region., ,j,»

of the DQW channel for the four lowest LSL's is given as

SO,U,t(kx) = [ﬁwc+ m*Qz(yO_yr)2®(yO_yr)

— 0]golusBxAr]/2. 3

From Eq. (3) we define the group velocity of the LSL
edge  states as vggi=h Ydegr_ (K +k37)/K,]
=102k, Im* w2 with k27 = (wc/hQ)y2m* Ary,, where
A;m:E';'—[hwc—|go|,uBB—AT]/2>0, and Eﬁ is the

which, in the regions far from the edges of the DQW chan-
nel, reproduces the exact HFA result for the energy in the
model. In our calculations we take in Eql) the
approximated form X, (z) =2/, ,co§n(z—z7,)/d, ;] for
|z—z,|=<d, /2, and zero fotz—z ,|=d, ,/2, wherez, and
z, are the centers dfandr QW'’s, respectively. We denote
dEZr — 7= db+ (d| + dr)/2

Now we describe the exchange renormalization of the
LSL's and the pinning of the Fermi level due to edge effects.
First, we considep= 1. Substituting Eq(6) into Eq.(5), we
obtain the exchange contribution to the single-particle energy
in the form
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e—(k%+q§)e§/2

)

2 0'7
_ rl !
—27Tefk0'ldkX 7ocdqy——k2_+q§ dz

X
8 —
0Kk, 1j

r,

xj dZe 17N a0 (2) (2 (2).

(7
For d; ,—0 andk;q;—[k(>1, it follows that
2 2 2
=1 _ \/Ee_ Arer
01~ 2 €lo| A2+4T2
272 d
2 2edZ/2€ge"f _) : (8)
A2+4T V24,
and
2 2
T € 2T 215,2 d
8X(v:l): _ o 1_ed /2€0erfc( ,
ot 2 €lg A244T2 V2¢,

9

where erfck) is the complementary error function. Thus, the

e0s T E0L
2 AZ 4T2

+
AZ+4T?  A%+4T2

e

=€€O

™
2

exchange-enhanced splitting betweem=0Q, oc=1,i=)
d
V2to) |

the LSL's is given as
edz’%éerfe<
(10)

For a symmetric DQW systemA=0, Eg. (10) gives
(€ et o) mI2expe?i2¢2)erfc(d/ \2¢€,), which is indepen-
dent of the tunneling matrix element and tends to
Jml2(e%let,), for d/€y<1, or to (€%/ed), for (d/€y)?
>1. Then forvr=1 andA=0 the exchange-enhanced split-
ting of the lowesti==* LSL's, in the bulk of the DQW
channel, is substantially greater thag,s= 2| T| or the usual
Zeeman spin splittingg,| #gB. Notice that, forA?>4T?,
the enhanced splitting'w/2(e?/e€,) coincides with the ex-
change enhancement of “regular” spin splittify.
Furthermore, at the DQW edge we obtain, from EQ,
that sé’tk?,1’1’_=séfffl)/2. At the LSL edgek,= =k’ ,

the exchahge energy of thes —) LSL is two times smaller

than that for the inner part of the DQW channel. Then the
Fermi level pinning due to the exchange effects at the edge@-

is given by

Ee ot m 02607 g ueB vt o=
11

For (k01— [k.)>1, the energy of the bottom of the empty
(n=0,0=1,i=+) LSL is given as

Eou1+ =3[fiwc—|dolueB+ A1+ 8651}:1) ;

wheree 7Y is defined by Eq(9).

The v=1 Hall gap is then written as

12
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m* Q2 1 [mé?
Bop+ —Ep= VA AT — — €3(k2;l)2—§ 2ty
2_ A2 2
X err-a” ot edz’z‘ftz)erfc( d .
A2+4T2  A2+44T2 J2¢,

(13

Notice that Er—Ep,_), in contrast with Eg; , —Ef), is
always positive and rather large, of the ordeefihef . For
symmetric DQW,A=0 andd,=d,, Eq.(13) yields

*Q2

Eo1+—Er=2|T|- 2 fé(kng)Z
1 \/; ¢ 1 3e%72(Gerf d )
4 2 660 \/§€O '
(14
We observe in Eq.14) that the collapse of the=1 Hall gap
occurs when d/€, is sufficiently large such that
exp@?/2¢3)erfc(d/\2¢,)<1/3 and
1 \/; e? 21002 d
—\/=——| 1—3e%"?oerfq =2/T|. @

For the interesting case ¢f|—0, in the HFA there is a
finite v=1 Hall gap whend< »{,, while this gap is col-
lapsed ford= n{,, where n=~2.023 is the solution of the
equation 3expf?/2)erfc(y/\2)—1=0.

