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Recent attempts to make SiC diodes have revealed a problem with stacking fault expansion in the material,
leading to unstable devices. In this paper, we present detailed results from a density-functional supercell
calculation on the electronic structure of stacking faults which result from glide of Shockley partials in
3C-, 4H- and &H-SIiC. It was found Phys. Rev. B65, 033203(2002] that both types of stacking faults in
4H-SiC and two types of stacking faults irH6SIC give rise to band states, which are strongly localized
(confined within around 10 Ain the direction orthogonal to the stacking fault plane. Based on estimates of the
band offsets between different polytypes and a simple quantum-well theory, we show that it is possible to
interpret this one-dimensional localization as a quantum-well confinement effect. We also find that the third
type of stacking fault in BI-SiC and the only stacking fault inG3SiC do not give rise to states clearly
separated from the band edges, but instead give rise to rather strongly localized band states with energies very
close to the band edges. We argue that these localized near band edge states are created by stacking fault
induced changes in the dipole moment associated with the hexagonal symmetry. In addition, we have also
calculated the stacking fault energies, using both the supercell method and the simpler AdNInext
nearest-neighbor Isingnodel. Both theories agree well with the low stacking fault energies found experimen-
tally.
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[. INTRODUCTION below the lowest conduction band. A similar conclusion was
recently also arrived at by Miaet al® Electrons which are
For many years, SiC has been praised for its outstandintjapped in such states are thus hindered in their motion along
material properties and considered the most advantageoifd® Main electron-drift direction, which typicalljor growth

near-future choice of material for making power electronic’€@S0nsforms an angle 8° relative to tH{©001] direction.
The electrons are, however, free to move along the SF plane.

devices, possmly to be_ supers_eded only by d!amond. ReI_'his picture seems to be fully consistent with later experi-
cently, however, it was discoverkdthat the material suffers mental work around the causes for degradation in SiC

from an unexpected weakness: diodes manufactured frojiogess |t is therefore felt that increased knowledge and
4H-SiC gradually degraded in the sense that the voltage drognderstanding of SF’s in this material are of importance.
across the diode, for a constant current, gradually increased |n this paper we shall give a more detailed account of the
with the time of operation. The increase in voltage drop,work leading to the results summarized in Ref. 4. We will
compared to its ideal valugypically around 3.4 V at a cur- thus consider the effects of SF’'s in the three polytypes
rent density of 100 A/cf) was typically in the range from 3C-, 4H-, and &4-SiC in considerably more detail. In ad-
several mV to several tenths of a V, even up to more than dition, we will also present our results on the calculation of
V in some cases. Since the area of present days diodes apé €nergies in these polytypes, i.e., the cost in energy to
limited to approximately 1 chy many real applications re- Produce a SF in &000)) plane. The SF energies have been

quire parallel coupling of diodes, with the consequence thai;.alculatGd using both aab initio supercell method and the

tochastic dearadation even in the mV ranae becom ] impler, semianalytical ANNN(axial next-nearest-neighbor
stochastic degradation eve € ange DeComes Probsing) model®? It will be seen that both methods agree well

lematic. . ) i X
. . . with experimentally determined values of the SF energies.
In two recent brief articléswe argued that this type of P y d
diode degradation was caused by the propagation of partial Il. STRUCTURAL MODELS

dislocations, resulting in the creation of stacking fa(8E’s)
penetrating the active region of the device. The argument
was based on our discovery that SF's in #9021 glide Extended SF regions can be created by the motion of
plane, even though they are not associated with broken gsartial dislocations, leaving behind a faulted crystal contain-
dangling bonds, give rise to states which are bound in théng an error in the stacking sequen@ee., a SB. In this
sense that they are strongly localized in the direction perperpaper, as well as in Refs. 4 and 5, attention is confined to
dicular to the SF plane, and have an energy around 0.2 edlislocations from thelide set which are generally consid-

A. Stacking faults produced by partial dislocation glide
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(+), whereas the reverse stacking orders BA, CB, and AC
are all denoted(—). With this notation, -, 4H-, and
6H-SIC can be represented as a repetition (ef++),
(++—-), and (+++———) unit cells, respectively. The
Zhdanov symbols consist of pairs of numbers in which the
first number denotes the number of consecutive plus signs,
and the second the number of consecutive minus gifjas
_ all appearing With the Zhdanov notation, these three poly-
FIG. 1. Tetrahedral stacking sequence, viewed frofl 0] types are denoteCB), (22)’ and (33)’ respective|y' referring
direction, of 44-SiC (a) before andb) after the passage of a lead- tg 3 single unit cell. With the notatioi22)*, for instance, we
ing partial dislocation. Opeffilled) circles denote S(C) atoms and  (efer to a stacking sequente —+ +) starting with a minus

the dashed horizontal line represents the slip plane. The atom'@ign, which is obtained forn22) by a 180° rotation around
positions in the various layers are indicated using the classical ABGhe hexagonat axis.

notation. In(a) the two tetrahedra in the middle are called “nor- Partial L (R) changes a plugminus sign in the H'gg
mal,” whereas the other two are called “twinned.” A partial dislo- sequence immediately above the glide plane to a minus
cation from the glide set transforms a nornftalinned tetrahedron | . | - Il the oth . in the'

into a twinned(norma) tetrahedron, which can take place in any (plus) sign, leaving a . € 0_ er signs in the gtasequence
slip plane. A partial from the shuffle sétot considered heyesor- unaltfr_ed. Thus, SF Iink4-SiC corresponds to—+——), or
responds to a slip in the plane between the Si and C atoms bonddd22* in the faulted cell[see Fig. 1b)], and SF Il corre-
along thec direction. sponds to(+———), or (13). We can tentatively denoted

these SF’'s as SE12* (same as SF)land SK13) (same as
ered much more likely than dislocations from the shuffle setF 1. ) )
(cf. Fig. 1. In the hexagonal SiC polytypes, the partial dis-  Now, sending partial R through the plane between C and
locations can move by glide in tH€001 basal plandcor- B in the perfect #-SiC crystal(ABC|B) produces the Hzg
responding to thé111) glide plane for the cubic polytype Seguence:-(++——)(+++—)(++——)--, which corre-
3C-SiC]. For instance, a complete dislocation with the Bur-SPOnds td31) in the faulted cell. However, this sequence can
gers vectoa/3(2110), wherea is the lattice constant in the be obtained from S(I’:t’)12)f. n 4H—fS|C,_|.e., from(t+——)
basal plane, can dissociate into two partial dislocations ac.~ +—~)(++——), by first performing a 180° rotation

