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An implementation of the GW approximatidi&WA) based on the all-electron projector-augmented-wave
(PAW) method is presented, where the screened Coulomb interaction is computed within the random-phase
approximation(RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are
reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or
insulating materials: Si, SiC, AlAs, InAs, NaH, and KH. To illustrate the method the real and imaginary part of
the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the
GWA results are compared with other calculations, highlighting that all-electron GWA results can differ
markedly from those based on pseudopotential approaches.
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[. INTRODUCTION within the atomic sphere approximatfoflLMTO-ASA).
This method, although fast, approximates the space by
For many weakly correlated materials, the density-atomic centered overlapping spheres, thus completely ne-
functional theory (DFT) in the local-density approximation glecting the interstitial region, and hence making the reliabil-
(LDA) provides a good description of their ground-stateity of the GW method uncertain. Kotani and van Schilf-
properties. However, DFT is not able to describe correctiygaarde based their full-potential LMTO GW calculatibon
their excited states. Thus, for example, the band gaps in th&® work of Aryasetiawan by taking into account correctly
LDA are typically much smaller than the experimental val- the interstitial region. Nevertheless, their method is not quite

ues. QuasiparticléQP) electronic-structure calculations be- accurate ﬁince iln_ tr|1_e_ir imfpkra]mentation thely did not takef into
yond the DFT are therefore highly desirable. account the multiplicity of the same angular momenta for a

The GW approximatiolGWA) of Hedin?3 which pro- given principal quantum number in the basis @i&e simul-

S , . taneously using the®Band 4d state$. Finally, Ku and Egui-
duces a good approximation for the electron’s self-enérgy luz produced self-consistent and non-self-consistent QP band

e o ST o oty st o 5 3 ol g i it

. . . e non-self-consistent results are much smaller than all ex-
the C"’}ICUIE_‘E'On of QP electronic structures of many kmd; Oisting GW calculations. Since these results are based on a
materials'™ In particular, recent success has been achieveditarent scheme we have chosen not to discuss their method
on predicting the metal-insulator transition of bcc hydro@e”-further. On the other hand, several pseudopotentials have
electronic excitations of yttrium trihydrideas well as the produced GW results without resorting to the plasmon-pole
QP electronic structure of copp€rUnfortunately, most of  approximation. These methods, although interesting, use
the GWA implementations are based on the pseudopotentiglseudowave functions and hence can only determine
type of approaches together with plasmon-pdelP)  pseudomatrix elements of operators, making them difficult to
models™~° The weakness of these types of calculations iustify as quantitative and reliable methods for computing
that the imaginary part of the self-energy is not accessibleQP properties.
making it impossible to determine spectral functions and The major purpose of this paper is then to present a dif-
hence to interpret photoemission experiments. In addition théerent implementation of the GWA method using the all-
PIP approximation is expected not to hold for systems withelectron full-potential projector augmented wave method
localized electrons. Moreover, it has been noticed(PAW) completebasis set, and without using any PIP model
recently>!"that GWA implementations based on pseudopo-for the determination of the dielectric function. The screen-
tential methods lead to larger and mdeedependent shifts ing of the Coulomb interaction is thus described in the
than calculations based on all-electron DFT methods, bringr,andom-phase approximatiofRPA), avoiding further ap-
ing into question the validity of the former approaches. proximations.

However, some attempts have been made to go beyond The paper is organized as follows. In Sec. Il we describe
the plasmon-pole approximatidn®’=2%In particular, Ar-  our implementation of the GW approximation. In Sec. Il we
yasetiawan has approximately determined the screeningresent our QP calculations for Si, SiC, AlAs, and InAs and
within the RPA using a linear muffin-tin orbital method also for the alkali hydrides compounds NaH and KH. At the
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end of this section we compare and discuss our results with 9
other calculations and experiments. Zo= 1_<\Pkn|£ ReX(r,r',en(K)[ W) | - (4
Il. FORMALISM This assumption is valid for simplep bonded materials,

since it was shown that the QP wave functigg and Kohn-
A. PAW method Sham wave functionV,,, are almost identical, i.e., the QP

The PAW formalism has been well-described HamiltonianH is diagonal in thel,, basis for simplesp
e|Sewheré’2_25 so we will not discuss it in this paper. The bonded Semiconducto?‘g.lee therefore assume this behav-
PAW method? is a very powerful all-electron method for ior for the materials studied in this paper. According to this
performing electronic structure calculations within the €quation, the LDA eigenvalues,(k) are then corrected by
framework of the LDA. It takes advantage of the simplicity the GW approximation. The numerical work is therefore con-
of pseudopotential methods, but describes correctly the nodaiderably reduced, but still computationally demanding.
behavior in the augmentation regions. The self-consistent In our implementation, we have calculated the Green’s
calculation of the electronic structure is performed using thdunction only for the valence and conduction states. One has
Car-Parinello method over the occupied states. To determin@en to subtract out only the valence exchange and correla-
the eigenvalues and eigenvectors of all unoccupied stages tion potential in Eq.(3). To check the accuracy of this pro-
to 200 eV above the top of the valence statemeded for the cedure, we have also used the so-called Hartree-Fock
GW calculations, we have extracted the self-consistent fulldecoupling;>?°and have found that the average error in the

potentiaL constructed and diagona”zed the PAW Ham"_QP energies of Si with 'respleCt to the tOp O'f the valence states
tonian for every irreduciblé point in the Brillouin zone. is 0.05 eV. The approximation made here is the one currently

used in all pseudopotential-based GWA calculations, making

B. GW approximation our method compatible with existing GW implementations.

1. Quasiparticle energies 2. Screened Coulomb interaction

In general, the QP energies, (k) and wave function For the calculation of the self-energy, one needs to evalu-