For ther=3 Hall gap €1+ — Ef) expressions are ob-
tained from Eq.(13) or, for A=0, Eq.(14) after changing
kg[ by kojil. The bottoms of the occupied LSL's are lo-
cated at [Awe—|go|ugBF Ar— V2me¥el,]/2, for (n
=0,0=1,i=%) LSls and atEy_;_=(fhw.+|go/usB
—Aq)/2+e3{~", for (n=0, 0=—1,i=—) LSL. The bot-
tom of the empty =0, 0=—1,i=+) LSLis atEq_;
= (hwct|gol ueB+ A7) 2+ egy Y.

Further we present the results only for symmetric DQW'’s
and we take the interwell spaciny=d, +d, by the experi-
mental values ofl, andd, (Ref. 6. In Fig. 1 we depict the
phase diagram of the collapse of the QHE in a DQW. The
boundary depends ond/¢, and the Hartree gap
Ay /(e%le€y). The heavy solid curve represerdst,, for
v=1, as a function of the Hartree gatm=so,1,+(0)—EE'
2|T|—m* Q2¢4(k21)?/2, whereeq ;(0) is given by Eq.
d/¢, was calculated from Eq(14) for A.(vyh)
=Eg1+—Er=0. This curve corresponds to a zero Hall gap
within the HFA. Forv=3, the same curve represedi€, as
a function of the Hartree gapeo_1,(0)—EF=2|T|
—m* Q2¢3(k2~,)%/2, which corresponds to a zero Hall gap
in the HFA forv=3. We can also rewrite the Hartree gap as
Ap(vgol) =2|TI=my(v g ?/2 wherem,=m* 0/Q? and
o=1(—1) for v=1(3). It is seen that if the condition
4|T|-m*Q2¢5(k2=,)2<0 is fulfilled, i.e., even when the
Hartree-Hall gap is absent, the Hall gap can still exist within
the HFA for v=1, 3. The heavy solid curve delimits, for
d,;/d=0, the region where the QHE states exlstlow) and
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FIG. 1. Phase diagram for the=1,3 QHE in a symmetric FIG. 2. Same as in Fig. 1, for the=1 Landau level with data

DQW, within the HFA. The heavy solid curve is the calculated ¢, ,,—5 7 The thin dashed curve represents the phase boundary
phase boundary, fatj/d=0, of then=0 Landau level for collapse ¢, d,/d=0.75.

of the energy Hall gapAH(vgo"(H,) is the energy gap between the

bottom of the lowest unoccupied Landau sublevel and the FermbHE collapse. For instance, the=1 andv=3 QHE states
level in the Hartree approximation,d=dy,+d, and ¢, can be observ'ed for the Sar,nples ith=40 and 51 A
=(fic/eB)'™. The experimental data for=1(3) from the three Now we briefly discuss the possibility of the nor;occur—
samples of Ref. 2 are represented by solid cif@eDQW with rence of thev=5 y7 QHE states \[I)vithin ou); HFA picture. For

barrier thicknessd,=28 A), open circle ¢,=40 A), and solid i ) o .
square ¢,=51 A). The solid, dashed, and dotted straight lines in-th€ Symmetric DQW, with a finite, , a similar procedure as

dicate the modification of the data positionsgg;, varies. The thin developed above leads t6=5, 7 Hall energy gaps given by
solid, dashed, and dotted curves include our finite-well-thickness
corrections for d;/d=0.83d,=28 A), 0.78d,=40A), and
0.73 d,=51 A), respectively.

m* 2 -
Eyes—Ee=2[T|— —5—{o(ke=1)?

