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Tunneling spectroscopy of spin-split states in quantum wells

O. E. Raichev* and P. Debray
Service de Physique de l’ E´ tat Condense´, CEA Saclay, 91191 Gif-sur-Yvette, France
~Received 11 September 2002; revised 6 December 2002; published 3 April 2003!

Tunneling between two-dimensional electron layers, where electron states are split by spin due to spin-orbit
interaction, is studied theoretically. The expression for the tunneling current is derived and evaluated. The
linear tunneling conductance shows two Lorentz-like peaks corresponding to the resonance contribution of two
spin-split states. The current-voltage characteristics are essentially different from the case of the tunneling in
the absence of spin splitting. They show peaks whose shape becomes almost rectangular in the limit of weak
disorder. The position of these peaks is determined by the spin-splitting energy. The measurement of the
tunneling current is suggested to be an efficient tool for direct investigation of the spin-split spectra in the
quantum wells.
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I. INTRODUCTION

Spin splitting of the two-dimensional~2D! electron spec-
trum caused by the spin-orbit interaction in asymme
quantum wells~Rashba effect1! has attracted substantial in
terest in past years. Apart from its significance from the po
of view of fundamental physics, this effect is considered
be promising for application in spintronics,2 since its magni-
tude can be modulated by the external gate modifying
confining potential. In this way, spin polarization of the ele
trons can be controlled. The spin splitting of 2D electr
subbands is usually not large, of the order of 1 meV near
Fermi surface. Therefore, to study it, one should emp
highly sensitive experimental techniques. Measurement
the beat patterns of Shubnikov–de Haas oscillations in
asymmetric quantum wells3–8 have proven to be a reliabl
method for investigation of the Rashba effect.

In this paper we develop a theoretical background for
other method, which is supposed to give more direct a
complementary information about the 2D subband spectr
although it is more difficult to be realized experimental
The idea of the method is to use the resonant tunneling
tween 2D electron states in the double quantum well syst
with independent contacts to the 2D layers. First structu
of this kind have been fabricated more than a decade ago9,10

Since then, the interlayer tunneling in such structures
been the subject of numerous experimental9–15 and
theoretical13,16–22 studies. Measurements of the tunneli
current in such structures9–13 revealed peaks of the tunnelin
conductance in conditions in which the 2D levels in the t
wells are aligned, reflecting the shape of the spectral fu
tions within each layer, in accordance with theoretical p
dictions. A resonant tunneling transistor based on gate c
trol of the tunneling current between 2D layers w
demonstrated,15 see Fig. 1. Investigation of the tunneling cu
rent in the magnetic field applied both parallel and perp
dicular to the layers has shown a considerable modifica
of the electron energy spectrum by the magnetic field. N
ertheless, the experiments did not show any sign of s
splitting of the electron spectrum in zero magnetic field.
our opinion, the reason for this is that the existing dou
quantum well structures with independent contacts are ba
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upon GaAs~AlGaAs! materials, in which spin-orbit interac
tion is not strong. As the technology advances to create
dependent contacts to InAs 2D layers, the observation
spin-splitting features should not be a problem. We consi
this to be sufficient motivation for our study. The aim of o
paper is to investigate the 2D-2D tunneling current in con
tions in which the Rashba effect is not negligible. Below w
show that the spin splitting leads to unusual dependenc
the tunneling current on the electron densities in the lay
and on the source-drain voltage.

The paper is organized as follows. In Sec. II we presen
general formalism for a description of tunnel-coupled 2
electrons with a spin-split energy spectrum and derive
expression for the tunneling current. In Sec. III we calcul
the linear tunneling conductance and study the tunneling
rent under a nonlinear regime, when the source-drain volt
is not small. Concluding remarks are given in Sec. IV.

II. FORMALISM

We consider a double-well system described by
Hamiltonian

Ĥ5F Ĥ0~x,z! ia~z! p̂2

2 ia~z! p̂1 Ĥ0~x,z!
G , ~1!