(1) are determined from the solution of the QP equatior@t€ the dynamically screened interacti{r,r’,w), which
can be rewritten in reciprocal space as

(T+ Vexit Vi) ¢ n(r)Jrf dr 3 (r,r’ Eq(K) dhen(r") N 1 -~ 1
tT Vh) ¥k k WGvG’(q’“))_47T—|q+G|€G~G’(q’w)—|q+e/| . (5

=En(K) hyn(r), oy . . . ~ . . .
The symmetrized dielectric matrixsg(g,w) is defined in

whereT is the free-electron kinetic energy operatgg, the  the random-phase approximatidRPA) by*’
external potential due to the ion cord4, the average elec-
trostatic (Hartree potential, and® the electron self-energy oo (0,0)= Sag — 8 E MUE(k,q)
operator. The major difficulty connected with Hd) is find- ee(d,@)=ccr Q|q+G||g+G'| ok © 4
ing an adequate approximation for the self-energy operator
3.(r,r’,E,(k)). Nonetheless, it was shown by Hetlithat
writing the self-energy as a product of the Green’s function
and the screened Coulomb interactMhyields the success-

1
wte,(k—q)—e(k)—iéd

XM (k,a)T* X

ful GW approximation for%. In this approximation, both the _ 1 ©6)

nonlocality and the dynamical correlations are included. As- w—¢€,(k—q)+e(k)+id)’

suming that the differencg —V, between the self-energy it the following notation:

and the Kohn-Sham exchange and correlation potential is _

small, we can use a perturbation theory approach to solve the ME"(K, Q) =(Wy_ g€ @O W, ), (7)

effective QP HamiltoniarH P, wherev andc denote, respectively, the valence and conduc-

tion states, and a positive infinitesimal. The matrix ele-

HIP=Hy s+ (32— Vy0), (2)  ments given by Eq.7) are evaluated using the PAW basis set

as described in Ref. 15.
and determine the QP energies by expanding the real part of Most of GWA calculations use a kind of PIP approxima-
self-energy to first order aroung,(k) thus making the com- tion. This is computationally efficient since one obtains an

parison with the PIP models possible, analytic expression for the integral in the self-energy. It is

not clear, however, that this kind of approximation is valid

ReE(K) = e(K) + Zn X [( Wl RES (1,1, €n(K))| W i) for describing the QP of different kind of materials. It is for
this reason that we have chosen to avoid the PIP model alto-

— (W | VEOA() [ )], (3)  gether, to compute the dynamical dielectric function in the

RPA (6), and to perform the integral of the self-energy nu-

where the QP renormalization factdy, is given by merically. In our implementation, we need to compute
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‘ece(0,w) along the imaginary axis and for some real fre- Pcc(g,@)+ PTGG,(q,w)
guencies. This technical point will become clearer in the next Acc(q,0)= 2 (10
subsection.

To reduce the computational cost of the GWA, we useand
symmetry properties. Details about the utilization of the 1
symmetry for the static dielectric matrix has been already _PGG’(q"")_PGG'(q"")
given elsewheré!>?82%g0 we just describe briefly how to Boo'(Q,0)= 2i ’

use the symmetry in the case of the dynamical dielectric

function. For the case of pure imaginary frequencies, wdhen Eas{(8) and(9) still hold, allowing us to perform the
could safely ignore the broadening factaf: in this case same computational tasks as for the symmetrized dielectric

~ oL . . matrix with imaginary frequencies. This procedure makes it
ecc(Q,iw) is Hermitian and we could use the symmetry just ginary red P

: . ; - possible to first comput&Vg c/(d,w) only for irreducible
as in the stat!c case. We can then write the symmetrlzeﬁoints of the first Brillouin zongBZ). We then determine
dielectric matrix as

easily the screened interaction for &@llpoints in the Bril-
louin zone using symmetry properties.

11

~ 8

€ce(Q,iw)=dggr — —Q Gﬂ- G 3. Self-energy
+ +G’

la+Gllg | The self energy, is the key quantity of any GWA calcu-

lation. As previously noticed, we have chosen to avoid
keBZ UEC EE Mias(k,0) plasmon-pole models and compewith the  dependence
of the screened interactioV within the RPA.
First, we split the integral of the self-energy into a bare

X[ Mg (K@) T*| = (K—q) = eu(K) exchange or Hartree-Fock contributidit and an energy-
! ¢ dependent contributio “(w) which describes self-energy
1 effects beyon®*. The matrix elements of the self-energy
Ciw—e,(k—q)+ec(k))’ ®  are now given by the sum of

= < IMEkql?