2 ro
the other one of missing QHE statésbove in which the - e_f dge 9°2(1—qg?%/2)2
Hall gap collapses because it becomes formally negative. €too
Pairs of points indicated by solid circle, open circle and solid U2 12
square in Fig. 1 correspond to samples data of Ref. 2 with X dxf dx’ cog(mx)cog(mx")
dp,=28, 40, and 51 A, respectively. At the maximum of the Sz S
pertinent Hall gap, these marks correspond<2g=0 for X{e—q(d|/(0)|x—x’|_3e—q|d|(x—x’)—d|/(,0}.

v=1, while they correspond tbgjil=0 for v=3. Starting
from these marks, the solid, dashed, and dotted horizontal
lines represent their changes WHeSj;ﬂtO. Now we pro- Equation (16) is obtained assuming th&&é’ll—ﬁo':Pl.
ceed to compare our results with the experimental data ofjg \re 2 shows the phase diagram for the existence of the
Ref. 2. We conclude by using tfitg=0 approximation that ,—g5 7 QHE states with the same notations of Fig. 1. The
(i) for d,=28 A both v=1 and»=3 QHE were observed agreement with the experimental results is remarkable:

(16)

according to our predictiondji) for d,=40 A only thev  _5 7 QHE states are observed and predicted for all samples
=1 Hall gap collapse$see that the dashed straight line lies of Ref. 2.
totally within the no-QHE regionwhile the v=3 Hall gap The exchange enhanced symmetric-antisymmetric gap,

may be present in agreement with the experimental result$gr =1, is given as
(iii ) for dy=51 A thev=1 QHE state is absent, as observed

in the experiment, whereas the= 3 QHE state can exist, but 4e2 (= o (102
was not observed experimentally. Then the HFA results for A$,s=2|T|+ TJ dge ’ZJ dx
the collapse of»=1, 3 Hall gaps are in good agreement with gtolo -1z

the experimental ones. It should be pointed out that our HFA 12
calculation reproduces better the experimental achievements xf dx’ co(rx)co(mx’)e ddix=x")=dl/to
than that based on a single-mode approximation. -1

In addition, we shortly discuss the changes in the phase (17)

boundary due to the finite width of the DQW. We represent

in Fig. 1 the phase boundary by the solid, dashed, and dottetihere the last term fod,=0 coincides with Eq(10), for
curves for d;/d=0.83 (d,=28A), d,/d=0.78 d, A=0. We obtain that §5,s—2|T|)/(e? e€,)~0.34, 0.33,
=40 A), andd,/d=0.73 [d,=51 A), respectively. The in- and 0.31 for the samples of Ref. 2 with/d=0.83, 0.78,
fluence of the finite width is to decrease the region for theand 0.73, respectively. The corresponding experimental val-

155305-4



COLLAPSE OF ODD-INTEGER HALL GAPS IN DOUBLE. .. PHSICAL REVIEW B 67, 155305 (2003

ues for 4T| are 17.3, 8.1, and 3.9 K. SinceeH{elp) Ao >A%s, A¥as. Then the dominant contributiotgua-
=200 K, we see thatA§,s is much larger thanAgus siresonanceto the screened potential in the interior part of
=2|T|. the channel comes from the “bulk” screening related to vir-
tual transitions between the two lowest LSL’s. A straightfor-
ward calculation allows us to write the contribution to the
Coulomb potential due to the screening effects of the inner
part of the channel as

In Sec. Il it was demonstrated that our scenario of the , ,
»=1 Hall collapse within the HFA leads to the same results® Vouk(9x:dydy ;dz,9;)
as in the experiment of Ref. 2 only when the approximation ] . ,
of zero thickness QW'sjl;=0, is used. For a more realistic _ 32n%e* TI(q,;d,d)I1(q;;d;,d) S(dy+ay)
model of the DQW's with finite thickness QW's, different €205 s q;+a5+al qr+as+(ay)?
results are obtained for two DQW samples used in Ref. 2.
These HFA results clearly indicate that our model must be
improved to take correlation effects into account. We include €l2AXC
here the correlation effects, related with both the edge-state 07SAS
screening and quasiresonance screening in the inner part of (19
the channel. The latter takes place whe|2 A{ <7 w.
First, we calculate explicitly the contributions to the Cou-
lomb interactionV*(ay ;y ,dy ;d,.d;) due to the screening 11(q,;d;,d)=i sin(q,d/2) x(q,d,)e 9=+ 42 (20)
by the edge states and the dominant contribution of the qua-
siresonance screening for the inner part of the channel, b?nd
extending the approach of Ref. 12 to the symmetric DQW
structures. To simplify the notation, we will omit the indices
of fixedn=0 ando=1. Thens{® .=egf 1., k =K1,

IV. EFFECT OF CORRELATIONS ON THE COLLAPSE
OF v=1 HALL GAP

2 -1
Ko @i 1.4

MZ(qX1Qy;dI !d)

where we have introduced the complex form factor

- .

