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Stacking faults in 3C-, 4H -, and 6H -SiC polytypes investigated
by an ab initio supercell method
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Recent attempts to make SiC diodes have revealed a problem with stacking fault expansion in the material,
leading to unstable devices. In this paper, we present detailed results from a density-functional supercell
calculation on the electronic structure of stacking faults which result from glide of Shockley partials in
3C-, 4H- and 6H-SiC. It was found@Phys. Rev. B65, 033203~2002!# that both types of stacking faults in
4H-SiC and two types of stacking faults in 6H-SiC give rise to band states, which are strongly localized
~confined within around 10 Å! in the direction orthogonal to the stacking fault plane. Based on estimates of the
band offsets between different polytypes and a simple quantum-well theory, we show that it is possible to
interpret this one-dimensional localization as a quantum-well confinement effect. We also find that the third
type of stacking fault in 6H-SiC and the only stacking fault in 3C-SiC do not give rise to states clearly
separated from the band edges, but instead give rise to rather strongly localized band states with energies very
close to the band edges. We argue that these localized near band edge states are created by stacking fault
induced changes in the dipole moment associated with the hexagonal symmetry. In addition, we have also
calculated the stacking fault energies, using both the supercell method and the simpler ANNNI~axial next
nearest-neighbor Ising! model. Both theories agree well with the low stacking fault energies found experimen-
tally.

DOI: 10.1103/PhysRevB.67.155204 PACS number~s!: 71.23.An, 71.15.2m
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I. INTRODUCTION

For many years, SiC has been praised for its outstand
material properties and considered the most advantag
near-future choice of material for making power electro
devices, possibly to be superseded only by diamond.
cently, however, it was discovered1–3 that the material suffers
from an unexpected weakness: diodes manufactured f
4H-SiC gradually degraded in the sense that the voltage d
across the diode, for a constant current, gradually increa
with the time of operation. The increase in voltage dro
compared to its ideal value~typically around 3.4 V at a cur-
rent density of 100 A/cm2) was typically in the range from
several mV to several tenths of a V, even up to more tha
V in some cases. Since the area of present days diode
limited to approximately 1 cm2, many real applications re
quire parallel coupling of diodes, with the consequence t
stochastic degradation even in the mV range becomes p
lematic.

In two recent brief articles4 we argued that this type o
diode degradation was caused by the propagation of pa
dislocations, resulting in the creation of stacking faults~SF’s!
penetrating the active region of the device. The argum
was based on our discovery that SF’s in the~0001! glide
plane, even though they are not associated with broke
dangling bonds, give rise to states which are bound in
sense that they are strongly localized in the direction perp
dicular to the SF plane, and have an energy around 0.2
0163-1829/2003/67~15!/155204~12!/$20.00 67 1552
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below the lowest conduction band. A similar conclusion w
recently also arrived at by Miaoet al.5 Electrons which are
trapped in such states are thus hindered in their motion a
the main electron-drift direction, which typically~for growth
reasons! forms an angle 8° relative to the@0001# direction.
The electrons are, however, free to move along the SF pl
This picture seems to be fully consistent with later expe
mental work around the causes for degradation in S
diodes.6,7 It is therefore felt that increased knowledge a
understanding of SF’s in this material are of importance.

In this paper we shall give a more detailed account of
work leading to the results summarized in Ref. 4. We w
thus consider the effects of SF’s in the three polytyp
3C-, 4H-, and 6H-SiC in considerably more detail. In ad
dition, we will also present our results on the calculation
SF energies in these polytypes, i.e., the cost in energy
produce a SF in a~0001! plane. The SF energies have be
calculated using both anab initio supercell method and th
simpler, semianalytical ANNNI~axial next-nearest-neighbo
Ising! model.8,9 It will be seen that both methods agree we
with experimentally determined values of the SF energie