where G, is the little group of the point grou such that (| S| W ) = — E 2
Rg=0q; R being a symmetry operation. The computational G lg+ G|?
cost is further reduced by noticing that (12
where the summation is over occupied states, and
eccr(RY,iw) = €r-16r 16/(Q,i ) )
(Vial20)|[ Vi) =5 E 2 2 [ME(k.a)]"Mg(k,q)
for real w, although the dielectric matrix is not Hermitian, Ge’ m
we could use the symmetry by making a decomposition into xC™,(K,q,) (13
Hermitian and anti-Hermitian parts of the polarizability e
PGGr(q,Q)). |f we deﬁneAGGr(q,w) and BGGr(q,w) by W|th
|
i W, (q,0'
Cle (k.G.w)= —J o’ = , (14
2 w+w’—em(k—q)+lésgr{em(k—q)—ﬂ]

whereW® is defined adv“=W—uv, with v being the bare function. In this case, we obtain the following expression:
Coulomb potential. To evaluate this integral directly on the

real axis one should compu®® for many pointsw’ since 1 ,
the shape ofV/© along the real axis is rather ragged. Even Coor(k.0,0)=~ _J do"Weg(d,iw”)
though this has been done by some autfidrse choose to

avoid this difficulty by using the fact thatv® is well be- w—€n(k—Q)
haved along the imaginary axis. In the present work, we have X[ e (k—q) ]+ "2
performed this integral using two different methods: @ €n q @

In the first one, the contour of the frequency intedfsd) WS, (0, = (0— en(k—))) 0{ £ [0 — en(k
is deformed in a way to obtain an integral along the imagi- 6
nary axis plus contributions from the poles of the Green’s —P O+ (0— )] 6] [en(k—q)— u]}.

155208-3



S. LEBEUE, B. ARNAUD, M. ALOUANI, AND P. E. BLOECHL PHYSICAL REVIEW B67, 155208 (2003

TABLE |. Calculated quasiparticle energies of silicon for some work presented here and that of Ref. 19 is that our code starts
points in the Brillouin zone with our two different implementations. from an all-electron basis, so we are not using fast Fourier
The results are in good agreement with each other. In the last lingransforms to switch between real and reciprocal spaces and

the minimum band gag, is presented. between time and frequency domains. Our expres&ibhis
- also different, but we believe that this is of minor
First method? Second methof importance3.3

Ty, ~11.85 ~11.87 ~Inboth cases, the integration over the first Brillouin zone

Tas, 0.00 0.00 is done by the special-point techniq?feTh_e number_of

I 3.09 3.09 _bands as WeI_I as the numb_er Gf vectors in Eq.(_13_) is

T,. 405 4.06 increased until the QP energies are converged. Similarly, the
number of frequency points’ for which WE is computed is

X1, 774 _ 768 increased unticgg,(k,q,w) is well converged. The two dif-

Xay ~290 —201 ferent implementations aII_ow us to check carefully our re-

X1e 1.01 1.03 sults, and_as can t_)e seen in Table | for the case of silicon, the

Xse 10.64 10.59 QP energies are insensitive to the method used to compute
the self-energy.

Lo, ~-9.57 —9.50 _

Ly, _6.97 _6.90 4. Treatment of the Coulomb divergence

Lsr, -1.16 -1.17 The last point we wish to discuss is an additional diffi-

Lyc 2.05 2.03 culty which occurs when evaluating the self-energy by a

L3 3.83 3.83 summation of they points over the full BZ. We cannot apply
the special-point technique directly since the integrands have

Eq 0.92 0.90 a 14 singularity forq—0 as can be seen for example by
putting G=0 in the expression of the exchange term given

®Contour deformation method. by Eqg. (12). The difficulty can be removed by adding and

PAnalytic continuation method. subtracting a term which has the same singularities as the

initial expression, and which can be evaluated numerically

The first term represents the contribution along the imagiand analytically. As a consequence, the integrals over the BZ
nary axis and is evaluated by Gaussian quadrature. The seare rewritten
ond is from the poles of the Green’s function and its compu-
tation is done by fitting values oN® at +[w—e,(k—q)]
from values on a given mesh of frequenc?%&lere,u de- 2 G(q)zz [G(q)—AF(q)]+AE F(q), (16
notes the Fermi level in the LDA and” is defined to be real. q q q
This method is similar to the one used by Aryasetiawan for
the implementation of the GWA based on the LMTO methodwhere F(q) is an auxiliary periodic function that diverges
in the atomic sphere approximatiofASA), and within the like 1/g? asq vanishes. The term is regular and can be evalu-
GWA of Kotani and co-workers based on the full-potential ated by the special point technique whereas the last sum is
linear muffin-tin orbital (FP-LMTO) method!’ The reader evaluated analytically. For the exchange term, it is not diffi-
can find more details about this integration procedure ircult to evaluateA in Eq. (16), but it gets more complicated
Refs. 17 and 7. Similar work has been also carried out byor the correlative part of the self-energ¥3). The purpose
Bechstedt and co-workéfs as well as by Fleszar and of the offsetted-point method’ is to avoid the evaluation
Hanké* starting from a pseudopotential approach. of the quantityA, but still to be able to deal with the diver-

In our second implementation, which is similar to that of gence. The main idea is to find a new mesh of points such
Ref. 19, we evaluate the matrix elements of the correlativéhat
part of the self-energy¥ /> (w)| ¥, ) for a set of imagi-

nary frequenciesw, the resulting quantity is then analyti- TABLE Il. Lattice constants (in atomic unit$ and energy cut-
cally continued to the real axis by fitting it to the following offs E,, (in Rydberg used for our PAW calculations. The lattice
Padeform, constants are from Ref. 35, unless stated otherwise.
by 2ot a1zt a,2%+ - - - +ayz" 15 a Eeut
(2 bo+byz+byz2+ - - - +byzM’ (19 Si 10.26 20
SiC 8.24 25
wherea; andb; are complex parameters that are determinedyas 10.67 20
during the fit along the imaginary axis. Values of 5 fband  |jas 11.41 20
of 6 for M provided us with an accurate and stable fit. TheygH 9.082 40
same kind of continuation has also been applied with succesgy 10.832 40

to compute the dynamical response functibf? so we are
confident of its reliability. The main difference between the®Reference 36.
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FIG. 1. REV |3 ()| Wym) and IMW |2 (w)| ¥,y shown for the first eight bands for silicon lat=0. The zero of energy is at the

center of the band gap.