Mz(qxaqy;dlyd): 0 z q2_’_(.42_’_k2
X y z

E, +=Eox 1 £=(k)=z01:(ky), and so on. Now it is (21
convenient to present E¢) in the form Substituting Eq(19) into e5C , given by Eq (18), we obtain
that AV, makes a flnlte contribution tey°, and exactly a
_— 1 P null contribution toey” . Then the symmetnc antisymmetric
Bl =T T (277)5j— - XJ_OC' o gapA§as=Eo -+ —Eg - renormalized by exchange and corre-
lations can be written as
X f __da,dayda,da;Ve(k- ;ay,dy;0,,0z) = At AskS (22)

X i
Xexp{—[2k2_+q§+(q)’,)2]€él4} whereAg,g is given by Eq.(17) and

X expli (ay+ay)k, €/2]x(d,d)) x(ad) At = f da.
. ’ : 2€2AXC 0
x (@) @+ dR)cog ,d/2)cog q,d/2),  (18) T ToTsAs

,gy:d; ,d
where we used the matrix elementéX; |€'97X, ) j ay . M2 (0, gy 1 d) _
=e'922.ry(q,d,), with y(a) = (2/a)sin@?2)/[1— (a/277)2] 13 1+ (4% elGAGIM Ay, 0y 3, d)
The expression forsk 4+ Is obtained by changing (23)

cos@,d/2)cosq,d/2) in Eq.(18) by —sin(qd/2)sin(;d/2). Equations (22) and (23) determine the self-consistent

H H
The calculation of the Hall gaf(v,) proceeds essen- gy mmetric. antlsymmetrlc gap, renormalized by exchange
tially in the same way as in Ref. 12. Because the Fermi levelhg correlations, ses’, . Indeed, from above it follows that
Er of the 2DES, pinned due to the edge effectsEat

=Ej~ -, is closer to the bottom of the empty=+) LSL ggg:gg,ﬁAggg , (24
thanHto the bottom of the occupiedi:(—_) LSIT, we have where
G(vg)=E0,+—Ekr—,_, where the energies given by Egs.
(3), (4), and(18) are calculated in the GLDA. « o
In order to determineE, , , we need to evaluateg®, o+~ T ;fo qufo dgyMz(ay.qy:di,d). (29

Since the edge-state screening does not aﬁ‘@i:t for W|de

DQW channels, we look for the correlation effects comlngFrom Egs.(23—(25) we obtain thakg’, —0 when formally

only from the screening due to the inner part of the channelA§as—0. It means that the correlatlon effects, due to the
neglecting here the edge effects. We consider, as in thguasiresonance screening, totally cancel the exchange term
experiment$;® that 2w >Agas, and we assume also that for thei=+ LSL.
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In order to determineEk; _=Eg, we follow the same screening do not contribute tqﬁ:’+ . However, they strongly
steps of Ref. 12. Taking into account now only the edge-statenodify the dispersior..»,XC of the occupied LSL in a wide
screening, because the quasiresonance screening does Fleon nearby the edge We point out that the conditién
contribute toEy, _, we arrive at the following expression > ¢,/6 should be held for the assumed wide DQW channels;

for the screened Coulomb potential: for typlcal €o~10"®cm and =103, it leads to W
, ) >103
V2 (dy:dy,dy ;9z.d;) In the same way of the GLDA developed for a wide chan-
4 nel in the single-quantum well with zero thickn&séwvhich
= % 4772625(qy+q§,)5(qz+ q.) has some similarity with the local-density approxima’tﬁ)n
e(gx+ay+a;) and, especially, with the modified local-density approxima-
tion of Ref. 16, we point out thatE, _ follows from the
2me’r (vg) solution of the single-particle Schiimger equatior(for i =