II. STRUCTURAL MODELS

A. Stacking faults produced by partial dislocation glide

Extended SF regions can be created by the motion
partial dislocations, leaving behind a faulted crystal conta
ing an error in the stacking sequence~i.e., a SF!. In this
paper, as well as in Refs. 4 and 5, attention is confined
dislocations from theglide set, which are generally consid
©2003 The American Physical Society04-1
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
ered much more likely than dislocations from the shuffle
~cf. Fig. 1!. In the hexagonal SiC polytypes, the partial d
locations can move by glide in the~0001! basal plane@cor-
responding to the~111! glide plane for the cubic polytype
3C-SiC#. For instance, a complete dislocation with the Bu
gers vectora/3^2110&, wherea is the lattice constant in the
basal plane, can dissociate into two partial dislocations
cording to the Burgers vector reaction formula9–11

a/3^2110&→a/3^11̄00&1a/3^101̄0&. ~1!

Each partial corresponds to a slip of the upper part of
crystal relative to the lower part by a nonprimitive translati
vector, thus creating a SF on the back side of its direction
propagation. An example of a SF in 4H-SiC is illustrated in
Fig. 1, which shows the atomic positions in a perfect and
a faulted crystal, projected onto a~112̄0! plane. Using the
classical ABC notation, the stacking sequence of per
4H-SiC is •••~ABCB!~ABCB!~ABCB!••• . One of the par-
tials in Eq. ~1! induces a change A→B, B→C, and C→A
~referred to as partial L!, and the other partial induces th
change A→C, B→A, and C→B ~referred to as partial R!.
The propagation of partial L between layers A and B in
unit cell of 4H-SiC gives the faulted sequenc
•••~ABCB!~AuCAC!~BCAC!•••, where u denotes the slip
plane. This is the case illustrated in Fig. 1~b!. Note that par-
tial R cannot propagate through this plane of the perf
crystal, since that would violate the hexagonal stacking
quence~which does not permit an A plane on an A plan
etc.!. As another possibility, partial L can also propagate
tween layers B and C in 4H-SiC, giving the faulted sequenc
•••~ABCB!~ABuAC!~BCAC!••• . We will refer to these two
faulted sequences in 4H-SiC as SF I and SF II, respectivel

When dealing with SF’s, the classical ABC notatio
which in a sense refers to the absolute positions of ato
layers, is rather clumsy. It is usually more transparent to
the Hägg notation, and the related Zhdanov notation, wh
both refer to the relative positions of layers. In the Ha¨gg
notation, the stacking orders AB, BC, and CA are all deno

FIG. 1. Tetrahedral stacking sequence, viewed from a@112̄0#
direction, of 4H-SiC ~a! before and~b! after the passage of a lead
ing partial dislocation. Open~filled! circles denote Si~C! atoms and
the dashed horizontal line represents the slip plane. The ato
positions in the various layers are indicated using the classical A
notation. In ~a! the two tetrahedra in the middle are called ‘‘no
mal,’’ whereas the other two are called ‘‘twinned.’’ A partial dislo
cation from the glide set transforms a normal~twinned! tetrahedron
into a twinned~normal! tetrahedron, which can take place in an
slip plane. A partial from the shuffle set~not considered here! cor-
responds to a slip in the plane between the Si and C atoms bo
along thec direction.
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~1!, whereas the reverse stacking orders BA, CB, and
are all denoted~2!. With this notation, 3C-, 4H-, and
6H-SiC can be represented as a repetition of~111!,
~1122!, and ~111222! unit cells, respectively. The
Zhdanov symbols consist of pairs of numbers in which
first number denotes the number of consecutive plus sig
and the second the number of consecutive minus signs~if at
all appearing!. With the Zhdanov notation, these three pol
types are denoted~3!, ~22!, and ~33!, respectively, referring
to a single unit cell. With the notation~22!* , for instance, we
refer to a stacking sequence~2211! starting with a minus
sign, which is obtained form~22! by a 180° rotation around
the hexagonalc axis.

