
PHYSICAL REVIEW B 67, 155208 ~2003!
Implementation of an all-electron GW approximation based on the projector augmented wave
method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH
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An implementation of the GW approximation~GWA! based on the all-electron projector-augmented-wave
~PAW! method is presented, where the screened Coulomb interaction is computed within the random-phase
approximation~RPA! instead of the plasmon-pole model. Two different ways of computing the self-energy are
reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or
insulating materials: Si, SiC, AlAs, InAs, NaH, and KH. To illustrate the method the real and imaginary part of
the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the
GWA results are compared with other calculations, highlighting that all-electron GWA results can differ
markedly from those based on pseudopotential approaches.
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I. INTRODUCTION

For many weakly correlated materials, the densi
functional theory1 ~DFT! in the local-density approximation
~LDA ! provides a good description of their ground-sta
properties. However, DFT is not able to describe correc
their excited states. Thus, for example, the band gaps in
LDA are typically much smaller than the experimental v
ues. Quasiparticle~QP! electronic-structure calculations be
yond the DFT are therefore highly desirable.

The GW approximation~GWA! of Hedin,2,3 which pro-
duces a good approximation for the electron’s self-energyS,
enables us to make first-principle QP calculations for rea
tic materials. Thus the GWA has been successfully applie
the calculation of QP electronic structures of many kinds
materials.4–7 In particular, recent success has been achie
on predicting the metal-insulator transition of bcc hydroge8

electronic excitations of yttrium trihydride,9 as well as the
QP electronic structure of copper.10 Unfortunately, most of
the GWA implementations are based on the pseudopote
type of approaches together with plasmon-pole~PlP!
models.11–16 The weakness of these types of calculations
that the imaginary part of the self-energy is not accessi
making it impossible to determine spectral functions a
hence to interpret photoemission experiments. In addition
PlP approximation is expected not to hold for systems w
localized electrons. Moreover, it has been notic
recently15,17 that GWA implementations based on pseudop
tential methods lead to larger and morek-dependent shifts
than calculations based on all-electron DFT methods, br
ing into question the validity of the former approaches.

However, some attempts have been made to go bey
the plasmon-pole approximation.7,10,17–21 In particular, Ar-
yasetiawan has approximately determined the scree
within the RPA using a linear muffin-tin orbital metho
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within the atomic sphere approximation7 ~LMTO-ASA!.
This method, although fast, approximates the space
atomic centered overlapping spheres, thus completely
glecting the interstitial region, and hence making the reliab
ity of the GW method uncertain. Kotani and van Schi
gaarde based their full-potential LMTO GW calculation17 on
the work of Aryasetiawan by taking into account correc
the interstitial region. Nevertheless, their method is not qu
accurate since in their implementation they did not take i
account the multiplicity of the same angular momenta fo
given principal quantum number in the basis set~like simul-
taneously using the 3d and 4d states!. Finally, Ku and Egui-
luz produced self-consistent and non-self-consistent QP b
gaps based on an approximate Luttinger-Ward functiona18

the non-self-consistent results are much smaller than all
isting GW calculations. Since these results are based o
different scheme we have chosen not to discuss their me
further. On the other hand, several pseudopotentials h
produced GW results without resorting to the plasmon-p
approximation. These methods, although interesting,
pseudowave functions and hence can only determ
pseudomatrix elements of operators, making them difficul
justify as quantitative and reliable methods for computi
QP properties.

The major purpose of this paper is then to present a
ferent implementation of the GWA method using the a
electron full-potential projector augmented wave meth
~PAW! completebasis set, and without using any PlP mod
for the determination of the dielectric function. The scree
ing of the Coulomb interaction is thus described in t
random-phase approximation~RPA!, avoiding further ap-
proximations.

The paper is organized as follows. In Sec. II we descr
our implementation of the GW approximation. In Sec. III w
present our QP calculations for Si, SiC, AlAs, and InAs a
also for the alkali hydrides compounds NaH and KH. At t
©2003 The American Physical Society08-1
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end of this section we compare and discuss our results
other calculations and experiments.