5 x(azd)) x(azdy) _ T
) —) with the Hamiltonianh=h"+V,(y), where the self-

consistent exchange-correlation potentia].(y)= Ey,g(zy,
—s,(y/€§). Indeed, assuming th&t,.(y) is smooth on the

2+ (a2 +(a,
xexd —i(q,+q,)(z+d/2)]cogq,d/2)coq q,d/2)

x exp{ —[205+a;+(ay)2]€5/4} scale of¢, we find, neglecting small corrections, that the
) b 5 energy dispersion ofi& —) LSL is given again by Eqg3),
xexp —i(qy+ay)(k —ax/2)€5] (4), (18), and (26)—(28). This confirms the self-consistency
of the GLDA method to treat the present many-body prob-
X[1+r(vg)M(0gy;d, ,d)]‘l), (26)  lem. The assumed smoothness of the latter potential implies
that vy, given by Eq.(28), should satisfy the condition

vg/lo<wc, which can be rewritten as/(fiw./m*)*?
1 where (w./m*)¥? s the characteristic velocity.

Now we will study the effect of the correlations on the
destruction of thev=1 Hall gap. From Eqs(3), (4), (18),
and(23)—(28), we obtain the Hall gai(vy) as

wherev,=v is the group velocity of the edge states renor-_
malized by exchange and correlations, the dimensionless pa
rameten (vg)=e /(rrhev ), andM(0,q,;d,,d) is a special
case of the matrix element

M (ke k™ 1ay:dyd)= —e- 32 [ g
x K 0x: A, p 0 q; B m*w% e e (= A 1/2
G—2|T|— 202 (Ug) —% o dqe 71/2dX
2
exp( q /2
d — % 5 x(q.d) 12
aytd; xf dx’ co(mx)cog(mx")
~172

xcosz(qzd/z)co{qy(kx— k)2 , ,
X (@ Adi /to)lx=x"| _ z@=dldi(x=x")=dl/to) 1 A gXC,

(27)
The group velocity of the edge states renormalized by ex- e? (=  R(vg)M2(0ts/€o;dy,d)
change and correlations is given, as a functiomgﬁf by  mely)o d 1+R(MM(0t5/¢4:d,,d)’ (29
g 1 b L
H 2 1/2
v _Y% 1+ 1+ M(0,8/¢4:d, ,d) (28) where byR(v ) we denote the function Qfg, which fol-
¢ 2 mhev lows fromr(vg) afterv is expressed throughj according

to Eq. (28); t 5= Vt2+ 55 HereAs(X,C+ is determined by Eq.
23) and represents an upward shift of the+ LSL due to
e correlations, caused by the quasiresonance bulk screen-

where§<1 is a small cutting parameter that avoids the very
weak Coulombic divergence as the wave vector tends t

12
zero.“ Our physically relevant results have a very weak.
phy y y ing; i.e., these correlations contribute to increase ithel

dependence on_5 It Ca_n be . estl_mated aso Hall gap. The last term in the right-hand side of ER9)
~maxfo/dy;olvgy, Wheredy is a typical distance to a re- enresents the contribution due to correlations induced by the
mote screening gate andis a typical lifetime for the edge edge-state screening. These correlations tend to destroy the
states. v=1 Hall gap. Notice that their contribution tends to zero in
We use subscript iiV® to emphasize that we take into the formal limitv,— . A finite positive value ofG means
account in Eq(26) only those terms ifv® that contribute to  that v=1 QHE regime holds while the Hall gap collapses if
Ex, .- - The first term in the curly brackets of E(6) is the ~ G=<0. The HFA result forG is given by Eq.(29) when the
bare Coulomb interaction, which leads to the exchange corlast two terms are omitted.
tribution. The second term is related with strong screening by We deflneGa(vg) G/|T| the dimensionless activation
the edge states. The weak effect of the “bulk” nonresonancegap renormalized by exchange and correlations. In the ab-
screening is neglected here. Furthermore, from Bd®.and  sence of many-body interactions, the maximum value of
(26), it follows that the correlations due to the edge-stateG,=1. So the activation gap is enhanced wii&>1. No-
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FIG. 3. Activation gapG,=G/(|T|) as a function ofv'g'|
=vygl for v=1 in the DQW sample withtl,=28 A, Agas=2]T|

=17.3 K, and the electron density,=4.2x 10" cm 2. (Ref. 2.
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FIG. 5. Same as in Fig. 4 for the sample of Ref. 2 with
=51 A, d,/d=0.73, 4T|=3.9 K, andn,=3.9x 10" cm™2.