Partial L ~R! changes a plus~minus! sign in the Ha¨gg
sequence immediately above the glide plane to a mi
~plus! sign, leaving all the other signs in the Ha¨gg sequence
unaltered. Thus, SF I in 4H-SiC corresponds to~2122!, or
~122!* in the faulted cell@see Fig. 1~b!#, and SF II corre-
sponds to~1222!, or ~13!. We can tentatively denoted
these SF’s as SF~112!* ~same as SF I! and SF~13! ~same as
SF II!.

Now, sending partial R through the plane between C a
B in the perfect 4H-SiC crystal~ABCuB! produces the Ha¨gg
sequence•••~1122!~1112!~1122!•••, which corre-
sponds to~31! in the faulted cell. However, this sequence c
be obtained from SF~112!* in 4H-SiC, i.e., from~1122!
~2122!~1122!, by first performing a 180° rotation
around thec axis @producing~2211!~1211!~2211!#,
followed by a translation c/2 along the hexagonalc axis,
formally corresponding to moving the parentheses two st
to the left.~Note that this symmetry operation is contained
the nonsymmorphic space groupC6v

4 for 4H- and 6H-SiC.!
Thus, instead of using the notation SF~112!* we can as well
use the notation SF~31! to denote SF I. The argument for th
remaining glide plane is similar, leading to SF II, i.e
SF~211!5SF~13!, in 4H-SiC. To summarize, in 4H-SiC, SF
I is equivalent to SF~31!, and SF II is equivalent to SF~13!.
We will use these different notations for SF’s interchang
ably.

In 3C-SiC there is of course only one type of SF that c
be introduced by dislocation glide. It can be denot
SF~111!. Using the same arguments as above, we find
there are three types of SF’s in 6H-SiC: SF I, defined as
~AuCABAC! inside the faulted cell, which can be denote
SF~42!, SF II, defined as~ABuABAC!, which can be denoted
SF~3111! @or SF~1113!#, and SF III, defined as~ABCuBAC!,
which can be denoted SF~24!.12 The different cases are illus
trated in Fig. 2. We can find no operations from the spa
group C6v

4 which transform a 4H-SiC crystal containing
SF~31! into a crystal containing SF~13!, or which transform
SF~42! in 6H-SiC into SF~24!. We therefore conclude tha
there are two types of nonequivalent SF’s that can be in
duced by glide in 4H-SiC, and three types of nonequivale
SF’s in 6H-SiC.

It should be noted that SF~31! and SF~13! in 4H-SiC and
SF~42! and SF~24! in 6H-SiC are related through an inte
change of Si and C atoms~plus a 180° rotation around a
axis perpendicular to the hexagonalc axis!. In contrast to the
perfect crystal, such an interchange of atoms does not le
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STACKING FAULTS IN 3C-, 4H-, AND 6H-SiC . . . PHYSICAL REVIEW B 67, 155204 ~2003!
the Hamiltonian for the faulted crystal invariant, in the sam
way as the Hamiltonian for a crystal containing a point d
fect is not invariant under such an operation~which trans-
forms, for instance, a Si vacancy into SiC into a C vacancy!.
We also note that the number of different types of SF’s
troduced by glide in various polytypes apparently coincid
with the number of different energy levels associated wit
given defect state. For instance, it is well known that sub
tutional N in SiC gives rise to one, two, and three differe
donor levels in 3C-, 4H-, and 6H-SiC, respectively, corre
sponding to the different planes in which the N atom
present.

Since SF~31! and SF~13! in 4H-SiC ~and correspondingly
in 6H-SiC! are related through an interchange of Si and
atoms, the notations used so far do not uniquely specify
geometrical structure of the SF before the relative positi
of the Si and C atoms are specified. Here we will use
convention that each bilayer consists of a C atom on ‘‘top’’
of a Si atom, i.e., a vector from the Si atom to its partne
atom in the bilayer is in thepositive cdirection~‘‘up’’ !, as in
Fig. 1. Furthermore, the notation SF~31! etc. has the advan
tage over the notation SF I, etc., that the sum of the integ
in the Zhdanov notation automatically also specifies
polytype, i.e., the former notation specifies both the polyty
and the particular SF under consideration.