dina to the B t tion formiis around thec axis [producing(——++)(+—++)(——++)],
cording fo fhe BUrgers vector reaction for followed by a translation c/2 along the hexagowabxis,

e Py oy formally corresponding to moving the parentheses two steps

a/3(2110)—a/3(1100) +a/3(1010). (1) to the left.(Note that this symmetry operation is contained in
Each partial corresponds to a slip of the upper part of théhe nonsymmorphic space gro@g, for 4H- and 6H-SiC)
crystal relative to the lower part by a nonprimitive translation Thus, instead of using the notation @E2* we can as well
vector, thus creating a SF on the back side of its direction ofise the notation §B1) to denote SF I. The argument for the
propagation. An example of a SF irH4SiC is illustrated in  remaining glide plane is similar, leading to SF I, i.e.,
Fig. 1, which shows the atomic positions in a perfect and inSH211)=SH13), in 4H-SiC. To summarize, in B-SiC, SF
a faulted crystal, projected onto (4120) plane. Using the | is equivalent to SB1), and SF Il is equivalent to $E3).
classical ABC notation, the stacking sequence of perfectVe will use these different notations for SF’'s interchange-
4H-SiC is ---(ABCB)(ABCB)(ABCB)---. One of the par- ably.
tials in Eqg. (1) induces a change-AB, B—C, and G-A In 3C-SiC there is of course only one type of SF that can
(referred to as partial ). and the other partial induces the be introduced by dislocation glide. It can be denoted
change A-C, B—A, and C—B (referred to as partial R SH111). Using the same arguments as above, we find that
The propagation of partial L between layers A and B in athere are three types of SF's irH8SIC: SF |, defined as
unit cell of 4H-SiC gives the faulted sequence (A|CABAC) inside the faulted cell, which can be denoted
---(ABCB)(A|CAC)(BCAC)---, where | denotes the slip SH42), SF I, defined a$AB|ABAC), which can be denoted
plane. This is the case illustrated in Figb)l Note that par- SH3111 [or SR1113], and SF llI, defined aéABC|BAC),
tial R cannot propagate through this plane of the perfectvhich can be denoted $#4).'* The different cases are illus-
crystal, since that would violate the hexagonal stacking setrated in Fig. 2. We can find no operations from the space
guence(which does not permit an A plane on an A plane, group Cg‘v which transform a #-SiC crystal containing
etc). As another possibility, partial L can also propagate be-SH31) into a crystal containing SE3), or which transform
tween layers B and C inH-SiC, giving the faulted sequence SH42) in 6H-SIC into SK24). We therefore conclude that
---(ABCB)(AB|AC)(BCAC)---. We will refer to these two there are two types of nonequivalent SF’s that can be intro-
faulted sequences inH+SIiC as SF | and SF I, respectively. duced by glide in #-SiC, and three types of nonequivalent

When dealing with SF's, the classical ABC notation, SF's in 6H-SiC.

which in a sense refers to the absolute positions of atomic It should be noted that $81) and SK13) in 4H-SiC and
layers, is rather clumsy. It is usually more transparent to us€H42) and SK24) in 6H-SIiC are related through an inter-
the Hayg notation, and the related Zhdanov notation, whichchange of Si and C atom@lus a 180° rotation around an
both refer to the relative positions of layers. In thegga axis perpendicular to the hexagomadxis). In contrast to the
notation, the stacking orders AB, BC, and CA are all denotecperfect crystal, such an interchange of atoms does not leave
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csic 4B-SIC OR-SIC legitimate doubts about the accuracy of the difference be-
tween total energies per supercell to deduce such small SF
>y energies. To monitor the accuracy to some extent at least, we
oy have therefore also calculated the SF energies using the
> X ANNNI model. In this modef® the SF energies can be ex-
- Slip plane g pressed agwith the subscripts ory denoting polytype and
type of SF, respectively
Perfect SF Perfect SF(31)  SF(13) Perfect SF@42) SF(3111) SF(24) 7’30:4' ( J1+J2+J3)/ A,
FIG. 2. Geometrically distinguishable SF’s obtained by glide in Var 1= Yan 1= — 451 A,
3C- and 6H-SiC in different glide planegdashed hc_)_rizontal lings ' ' )
viewed from a[1120] direction. Associating the Hm sequence Yer,1= Yeu,m= —4J3/A,
signs + and — with steps to the right and left, respectively, the
stacking sequence shown in the casé33F[SH42), SH311))] is YeH.1=4- (J;—J,—J3)/A,

actually that for the equivalent case (BE2* [SH123*, ] )

SR1113]. SA31) [SF42)] and SK13) [SF24)]in 4H-[6-H-] sic ~ Where the] parameter can be obtained in terms of the total

are related through an interchange of Si and C atoms. energiesEsc, By, Egn, and Egy per Si-C pair in the
perfect crystal using much smaller unit cells:

the Hamiltonian for the faulted crystal invariant, in the same — _ _

way as the Hamiltonian for a crystal containing a point de- 917 (2E2n~Eact 3B~ 3EBen)/4,

fect is not invariant under such an operatigvhich trans- J,=—(Epy+Ezc—2E4)/4, (3)
forms, for instance, a Si vacancy into SiCdra C vacancy

We also note that the number of different types of SF’s in- J3=—(Ezc+ 2B,y —3Egy) /4.

troduced by glide in various polytypes apparently coincideswe note that according to the ANNNI model, @8 and

with the number of different energy levels associated with X i . .
given defect state. For instance, it is well known that substia—SF(lg) in 4H-SiC, as well as SA2) and Sk24) in 6H-SIC,

tutional N in SiC gives rise to one, two, and three differenthave the same SF energles. We will see Iat.er that this is a
donor levels in ©-, 4H-, and 64-SiC, respectively, corre- property of the ANNI model and only approximately true.

sponding to the different planes in which the N atom is
present.