FIG. 1. Conduction-band profile of the structure containing
double quantum well with independent contacts to the 2D lay
and two gates. An application of source-drain voltage leads to
tunneling current between the layers.
©2003 The American Physical Society04-1
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wherep̂65 p̂x6 i p̂y , and

Ĥ0~x,z!5 p̂z

1

2m~z!
p̂z1

p̂2

2m~z!
1U~z!1V~x,z!.

In these expressions,p̂z andp̂5( p̂x ,p̂y) are the operators o
momenta perpendicular and parallel to the quantum w
planes, respectively,a(z) is a function which depends o
spin-orbit interaction~see below!, U(z) is the double-well
potential, andV(x,z) is the random static potential create
for example, by impurities. The Hamiltonian~1! is a 232
matrix with respect to spin variables. It can be derived fro
the four-band Kane Hamiltonian23 in a similar way as de-
scribed in Ref. 24; such a consideration allows one to
pressm(z) anda(z) through the material parameters of th
structure. Using the basis of single-well orbitalsF1(z) and
F2(z), where 1 and 2 are the layer indices, we transform
Hamiltonian~1! to the following effective 2D Hamiltonian:

Ĥ5S ĥ1 1̂t

1̂t ĥ2
D . ~2!

This Hamiltonian is a 434 matrix composed from 232 unit
matrix blocks proportional to the tunneling matrix element
and 232 matrix blocks (j 51,2),

ĥ j5F « j1 p̂2/2m1Vj~x! ia j p̂2

2 ia j p̂1 « j1 p̂2/2m1Vj~x!
G ~3!

describing 2D states in the quantum wells 1 and 2. In Eq.~3!
we introduced the 2D scattering potentialsVj (x)
5*dzV(x,z)uF j (z)u2 and Rashba velocities a j
5*dza(z)uF j (z)u2. The Hamiltonian ~3! is the Rashba
Hamiltonian describing spin splitting of 2D states in t
layer j. For a double-well system, the spin splitting in th
different layers is different, becausea j essentially depend
on the layer index. If the directions of the potential gradie
in the wells 1 and 2 are opposite to each other, as in Fig
then the signs ofa1 anda2 are different.

A calculation of the tunneling current for the proble
described by the Hamiltonian~2! is very similar to the case
of a spin-independent Hamiltonian, see details in Refs.
and 22. In the lowest order ont, the current is represente
through a correlator of spectral functions:

I 5
2pet2

\S E d«~ f 1«2 f 2«!(
pp8

Tr^Â«1~p,p8!Â«2~p8,p!&,

~4!

wheree is the absolute value of the elementary charge,S is
the normalization square,f j « are quasiequilibrium distribu
tion functions in the layers,̂ . . . & denotes the average ove
the random potential, Tr denotes the matrix trace, and
spectral functionÂ« j5(Ĝ« j

A 2Ĝ« j
R )/2p i is expressed through

the advanced~A! and retarded~R! Green’s functions. The
latter, in the momentum representation, satisfies the foll
ing matrix equation:
15530
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@«1 i02ĥ j p
(0)#Ĝ« j

R ~p,p8!

1
1

S (
p1

Vj~ up2p1u/\!Ĝ« j
R ~p1 ,p8!51̂dp,p8 ,

~5!

ĥ j p
(0)56D/21p2/2m1a j~ ŝxpy2ŝypx!,

where Vj (q)5*dxVj (x)e2 iq•x is the Fourier transform of
the potential andŝ i are the Pauli matrices. In the definitio
of the matricesĥ j p

(0) , we introduced the interlayer level split
ting energyD5«12«2 at p50 and assumed that the upp
~lower! sign corresponds toj 51 ( j 52). Below we assume
that there is no correlation between the scattering poten
in wells 1 and 2, which is always the case if the potentials
of short range. The correlator in Eq.~4! is expressed through
the product of averaged Green’s functionsG« j

R,A(p), and the
current is given by

I 5
et2

2p\SE d«~ f 1«2 f 2«!