II. FORMALISM

A. PAW method

The PAW formalism has been well-describe
elsewhere,22–25 so we will not discuss it in this paper. Th
PAW method22 is a very powerful all-electron method fo
performing electronic structure calculations within t
framework of the LDA. It takes advantage of the simplici
of pseudopotential methods, but describes correctly the n
behavior in the augmentation regions. The self-consis
calculation of the electronic structure is performed using
Car-Parinello method over the occupied states. To determ
the eigenvalues and eigenvectors of all unoccupied states~up
to 200 eV above the top of the valence states! needed for the
GW calculations, we have extracted the self-consistent f
potential, constructed and diagonalized the PAW Ham
tonian for every irreduciblek point in the Brillouin zone.

B. GW approximation

1. Quasiparticle energies

In general, the QP energiesEn(k) and wave function
ckn(r ) are determined from the solution of the QP equat

~T1Vext1Vh!ckn~r !1E d3r 8S~r ,r 8,En~k!!ckn~r 8!

5En~k!ckn~r !, ~1!

whereT is the free-electron kinetic energy operator,Vext the
external potential due to the ion cores,Vh the average elec
trostatic ~Hartree! potential, andS the electron self-energy
operator. The major difficulty connected with Eq.~1! is find-
ing an adequate approximation for the self-energy oper
S„r ,r 8,En(k)…. Nonetheless, it was shown by Hedin2,3 that
writing the self-energy as a product of the Green’s funct
and the screened Coulomb interactionW yields the success
ful GW approximation forS. In this approximation, both the
nonlocality and the dynamical correlations are included. A
suming that the differenceŜ2V̂xc between the self-energ
and the Kohn-Sham exchange and correlation potentia
small, we can use a perturbation theory approach to solve
effective QP HamiltonianĤqp,

Ĥqp5ĤKS1~Ŝ2V̂xc!, ~2!

and determine the QP energies by expanding the real pa
self-energy to first order arounden(k) thus making the com-
parison with the PlP models possible,

ReEn~k!5en~k!1Znk3@^CknuReS„r ,r 8,en~k!…uCkn&

2^CknuVxc
LDA~r !uCkn&#, ~3!

where the QP renormalization factorZnk is given by
15520
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Znk5S 12^Cknu
]

]v
ReS„r ,r 8,en~k!…uCkn& D 21

. ~4!

This assumption is valid for simplesp bonded materials,
since it was shown that the QP wave functionckn and Kohn-
Sham wave functionCkn are almost identical, i.e., the Q
HamiltonianĤqp is diagonal in theCkn basis for simplesp
bonded semiconductors.11,12We therefore assume this beha
ior for the materials studied in this paper. According to th
equation, the LDA eigenvaluesen(k) are then corrected by
the GW approximation. The numerical work is therefore co
siderably reduced, but still computationally demanding.

In our implementation, we have calculated the Gree
function only for the valence and conduction states. One
then to subtract out only the valence exchange and corr
tion potential in Eq.~3!. To check the accuracy of this pro
cedure, we have also used the so-called Hartree-F
decoupling,15,26 and have found that the average error in t
QP energies of Si with respect to the top of the valence st
is 0.05 eV. The approximation made here is the one curre
used in all pseudopotential-based GWA calculations, mak
our method compatible with existing GW implementation

2. Screened Coulomb interaction

For the calculation of the self-energy, one needs to eva
ate the dynamically screened interactionW(r ,r 8,v), which
can be rewritten in reciprocal space as

WG,G8~q,v!54p
1

uq1Gu
ẽG,G8

21
~q,v!

1

uq1G8u
. ~5!

The symmetrized dielectric matrixẽGG8(q,v) is defined in
the random-phase approximation~RPA! by27

ẽGG8~q,v!5dGG82
8p

Vuq1Guuq1G8u
(

v,c,k
MG

vc~k,q!

3@MG8
vc

~k,q!#* 3S 1

v1ev~k2q!2ec~k!2 id

2
1

v2ev~k2q!1ec~k!1 id D , ~6!

with the following notation:

MG
nm~k,q!5^Ck2qnue2 i (q1G)ruCkm&, ~7!

wherev andc denote, respectively, the valence and cond
tion states, andd a positive infinitesimal. The matrix ele
ments given by Eq.~7! are evaluated using the PAW basis s
as described in Ref. 15.

Most of GWA calculations use a kind of PlP approxim
tion. This is computationally efficient since one obtains
analytic expression for the integral in the self-energy. It
not clear, however, that this kind of approximation is va
for describing the QP of different kind of materials. It is fo
this reason that we have chosen to avoid the PlP model a
gether, to compute the dynamical dielectric function in t
RPA ~6!, and to perform the integral of the self-energy n
merically. In our implementation, we need to compu
8-2
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ẽGG8(q,v) along the imaginary axis and for some real fr
quencies. This technical point will become clearer in the n
subsection.