; F(@)=2 F(a), (17
ql

where thd point is included in the old mesipbut not in the

new oneq’: thel” point is replaced by other poin(different

from I') to construct they’ grid in order to fulfill Eq.(17).

Equation(16) is therefore rewritten as

2 G(9)=2 [G(Q)-AR(@]+AX F(d), (18
q

Then we show by inspection that the ter@,[G(q)
—AF(q)] is equal to>,/[G(q") —AF(q') ] with a controlled
error, Eq.(18) transforms to

2 6(Q=2 6(q) (19
q!

because the two terms which contain the functdig) can-

cel out since they are evaluated on the sarngrid. We have

therefore avoided the evaluation of the complicadgdrm in
Eq. (16).

IIl. NUMERICAL RESULTS AND DISCUSSION

In this section we present our theoretical quasiparticle en-
ergies for the six materials studied in this paper, together
with the available theoretical and experimental results. In
Sec. Il A we report our results for four semiconductéss,

SiC, AlAs, InAg of zinc-blende-type structure, while Sec.
Il B is devoted to studying the alkali hydrides NaH and KH
in the rocksalt phase. Table Il presents the experimental lat-
tice parameters and the energy cutdifs,; used for the final
converged calculations.

A. Results for Si, SiC, AlAs, and InAs

Silicon is probably the most carefully studied semicon-
ductor, and several GWA results are available. Using silicon
as a prototype will allow us to test our method by making
careful comparisons with previous GWA calculations. As
mentioned earlier, our code presents two different ways for
calculating the self-energy. We therefore test their accuracy
for silicon in Table I. We find that the results of the two

The remaining points to be addressed are the choice of theethods are almost identical, showing that they are equally
function F(q) and the number of additional points for the (gjiaple for computing the self-energy. In particular, our

new mesh used to solve E@.7). In our case, we write

exp—|q+G[*)
"9 Tlaver

and choose to add six points to the originamesh in order
to get the new mesh. Equatidh?) is then solved to provide
us with the coordinates of the new six points in the 8Zhe

implementation with the extrapolation procedure makes it
possible to represent the full-frequency dependence of the
self-energy with a small additional computational cost. Fig-
ure 1 shows the real and imaginary partSoélong the real
axis for silicon at thd” point for a wide range of frequencies.
The agreement with previous work is excelléht.

A special feature of our work is the possibility of obtain-
ing the imaginary part of the self-energsee Fig. 1, a task

computational cost is further reduced by finding equivalent/irtually impossible within the PIP approximatidh.The
points among those six points, and we end up with welispectral function which can be obtained directly from the

behaved and easily evaluated BZ sums.

<‘I'km|A(w)|‘I’km>:

self-energy,

1MW | 2 () | W i)

[0— em(K) = REW |2 (@)W i) 12+ LMW ] 2 () [ i) 1P

155208-5



S. LEBEUE, B. ARNAUD, M. ALOUANI, AND P. E. BLOECHL PHYSICAL REVIEW B67, 155208 (2003

02 gy The QP calculations have been performed using R56
i - points in the full BZ. The size of the dielectric matrix defined
- in Eq. (6) is 137x 137 for silicon and SiC, 169169 for
band1 i AlAs, 181x 181 for InAs. 200 bands were used for the sum
TTpands 24 over conduction states in E¢6) and for the sum ovem in
- band 8 Eqg. (13). Due to the smoothness of the integrand along the
imaginary axis, 11 points are found sufficient to obtain well
converged quantities. An energy step of 1.5 eV is used for
the part of Eq.(15) which corresponds to the poles of the
] Green'’s function. Using this energy step we determine an

A(@) eV
T

- T, . energy grid which we use to produce an accurate fit to
R AR AL IR A A aed APl by c i :
TR T 0 > == = Wee {0, *[w—ey(k—a)]} for the different points*[w
o (eV) —en(k—q)]. All these high values of the parameters ensure
_ _ _ the convergence of the QP energies to within 0.05 eV.
FIG. 2. Spectral functioqWy,|A(w)| V) for the first eight Table 1l shows the excellent agreement of our results

bands for silicon ak=0. The zero of energy is at the center of the \yith two other all-electron GWA implementations of the QP
band gap. The sharp peaks are QP poles, their weights correspopgergies of silicon. From this table it seems that, at least for
to the factorZ defined in Eq. 4. Si, the overall difference between the RPA and the PIP results
is small*® Nevertheless, a discrepancy of as much as 0.18 eV
is of major interest since it can be used for the interpretatiorfor the energy ol 4, is obtained. It seems then, at least for
of experimental photoemission and inverse-photoemissioi, the PIP model overestimates only slightly the differences
spectra. As an example, the spectral function of silicon at thbetween the energy levels within the GWA.
I" point is shown in Fig. 2. Table IV compares the calculated QP energies for 3C-SiC
The sharp peaks correspond to QP excitations, while théalso known asB-SiC), AlAs and InAs with experimental
incoherent part of the function, the spectral background, islata as well as with pseudopotential-G\2P-GWA) calcu-
much complicated and could correspond to plasmon-type eXations. The band gaps are given Iat X, andL and are
citations. underlined in this table. These studies are motivated by the