3(
p

(
s,s85R,A

~21! lTr Ĝ«1
s ~p!Ĝ«2

s8 ~p!, ~6!

wherel 51 for s5s8 and l 50 for sÞs8.
The averaged Green’s function is written through the s

energy function, according to Ĝ« j
s (p)5@«2ĥ j p

(0)

2Ŝ« j
s (p)#21. The self-energy, in the Born approximatio

satisfies the following equation:

Ŝ« j
s ~p!5

1

S (
p1

wj~ up2p1u/\!Ĝ« j
s ~p1!, ~7!

where the binary correlation function of the scattering pot
tial is defined by the relation ^Vj (q)Vj (q8)&5d(q
1q8)wj (q). Applying the approximation of short-rang
scattering potential, whenwj (q).wj is independent ofq, we
find that Ŝ« j

A,R(p) are diagonal and momentum independe

Ŝ« j
A,R(p)5@ReS« j6 i\/2t j #1̂. Below we omit the real part

in this expression, since it always can be accounted for
proper shifts of« and D. The imaginary part is expresse
through the scattering time of 2D electrons defined ast j

5\3/mwj . As a result, we obtain the matrixĜ« j
s (p) in the

form

Ĝ« j
s ~p!5F ~L j 1

s 1L j 2
s !/2

ip2

2p
~L j 1

s 2L j 2
s !

2
ip1

2p
~L j 1

s 2L j 2
s ! ~L j 1

s 1L j 2
s !/2

G , ~8!

where L16
R 5L16

A* 5@«2D/22p2/2m7a1p1 i\/2t1#21 and
L26

R 5L26
A* 5@«1D/22p2/2m7a2p1 i\/2t2#21. Substitut-

ing Eq. ~8! into Eq. ~6!, we finally rewrite the latter as
4-2
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I 5
et2

~2p!2\t1t2
E d«~ f 1«2 f 2«!E

0

`

pdp

3 (
s56

@~«2D/22p2/2m2sa1p!21~\/2t1!2#21

3@~«1D/22p2/2m2sa2p!21~\/2t2!2#21. ~9!

Under the integral overp in Eq. ~9!, we have a sum of the
products of spectral densities belonging to spin-split 2D s
bands of the layers 1 and 2. Indeed, if the scattering is n
ligibly small, the poles of the expression under the integ
are«5D/21p2/2m1sa1p and«52D/21p2/2m1sa2p.
Each of these equations describe spin-split subbands ch
terized by the spin numbers56. This spin number is con
served in the tunneling. Since the tunneling current depe
on the Rashba velocitiesa1 anda2, the spin-splitting effects
can be probed by tunneling. Below we analyze the tunne
current described by Eq.~9! for different transport regimes

III. RESULTS

If a source-drain voltageV is applied across the structur
by means of independent contacting to the layers, the di
bution functions can be approximated asf j «5$exp@(«
2«Fj)/T#11%21, with quasi-Fermi levels«F15«F1eV/2 and
«F25«F2eV/2. We start our consideration with the line
transport case, whenV→0 and f 1«2 f 2«.2eV(d f« /d«),
where f «5$exp@(«2«F)/T#11%21 is the equilibrium distribu-
tion function. It is convenient to introduce the tunneling co
ductanceGT5I /V. For strongly degenerate electrons, it
given by

GT5
e2t2

~2p!2\t1t2
(

s56
E

0

`

pdpH F n1

r2D
2

~p1sma1!2

2m G2

1S \

2t1
D 2J 21H F n2

r2D
2

~p1sma2!2

2m G2

1S \

2t2
D 2J 21

,

~10!

where we made use of the relationsn15r2D(«F12D/2
1ma1

2/2) and n25r2D(«F21D/21ma2
2/2) expressing the

2D electron densities in the layersn1 and n2 through the
characteristic energies and constant 2D density of st
r2D5m/p\2. Below, for the sake of simplicity, we assum
that the scattering is symmetric,t15t25t. A calculation of
the integral overp under conditionsn1,2/r2D@\/2t gives us
the following result:

GT5
16e2t2mtn1n2

p\4~An11An2!4

3 (
s56

H 11F4t

\

An1n2

r2D

An12An22sg~a12a2!