Since SK31) and SK13) in 4H-SiC (and correspondingly The (Kohn—Sham band structure and total energies of
in 6H-SIC) are related through an interchange of Si and Csupercells are calculated using a method based on the self-
atoms, the notations used so far do not uniquely specify theonsistent density functional theory. Only a brief summary of
geometrical structure of the SF before the relative positionghe main points is given here; for a more detailed description
of the Si and C atoms are specified. Here we will use thesee Ref. 13. A basis set of Gaussian orbitals is used to de-
convention that each bilayer consistfsaoC atom on “top”  scribe the Kohn—Sham wave functions. Suitable multiplica-
of a Si atom, i.e., a vector from the Si atom to its partner Ctive factors provides- andp-, and optionally for each expo-
atom in the bilayer is in theositive cdirection(“up” ), asin  nent,d-orbital symmetries. In order to establish a reasonable
Fig. 1. Furthermore, the notation &) etc. has the advan- balance between speed and reliability for the calculations,
tage over the notation SF |, etc., that the sum of the integerseveral pseudopotentials and many basis sets were con-
in the Zhdanov notation automatically also specifies thestructed, and tested. Both norm-conserving pseudopotentials
polytype, i.e., the former notation specifies both the polytypebased on the Troullier-Martins schetfi@nd the Bachelet-
and the particular SF under consideration. Hamann-Schiter schem® were used. The latter pseudopo-
tentials were used in the present calculations with the spin-
averaged local-density approximation. The charge density is
represented by a plane-wave basis in reciprocal space. An

The SF energy y is defined as y=[E(faulted) automatic procedure ensures that the number of shells of
—E(perfect)l/A, whereA is the interface ared(faulted is  real-space lattice vectors used to evaluate the Madelung en-
the total energy of the crystal with a SF, dierfec) isthe  ergy is sufficient. We use the Monkhorst-PadMP)
total energy of the perfect crystal. As will be described be-schemé&® to sample the band structure. Both the largest re-
low, the present investigation applies a supercell approach teiprocal lattice vectors of the charge-density Fourier expan-
calculate energies and wave functions, in which case the totgion, and the mesh d¢ points are chosen so that the total
energies refer to the total energy of a supercell, and the araghergy is converged with respect to these parameters. Proper
A=a?\/3/2 is the area of the supercell in t(l@001) basal  account is taken of the band structure for the occupancies of
plane. each Kohn—-Sham level. The states are filled according to a

For many SiC polytypes, the SF energy is found to beFermi function with a small, finite temperature that is chosen
small, in some cases a few m¥H'®i.e., a few meV per to improve the numerical stability of the self-consistency
atomic pair. Applying theab initio method to supercells con- procedure. A correction is applied to the total energy to ac-
taining several tens or up to around 100 atoms, one may hausunt for the entropy that this introduces. The forces acting

Ill. THE ab initio SUPERCELL MODEL

B. Models for stacking fault energy
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TABLE I. Values of calculated and experimental hexagonal lat-
tice constanta (basal plangandc (orthogonal to the basal plane
in A. The value ofc is presented after division bina), where n is
the number of bilayers in the unit cell, i.e.=8, 4, and 6 for
3C-, 4H- and &H-SiC, respectively.

>
Lattice constantA) 3C-SiC 4H-SiC 6H-SiC %
a Theory (present 3.049 3.044 3.045 L%
Exp. (Ref. 19 3.082 3.073 3.080
Exp. (Ref. 18 3.08051 3.08129
c/(na) Theory (present 0.81650 0.81947 0.81886
Exp. (Ref. 179 0.81650 0.81785  0.81804
Exp. (Ref. 18 0.81844 0.81781

on each atom are given by an analytical formula derived

from the total energy expression. Structural optimization to

minimize the total energy is performed by a conjugate-

gradient algorithm. The method is thus a state-of-the-art
local-density method. We have made no attempts to correct
the value of the Kohn—Sham band gap, which will thus be

smaller than the true fundamental band gap.

To model the effects of SF’s in tH@00J) glide planes we
are using supercells which coincide with the primitive unit
cells in the(0001) plane, but which are elongated relative to
the primary unit cell along the direction. By choosing the
elongation in thec direction sufficiently large, we can avoid
SF-SF interactions. One must note, however, that since the
SF contained in the supercell corresponds to a nonprimitive
translation in the basal plarjsee Eq.(1)] by a part of the
supercell, translational symmetry in all three dimensions re-
quires that we tilt the axis to an amount and direction given
by the Burgers vector corresponding to the partial dislocation
imagined to have produced the SF. This gives rise to a rhom-
bohedral(triclinic) supercell, whose lattice constaritin the
tilted c direction has the projected lengtlalong the hexago-
nal ¢ axis.

When viewed as a hexagonal structur€,-SiC has 6 at-
oms in the primitive unit cell, whereasH+ and eH-SiC
have 8 and 12 atoms per primitive cell, respectively. In order
to determine the perfect crystab initio lattice constantgby
total energy minimizatiop) the perfect crystal atomic posi-
tions (by intrasupercell atomic relaxatipand the J param-
eters in the ANNNI model, we have employed supercells
containing 24 atoms for all these polytypes, i.e., the super-
cells for 3C-, 4H-, and &1-SiC consist of 4, 3, and 2
primitive unit cells stacked on top of one another, respec-
tively. Our reason for not choosing the smallest possible unit
cell in each case, but rather unit cells containing the same
number of atoms for the three cases, is that it is preferable to
employ the same size of the supercell for all polytypes, since
cancellation of systematic errors are then expected to some
extent when the total energies of different polytypes are com-
pared.

In all cases where SF's have been studied, we have used
rhombohedral supercells containing 96 atoms, i.e., contain- FIG. 3. Kohn-Sham band structure for 96 atom supercellégior
ing, 16, 12, and 8 primitive unit cells forG-, 4H-, and  perfect 84-SiC, (b) with SF42), (c) with SK24), and (d) with
6H-SIC, respectively, stacked on top of one another, makingR3111). The arrows point at the split-off bands below the conduc-
the artificial SF-SF interaction negligible. Intrasupercelltion band caused by the SF.

Energy [eV]

Energy [eV]

Energy [eV]
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6 T computational method, we compare in Table | experimental
oy N\~ ——— N lattice parameters of the perfect crystals with those obtained

1 with the present method. The theoretical results are in good
agreement with the experimental results.