TABLE lll. Selected energy eigenvalues, in eV,IgtX, andL for Si. Our results are compared with two
other all-electron implementations of the GW method and with experimental results. Data in parentheses are
results when the denominator of the Green’s function is updated with QP energies. Data in the last line
correspond to the minimum energy geg.

LDA GW approximation Expt®
Present LAPW Present PAW-PIB LAPW 2

I, -11.97 —11.95 —11.85 (-11.89) —11.92 -1221  —125+0.6
Féaj 0.00 0.00 0.000.00 0.00 0.00 0.00
| BToS 2.54 2.55 3.093.1H 3.16 3.30 3.40, 3.08
I‘éc 3.23 3.17 4.054.12 4.09 4.19 4.23, 4.9
X1, ~-782 -7.82 -774(-778) —791 —811
Xao —-2.85 —284 —290(-2.92) —298 —3.03 —2.9% -3.3+0.2'
X1c 061  0.65 1.011.08 1.10 1.14 1.28
Xac 10.02 10.64(10.72 10.74
Lév —9.63 —-9.63 —9.57 (—9.60) —9.66 —-9.92 —-9.3=0.4
L1, —-6.99 -6.98 —6.97 (—7.00) -7.15 -7.31 —6.7+:0.2
Lév -119 -119 -1.16(-1.17) —-1.24 —1.26 —1.2+0.2
L1 1.44 1.43 2.052.11 2.08 2.15 2.8, 2.4+0.15
Lac 330  3.35 3.833.90 3.92 4.08 4.1%0.1"
Eq 0.55 0.52 0.920.95 0.97 1.01 1.17
%Reference 14. ®Reference 40.
bReference 15. Reference 41.
®Unless noted, Ref. 35. 9Reference 42.
dreference 39. PReference 43.
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TABLE IV. Quasiparticle energies in eV &t, X, andL for SiC,
AlAs, and InAs. Data in parentheses are results when the denomi-
nator of the Green’s function is updated with QP energies. Our
results are compared with PP-GW method and with experimental
results(minimum band gaps are underlined

PHYSICAL REVIEW B67, 155208 (2003

LDA GW Expt. 2 9
Present PP Present PP § B e |
SiC
Iy, —T 625 641 730745 7.35
), —X,. 1.28 1.31 1.80(1.89) 2.34  2.39
I)y,—L,, 534 546 648656 6.53 42
AlAs
Iy —T 194 177 27279 275 3.1%
Ij,—X;,e 1.32 1.20 1.57(1.65) 2.08  2.24
I —L, 206 189 2.7@.80 279 2.4 2.54°
InAs
)y, —T —0.07 —0.39 0.46(0.49) 0.59  0.60
T —X,. 1.48 1.57(1.61) 2.10
I, —L, 105 1.54(1.58 1.52 1.74

Energy (eV)

8Unless noted Ref. 35. For InAs, data have been averaged to ac’
count for the neglect of spin-orbit coupling in our case.

bFor SiC, PP results are from Ref. 44, for AlAs from Ref. 45, for
InAs from Ref. 46 and averaged to account for the neglect of
spin-orbit splitting.

‘Reference 47. = ' ' ' '
YReference 48. - ' X woox g

FIG. 3. Calculated LDAdoted line$ and GW(full lines) elec-

fact that SiC is a material of high current technological in-tonic band structures of NaH and KH along some high-symmetry
directions. These calculations are performed using the parameters

terest and that InAs is predicted to be metallic in the LDA, .

. reported in Table II.

whereas AlAs is used as a test case. A general trend of our

|mpIemeqtat|on is that the Qgreement with experiment as For InAs, the incorrect metallic behavior obtained within
well as with PP-GWA results is not perfect, as also found byyo | DA is corrected by our GWA calculation. The GWA
other implementations based on all-electron mettodsre- produces the true semiconducting state as given by experi-
porting differences up to 0.4 eV. In particular, the largestment. Since we did not account for the spin-orbit coupling in
difference occurs for th&%g, — X transition®® We showed  our calculation, we have simply averaged out the spin-orbit-
in a previous study for the case of silicon that these differ- split experimental values to make the comparison with our
ences are mainly traced back to differences between theork possible.

exchange-correlation matrix elements obtained by the two
methods. We believe that this can be extended to other ma-
terials as well, since it seems to be a general featuwe

alI'lilefgtgfrlhivgﬁfg?elzlg:“t?en&een all-electron and PP baset.on from the B1(NaCl structurg to the B2(CsCl structurg
’ -type structure under hydrostatic pressure. A number of stud-