An11An2
G 2J 21

,

~11!

where g5m/A2p\2. In the calculation we also assume
that the Rashba velocitiesa j are small in comparison to th
15530
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Fermi velocitypF /m, which allowed us to neglectgua j u in
comparison toAnj . However, it is important to keep th
termsga j in the denominator, where they can be compara
to An12An2.

The most important difference between the express
~11! and corresponding result16 in the limit of a1,2→0 is the
shift of the tunneling resonance. At zero-spin splitting, t
resonance in the tunneling conductance occurs for matc
electron densities,n15n2, or, equivalently, atD50. At non-
zero-spin splitting, there are two resonances, determined
the conditionAn12An256g(a12a2). As a result, the de-
pendence ofGT on An12An2 has two peaks, each one co
responding to the contribution of different spin states into
tunneling. The double-peak structure is resolved under c
ditions

ua12a2upF.\/t, ~12!

i.e., when the spin splitting at the Fermi level exceeds
collision-broadening energy. The dependence ofGT on
An1 /n2 at fixedn2 anda12a2 is shown in Fig. 2. It is well
described by a superposition of two Lorentzian lines. T
line shape is independent of the sign ofa12a2. In experi-
ment, the densitiesn1 and n2 can be varied by biasing th
top and bottom gates, see Fig. 1. We stress that due to l
electron densities and the small effective mass of electron
InAs quantum wells, the dimensionless parame
tn2 /\r2D520 chosen in the calculations of Fig. 2 corr
sponds to a considerably large broadening: usingn2
51012 cm22 and m50.03m0, we have an estimate\/t
.4 meV. On the other hand, using the samen2 andm, we
find that the parameter (a12a2)g/An250.04 corresponds
to \(a12a2).2.5310211 eV•m, which is a reasonable es
timate ~see the end of this section!. The typical measured
linewidths \/t of the resonant tunneling peaks in GaA
AlGaAs double-well structures are about 0.5 meV at lo
temperatures, see Ref. 13. Our calculations, therefore, d
onstrate that the splitting of the resonant tunneling peak

FIG. 2. Linear tunneling conductance as a function ofAn1 /n2 at
tn2 /\r2D520, (a12a2)m/A2p\2n250.02 ~1!, 0.04 ~2!, and
0.08 ~3!.
4-3
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the InAs-based double-well structures can withstand a di
der which is much stronger than the disorder in the exist
GaAs/AlGaAs structures.

The usage of the double quantum well structures w
independent contacts to the 2D layers and two gates
shown in Fig. 1, gives one the freedom to change parame
«F1 , «F2, and D. If «F1 and «F2 are made considerabl
different, the tunneling current flows through the structure
the nonlinear regime. In contrast to the linear tunneling c
ductance, which always depends on the scattering, the
linear tunneling current, as shown below, becomes scatte
independent if the broadening energies\/t1,2 are small
enough. Recalling Eq.~9!, we write the tunneling current a

I 5
et2

~2p!2\t1t2
(

s56
E d«S 1

e«/T2eV/2T11
2

1

e«/T1eV/2T11
D

3E
0

`

pdpH F«2
eV

2
1

n1

r2D
2

~p1sma1!2

2m G2

1
\2

4t1
2J 21

3H F«1
eV

2
1

n2

r2D
2

~p1sma2!2

2m G2

1
\2

4t2
2J 21

. ~13!

Let us first calculate the current in the limit\/t1,2→0. The
spectral densities under the integrals are reduced to thd
functions. In the case of strongly degenerate electron
whenT→0, we obtain

I 5
et2

\3 (
s56

E
2eV/2

eV/2

d«8E
0

`

pdp

3d@«82eV/21n1 /r2D2~p1sma1!2/2m#

3d@«81eV/21n2 /r2D2~p1sma2!2/2m#. ~14!