B. Models for stacking fault energy

The SF energy g is defined as g5@E(faulted)
2E(perfect)#/A, whereA is the interface area,E~faulted! is
the total energy of the crystal with a SF, andE~perfect! is the
total energy of the perfect crystal. As will be described b
low, the present investigation applies a supercell approac
calculate energies and wave functions, in which case the
energies refer to the total energy of a supercell, and the
A5a2A3/2 is the area of the supercell in the~0001! basal
plane.

For many SiC polytypes, the SF energy is found to
small, in some cases a few mJ/m2,9,10 i.e., a few meV per
atomic pair. Applying theab initio method to supercells con
taining several tens or up to around 100 atoms, one may h

FIG. 2. Geometrically distinguishable SF’s obtained by glide
3C- and 6H-SiC in different glide planes~dashed horizontal lines!,
viewed from a@112̄0# direction. Associating the Ha¨gg sequence
signs 1 and 2 with steps to the right and left, respectively, th
stacking sequence shown in the case SF~31! @SF~42!, SF~3111!# is
actually that for the equivalent case SF~112!* @SF~123!* ,
SF~1113!#. SF~31! @SF~42!# and SF~13! @SF~24!# in 4H-@6-H-# SiC
are related through an interchange of Si and C atoms.
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legitimate doubts about the accuracy of the difference
tween total energies per supercell to deduce such smal
energies. To monitor the accuracy to some extent at least
have therefore also calculated the SF energies using
ANNNI model. In this model,8,9 the SF energies can be ex
pressed as~with the subscripts ong denoting polytype and
type of SF, respectively!

g3C54•~J11J21J3!/A,

g4H,I5g4H,II524J2/A,
~2!

g6H,I5g6H,III524J3 /A,

g6H,II54•~J12J22J3!/A,

where theJ parameter can be obtained in terms of the to
energiesE3C , E2H , E4H , and E6H per Si-C pair in the
perfect crystal using much smaller unit cells:

J15~2E2H2E3C13E4H23E6H!/4,

J252~E2H1E3C22E4H!/4, ~3!

J352~E3C12E4H23E6H!/4.

We note that according to the ANNNI model, SF~31! and
SF~13! in 4H-SiC, as well as SF~42! and SF~24! in 6H-SiC,
have the same SF energies. We will see later that this
property of the ANNI model and only approximately true.

III. THE ab initio SUPERCELL MODEL

The ~Kohn–Sham! band structure and total energies
supercells are calculated using a method based on the
consistent density functional theory. Only a brief summary
the main points is given here; for a more detailed descript
see Ref. 13. A basis set of Gaussian orbitals is used to
scribe the Kohn–Sham wave functions. Suitable multiplic
tive factors provides- andp-, and optionally for each expo
nent,d-orbital symmetries. In order to establish a reasona
balance between speed and reliability for the calculatio
several pseudopotentials and many basis sets were
structed, and tested. Both norm-conserving pseudopoten
based on the Troullier-Martins scheme14 and the Bachelet-
Hamann-Schlu¨ter scheme15 were used. The latter pseudop
tentials were used in the present calculations with the s
averaged local-density approximation. The charge densit
represented by a plane-wave basis in reciprocal space
automatic procedure ensures that the number of shell
real-space lattice vectors used to evaluate the Madelung
ergy is sufficient. We use the Monkhorst-Pack~MP!
scheme16 to sample the band structure. Both the largest
ciprocal lattice vectors of the charge-density Fourier exp
sion, and the mesh ofk points are chosen so that the tot
energy is converged with respect to these parameters. Pr
account is taken of the band structure for the occupancie
each Kohn–Sham level. The states are filled according
Fermi function with a small, finite temperature that is chos
to improve the numerical stability of the self-consisten
procedure. A correction is applied to the total energy to
count for the entropy that this introduces. The forces act
4-3
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
on each atom are given by an analytical formula deriv
from the total energy expression. Structural optimization
minimize the total energy is performed by a conjuga
gradient algorithm. The method is thus a state-of-the
local-density method. We have made no attempts to cor
the value of the Kohn–Sham band gap, which will thus
smaller than the true fundamental band gap.