To reduce the computational cost of the GWA, we u
symmetry properties. Details about the utilization of t
symmetry for the static dielectric matrix has been alrea
given elsewhere,5,15,28,29so we just describe briefly how t
use the symmetry in the case of the dynamical dielec
function. For the case of pure imaginary frequencies,
could safely ignore the broadening factorid; in this case
ẽGG8(q,iv) is Hermitian and we could use the symmetry ju
as in the static case. We can then write the symmetri
dielectric matrix as

ẽGG8~q,iv!5dGG82
8p

Vuq1Guuq1G8u

3 (
kPBZq

(
v,c

(
RPGq

MRG
vc ~k,q!

3@MRG8
vc

~k,q!#* S 1

iv1ev~k2q!2ec~k!

2
1

iv2ev~k2q!1ec~k! D , ~8!

whereGq is the little group of the point groupG such that
Rq5q; R being a symmetry operation. The computation
cost is further reduced by noticing that

ẽGG8~Rq,iv!5 ẽR21GR21G8~q,iv! ~9!

for real v, although the dielectric matrix is not Hermitian
we could use the symmetry by making a decomposition i
Hermitian and anti-Hermitian parts of the polarizabili
PGG8(q,v). if we defineAGG8(q,v) andBGG8(q,v) by
he

en

av
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n’
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AGG8~q,v!5
PGG8~q,v!1PGG8

†
~q,v!

2
~10!

and

BGG8~q,v!5
PGG8~q,v!2PGG8

†
~q,v!

2i
, ~11!

then Eqs.~8! and ~9! still hold, allowing us to perform the
same computational tasks as for the symmetrized dielec
matrix with imaginary frequencies. This procedure make
possible to first computeWG,G8(q,v) only for irreducible
points of the first Brillouin zone~BZ!. We then determine
easily the screened interaction for allk points in the Bril-
louin zone using symmetry properties.

3. Self-energy

The self energyS is the key quantity of any GWA calcu
lation. As previously noticed, we have chosen to avo
plasmon-pole models and computeS with thev dependence
of the screened interactionW within the RPA.

First, we split the integral of the self-energy into a ba
exchange or Hartree-Fock contributionSX and an energy-
dependent contributionSC(v) which describes self-energ
effects beyondSX. The matrix elements of the self-energ
are now given by the sum of

^CknuSXuCkn&52
4p

V (
q

(
m

occ

(
G

uMG
mn~k,q!u2

uq1Gu2
,

~12!

where the summation is over occupied states, and

^CknuSC~v!uCkn&5
1

V (
q

(
GG8

(
m

@MG
mn~k,q!#!MG8

mn
~k,q!

3CGG8
m

~k,q,v! ~13!

with
CGG8
m

~k,q,v!5
i

2pE dv8
WGG8

C
~q,v8!

v1v82em~k2q!1 id sgn@em~k2q!2m#
, ~14!
:
whereWC is defined asWC5W2v, with v being the bare
Coulomb potential. To evaluate this integral directly on t
real axis one should computeWC for many pointsv8 since
the shape ofWC along the real axis is rather ragged. Ev
though this has been done by some authors,10 we choose to
avoid this difficulty by using the fact thatWC is well be-
haved along the imaginary axis. In the present work, we h
performed this integral using two different methods:

In the first one, the contour of the frequency integral~14!
is deformed in a way to obtain an integral along the ima
nary axis plus contributions from the poles of the Gree
e

-
s

function. In this case, we obtain the following expression

CGG8
n

~k,q,v!52
1

pE0

`

dv9WGG8
C

~q,iv9!

3
v2en~k2q!