An elementary integration in this expression gives a sim
result: the contribution comes either from the branchs51
or from s52, and the current is

I 5
et2uDu

\3~a12a2!2

V

uVu
, ~15!

if V falls in the interval described by the following non
equalities:

~An11An22gua12a2u!,
r2DueVu

uAn12An26gua12a2uu

,~An11An21gua12a2u!.

~16!

If V is beyond this interval, the current is equal to zero.
The tunneling current~15! is independent of the param

eters characterizing the scattering. This remarkable prop
appears because of the intersection of the 2D electron sp
of different layers~with the same spins) in the energy-
momentum space, see Fig. 3. In these conditions, the e
tron tunnel near the intersection points with conservation
the momentum. Such scattering-independent tunneling
15530
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tween 2D layers also takes place11,18 in the double quantum
wells if there is a magnetic field parallel to the layers. Th
magnetic field shifts the 2D electron spectra of different la
ers in the momentum space with respect to each other.
consequences of the Rashba effect are similar. The inter
tion of the spectra takes place on a circleupu5p05uDu/ua1
2a2u. If T→0, the tunneling current is nonzero if the e
ergy corresponding to this intersection stays in the inter
between the quasi-Fermi energies of 2D electrons in the
ers. This condition is formally given by Eq.~16!. Only one
spin states5s0 contributes to the current. If the sign of th
factor D/(a12a2) is positive~negative!, s052 (s051).
A sharp change of the current from zero to the value giv
by Eq. ~15! is smoothed at finite temperatures. In this ca
using Eq.~13! at \/t1,2→0, we obtain

I 5
et2uDu

\3~a12a2!2

sinh~eV/2T!

cosh~«0 /T!1cosh~eV/2T!
,

«05
@~n12n2!/r2D2eV#2

2m~a12a2!2
2

n11n2

2r2D
1

m~a12a2!2

8
,

~17!

where«0 is the energy corresponding to the intersection
the spectra. The last term in«0 is small in comparison to the
other terms and can be neglected. The influence of the
order~finite \/t1,2) on the tunneling current in the nonlinea
regime is also important. To ensure that only one spin s
s5s0 contributes to the current in the vicinity ofupu5p0,
we assume thatua12a2up0@\/t1,2. Then, Eq.~13! at T
50 is rewritten as

I 5
et2

~2p!2\t1t2
E

2eV/2

eV/2

d«E
2p0

`

ddp~p01dp!

3@~«2«02v1dp2dp2/2m!21~\/2t1!2#21

3@~«2«02v2dp2dp2/2m!21~\/2t2!2#21, ~18!

wheredp5p2p0 and v j5p0 /m1s0a j are the group ve-
locities of electrons atp5p0. Under the assumed conditio
ua12a2up0@\/t1,2, we can neglect the terms quadratic o

FIG. 3. Intersection of the branchess of the spin-split electron
spectrum belonging to the 2D layers~1! and~2!. If the sign ofD is
changed, the intersection occurs for the other spin branch2s.
4-4
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dp in the denominators, neglectdp in comparison top0, and
shift the lower limit of the integral overdp to 2`. In these
approximations, the integrals overdp and « are calculated
analytically, and we find

I 5
et2uDu

p\3~a12a2!2 Farctan
«01eV/2

G
2arctan

«02eV/2

G G ,
G5

\uDu

tm~a12a2!2
, ~19!

wheret215(t1
211t2

21)/2.
To find the current-voltage characteristics of the doub

layer system, one should consider the electrostatic prob
for a structure of the geometry shown in Fig. 1. Such a c
sideration relates the electron densities and level splittinD
to the voltages applied to the gates and contacts. We h
carried it out for a structure with mirrorlike symmetry, whe
the widths of the wells are the same and the donor densi
the distances from the wells to the doping planes, and
distances to the gates are equal to each other on both s
The donor impurities in the doping layers are assumed to
completely ionized, so that an application of the voltag
does not change the density of the charged donors. Fo
sake of simplicity, we consider the situation in which t
gates are grounded and the voltageV/2 (2V/2) is applied to
the first ~second! layer. Neglecting a small correction of th
order ofd/L, whered is the distance between the centers
2D layers andL is the thickness of the structure from on
gate to the other, we obtain the following equation:

S 11
2d

aB
D ~n12n2!2S 1

3
2

5

4p2D a

aB
~n12n2!