To model the effects of SF’s in the~0001! glide planes we
are using supercells which coincide with the primitive u
cells in the~0001! plane, but which are elongated relative
the primary unit cell along thec direction. By choosing the
elongation in thec direction sufficiently large, we can avoi
SF-SF interactions. One must note, however, that since
SF contained in the supercell corresponds to a nonprimi
translation in the basal plane@see Eq.~1!# by a part of the
supercell, translational symmetry in all three dimensions
quires that we tilt thec axis to an amount and direction give
by the Burgers vector corresponding to the partial disloca
imagined to have produced the SF. This gives rise to a rh
bohedral~triclinic! supercell, whose lattice constantc8 in the
tilted c direction has the projected lengthc along the hexago-
nal c axis.

When viewed as a hexagonal structure, 3C-SiC has 6 at-
oms in the primitive unit cell, whereas 4H- and 6H-SiC
have 8 and 12 atoms per primitive cell, respectively. In or
to determine the perfect crystalab initio lattice constants~by
total energy minimization!, the perfect crystal atomic pos
tions ~by intrasupercell atomic relaxation! and the J param
eters in the ANNNI model, we have employed superce
containing 24 atoms for all these polytypes, i.e., the sup
cells for 3C-, 4H-, and 6H-SiC consist of 4, 3, and 2
primitive unit cells stacked on top of one another, resp
tively. Our reason for not choosing the smallest possible u
cell in each case, but rather unit cells containing the sa
number of atoms for the three cases, is that it is preferabl
employ the same size of the supercell for all polytypes, si
cancellation of systematic errors are then expected to s
extent when the total energies of different polytypes are co
pared.

In all cases where SF’s have been studied, we have u
rhombohedral supercells containing 96 atoms, i.e., cont
ing, 16, 12, and 8 primitive unit cells for 3C-, 4H-, and
6H-SiC, respectively, stacked on top of one another, mak
the artificial SF-SF interaction negligible. Intrasuperc

TABLE I. Values of calculated and experimental hexagonal
tice constantsa ~basal plane! andc ~orthogonal to the basal plane!
in Å. The value ofc is presented after division by~na!, where n is
the number of bilayers in the unit cell, i.e., n53, 4, and 6 for
3C-, 4H- and 6H-SiC, respectively.

Lattice constant~Å! 3C-SiC 4H-SiC 6H-SiC

a Theory ~present! 3.049 3.044 3.045
Exp. ~Ref. 17! 3.082 3.073 3.080
Exp. ~Ref. 18! 3.08051 3.08129

c/~na! Theory ~present! 0.81650 0.81947 0.81886
Exp. ~Ref. 17! 0.81650 0.81785 0.81804
Exp. ~Ref. 18! 0.81844 0.81781
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FIG. 3. Kohn-Sham band structure for 96 atom supercells for~a!
perfect 6H-SiC, ~b! with SF~42!, ~c! with SF~24!, and ~d! with
SF~3111!. The arrows point at the split-off bands below the condu
tion band caused by the SF.
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atomic relaxations have also been performed in the pres
of SF’s by requiring the vanishing of the Hellmann-Feynm
force on each atom. It was found that such relaxations h
very little influence on the bandstructure, but affect the
energies to some extent.

Since the supercells are extended along thec direction,
the Brillouin zone is practically two dimensional. All Bril
louin zone interactions have been replaced by summat
over six special MPk points16 in the basal plane of the Bril
louin zone.

As a simple and partial illustration of the accuracy of t

FIG. 4. Kohn-Sham band structure for 96 atom supercells for~a!
perfect 3C-SiC and~b! with SF~111!.
15520
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computational method, we compare in Table I experimen
lattice parameters of the perfect crystals with those obtai
with the present method. The theoretical results are in g
agreement with the experimental results.