@v2en~k2q!#21v92

6WGG8
C

~q,6~v2en~k2q!!!u$6@v2en~k

2q!#%u@6~v2m!#u$6@en~k2q!2m#%.
8-3
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The first term represents the contribution along the ima
nary axis and is evaluated by Gaussian quadrature. The
ond is from the poles of the Green’s function and its com
tation is done by fitting values ofWC at 6@v2en(k2q)#
from values on a given mesh of frequencies.30 Here m de-
notes the Fermi level in the LDA andv9 is defined to be real
This method is similar to the one used by Aryasetiawan
the implementation of the GWA based on the LMTO meth
in the atomic sphere approximation7 ~ASA!, and within the
GWA of Kotani and co-workers based on the full-potent
linear muffin-tin orbital ~FP-LMTO! method.17 The reader
can find more details about this integration procedure
Refs. 17 and 7. Similar work has been also carried out
Bechstedt and co-workers20 as well as by Fleszar an
Hanke21 starting from a pseudopotential approach.

In our second implementation, which is similar to that
Ref. 19, we evaluate the matrix elements of the correla
part of the self-energŷCmkuSC(v)uC lk& for a set of imagi-
nary frequenciesiv, the resulting quantity is then analyt
cally continued to the real axis by fitting it to the followin
Padéform,

P~z!5
a01a1z1a2z21•••1aNzN

b01b1z1b2z21•••1bMzM
, ~15!

whereai andbi are complex parameters that are determin
during the fit along the imaginary axis. Values of 5 forN and
of 6 for M provided us with an accurate and stable fit. T
same kind of continuation has also been applied with suc
to compute the dynamical response function,31,32 so we are
confident of its reliability. The main difference between t

TABLE I. Calculated quasiparticle energies of silicon for som
points in the Brillouin zone with our two different implementation
The results are in good agreement with each other. In the last
the minimum band gapEg is presented.

First methoda Second methodb

G1v 211.85 211.87
G258v 0.00 0.00
G15c 3.09 3.09
G28c 4.05 4.06

X1v 27.74 27.68
X4v 22.90 22.91
X1c 1.01 1.03
X4c 10.64 10.59

L28v 29.57 29.50
L1v 26.97 26.90
L38v 21.16 21.17
L1c 2.05 2.03
L3c 3.83 3.83

Eg 0.92 0.90

aContour deformation method.
bAnalytic continuation method.
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work presented here and that of Ref. 19 is that our code s
from an all-electron basis, so we are not using fast Fou
transforms to switch between real and reciprocal spaces
between time and frequency domains. Our expression~15! is
also different, but we believe that this is of mino
importance.33

In both cases, the integration over the first Brillouin zo
is done by the special-point technique.34 The number of
bands as well as the number ofG vectors in Eq.~13! is
increased until the QP energies are converged. Similarly,
number of frequency pointsv8 for which WC is computed is
increased untilCGG8

n (k,q,v) is well converged. The two dif-
ferent implementations allow us to check carefully our
sults, and as can be seen in Table I for the case of silicon
QP energies are insensitive to the method used to com
the self-energy.

4. Treatment of the Coulomb divergence

The last point we wish to discuss is an additional dif
culty which occurs when evaluating the self-energy by
summation of theq points over the full BZ. We cannot appl
the special-point technique directly since the integrands h
a 1/q2 singularity for q→0 as can be seen for example b
putting G50 in the expression of the exchange term giv
by Eq. ~12!. The difficulty can be removed by adding an
subtracting a term which has the same singularities as
initial expression, and which can be evaluated numerica
and analytically. As a consequence, the integrals over the
are rewritten

(
q

G~q!5(
q

@G~q!2AF~q!#1A(
q

F~q!, ~16!

where F(q) is an auxiliary periodic function that diverge
like 1/q2 asq vanishes. The term is regular and can be eva
ated by the special point technique whereas the last su
evaluated analytically. For the exchange term, it is not di
cult to evaluateA in Eq. ~16!, but it gets more complicated
for the correlative part of the self-energy~13!. The purpose
of the offsettedG-point method17 is to avoid the evaluation
of the quantityA, but still to be able to deal with the diver
gence. The main idea is to find a new mesh of points s
that

e,

TABLE II. Lattice constantsa ~in atomic units! and energy cut-
offs Ecut ~in Rydberg! used for our PAW calculations. The lattic
constants are from Ref. 35, unless stated otherwise.

a Ecut

Si 10.26 20
SiC 8.24 25
AlAs 10.67 20
InAs 11.41 20
NaH 9.28a 40
KH 10.83a 40

aReference 36.
8-4
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FIG. 1. RêCkmuS(v)uCkm& and Im̂ CkmuS(v)uCkm& shown for the first eight bands for silicon atk50. The zero of energy is at the
center of the band gap.
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q

F~q!5(
q8

F~q8!, ~17!

where theG point is included in the old meshq but not in the
new oneq8: theG point is replaced by other points~different
from G) to construct theq8 grid in order to fulfill Eq.~17!.
Equation~16! is therefore rewritten as

(
q

G~q!5(
q

@G~q!2AF~q!#1A(
q8

F~q8!, ~18!