2
23/2

p3/2aB

~An12An2!5r2DeV, ~20!

where aB5\2e/e2m is the Bohr radius expressed throug
the static dielectric permittivitye, which is assumed to be
constant across the layers, anda is the quantum well width.
Two last terms in the left-hand side of this equation app
because of the influence of the electron-electron interac
on the Fermi energies in the wells, taken into account wit
the Hartree-Fock approximation using the ground-state w
function for rectangular hard-wall confinement potential a
neglecting the terms of the order of (pFa/\p)2 and higher in
the expansion of the exchange interaction energy term25

Equation ~20! should be accompanied by the relationn1
1n252n0, wheren0 is the equilibrium electron density in
each layer~at V50), determined by the doping. Because
the small value of the spin-splitting energy in comparison
the Fermi energy, the conditions~16! of nonzero tunneling
current correspond touAn12An2u!2n0, when one can ex-
pand the factorAn12An2 in the series ofn12n2 as An1

2An2.(n12n2)/2An0. Taking this into account, we deriv
from Eq. ~20! a simple linear dependence,
15530
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n15n01
aBr2D

4d*
eV, n25n02

aBr2D

4d*
eV, ~21!

whered* 5d1aB/22a(1/625/8p2)21/A2p3n0. For typi-
cal electron densitiesn0.1012 cm22 in the InAs quantum
wells, the principal contribution of the exchange term in
d* is estimated as 1/A2p3n0,1.3 nm. It is more than an
order-of-magnitude smaller than either the typical interla
distanced;20 nm or the Bohr radiusaB . Therefore, this
exchange term can be neglected, in agreement with the s
ment that the Hartree approximation is expected to w
quite well in the two-dimensional systems based on In
semiconductors, see Ref. 26, p. 468. The terma(1/6
25/8p2).0.1a is also small in comparison tod1aB/2, so
that one can writed* 5d1aB/2 with high accuracy. As for
the energyD, it is connected ton1 , n2, andV by a simple
relationn12n25r2D(eV2D) and, together withn12n2, is
directly proportional toV. According to the definition,d* is
always larger thanaB/2, which gives usun12n2u,r2DueVu
and the sign ofD always coincides with the sign of th
applied voltageV. The consideration presented above do
not take into account the minor corrections due to the s
splitting of the spectrum.

To estimate the velocitiesa1 anda2, we use the follow-
ing expression fora(z):

a~z!.
\P2

3

d

dzF 1

«g2v~z!2Vp~z!

2
1

«g1Ds2v~z!2Vs~z!G , ~22!

whereP is the Kane’s velocity,«g is the energy gap, andDs
is the energy distance from the valence band to the spin-
band in the quantum well regions. The valence-band disc
tinuity energyVp(z) and spin-split-band discontinuity energ
Vs(z) are defined as step functions equal to zero in the qu
tum well regions and to constantsVp and Vs in the barrier
regions. The presence ofVp(z) and Vs(z) leads to singular
terms ina(z) proportional tod functions at the interfaces
Nevertheless, such terms can be neglected if the veloc
a j5*dza(z)uF j (z)u2 are calculated on the basis of the wa
functions of hard-wall confinement, i.e., the underbarr
penetration of the wave functions is not taken into accou
In this case, only the terms proportional todv(z)/dz remain
significant, and

a~z!.
2\P2

3

Ds~«g1Ds/2!

«g
2~«g1Ds!

2

dv~z!

dz
. ~23!