IV. THE ELECTRONIC STRUCTURE
OF STACKING FAULTS

A. The quantum-well confinement
of the stacking-fault gap states

In Ref. 4 we displayed the 96 atom supercell band str
ture for 4H-SiC with and without SF~31! along the closed
pathG-M-K-G in the Brillouin zone. The band structure fo
SF~13! turns out to be very similar to that for SF~31!. In Fig.
3 we show the corresponding band structures for SF~42!,
SF~24!, and SF~3111! in 6H-SiC, and in Fig. 4 for SF~111!
in 3C-SiC. The important features are~1! the existence of
clearly split-off bands below the conduction band in t
cases SF~31!, SF~13!, SF~42!, and SF~24!, ~2! no clearly
split-off bands below the conduction bands in the ca
SF~3111! and SF~111!, and ~3! no clear effect at the top o
the valence bands in any of the cases. The split-off energ
i.e., the energy difference between the minimum of t
~modified! conduction band and the minimum of the split-o
band, were presented in Ref. 4, but are reproduced in Tab
for convenience, together with other new information th
will be used in the discussion below.

In order to reveal more about the nature of the split-
band below the bottom of the conduction band, we will stu
the wave functions corresponding to various states. To
duce the amount of data, without loosing too much relev
information, we have chosen to plot the function4

f a~z!5E E uCa~x,y,z!u2dxdy, ~4!

wherea denotes ak point in the Brillouin zone~e.g.,a5G or
M!, Ca is the wave function for a certain state~band! at this
k point, and the integration for each value ofz along the
~tilted! c axis is performed in the basal plane within the s
percell. One can think off a(z) as the probability to find an
electron in the given state at a particular value ofz away
ly

d state
d band
n

TABLE II. Electronic structure data for different SF’s in three SiC polytypes.EB is the energy of the
split-off band minimum below the conduction band minimum, with;0 indicating cases where no clear
split-off states are seen,wB , wC , andwV are the localization parameters@w, defined below Eq.~5!# for the
minimum of the split-off band, for the localized band state just below the bottom of the extended ban
at the conduction band minimum, and for the localized band state just above the top of the extende
state at the valence band maximum, respectively.EB,QW and wB,QW are the energy and wave functio
localization parameter obtained using the simple QW model described in the main text.

Polytype Type of SF EB @eV# wB @Å# EB,QW @eV# wB,QW @Å# wC /wV @Å#

3C SF~111! ;0 30/18
4H SF~31! 20.22 7.2 20.24 6.1

SF~13! 20.18 8.6 20.24 6.1 /28
6H SF~42! 20.19 8.0 20.22 6.5

SF~3111! ;0 15/15
SF~24! 20.17 9.5 20.22 6.5 /42
4-5
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
from the SF plane. Alternatively, it describes the project
of the three-dimensional probability distribution onto a
along thec axis. As a further illustration of the degree o
localization, we also consider the truncated normalization
tegral

I a~z!5Ez

f a~z8!dz8, ~5!

where the integration starts at the bottom of the supercell
a measure of the degree of localization we use the distanw
within which I (z) increases from 10 to 90 %. We will refe
to w as the localization parameter, or simply localization.

In Fig. 5 we display these quantities for SF~42! and
SF~24! in 6H-SiC @for SF~31! and SF~13! in 4H-SiC, see
Ref. 4#. The localization parameters (wB) are also collected
in Table II. The results clearly show that SF’s in 4H- and
6H-SiC give rise to localized SF bands in which the electr
has a strongly enhanced probability to be in the immed
vicinity of the SF plane. Of course, in contrast to the case
localized point defect states, this is only a one-dimensio
localization, since an electron in the bound SF state is fre
move along the SF plane with an effective mass correspo
ing to the curvature of the split-off band around the M poi