GW calculations is not surprising since the use of pseUdO'es have been performed to understand the equation of state

wave functions for evaluating matrix elements of a generaj these material®352-5% as well as the possibility of an
operator produce results that may not be sufficiently precisg,q jator-metal transitiof?>® however, only few studies
because the pseudowave functions are constructed to repriRsye heen published about the electronic strucfi&&’In
duce the all-electron wave functions only in the interstitialihese materials, hydrogen behaves as anidh, leading to
region, i.e., outside the atomic spheres. This is, however, gartly ionic materials with a larger band gap than the studied
good representation for studying properties that depend onlysp” semiconductors. It is therefore of interest to know
on the behavior of the wave function in the bonding region.whether the GWA is capable of producing such large band
An error is then introduced in any PP-GWA calculation. Thisgaps. In this study we are only concerned with the determi-
error seems to fortuitously have a tendency to improve theéation of their QP energies for the rocksalt crystallographic
agreement with experiment, explaining the exceptional sucstructure.

cess of the PP-GWA. In Fig. 3 we report the QP band structures of NaH and KH

B. Results for the alkali hydrides NaH and KH
Alkali hydride materials exhibit a structural phase transi-
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TABLE V. Quasiparticle energies in eV &t X, L, W, andK for  about 3.3 eV was found. Table V shows that the energy-level
NaH and KH. The last line shows the minimum band ggp Data  differences of NaH are substantially increased by the use of
in parentheses are results when the denominator of the Greenfhe GWA compared with the LDA results. In particular, the
function is updated with QP energies. We are not aware of anyninimum band gap is 5.68 eV within the GWA, whereas it is
experimental study concerning the electronic band structure of thesgmy 3.39 eV within the LDA. Another interesting point is
materials. that we found that the most used scissors-operator shift
seems not to apply for the computation of optical properties

NaH KH of NaH. This is because the band gap is increased by 1.66 eV
LDA cw LDA GW at thel” point, and as much as 2.34 eV for the direct transi-
T, —-3.64 —3.39 (—3.59) —2.07 —2.02(-2.11) tion atL point. A GWA calculation of the QP energies in the
. 9.98 11.89(12.39 747 9.81(10.43 full BZ is then required for the study the optical properties of
Iy, 1498  16.7117.24 757  10.16(10.74 NaH. Table V shows also our LDA and QP results for potas-
Ty, 15.72 17.8718.11 933 11.98(12.53 sium hydride. Our LDA results are in good agreement with
the calculation in Ref. 57. We find that in both LDA and
X, ~013 -0.12 (-0.12) ~018 —0.18 (—0.20) GWA calcglations, the bangl gap is ind_irect framito L, gind
v could easily switch to a direct gap with a small lattice pa-
Xare 4.00 6.23(6.66) 491 7.49(8.01 L .
rameter variation since the valence bang &tate of hydro-
X3¢ 9.59 11.4511.96 5.18 7.92(8.47 . .
" 0.95 12.15(12.60 876 11.68(12.24 gen is very flat, i.e., the va!ences states at¥hé, W, andK _
s'e have the same energies within 0.2 eV accuracy. The previous
X1e 10.84  12.9513.39 9.27 12.31(12.89 remark about the nonvalidity of the scissors-operator shift
still holds here for the same reasons. The LDA band gap
L,, —1.03 —1.03(-1.06) —0.15 -019(-0.20)  jncreases by an amount of 2.29 eMgtand as much as 2.71
Lo 3.39 5.68(6.11) 3.18 5.85(6.35 eV at theL point.
L1c 1024  12.1312.59 6.86 9.69(10.23 It is surprising to notice that, across the whole Brillouin
Lgc 12.89  15.14(15.6) 8.46 10.49(11.18 zone, the GW band-gap shift of KH is larger than that of
Lac 1542 17.3417.77 10.98  13.5714.03 NaH despite that the LDA band gap of NaH is larger than
that of KH. The reason for this puzzling large shift is that the
Wiy, 0.00 0.00(0.00 0.00 0.00(0.00 screening of the Coulomb potential in KH is found to be less
W 5.43 7.79(8.249 4.96 7.60(8.13 efficient than in NaH. Indeed, we have found that the RPA
Wi 7.75 10.08(10.59 6.70 9.40(9.99 static dielectric function of NaH is 3.43 much larger than that
W 15.50 17.5717.98 10.50 13.0313.55 of KH which is about 2.62. The hybridization is also less
W, 17.08  19.16(19.57 10.73  13.2513.78 strong for KH than for NaH, since the bandwidth of hydro-
gens states is about 2.02 eV for Kinuch smaller than the
Ky, -0.13 -0.12(-0.12) -0.06 —0.06 (-0.07) 3.64-eV bandwidth of NaH As a consequence, the higher
Kae 4.71 6.96(7.41) 4.84 7.50(8.02 excited states are lower in energy, across the Brillouin zone,
Ky 5.84 8.11(8.56 4.94 7.62(8.19 by about 2-5 eV for KH than for NaH. We hope that our
K. 1057  12.8513.27 813  10.72(11.38 predictive results will stimulate experimentalists to perform
Ky 11.02 13.0913.52 8.36 10.94(11.54 plhotoemlssmn or optical studies of these interesting materi-
als.
Eq 3.39 5.68(6.11) 3.18 5.85(6.35
IV. CONCLUSION
along some high-symmetry directiofsand present a de- We have presented an implementation of the GWA using