2 @ IV. THE ELECTRONIC STRUCTURE

OF STACKING FAULTS

Energy [eV]

A. The quantum-well confinement
of the stacking-fault gap states

In Ref. 4 we displayed the 96 atom supercell band struc-
ture for 4H-SiC with and without SBB1) along the closed
pathT'-M-K-T" in the Brillouin zone. The band structure for
SH13) turns out to be very similar to that for &2). In Fig.

3 we show the corresponding band structures fo(43f
SH?24), and SKF3111) in 6H-SIC, and in Fig. 4 for SA11)

in 3C-SiC. The important features afé&) the existence of
clearly split-off bands below the conduction band in the
cases SRB1), SH13), SH42), and SK24), (2) no clearly
split-off bands below the conduction bands in the cases
SH3111) and SK111), and(3) no clear effect at the top of
the valence bands in any of the cases. The split-off energies,
i.e., the energy difference between the minimum of the
(modified conduction band and the minimum of the split-off
band, were presented in Ref. 4, but are reproduced in Table Il
for convenience, together with other new information that
will be used in the discussion below.

In order to reveal more about the nature of the split-off
band below the bottom of the conduction band, we will study
the wave functions corresponding to various states. To re-

. ) ) duce the amount of data, without loosing too much relevant
atomic relaxations have also been performed in the presenggiormation. we have chosen to plot the funcfion

of SF’s by requiring the vanishing of the Hellmann-Feynman

force on each atom. It was found that such relaxations have

very little influence on the bandstructure, but affect the SF fa(Z):f f ¥ ,(x,y,2)[?dxdy, 4
energies to some extent.

Since the supercells are extended along dhdirection,  wherea denotes & point in the Brillouin zonge.g.,a=1I" or
the Brillouin zone is practically two dimensional. All Bril- M), ¥, is the wave function for a certain stdteand at this
louin zone interactions have been replaced by summatioris point, and the integration for each value ofalong the
over six special MR points® in the basal plane of the Bril- (tilted) ¢ axis is performed in the basal plane within the su-
louin zone. percell. One can think of ,(z) as the probability to find an

As a simple and partial illustration of the accuracy of theelectron in the given state at a particular valuezcdway

7
=

w1

Energy [eV]

FIG. 4. Kohn-Sham band structure for 96 atom supercellgdior
perfect L-SiC and(b) with SK111).

TABLE II. Electronic structure data for different SF’s in three SiC polytydes.is the energy of the
split-off band minimum below the conduction band minimum, wit indicating cases where no clearly
split-off states are seemz, W, andwy, are the localization parametdns, defined below Eq(5)] for the
minimum of the split-off band, for the localized band state just below the bottom of the extended band state
at the conduction band minimum, and for the localized band state just above the top of the extended band
state at the valence band maximum, respectivElyqy and wg oy are the energy and wave function
localization parameter obtained using the simple QW model described in the main text.

Polytype Type of SF Eg [eV] wg [A] Eg,ow [eV] Wg,ow [A] we /wy [A]
3C SKH111) ~0 30/18
4H SH31) -0.22 7.2 -0.24 6.1

SH13) -0.18 8.6 -0.24 6.1 /28
6H SKH42) -0.19 8.0 -0.22 6.5

SH311) ~0 15/15

SKH?24) -0.17 9.5 —-0.22 6.5 142
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0.12 T T T T T T T TABLE Ill. Valence and conduction band offsets
AE\(nH/3C)=Ey(nH)—E\(3C) and AEc(nH/3C)=Ec(nH)
—Ec(3C), respectively, for interfaces between three different hex-
agonal SiC polytypesn=2, 4, and 6 and 3C-SiC. The valence
band offsets are determined from the calculated value
AEy(2H/3C)=0.13 eV(Refs. 19 and 20and assuming that they
are proportional to the degree of hexagondlit§0% in 2H-, 50%

in 4H-, and 33% in &1-SiC), as suggested in Ref. 20. The conduc-
tion band offsets are obtained using the experimental vatiggor
instance, Table | in Ref. 21E5(3C)=2.4 eV,Eg(2H)=3.3 eV,
Es(4H)=3.2 eV, andE;(6H)=3.0 eV. The valence band offsets
are in good agreement with those calculated in Ref. 19. By taking
appropriate differences, the band edge offsets between the hexago-

0.09

0.06

0.03

Probability distribution along c-axis

-4/8 -2/8 0 2/8 48 nal polytypes can be estimated, neglecting interface-dependent
Position along c-axis [in units of supercell size] charge rearrangement effects.
0.12 T T T T T T T
T 117 SiC interface AEy (eV) AEc (eV)
(®) /
0.09 / 2H/3C 0.13 1.03
] 4H/3C 0.07 0.87
6H/3C 0.04 0.64

0.06

The question arises what is causing this strong localiza-
tion. It is well understood that heavily deformed, broken or
chemically perturbed bonds around point defgecegarded
0 p as a zero-dimensional defe¢cian give rise to gap states and
-4/8 -2/8 0 2/8 418 three-dimensional localization of the wave function. Two-

Position along c-axis [in units of supercell size] dimensional localization around dislocationé&a one-
FIG. 5. The projected probability distributioiEq. (4)] (left- dimensional defe¢tand one-dimensional localization in the

hand scalgand the truncated normalization integl@by. (5)] (right- vicinity of surfaces(regardgd as a two-dimensional dgjeit
hand scalg within a 96 atom supercell, for the split-off bandMt can also be understood in terms of deformed or broken

in the case(@) SK42) and (b) SF(24) in 6H-SiC. Also shown are bonds, but rgquires interaction between individual sites alo_ng
the stacking sequence and the localization the dislocation line or surface to account for the lower di-
mensions of the localization. In the case of SF's, however,
strongly perturbed bonds are not involved in an obvious way
as for a surface, since the crystal retains its perfect structure
(apart from a very small relaxation of the lattice which is
irrelevant for this discussigron either side of the SF plane.