Then we show by inspection that the term(q@G(q)
2AF(q)# is equal to(q8@G(q8)2AF(q8)# with a controlled
error, Eq.~18! transforms to

(
q

G~q!5(
q8

G~q8! ~19!

because the two terms which contain the functionF(q) can-
cel out since they are evaluated on the sameq8 grid. We have
therefore avoided the evaluation of the complicatedA term in
Eq. ~16!.

The remaining points to be addressed are the choice o
function F(q) and the number of additional points for th
new mesh used to solve Eq.~17!. In our case, we write

F~q!5(
G

exp~2uq1Gu2!

uq1Gu2

and choose to add six points to the originalq mesh in order
to get the new mesh. Equation~17! is then solved to provide
us with the coordinates of the new six points in the BZ.37 The
computational cost is further reduced by finding equival
points among those six points, and we end up with w
behaved and easily evaluated BZ sums.
15520
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III. NUMERICAL RESULTS AND DISCUSSION

In this section we present our theoretical quasiparticle
ergies for the six materials studied in this paper, toget
with the available theoretical and experimental results.
Sec. III A we report our results for four semiconductors~Si,
SiC, AlAs, InAs! of zinc-blende-type structure, while Se
III B is devoted to studying the alkali hydrides NaH and K
in the rocksalt phase. Table II presents the experimental
tice parameters and the energy cutoffsEcut used for the final
converged calculations.

A. Results for Si, SiC, AlAs, and InAs

Silicon is probably the most carefully studied semico
ductor, and several GWA results are available. Using silic
as a prototype will allow us to test our method by maki
careful comparisons with previous GWA calculations. A
mentioned earlier, our code presents two different ways
calculating the self-energy. We therefore test their accur
for silicon in Table I. We find that the results of the tw
methods are almost identical, showing that they are equ
reliable for computing the self-energy. In particular, o
implementation with the extrapolation procedure makes
possible to represent the full-frequency dependence of
self-energy with a small additional computational cost. F
ure 1 shows the real and imaginary parts ofS along the real
axis for silicon at theG point for a wide range of frequencies
The agreement with previous work is excellent.19

A special feature of our work is the possibility of obtain
ing the imaginary part of the self-energy~see Fig. 1!, a task
virtually impossible within the PlP approximation.38 The
spectral function which can be obtained directly from t
self-energy,
^CkmuA~v!uCkm&5
uIm^CkmuS~v!uCkm&u

@v2em~k!2Rê CkmuS~v!uCkm&#21@ Im^CkmuS~v!uCkm&#2
,

8-5
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is of major interest since it can be used for the interpreta
of experimental photoemission and inverse-photoemiss
spectra. As an example, the spectral function of silicon at
G point is shown in Fig. 2.

The sharp peaks correspond to QP excitations, while
incoherent part of the function, the spectral background
much complicated and could correspond to plasmon-type
citations.

FIG. 2. Spectral function̂CkmuA(v)uCkm& for the first eight
bands for silicon atk50. The zero of energy is at the center of th
band gap. The sharp peaks are QP poles, their weights corres
to the factorZ defined in Eq. 4.
15520
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The QP calculations have been performed using 25k
points in the full BZ. The size of the dielectric matrix define
in Eq. ~6! is 1373137 for silicon and SiC, 1693169 for
AlAs, 1813181 for InAs. 200 bands were used for the su
over conduction states in Eq.~6! and for the sum overm in
Eq. ~13!. Due to the smoothness of the integrand along
imaginary axis, 11 points are found sufficient to obtain w
converged quantities. An energy step of 1.5 eV is used
the part of Eq.~15! which corresponds to the poles of th
Green’s function. Using this energy step we determine
energy grid which we use to produce an accurate fit
WGG8

C $q,6@v2en(k2q)#% for the different points6@v
2en(k2q)#. All these high values of the parameters ensu
the convergence of the QP energies to within 0.05 eV.