tailed overview of their LDA and QP energies in Table V. In the all-electron PAW method where the screened Coulomb
the following we detail and compare our results with existinginteraction is obtained using the RPA dynamical dielectric
experimental and calculated results: For NaH, the authors dfinction. Thus we avoided the use of the plasmon-pole ap-
Ref. 53 reported an LDA calculation with an improved proximation. We have applied it to study the QP energies of
LMTO method in its atomic sphere approximation, however,Si, SiC, AlAs, and InAs and found that a precise comparison
from their band-structure plot we estimated that their bandvith other available theoretical and experimental results
gap is only about 2.7 eV and is direct at thepoint. This  shows that sometimes the GWA can lead to noticeable dis-
disagrees with our calculation, since at the LDA level wecrepancies with experiments. Those discrepancies are gener-
found an indirect band gap of 3.39 eV frowWi to L. This  ally not so pronounced in the pseudopotential GWA calcula-
could be due to Ref. 53's use of a different value of thetions using PIP models. We argued that the approximations
lattice parameter of 8.90 a.u. A calculation by Kunz andused in the pseudopotential method have a tendency to for-
Michish®* based on the electronic polaron model produced duitously improve the agreement with experiment.

direct band gap aX of 1.52 eV, a value too low for these We have presented detailed results for NaH and KH alkali
ionic materials, so that it should be taken only at a qualitativehydrides, and showed that the GWA enhanced substantially
level %° However, our LDA results are in full agreement with the LDA band gaps, motivating further theoretical and ex-
results of Ref. 57, where an indirect band gap fddfto L of ~ perimental studies.
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Since our method can compute the imaginary part of ther “f” electrons with a reduced computational cost com-
self-energy, we could then determine the QP lifetimes, a taspared with methods based only a plane-wave basis set.
not possible using the PIP approximation. Further inspection
of spectral properties as well as the computation of QP life-
times will be presented in future work. The method is cur-
rently being applied to determine the excitation properties of One of us(S.L. is particularly grateful to W. E. Pickett
LiH, and the results will be reported elsewh&evloreover, since part of this work was done during a visit to the Uni-
the use of symmetry and an efficient implementation makesersity of California Davis supported by DOE Grant No.
us confident that we will soon be able to study systems wittDE-FG03-01ER45876. Supercomputer time was provided by
a large number of atoms per unit cell, like surfaces or poly-CINES (Project No. gem1100on the IBM SP3. This re-
mers. Furthermore, because we use a mixed basis set in osgarch was supported in part by the National Science Foun-
implementation we could study systems with localizedf “ dation under Grant No. PHY99-07949.

ACKNOWLEDGMENTS

ip, Hohenberg and W. Kohn, Phys. R&B36, B864 (1964); W. 25N. A. W. Holzwarth, G. E. Matthews, A. R. Tackett, and R. B.

Kohn and L. J. Shamipid. 140, A1113(1965. Dunning, Phys. Rev. 57, 11 827(1998.

2L. Hedin, Phys. Rev139 A796 (1965. 263, Massidda, M. Posternak, and A. Baldereschi, Phys. Rég, B

3L. Hedin and S. Lundquist, iSolid State Physicedited by H. 5058(1993.

Ehrenreich, F. Seitz, and D. Turnbulhcademic, New York, 27S. D. Adler, Phys. Rev126, 413(1962; N. Wiser, ibid. 129, 62
1969, Vol. 23, p. 1. (1963; see also D. L. Johnson, Phys. RevOB4475(1974).

4F. Aryasetiawan and O. Gunnarsson, Rep. Prog. PBYys237 %M. S. Hybertsen and S. G. Louie, Phys. Rev38 5390(1986.
(1998. 2W. G. Aulbur, Ph.D. thesis, Ohio State University, 1996.

SW. G. Aulbur, L. Jmsson, and J. W. Wilkins, iSolid State Phys- *°We have used a simple four-point interpolation method. The use
ics, edited by H. Ehrenreich and F. Spaegétademic, Or- of a more elaborate method like the cubic spline method is
lando, 1999, Vol. 54. shown to not influence the final results.

8G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phy®t, 601  31Y.-G. Jin and K. J. Chang, Phys. Rev.5B, 14 841(1999.

(2002. 32K -H. Lee and K. J. Chang, Phys. Rev.58, 8285(1996.

"F. AryasetiawanAdvances in Condensed Matter Scienegited  33The reason for not using the same expression as in Ref. 19 is that
by I. V. Anisimov (Gordon and Breach, New York, 2000 our expression(15) is more general and provided us with a

8J.-L. Li, G.-M. Rignanese, E. K. Chang, X. Blase, and S. G. better stability in the fitting procedure.

Louie, Phys. Rev. B56, 035102(2002. 34H. J. Monkhorst and J. D. Pack, Phys. Revl® 5188(1976.