In Ref. 4 it was suggested, without quantitative justifica-
tion, that the one-dimensional localization arises because the
split-off states belong to a quantum-wé®W) formed by

| (2)= fzf (z')dz (5) the local X-like stacking sequence around the SEe Fig.
“ “ ' 2). This suggestion was based on two fa¢fs. The wave
functions for the split-off states are well localized and to a
where the integration starts at the bottom of the supercell. Akarge extent contained in the locaC3like (straigh} stacking
a measure of the degree of localization we use the distance sequence(2) The conduction band minimum inG@SiC is
within which 1(z) increases from 10 to 90 %. We will refer well below the conduction band minimum iH4 or 6H-SiC
to w as the localization parameter, or simply localization. (see Table ).

In Fig. 5 we display these quantities for @B and To investigate whether this interpretation in terms of a
SK24) in 6H-SiC [for SR31) and SK13) in 4H-SIiC, see thin QW is at all realistic and possibly lend further support to
Ref. 4]. The localization parametersvg) are also collected it, we will now estimate the binding energy and wave func-
in Table Il. The results clearly show that SF’s itH4and tion localization using a simple one-dimensional theory for
6H-SiC give rise to localized SF bands in which the electronquantum square welfé. Since the lattice constant for
has a strongly enhanced probability to be in the immediat&H-SiC, for instance, is close to 10 A, it seems as a reason-
vicinity of the SF plane. Of course, in contrast to the case ofible estimate to assume a quantum-well width of ®A4 A
localized point defect states, this is only a one-dimensionalo make a sensitivity che¢gksee Fig. 2 for both SE31) and
localization, since an electron in the bound SF state is free t8 {13). Assuming a quantum-well depth of 0.87 &\é., the
move along the SF plane with an effective mass correspondonduction band offseAE-(4H/3C) from Table Ill], and
ing to the curvature of the split-off band around the M point.the effective mass 0.3 free electron masébe effective

0.03

Probability distribution along c-axis

from the SF plane. Alternatively, it describes the projection
of the three-dimensional probability distribution onto and
along thec axis. As a further illustration of the degree of
localization, we also consider the truncated normalization in
tegral
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mass for £-SiC in the[111]-direction calculated from the 2H-like stacking sequence becomes slightly depleted of
effective mass components in Ref.)23he quantum-well electronic charge, resulting in a slightly positively charged
model results in one bound state with binding energy 0.24 e\&F sheet. This will reduce the barrier height to less than 0.13
(0.18 eV fa a 4 A quantum well, having wave(envelop¢  eV. Our results indicate that the resulting perturbation does
function localizationw=6.1 A (7.0 A). In the cases of not create states clearly split off from the valence band. Be-
SH42) and SK24) in 6H-SIiC, we have used a QW depth of jow (Sec. IVQ we will see that this perturbation does not
0.64 EV(Table Il and a QW width of 7.0 /3(0|’ 6.0 A to even seem to create shallow states in the gap.

check the sensitivity resulting in one boun(_j state with eN- The situation for SPB111 in 6H-SiC is similar(see Fig.
ergy 0.22 eV(0.19 eV below the conduction band mini- 5) | this case, a B-like (zig zag sequence with four hex-
mum, with localizationw~6.5 A (w=7.0 A). These results agonal turns surrounded by locally cubic stacking sequences

are reproduced in Table Il for comparison with the reSUItS(Ewo extra turns compared to perfedti6sic) is created. The
from the supercell calculations. The approximate agreemen cometrical resemblance with the SF i6-BiC, which has

suggests that the QW interpretation is indeed realistic, an wo hexagonal turns, is obvious. Furthermore, assuming that

supports the idea thdhe one-dimensional localization can . . _
be understood as a quantum-well confinement effect the band offsets in Table Il approximately also describe the

Of course, the simple square shape of the quantum welf@nd edge offsets at aHI6H junction, we getAEc(2H/
potential used here to interpret the numerical results is cho®H)=Ec(2H) —Ec(6H)~0.4 eV and AE(2H/6H)
sen only because of its analytical simplicity. It has been=Ev(2H) —Ey(6H)~0.1 eV. Thus, both for the conduction
shown both in Ref. 19 and 20 that #23C interface induces band and the valence band electrons(33E) acts as a
a dipole moment in the vicinity of the interface. We thereforequantumbarrier. Thus, there is not only a geometrical re-
also expect a d|po|e moment at &/BC (and G—|/3C) inter- semblance with the SF in@SiC, but also a resemblance
face, since the dipole moment in principle originates fromwith respect to the height of the energy barrifat with a
the hexagonal symmetry. The electric field associated wittower conduction band energy barrier for(SELD than for
such a dipole moment can change the electrostatic potentia®H111].
leading to a potential shape that is different from a simple
square well. But even though this model is simple and crude,
both with respect to the shape, the width, and the depth ofC- Polarization-induced localization of near band edge states
the quantum well, we think the arguments above do indeed |n Fig. @) we show the projected probability distribution
suggest that SB1) and SK13) in 4H-SIiC, and SK42) and  f_(z) for the bottom of the conduction barid=M) in the
SH24) in 6H-SIC are each associated with a QW of somecase SFL3) (which is very similar to the one for $81)
shape, and that a QW model offers a helpful and reasonablshown in Ref. 4 together withf (z) for the top of the va-
description of the SF results. lence band(a=I") for the cases SE3) [Fig. 6b)] and
SH31) [Fig. 6(c)] in 4H-SiC. The striking feature here is
that the valence-band-edge probability distribution for
SK13) in Fig. 6(b) has the appearance of a localized state