, , 21 o :
Here exchange and correlation effects are taken into account as wéf 1<4.11x 10" s™*, since herew, is about 10% smaller

as a finited,/d=0.83. From top to bottonG, is shown for
w./Q=7, 10, 15, 20, 25, 30, and 35, respectively.

tice that for the usual activation gap ., determined from
the resistivity py,cexp(—A,J2kg T), we have thatA,.
=2G.

In Fig. 3 we showG,, calculated from Eq(29), as a
function ofvg for v=1, using the parameters of the DQW
sample of Ref. 2 withd,=28 A, d,/d=0.83, JT|=Agxs
=17.3 K, and the electron density=4.2x 10'* cm 2. The
curves correspond, from top to bottom,adg/Q2=7, 10, 15,
20, 25, 30, and 35, respectivel§=10"3. We observe that,
for these values, the Hall gap is positive far/{)<35.
However, there is a collapse far. /2> 35. Notice that here
w.=4.54x 10" s ! and the curves in Fig. 3 fap,/Q =10
and 30 correspond t~4.5x10?s ! and 1.5<10? s,

than that in Fig. 3. So for this DQW sample, in agreement
with the experiment,we obtain that thex=1 QHE cannot
exist for rather realisti€)<4.11x 102 s™ 1,

In Fig. 5 we presenG, as a function obg for v=1 for
the third sample of Ref. 2 wittd,=51 A, d,;/d=0.73,
2|T|=3.9 K, andn,=3.9x 10" cm 2. In Fig. 5 we see that
the v=1 Hall gap is collapsed fow./)=10. As noww, is
close to that in Fig. 4, the curves in Fig. 5 correspond ap-
proximately to the samé) as those curves in Fig. 4. We
speculate that for this sample the above estimatidon
<4.11x 10 s is realistic too. So in agreement with the
experiment for the DQW sample witld,=51 A we obtain
that thev=1 QHE cannot exist. In summary, our model
predicts, when both exchange and correlations are taken into
account along with the finitel,, the collapse of thes=1
Hall gap in the case of the samples widh=40 A andd,

respectively. As a consequence, we obtain that in this sample 51 A of Ref. 2.

the v=1 QHE state existémore exactly, it is highly prob-
able), which is in agreement with experiment.

In Fig. 4, G, is plotted as a function cxf'g" for v=1 and
another sample studied in Ref. 2 witth,=40 A, d,/d
=0.78, 24T|=8.1 K, andn,=3.8x 10" cm 2. The curves
correspond, from top to bottom, to./Q2=9, 10, 15, 20,
25, and 30, respectively. From Fig. 4 it is seen that the
=1 Hall gap is collapsed fow. /=10, which corresponds

2.0 - - -
0.00 001 002 003 004
H * 112
v, Niaw /m)

FIG. 4. From top to bottom, the curves corresponaté() =9,
10, 15, 20, 25, and 30, respectively.

The experimental results of Ref. 2 were obtained in the
DQW samples with rather large tunneling splittifggag
=2|T|=4 K. Now we compare our theoretical results with
the experimental data for two samples of Ref. 5 with much
smaller tunneling splittingA a5~ 0.5 K. Both samples have
d,=d,=180 A . For one sample, which we call Ad{
=31 A, n=126x10"cm 2, Agus=0.5K), a strong
QHE state was found, while in the other sample &, (
=40 A, n,=1.45x10" cm 2, Agpg~0.2 K) the v=1
QHE state is missing.