Using v(z) calculated from the Poisson equation, and e
pressingP2 through the effective massm according tom21

54P2/3«g12P2/3(«g1D), we find

a15b~n12r2DeVaB/2d* !,

a25b~2n22r2DeVaB/2d* !, ~24!
4-5
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b5
2\

mr2DaB

Ds~«g1Ds/2!

«g~«g1Ds!~3«g12Ds!
.

The parameterb depends only on material properties. W
stress that form50.03m0 , e512, «g50.41 eV, andDs
50.38 eV ~parameters«g and Ds for InAs are taken from
Ref. 27!, Eq. ~24! gives us\ua1,2u;10211 eV•m for 2D
electron densitiesn1,2;1012 cm22, typical for InAs-based
heterostructures. This estimate ofa1,2 is in good agreemen
with the values obtained from experimental data, see Re
and references therein. In the symmetric structure atV50,
one hasn15n2 and a152a2. A comparison of Eqs.~16!,
~21!, and ~24! shows that the tunneling current flows und
conditions when the relative changes of electron densitienj
and Rashba velocitiesa j induced by the applied voltageV
are small. This property is a consequence of the smallnes
the spin-splitting energyua12a2up0 in comparison to the
Fermi energyn0 /r2D .

Let us apply the above results to the calculation of
current-voltage characteristics. In the symmetric structure
consider, the termua12a2u entering the expressions for th
tunneling current is equal tob(n11n2)52bn0. Therefore,
this term appears to be independent of the applied volta
and the variation of the maximal value of the tunneling c
rent at low temperatures is determined by the variation ofD.
SinceD is proportional toV, it is convenient to introduce the
nonlinear ~voltage-dependent! conductanceGT(V). Using
Eqs.~17! and ~21!, we obtain, in the case of zero disorder

GT~V!5
e2t2r

\3~a12a2!2
sinh

ueVu
2T FcoshS e2V2

2E0T
2

n0

r2DTD
1cosh

eV

2TG21

, ~25!

where r 5(12aB/2d* ) is a constant of the order of unity
and the characteristic energyE0 is defined asE05m(a1
2a2)2/r 2. The conductance~25! has two identical symmet
ric peaks centered at V56V0, where V0

5e21A2n0E0 /r2D. The width of the peaks at low tempera
ture, whenV0@2T, is equal toE0 /e. The peaks in this cas
have an almost rectangular shape. In Fig. 4 we plotGT(V) in
the region of positiveV for 4.2 K and 40 K, substituting
(a12a2)254b2n0

2, using the material parameters give
above, and assumingaB/2d* 50.5 andn05231012 cm22.
The temperature-induced broadening of the peak beco
significant whenT;V0/2, and it is negligible at liquid-
helium temperature. The effect of disorder on the broaden
is far more considerable. AtT50, using Eqs.~19! and~21!,
we obtain

GT~V!5
e2t2r

p\3~a12a2!2 Farctan
tr ~eV2eV0

2/V1E0!

2\

2arctan
tr ~eV2eV0

2/V2E0!

2\ G . ~26!

The broadening described by this equation can be negle
only if
15530
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\/t!m~a12a2!2. ~27!

This condition is difficult to satisfy for reasonable param
eters. The large effect of the disorder is explained qual
tively if we take into account that the group velocities
electronsv1 and v2 near the intersection point are close
each other, see Fig. 3, and the scattering permits the elec
to tunnel through in a rather broad region of energies aro
this point. In Fig. 4 we show the shape of the peak at\/t
50.5 meV, which is the typical broadening energy of t
resonant tunneling peaks in GaAs/AlGaAs double-w
structures.13 The rectangular shape, which would exist
\/t→0, is lost. Nevertheless, the peak itself is well define
as far as the condition~12! is satisfied, and the position of it
maximum is the same as in the absence of the disorder.