In Figs. 3 and 4 we saw that 8311 and SKF111) do not  one dimensioj essentially localized around the SF, but with
give rise to clearly split-off states in the fundamental banda localizationw~28 A, which is much larger than for the
gap similar to those in the other cases, although in both casémund SK13) state at Ec—0.18) eV, for whichw~8.6 A
a split-off conduction band appears at the K point, which is(see also Table JI Furthermore, this localized highest energy
the point where PI-SiC has its conduction band minimum. (valencé band state lies very close in energy to the extended
To analyze the absence of clearly split-off bands in the funvalence band states, with no clear signs of split-off. No simi-
damental band gap in these cases, we first turn {a&Fin lar localization can be seen at the valence band edge for
3C-SiC and observdFig. 2) that SK111) creates a thin SH31). In the remainder of this section we will present some
2H-like (zig zag sequence consisting of two hexagonal arguments which we believe explain this and related features
turns (i.e., two changes of sign in the 'Hg sequencein in the other cases. This explanation is based on the work and
neighboring glide planes. From Table Ill we find that bothideas presented by Qteish al?°
for the conduction band and the valence band electrons, Figures 7a) and 7b) show schematically thenacroscopi-
SK111) should act as a quantubarrier rather than a quan- cally averaged* crystal potential energy along thedirec-
tum well, with barrier heights estimated to 1.03 and 0.13 eVtion for SK13) and perfect #-SiC, respectively. This mac-
respectively. An electron-repulsive barrier acting on the conroscopic average is defined as an average in slabs orthogonal
duction band electrons is not expected to give rise to bountb thec direction, and corresponds to the usual definition of
states below the conduction band. On the other hand, a quamacroscopic quantities in electrostatic$. the macroscopic
tum barrier(as with any other repulsive perturbatjcercting ~ Maxwell equations The construction of the figures is essen-
on the valence band electrons, could create bound states fially based on two ideas, pointed out in Ref. 20. First, all
the fundamental band gap originating from the valence bandsiC polytypes, except@-SiC, have a symmetry where not
From Table Ill the barrier height is around 0.13 eV, but theall four tetrahedral bonds are equivalent. In Figa)l for
valence electrons will respond to this perturbation in someénstance, the Si-C bonds along théirection are not related
way, most likely leading to a rearrangement of the electrondy symmetry to the three bonds almost lying in the glide
relative to the perfect bulk in such a way that tttén  plane. Thus, charge transfer between the nonequivalent

B. Cases where the stacking fault acts as a quantum barrier
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2 T 1 FIG. 7. Schematic illustration of the averaged potential energy
g (b) along the stacking direction in the case (af SH13), (b) perfect
o 009 Hos 4H-SiC, and(c) their difference. The hexagonahxis is directed to
3 MWWWHM the right, and the rectangular area(ly indicates half a primitive
s { dos6 unit cell.
3 006 /
'ﬁ 04 around each hexagonal turn and parallel with the basal plane,
% 003 | w=28A vyith the negatively pharged platg to the right of the po_si-
g o2 tively charged plate in Fig. 7. As is well known, the electric
o MMJ U\M)\A field is zero outside the capacitor, and exists only between
o Lt eoteh ) Maoea 0 g the oppositely charged plates. The presence of this electric
6Nz -4h2 -2z 0 22 4n2 612 field is represented in Figs.(@ and 7b) by the positive
012 Position along c-axis [in units of supercell size] slopes in the averaged potential energy around the hexagonal
' o ; turns. In SiC, the energy barrier associated with each dipole
% is around 0.04 eV. Since a SP does not exist G+SiC for
S 000l (© symmetry reasons, the dipole moment per unit volume is to a
5 198 good approximation proportional to the degree of hexagonal-
S h
c 127D p By p Ty pP By pfYy ) ity.
§ 0.06 L : Second, to avoid the build-up of a large uncompensated
= electric field (voltage across the crystal, there must exist a
2 104 depolarization fieldacross the crystal, which is directed op-
% 0.03 - posite to the polarization field and compensates for the po-
L {02 tential steps associated with the hexagonal turns. Such a de-
e M polarization field will arise in a real crystal from the
0 AAMAA A8k 0 accumulation of surface charges on the material, from the
6h2 -4nz -2z 022 4h2 6h2 motion of free carriers in the bulk or from the polarization of
Position along c-axis [in units of supercell size] dopant<° In addition, intrinsic screening effects in the per-

FIG. 6. The projected probability distributiofieft-hand scale  €Ct crystal will also lead to a depolarization field. All these
and the truncated normalization integfdght-hand scale withina  €ffects, except for the accumulation of surface charges, give
96 atom supercell, at the bottom of the conduction band at M fofiSe to a finite screening length, which is the distance from an
SH13) (a), and at the top of the valence bandlafor SF13) (b), electrostatic perturbation beyond which the perturbation is

and SE31) (c) in 4H-SiC. Also shown are the stacking sequence Screened out. In Fig. 7 it has been assumed that the screening
and the localizationw for localized states. length is not substantially smaller than the hexagonal lattice

constantc in 4H-SiC, because if it were, the maxima of the
bonds may(and doestake place, resulting in a spontaneouspotential in Fig. Ta) would all have essentially the same
polarization(SP (cf. ferroelectric or pyroelectric materials value. The important point to notice now is that due to the
along thec direction. The electric dipole moments associateduse of a periodic potential, the depolarization field is auto-
with the SP are essentially localized around the hexagonahatically introduced into the calculatiofisince the periodic
turns in the stacking sequence, and are directed opposite pwtential has the same value on opposite sides of the super-
the ¢ direction (down in Fig. 2. The electric(polarizatiorn cell), and is represented in Fig. 7 by the portions of the
field from all the dipoles in a plane orthogonal to thexis  averaged potential having negative slopes between the hex-
is thus directed along the positieedirection. It is helpful to  agonal turns.
think of this situation as similar to a pair of closely spaced Figure 7c) shows the difference between the averaged
oppositely charged plate¢écf. a parallel-plate capacitor potentials in Figs. & and 7b). It can be regarded as the
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average of a perturbation acting on the perfect crystal to £ 0.09 / 108
create a potential in the faulted crystals. Since the averaged ¢ :,'
perturbation is positive, the perturbation itself, i.e., the dif- = 0.06 L it 106
ference in potential energy as a function of the three- % ' .
dimensional position vector between crystals with and g w=18A | {04
without SK13), can be considered repulsive as a whole. We 35 ., |
argue that, in analogy with point defect physics, this repul- 3§ o2
sive perturbation is capable of creating localized band states &
just above the top of théextended valence band states. P Y a1y
Since they are in the gabut just barely sp they are local- -8/16 -6/16 -4/16 -2/16 0 2/16 4/16 6/16 8/16
ized[Fig. 6(b)], just like discrete shallow acceptor states in Position along c-axis [in units of supercell size]

semiconductors. These localized band states, however, are
completely OCCUp'ed_ a_nd cann_ot act as accepto_rs. and the truncated normalization integ(ebht-hand sidg within a