In Fig. 6,G,, as a function oby , is depicted, using Eq.
(29), for the v=1 QHE state and for the parameters of
sample A (,/d=0.853, d/¢,=1.88, rp,=1.146, B
=520 T, Aw,=103.7 K). The solid, dashed, and dotted
curves correspond te./Q1=3.7, 3.9, and 4.3, and the con-
fining frequencyQ)~3.65x10? s !, 3.48<10%s !, and
3.14x10% s, respectively; 5=10"4. Notice that these
values of() are in resonable agreement with the above esti-
mation, for the samples of Ref. 2, of the maximum value of
Q (<4.11x10 s ). Our result indicates that the=1
Hall gap is positive form./()<4.8 and collapses only if
w./Q=4.9, which is in a good agreement with the
observatioh of the v=1 QHE in sample A. In addition, from
the maximum ofG, for the solid curve in Fig. 6 it follows
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FIG. 6. Activation gap for thee=1 QHE in the DQW sample FIG. 7. Same as Fig 6 for the sample of Ref. 5 wilp
with parametersiy=31 A, 2|T|=0.5 K, ng=1.26x10 cm 2 of =40 A, 2/T|~0.2 K, ng=1.45<10" cm 2. The solid, dashed,
Ref. 5. The solid, dashed, and dotted curves are obtained foand dotted curves are for./(2=4.3, 4.5, and 5.0, respectively, for
w:/Q=3.7, 3.9, and 4.3, respectively. the same values of) as in Fig. 6. In agreement with the

experiment in this sample ther=1 Hall gap can be more easily

thatA,.=2G~10/T|=2.5 K, which is of the same order as destroyed, as for all the curv€s,<0, than in the sample of Fig. 6.

the experimental valua ,.~8.7 K obtained for sample Ain ] o .

Ref. 5, without in-plane magnetic field. discarded in more realistic model of odd integer Hall gaps.
Figure 7 exhibits our results for the parameters of sample This is indeed the case because we have explained all

B (d,/d=0.818, d/¢,=2.10, r,=1.068, B=5.98 T, hw,  Pertinent to thev=1 Hall gap experimental resuftafter

=119.3 K). The solid, dashed, and dotted curves correspon@king both exchange and correlations into account along
to w./Q=4.3, 4.5, and 5.0, respectively, i.e., for the samewith the d;#0 model. It appears that the main correlations

confining frequencie€) as in Fig. 6;5=10 4. Figure 7 here result from the strong edge states screeffitjThese
shows that the Hall gap collapses wh@r3.7x 1012 s 1, correlations tend to destroy the= 1.QHE state in the DQW
This result is in a good agreement with the observatain  Structures. However, the correlations due to the quasireso-
the v=1 Hall gap collapse in the sample B. We also observe'ance bulk screeningvhich is present for the DQW samples
that becaus&,<0 for all curves in Fig. 7 the Hall gap can Of Ref. 2 becausefiw.>maxAsas,Ashd), even much

be more easily destroyed in sample B than in sample A ismaller than the former correlations, tend to recover ithe
agreement with the experimeht. =1 QHE state in the DQW structures. We have shown, in

agreement with the experimenthat for the realistic DQW
model, with actuatl, /d, the exchange-correlation effedts
destroy thev=1 Hall gaps for the samples witth, =40 A

In this work, we have studied exchange-correlation effectendd, =51 A; however(ii) the v=1 Hall gap for the DQW
in odd integer QHE states in the DQW structures. First, wesample withd,=28 A can be present.
have shown that the combined effect of the lateral confine- We have also compared the results of our calculation for
ment and the exchange interaction can lead to collapse dhe »=1 Hall gap in the samples of Ref. 5 pertinent with the
odd integer Hall gaps, fow=1, 3,5, 7. In particular, our experimental results and have found a reasonable agreement.
model of zero thickness of the QW'’s predicts all observa-
tions of Ref. 2 forv=1, 3,5, 7 QHE states except for the
collapse of thev=3 Hall gap for the DQW sample witt,
=51 A . However, for a more realistic model of the DQW  This work was supported in part by a grant from Fun-
structures ¢, #0), but still within the HFA, we have found da@o de Amparo aPesquisa do Estado de d&&aulo
that thev= 1 Hall gap exists for all three samples(&ef. 2. (FAPESB. The authors are grateful to Conselho Nacional de
Since the gap is observed only for the sample with Desenvolvimento Cientifico e Techngico (CNPq for fi-
=28 A, we believe that the correlation effects would not benancial support for this research.
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