Table III shows the excellent agreement of our resu
with two other all-electron GWA implementations of the Q
energies of silicon. From this table it seems that, at least
Si, the overall difference between the RPA and the PlP res
is small.49 Nevertheless, a discrepancy of as much as 0.18
for the energy ofL1v is obtained. It seems then, at least f
Si, the PlP model overestimates only slightly the differenc
between the energy levels within the GWA.

Table IV compares the calculated QP energies for 3C-
~also known asb-SiC!, AlAs and InAs with experimental
data as well as with pseudopotential-GWA~PP-GWA! calcu-
lations. The band gaps are given atG, X, and L and are
underlined in this table. These studies are motivated by

nd
o
ses are
st line
TABLE III. Selected energy eigenvalues, in eV, atG, X, andL for Si. Our results are compared with tw
other all-electron implementations of the GW method and with experimental results. Data in parenthe
results when the denominator of the Green’s function is updated with QP energies. Data in the la
correspond to the minimum energy gapEg .

LDA GW approximation Expt.c

Present LAPWa Present PAW-PlPb LAPW a

G1v 211.97 211.95 211.85 (211.89) 211.92 212.21 212.560.6
G25v8 0.00 0.00 0.00~0.00! 0.00 0.00 0.00
G15c 2.54 2.55 3.09~3.15! 3.16 3.30 3.40, 3.05d

G2c8 3.23 3.17 4.05~4.12! 4.09 4.19 4.23, 4.1d

X1v 27.82 27.82 27.74 (27.78) 27.91 28.11
X4v 22.85 22.84 22.90 (22.92) 22.98 23.03 22.9 e, 23.360.2 f

X1c 0.61 0.65 1.01~1.08! 1.10 1.14 1.25d

X4c 10.02 10.64~10.72! 10.74

L2v8 29.63 29.63 29.57 (29.60) 29.66 29.92 29.360.4
L1v 26.99 26.98 26.97 (27.00) 27.15 27.31 26.760.2
L3v8 21.19 21.19 21.16 (21.17) 21.24 21.26 21.260.2
L1c 1.44 1.43 2.05~2.11! 2.08 2.15 2.1g, 2.460.15
L3c 3.30 3.35 3.83~3.90! 3.92 4.08 4.1560.1h

Eg 0.55 0.52 0.92~0.95! 0.97 1.01 1.17

aReference 14. eReference 40.
bReference 15. fReference 41.
cUnless noted, Ref. 35. gReference 42.
dReference 39. hReference 43.
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fact that SiC is a material of high current technological
terest and that InAs is predicted to be metallic in the LD
whereas AlAs is used as a test case. A general trend of
implementation is that the agreement with experiment
well as with PP-GWA results is not perfect, as also found
other implementations based on all-electron methods,17,15 re-
porting differences up to 0.4 eV. In particular, the large
difference occurs for theG25v8 →X1c transition.50 We showed
in a previous study15 for the case of silicon that these diffe
ences are mainly traced back to differences between
exchange-correlation matrix elements obtained by the
methods. We believe that this can be extended to other
terials as well, since it seems to be a general feature51 of
all-electron GWA calculations.

In fact, the difference between all-electron and PP ba
GW calculations is not surprising since the use of pseu
wave functions for evaluating matrix elements of a gene
operator produce results that may not be sufficiently prec
because the pseudowave functions are constructed to re
duce the all-electron wave functions only in the interstit
region, i.e., outside the atomic spheres. This is, howeve
good representation for studying properties that depend
on the behavior of the wave function in the bonding regio
An error is then introduced in any PP-GWA calculation. Th
error seems to fortuitously have a tendency to improve
agreement with experiment, explaining the exceptional s
cess of the PP-GWA.

TABLE IV. Quasiparticle energies in eV atG, X, andL for SiC,
AlAs, and InAs. Data in parentheses are results when the den
nator of the Green’s function is updated with QP energies. O
results are compared with PP-GW method and with experime
results~minimum band gaps are underlined!.