9p. van Gelderen, P. A. Bobbert, P. J. Kelly, G. Brocks, and R3°Numerical Data and Functional Relationships in Science and
Tolboom, Phys. Rev. B6, 075104(2002. Technology edited by K.H. Hellwege and O. Madelung,

0A. Marini, G. Onida, and R. Del Sole, Phys. Rev. LeB8, Landolt-Banstein, New Series, Group II, Vol. 17, pt. a and Vol.
016403(2002. 22, pt. a(Springer, Berlin, 1982

1M, S. Hybertsen and S. G. Louie, Phys. Rev38 5390(1986.  30J. L. Martins, Phys. Rev. B1, 7883(1990.
?R. W. Godby, M. Schiuter, and L. J. Sham, Phys. Rev3B 8770 justify the use of the present expression Fqu), we have

10159(1988. also used the function given by Ref. 61 and found that the final
3M. Rohlfing, P. Kriger, and J. Polimann, Phys. Rev.58, 6485 QP energies differ by at most 0.02 eV for silicon. Moreover, the
(1998. F(q) is specific to fcc lattice systems and therefore must be
1N. Hamada, M. Hwang, and A. J. Freeman, Phys. ReA1,B620 adapted for other systems according to Ref. 62, whereas the
(1990. function used in this work is independent of crystallographic
158, Arnaud and M. Alouani, Phys. Rev. &, 4464(2000. system. We have also checked if six points are sufficient by
163, Furthmiller, G. Cappellini, H.-Ch. Weissker, and F. Bechstedt,  performing calculations using a set of 12 points; the resulting
Phys. Rev. B66, 045110(2002. QP energies remain unchanged, proving the validity of our
17T, Kotani and M. Van Schilfgaarde, Solid State Commag, choice.
461 (2002. 38The imaginary part of the self-energy is a sum of delta functions
BW. Ku and A. G. Eguiluz, Phys. Rev. Le®9, 12 401(2002. in the plasmon-pole approximation.
%H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Zdit.  °J. E. Ortega and F. J. Himpsel, Phys. ReviB 2130(1993.
1827(1995. 40W. E. Spicer and R. C. Eden, iroceedings of the Ninth Inter-
20F, Bechstedt, M. Fiedler, C. Kress, and R. Del Sole, Phys. Rev. B national Conference on the Physics of Semiconduchdoscow,
49, 7357(1994). 1968, edited by S. M. RyvkitNauka, Leningrad, 1968Vol. 1,
21A. Fleszar and W. Hanke, Phys. Rev.5B, 10 228(1997). p. 61.
22p_ E. Blachl, Phys. Rev. B50, 17 953(1994). 4IA. L. Wachs, T. Miller, T. C. Hsieh, A. P. Shapiro, and T. C.
23G. Kresse and D. Joubert, Phys. Rev6® 1758(1999. Chiang, Phys. Rev. B2, 2326(1985.
24N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tack- “?R. Hulthen and N. G. Nilsson, Solid State Commui8, 1341
ett, and Y. Zeng, Phys. Rev. B5, 2005(1997. (1976.

155208-9



S. LEBEUE, B. ARNAUD, M. ALOUANI, AND P. E. BLOECHL PHYSICAL REVIEW B67, 155208 (2003

43E, J. Himpsel, P. Heimann, and D. E. Eastman, Phys. R&4,B  %°R. Ahuja, O. Eriksson, and B. Johansson, Physic26B, 87

2003(1981). (1999.
44M. Rohlfing, P. Kriger, and J. Polimann, Phys. Rev4B, 17 791  53C. O. Rodriguez and M. Methfessel, Phys. RevA® 90 (1992.
(1993. 54A. B. Kunz and D. J. Mickish, Phys. Rev. BL, 1700(1975.
4SE. L. Shirley, X. Zhu, and S. G. Louie, Phys. Rev.5B, 6648  °°J. Hama and N. Kawakami, Phys. Lett.126, 348 (1988.
(1997. %6N. 1. Kulikov, Fiz. Tverd. Tela(Leningrad 20, 2027 (1978.
46x. Zhu and S. G. Louie, Phys. Rev. 48, 14 142(1991). 5’Database compiled by D. A. Papaconstantopoulos and co-workers
47D. J. Wolford and J. A. Bradley, Solid State Commi3, 1069 and located at http://manybody.nrl.navy.mil/esdata/database.htmi
(1985. (the calculations were performed by the APW method including
48D, E. Aspnes and A. A. Studna, Phys. Rev2B 985 (1983; D. scalar-relativistic corrections within the LDA
E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhatt, J. Appl. ®For the calculated electronic properties of NaH and KH alkali
Phys.60, 754 (1986. hydrides we have used @édpoints in the full BZ as well as 200
“SNotice that the same PAW method is used to compute the Si QP bands, and a dielectric matrix of size 6869 to achieve well
energies both within the RPA and the PIP model. converged results.

0Inspection of results of Table IV shows that thgs, —L . for %Kunz and Mickish have also reported a band gap for LiH of 6.61
SiC seems to be largely overestimated by GW calculations. In eV compared to a measured value of 4.99[e¥ta reported in
fact, we join the conclusion of Ref. 44 and claim that the experi- the paper of S. Baroret al,, Phys. Rev. B32, 4077(1985].
mental value is certainly less precise. This is confirmed by thé®S. Lebgue, M. Alouani, B. Arnaud, and W. E. Pickett, Europhys.
fact that our calculation agrees by about 0.08 eV with their data. Lett., cond-mat/030229Qunpublishedl

51Using the second method presented in this péiper the analytic  ®'F. Gygi and A. Baldereschi, Phys. Rev.3, 4405(1986.
continuation method did not change the value of thE,g, 628 Wenzien, G. Cappellini, and F. Bechstedt, Phys. Rex1B
— X transition by more than 0.05 eV. 14 701(1995.

155208-10