IV. CONCLUSIONS

We calculated the tunneling current between the 2D lay
with a spin-split electron energy spectrum and demonstra
that the measurements of the tunneling conductance in
linear and nonlinear regimes can reveal specific feature
the Rashba effect. The linear tunneling conductance show
superposition of two Lorentz-like peaks corresponding to
resonance contribution of two spin-split subbands. The n
linear conductance, as a function of the applied volta
shows a peak which becomes rectangular in the limit
weak disorder. In this limit, the width and height of the pe
are independent of the disorder. The position of the p
depends on the Rashba velocities describing the magni
of the spin splitting.

In contrast, for 2D-2D tunneling in the absence of sp
splitting, there is only one Lorentz peak13 of the tunneling
conductance as a function of the relative density differe
or interlayer level splitting, though its width is given by th
same relation: it is proportional to the product of the Fer
energy by the scattering time. In the nonlinear regime,
tunneling current between the layers without spin splitti
decreases13 with the applied source-drain voltageV for sym-
metric structures. Indeed, the application of this volta

FIG. 4. Nonlinear tunneling conductance for a symmet
double quantum well structure with grounded gates as a functio
the source-drain voltage forT54.2 K and 40 K at\/t50 ~solid
lines! and forT50 at\/t50.5 meV~dashed line!. The parameters
used in the calculation are given in the text.
4-6
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drives the system out of the tunneling resonance becaus
interlayer level splittingD increases withV. The decrease o
the current follows the Lorentzian dependence, because
tunneling current is proportional to@D21(\/t)2#22. If the
double quantum well structure is not symmetric~for ex-
ample, if the wells are of different widths!, the tunneling
current-voltage dependence has a similar Lorentz-like re
nant peak around the voltage corresponding toD50. There-
fore, there are essential qualitative differences between
behavior of 2D-2D tunneling current in the absence of s
splitting and that of the case we studied.

Let us discuss which information can be obtained fro
the measurements of the tunneling current between 2D la
with a spin-split spectrum. If the gate-voltage dependenc
the electron densitiesn1 andn2 is known, the measuremen
of the width and position of the peaks of linear tunneli
conductance give us both the broadening energy\/t and
spin-splitting energy, and the latter is described in terms
the quantityua12a2u. Knowing\/t andua12a2u and mea-
suring the height of the tunneling conductance peaks,
can find the tunneling matrix elementt, which is usually not
known precisely from theoretical estimates. The measu
ments of the current-voltage characteristics in the nonlin
regime provide similar information. In particular, the qua
tity ua12a2u is determined by the position of the peakV0 if
the total density of electrons in the structure 2n0 is known.
The measurements of the width and height of the peak a
one to extract\/t andt. If the spin splitting is so strong tha
the condition~27! is satisfied, the measurement of the wid
of the peak provides complementary information about
quantity ua12a2u.

From the tunneling experiment, one can determine
rectly only the absolute value of the difference of Rash
velocities,ua12a2u. From a first look, this quantity seem
less important than the quantitiesa1 and a2 themselves.
Nevertheless, knowingua12a2u, it is possible to determine
a1 anda2, because an additional relation betweena1 anda2
can often be deduced from the consideration of the symm

*Permanent address: Institute of Semiconductor Physics N
Ukraine, Prospekt Nauki 45, Kiev, 03028, Ukraine.
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structure, wherea152a2 and ua1u5ua2u5ua12a2u/2. In
more complex cases, one can compare the shapes of the
fining potentials in the wells by solving an electrostatic pro
lem for the structure under consideration.

The important feature of the tunnel contact between
layers with Rashba spin splitting is its selectivity with r
spect to the spin numbers. Indeed, a single peak of th
tunneling current corresponds to the resonant tunneling
either s51 or s52 states, see Fig. 3. By adjusting th
gate voltages, one can switch froms52 to s51 tunnel-
ing. Therefore, in principle, the tunnel contact between
layers can work as a spin filter. A spin-filter resonant tunn
ing diode based on a similar idea has been rece
proposed.28 Nevertheless, it seems difficult to realize such
kind of spin filter in spin electronics. First of all, the ele
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