LDA GW Expt. a

Present PPb Present PPb

SiC
G25v8 →G15c 6.25 6.41 7.32~7.45! 7.35
G25v8 →X1c 1.28 1.31 1.80(1.89) 2.34 2.39
G25v8 →L1c 5.34 5.46 6.45~6.56! 6.53 4.2
AlAs
G25v8 →G15c 1.94 1.77 2.72~2.79! 2.75 3.11c

G25v8 →X1c 1.32 1.20 1.57(1.65) 2.08 2.24
G25v8 →L1c 2.06 1.89 2.73~2.80! 2.79 2.49c; 2.54d

InAs
G25v8 →G15c 20.07 20.39 0.46(0.49) 0.59 0.60
G25v8 →X1c 1.48 1.57~1.61! 2.10
G25v8 →L1c 1.05 1.54~1.58! 1.52 1.74

aUnless noted Ref. 35. For InAs, data have been averaged to
count for the neglect of spin-orbit coupling in our case.

bFor SiC, PP results are from Ref. 44, for AlAs from Ref. 45, f
InAs from Ref. 46 and averaged to account for the neglect
spin-orbit splitting.

cReference 47.
dReference 48.
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For InAs, the incorrect metallic behavior obtained with
the LDA is corrected by our GWA calculation. The GW
produces the true semiconducting state as given by exp
ment. Since we did not account for the spin-orbit coupling
our calculation, we have simply averaged out the spin-or
split experimental values to make the comparison with
work possible.

B. Results for the alkali hydrides NaH and KH

Alkali hydride materials exhibit a structural phase tran
tion from the B1~NaCl structure! to the B2~CsCl structure!
-type structure under hydrostatic pressure. A number of s
ies have been performed to understand the equation of
of these materials,36,52–54 as well as the possibility of an
insulator-metal transition,55,56 however, only few studies
have been published about the electronic structures.53,54,57In
these materials, hydrogen behaves as an H2 ion, leading to
partly ionic materials with a larger band gap than the stud
‘‘ sp’’ semiconductors. It is therefore of interest to kno
whether the GWA is capable of producing such large ba
gaps. In this study we are only concerned with the deter
nation of their QP energies for the rocksalt crystallograp
structure.

In Fig. 3 we report the QP band structures of NaH and K

i-
r
al

c-

f

FIG. 3. Calculated LDA~doted lines! and GW~full lines! elec-
tronic band structures of NaH and KH along some high-symme
directions. These calculations are performed using the param
reported in Table II.
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along some high-symmetry directions,58 and present a de
tailed overview of their LDA and QP energies in Table V.
the following we detail and compare our results with existi
experimental and calculated results: For NaH, the author
Ref. 53 reported an LDA calculation with an improve
LMTO method in its atomic sphere approximation, howev
from their band-structure plot we estimated that their ba
gap is only about 2.7 eV and is direct at theL point. This
disagrees with our calculation, since at the LDA level w
found an indirect band gap of 3.39 eV fromW to L. This
could be due to Ref. 53’s use of a different value of t
lattice parameter of 8.90 a.u. A calculation by Kunz a
Michish54 based on the electronic polaron model produce
direct band gap atX of 1.52 eV, a value too low for thes
ionic materials, so that it should be taken only at a qualitat
level.59 However, our LDA results are in full agreement wi
results of Ref. 57, where an indirect band gap fromW to L of

TABLE V. Quasiparticle energies in eV atG, X, L, W, andK for
NaH and KH. The last line shows the minimum band gapEg . Data
in parentheses are results when the denominator of the Gre
function is updated with QP energies. We are not aware of
experimental study concerning the electronic band structure of t
materials.

NaH KH
LDA GW LDA GW

G1v 23.64 23.39 (23.59) 22.07 22.02 (22.11)
G1c 9.98 11.89~12.38! 7.47 9.81~10.43!
G258c 14.98 16.71~17.24! 7.57 10.16~10.74!
G15c 15.72 17.87~18.11! 9.33 11.98~12.53!

X1v 20.13 20.12 (20.12) 20.18 20.18 (20.20)
X48c 4.00 6.23~6.66! 4.91 7.49~8.01!
X3c 9.59 11.45~11.96! 5.18 7.92~8.47!
X58c 9.95 12.15~12.60! 8.76 11.68~12.24!
X1c 10.84 12.95~13.36! 9.27 12.31~12.86!

L1v 21.03 21.03 (21.06) 20.15 20.19 (20.20)
L28c 3.39 5.68~6.11! 3.18 5.85~6.35!
L1c 10.24 12.13~12.59! 6.86 9.69~10.23!
L38c 12.89 15.14~15.61! 8.46 10.49~11.18!
L3c 15.42 17.34~17.77! 10.98 13.57~14.03!