The absence of similar localized band states in the case @ 4tom supercell, fofa) the bottom of the conduction band afi
SH31) can be explained within the same conceptual framegne top of the valence band inC3SiC with a SF.
work. The averaged potentials in this case are shown in Figs.
8(a) and 8b), and as seen in Fig.(®, their difference is of the SF. Next we will explain these features, and again we
negative, corresponding now instead to an attractive pertumwill consider the effects of SP and the associated depolariza-
bation. Such a perturbation will not push up states from theion field 2°
valence band and into the band gap, but the highest-energy First we observe that a distinct difference between the SF
valence band state should essentially be modified host crystal 3C-SiC and those in M-SiC is that in the former case two
band staté¢Fig. 6(c)]. Note that the relative energy positions extrahexagonal turns are introduced relative to the host crys-
of the strongly localized sates &:—0.22 eV andEc tal, whereas in the latter case only thesition of one hex-
—0.18 eV is, at least qualitatively, compatible with the dif- agonal turn has changed, without changing the total number
ference between the potentials in Figs. 8 and 7, and caaf turns. The conservation of the number of hexagonal turns
probably be traced back to this difference. Moreover, thds the reason why the averaged perturbation for the SF’s in
difference in sign between the two perturbation potentials ir4H-SiC is localized(the perturbation itself exists, of course,
Figs. 1c) and §c) is a manifestation and another proof of the in the whole displaced part of the crystaln contrast, the
inequivalence of the two types of SF’s, @), and SK13).  averaged perturbation for a SF irCaSiC (as well as for
This inequivalence has to our knowledge not been recogSH3111) in 6H-SIiC, see beloyw will, except for details
nized in the literature before, even though it can be inferrechround the hexagonal turns, schematically look similar to
from general symmetry considerations aldSec. 1 A). that in Fig. 10. Again the portion with the positive slope is

The projected probability distributions for the lowest con-due to the dipole moment associated with the hexagonal
duction band state and highest valence band state fd1$F turns(here indicated by one structureless $temd the por-
in 3C-SiC are shown in Figs. (8 and 9b). Again, even tions with the negative slopes on either side are associated
though they are very close in energy to the delocalized bandith the depolarization field. We believe that it is this shape
states in their respective bands, they are also surprisinglyf the perturbation which is responsible for the wave func-
localized, in particular the valence band state with localization segregation: on the right-hand side of the extra hexago-
tion w~18 A. We also observe that they have most of theirnal turns the repulsive perturbation pushes up a state from
wave functions in the @ host region outside the thin the valence band and into the gap, making it localized, while
2H-like stacking sequence, and, which is perhaps more mysen the other side the attractive part creates a localized state
terious, with amplitudes almost exclusively different sides  just below the conduction band. Thus, it is not the thin va-

FIG. 9. The projected probability distributioteft-hand scale
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the c axis inside a &-SiC supercell caused by the introduction of
one or several additional hexagonal turns in neighbof®@01) 003 - , Lon
planes. For simplicity, the potential associated with the dipole mo- 2 ( |
ment is indicated with one structureless step. The figure is also
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applicable to SB11)) if regarded as a plot of the averaged poten- /8 8 o 8 /8

tial perturbatlon' Position along c-axis [in units of supercell size]
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lence electron quantum barri@f height less than 0.13 eV in
this casgin itself which creates these states close to the band
edges, but rather the presence of the polarization in the thin
2H-like slab and the accompanying depolarization field. This
interpretation is supported by our calculations on so-called
twin boundaries in 8-SiC2° which is a & crystal contain-

ing one hexagonal turn. In this case we observe a wave func-
tion segregation and localization for the states at the band
edges which is almost identical to that in(3ED. It should

be noted that these conclusions are of general validity only if

(b)

0.4

Probability distribution along c-axis

ot 7\7\'Kf\]\

twice the screening length is not much larger than the length 0 LILTEVVo 0
. . . . . -4/8 -2/8 0 2/8 4/8
of the supercell in the direction, since otherwise the slope Posit S _
X i ; R N X X osition along c-axis [in units of supercell size]
of the potential from the depolarization field in Fig. 10 is 0.12 . . . . . . .
affected by the size of the supercell. ER

Based on the results for#+ and 3C-SiC, the appearance
of localized states at the immediate vicinity of the band
edges for SF's in B-SiC can easily be understood. In Fig.
11 we showf ,(z) for the bottom of the conduction band
(@=M) in the case SR4) [which is very similar to that for
SH42)], together withf ,(z) for the top of the valence band
(a=I") for the case SR4) and SF42). From Fig. 2 it is clear )
that the situation for SR4) corresponds to Fig. 7, thus cre- i
ating similar to SFL3) in 4H-SIC, localized band states just 1 M}W\M MMMMAW
above the extended band states at the valence band maxi- 0 Mt spsata AN o
mum [Fig. 11(b)]. Similarly, SF42) behaves as $Bl) in -4/8 -2/8 0 2/8 4/8
4H-SIC in this respect, while $B8111) introduces two extra Position along c-axis [in units of supercell size]
hexagonal turns relative to the host crystal, very similar 0 /5 11 The projected probability distributigeft-hand scal
SF(ll_l) in 3C-SIC. Th's res_emblance bet_vvegn(SEl]) "_1 and the truncategnc])rmalizgtion inteé(aght-hanc((j scalg within:i\3
6H-SIiC and SF111) in 3C-SiC is reflected in Fig. 12, which - gg at0m supercell, at the bottom of the conduction band at M for
is very similar to Fig. 9. SH24) (a), and at the top of the valence bandlafor SR24) (b)

The absence and presence, respectively, of a shallow lgmd Sg42) (c) in 6H-SiC. Also shown are the stacking sequence
calized state close to the valence band in the ca$é25Bnd  and the localizationv for localized states.

SK24) indicate that there is a difference in their optical ac-
tivity. If ¢; denotes the wave function for the strongly local-
ized state below the conduction band minimum ahdthe
wave function for the highest state on the other side of the

band gap, the probability for an optical transition across the In Ref. 4 we showed how an observed resistivity anomaly
band gap is proportional tf;|r|;)|%. Figures 5 and 11 in n-type 4H- and 6H- SiC2® which cannot be reconciled
clearly indicate that this transition probability is much largerwith the normal bulk anisotrop?/;® could be explained in
for SH24) than for SK42) in 6H-SiC. The corresponding terms of the strongly localized SF bands. We also briefly
difference between SE3) and SK31) in 4H-SIC is similar.  indicated their relation to the electrical degradation phenom-
The localization parameters for the localized near band-edgenon in bipolar devices. Here we will be a little more de-
states are summarized in Table II. tailed regarding the mechanism leading to degradation.

(©)
0.09 - 0.8

404

0.2

Probability distribution along c-axis

V. SOME EXPERIMENTAL OBSERVATIONS EXPLAINED
BY SF FORMATION
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0.12 T T T T T T T TABLE IV. Theoretical and experimental SF energies (nf)/m
@ 1 for three SiC polytypes. ISR means intrasupercell relaxation, and is
® defined in the main text.
> 0.00
s SF energies (mJ/f 3C-SiC  4H-SiC  6H-SiC
c
2 o6 Supercell method ~ SFI  -1.71 177 3.10
= (without ISR SF Il 18.1 40.1
s SF Il 3.35
5 003 Supercell method SF | —-2.70 184 1.35
S (with ISR) SF I 18.7 38.4
. SF Il 1.63
0_4/8 _2/8/ o s pyA ANNNI model SF 1 -6.27 18.3 3.14
. o ) SF Il 18.3 36.6
Position along c-axis [in units of supercell size]
0.12 T T T T T T T SF 1l 3.14
emmmmmemee 41 Experiment Ref. 9 14%25 2.9-0.6
(0) Ref. 10 2.5:0.9
0.09 | Iz dos

WPW
f 0.6 preciable extent, since the effective pulling force acting on

Probability distribution along c-axis

008 the trailing partial from the leading partial, given byb
. {04 whereb is the length of the Burgers vector, is large. The
0.03 L w=15A existence of SF ribbons in SiC, i.e., the area between the
o2 leading and the trailing partial, and thus the development of
/\J‘l extended SF's, is a manifestation of the small SF energies in
0 L L L4 A" L 0 that material. For instance, the SF energy iH-8iC is
8 28 0 28 48 around 3 mJ/rhand around 15 mJ/frin 4H-SiC%1° com-

Position along c-axis [in units of supercell size]

pared to 280 mJ/fin diamond®® 55 mJ/nf in Si, and 45
FIG. 12. The projected probability distributigteft-hand scale ~ mJ/nf in GaAs (see Ref. &

and the truncated normalization integ(aght-hand scalg within a The SF energies of SiC calculated in the present work are
96 atom supercell, fof@) the bottom of the conduction band afin shown in Table 1V, together with experimental results. In the
the top of the valence band irtH6SiC containing SB111. first-principles supercell method we have calculated the SF

Even though there are shallow states in the immediat(?nergies both with and without intrasupercell relaxation. The

vicinity of the band edges which show clear signs of |0ca|_meaping Qf “without intrasupercell relaxation” in Table 1V is
ization, we argue that the bound SF states in the clearljhat in neither the perfect crystal nor the faulted crystal have
split-off band in Table Il are mainly responsible for the deg-the atoms been allowed to deviate from their ideal positions
radation of bipolar #- and 6H-SiC devices. Electrons in- determined bya andc, whereas “with intrasupercell relax-
jected into the base region of the pin diode, for instance, aration” means that the atomic positions for both the perfect
captured by the bound SF states, tending to make this S&nd the faulted crystals are fully relaxédr givena andc).
negatively charged, whereby holes are also attracted to therom Table IV we see that the effect of intrasupercell relax-
SF region. This enhanced local concentration of electrongtion is less than 2 mJ&n

and holes will increase the probability for electron-hole re- The values for the ANNNI model are based on the fol-
combination, leading to a reduction of the electron and holgowing interlayer interaction parameters obtained using Eq.
!lfetlmes, a_nd hmqler e_Iectrons and holes from moving freely(3) (in meV): J;=1.9097,J,= —2.3059,J;= — 0.3959, and

in the device. This will obstruct the normal build-up of an f,om these parameters one can determine the approximate SF
eIectron_—h_oIe plasma}, and consequently obstruct the norm%'nergies for the other polytyp&sAs seen in Table IV, the
conductivity modulation, causing an increased voltage dro%upercell method and the ANNNI model give very similar

across the de_\/lce. S . . . _results, except for @-SiC. Note that the ANNNI model can-
An interesting question is what is causing the expansion distinguish between $81) and SF13), or between SF

of the SF’s. This is not the subject of the present paper, but it '

could be noticed that apart from stress, which is generally

too low to cause partial dislocation motion around room tem- TABLE V. Theoretical and experimental SF energies (nfjJ/m

perature in SiC, recombination enhanced dislocatiorfor Si and diamond.

motiorf® is most likely involved.

mJ/n? Without ISR~ With ISR Experiment
VI. STACKING FAULT ENERGIES :
Si 36.0 33.4 50—70QRef. 33
In crystals where the SF energy is large, perfect dislocae (diamond 314 264 27941 (Ref. 30

tions tend not to split up into partial dislocations to any ap
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(42) and SK24), since it only concerns normal and twinned have not been able to find the reasons for the apparent un-
tetrahedra, whereas &) and SKF13), as well as SHE2) derestimations of the SF energy for Si relative to experi-
and SK24), are related through an interchange of Si and Cments.
atoms. The SF energy ofG3SiC is negative both with the A striking feature in Table IV is that inl8-SiC, SK3111)
supercell method and from the ANNNI model, which is in has a considerably larger SF energy than the other two types.
agreement with theoretical results obtained earlier bgkéa  Unless there is a preference as to in which glide plane partial
et al*? dislocations are nucleated, this type of SF should be rela-
In order to investigate the accuracy of our computationatively rare compared to the other two types.
method, we have also calculated the SF energy in Si and
diamond including intrasupercell relaxatigmable V). The
theoretical SF energy of diamond agrees very well with ex-
perimental values, while for Si it is clearly smaller than the The authors gratefully acknowledge financial support
available experimental value. Choet al*® and Kakel  from the Swedish Foundation for Strategic Resed®8H,
et al*? also calculated the SF energy of Si and obtained valthe Swedish Research Coun@ilR), and the National Super-
ues close of ours, namely 33 and 38 nf)/nespectively. We computer CentefNSC) in Sweden for computer time.
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