W1v 0.00 0.00~0.00! 0.00 0.00~0.00!
W3c 5.43 7.79~8.24! 4.96 7.60~8.13!
W28c 7.75 10.08~10.55! 6.70 9.40~9.94!
W1c 15.50 17.57~17.98! 10.50 13.03~13.55!
W3c 17.08 19.16~19.57! 10.73 13.25~13.78!

K1v 20.13 20.12 (20.12) 20.06 20.06 (20.07)
K3c 4.71 6.96~7.41! 4.84 7.50~8.02!
K1c 5.84 8.11~8.56! 4.94 7.62~8.18!
K4c 10.57 12.85~13.27! 8.13 10.72~11.38!
K1c 11.02 13.09~13.52! 8.36 10.94~11.54!

Eg 3.39 5.68~6.11! 3.18 5.85~6.35!
15520
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about 3.3 eV was found. Table V shows that the energy-le
differences of NaH are substantially increased by the us
the GWA compared with the LDA results. In particular, th
minimum band gap is 5.68 eV within the GWA, whereas it
only 3.39 eV within the LDA. Another interesting point i
that we found that the most used scissors-operator s
seems not to apply for the computation of optical propert
of NaH. This is because the band gap is increased by 1.66
at theG point, and as much as 2.34 eV for the direct tran
tion atL point. A GWA calculation of the QP energies in th
full BZ is then required for the study the optical properties
NaH. Table V shows also our LDA and QP results for pota
sium hydride. Our LDA results are in good agreement w
the calculation in Ref. 57. We find that in both LDA an
GWA calculations, the band gap is indirect fromW to L, and
could easily switch to a direct gap with a small lattice p
rameter variation since the valence band (1s state of hydro-
gen! is very flat, i.e., the valences states at theX, L, W, andK
have the same energies within 0.2 eV accuracy. The prev
remark about the nonvalidity of the scissors-operator s
still holds here for the same reasons. The LDA band g
increases by an amount of 2.29 eV atG, and as much as 2.7
eV at theL point.

It is surprising to notice that, across the whole Brillou
zone, the GW band-gap shift of KH is larger than that
NaH despite that the LDA band gap of NaH is larger th
that of KH. The reason for this puzzling large shift is that t
screening of the Coulomb potential in KH is found to be le
efficient than in NaH. Indeed, we have found that the R
static dielectric function of NaH is 3.43 much larger than th
of KH which is about 2.62. The hybridization is also le
strong for KH than for NaH, since the bandwidth of hydr
gens states is about 2.02 eV for KH~much smaller than the
3.64-eV bandwidth of NaH!. As a consequence, the high
excited states are lower in energy, across the Brillouin zo
by about 2–5 eV for KH than for NaH. We hope that o
predictive results will stimulate experimentalists to perfo
photoemission or optical studies of these interesting mat
als.

IV. CONCLUSION

We have presented an implementation of the GWA us
the all-electron PAW method where the screened Coulo
interaction is obtained using the RPA dynamical dielect
function. Thus we avoided the use of the plasmon-pole
proximation. We have applied it to study the QP energies
Si, SiC, AlAs, and InAs and found that a precise comparis
with other available theoretical and experimental resu
shows that sometimes the GWA can lead to noticeable
crepancies with experiments. Those discrepancies are ge
ally not so pronounced in the pseudopotential GWA calcu
tions using PlP models. We argued that the approximati
used in the pseudopotential method have a tendency to
tuitously improve the agreement with experiment.

We have presented detailed results for NaH and KH alk
hydrides, and showed that the GWA enhanced substant
the LDA band gaps, motivating further theoretical and e
perimental studies.
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Since our method can compute the imaginary part of
self-energy, we could then determine the QP lifetimes, a t
not possible using the PlP approximation. Further inspec
of spectral properties as well as the computation of QP l
times will be presented in future work. The method is c
rently being applied to determine the excitation properties
LiH, and the results will be reported elsewhere.60 Moreover,
the use of symmetry and an efficient implementation ma
us confident that we will soon be able to study systems w
a large number of atoms per unit cell, like surfaces or po
mers. Furthermore, because we use a mixed basis set in
implementation we could study systems with localized ‘‘d’’
G

R

dt

v.

k-

15520
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or ‘‘ f ’’ electrons with a reduced computational cost com
pared with methods based only a plane-wave basis set.
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