FIG. 5. The projected probability distribution@Eq. ~4!# ~left-
hand scale! and the truncated normalization integral@Eq. ~5!# ~right-
hand scale!, within a 96 atom supercell, for the split-off band atM
in the case~a! SF~42! and ~b! SF~24! in 6H-SiC. Also shown are
the stacking sequence and the localization~w!.
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The question arises what is causing this strong local
tion. It is well understood that heavily deformed, broken
chemically perturbed bonds around point defects~regarded
as a zero-dimensional defect! can give rise to gap states an
three-dimensional localization of the wave function. Tw
dimensional localization around dislocations~a one-
dimensional defect! and one-dimensional localization in th
vicinity of surfaces~regarded as a two-dimensional defec!
can also be understood in terms of deformed or bro
bonds, but requires interaction between individual sites al
the dislocation line or surface to account for the lower
mensions of the localization. In the case of SF’s, howev
strongly perturbed bonds are not involved in an obvious w
as for a surface, since the crystal retains its perfect struc
~apart from a very small relaxation of the lattice which
irrelevant for this discussion! on either side of the SF plane

In Ref. 4 it was suggested, without quantitative justific
tion, that the one-dimensional localization arises because
split-off states belong to a quantum-well~QW! formed by
the local 3C-like stacking sequence around the SF~see Fig.
2!. This suggestion was based on two facts.~1! The wave
functions for the split-off states are well localized and to
large extent contained in the local 3C-like ~straight! stacking
sequence.~2! The conduction band minimum in 3C-SiC is
well below the conduction band minimum in 4H- or 6H-SiC
~see Table III!.

To investigate whether this interpretation in terms of
thin QW is at all realistic and possibly lend further support
it, we will now estimate the binding energy and wave fun
tion localization using a simple one-dimensional theory
quantum square wells.22 Since the lattice constantc for
4H-SiC, for instance, is close to 10 Å, it seems as a reas
able estimate to assume a quantum-well width of 5 Å~or 4 Å
to make a sensitivity check! @see Fig. 2# for both SF~31! and
SF~13!. Assuming a quantum-well depth of 0.87 eV@i.e., the
conduction band offsetDEC(4H/3C) from Table III#, and
the effective mass 0.3 free electron masses~the effective

TABLE III. Valence and conduction band offset
DEV(nH/3C)5EV(nH)2EV(3C) and DEC(nH/3C)5EC(nH)
2EC(3C), respectively, for interfaces between three different h
agonal SiC polytypes~n52, 4, and 6! and 3C-SiC. The valence
band offsets are determined from the calculated va
DEV(2H/3C)50.13 eV~Refs. 19 and 20! and assuming that they
are proportional to the degree of hexagonality~100% in 2H-, 50%
in 4H-, and 33% in 6H-SiC!, as suggested in Ref. 20. The condu
tion band offsets are obtained using the experimental values~cf., for
instance, Table I in Ref. 21! EG(3C)52.4 eV, EG(2H)53.3 eV,
EG(4H)53.2 eV, andEG(6H)53.0 eV. The valence band offset
are in good agreement with those calculated in Ref. 19. By tak
appropriate differences, the band edge offsets between the hex
nal polytypes can be estimated, neglecting interface-depen
charge rearrangement effects.

SiC interface DEV ~eV! DEC ~eV!

2H/3C 0.13 1.03
4H/3C 0.07 0.87
6H/3C 0.04 0.64
4-6
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STACKING FAULTS IN 3C-, 4H-, AND 6H-SiC . . . PHYSICAL REVIEW B 67, 155204 ~2003!
mass for 3C-SiC in the @111#-direction calculated from the
effective mass components in Ref. 23!, the quantum-well
model results in one bound state with binding energy 0.24
~0.18 eV for a 4 Å quantum well!, having wave~envelope!
function localizationw56.1 Å ~7.0 Å!. In the cases of
SF~42! and SF~24! in 6H-SiC, we have used a QW depth o
0.64 eV ~Table III and a QW width of 7.0 Å~or 6.0 Å to
check the sensitivity!, resulting in one bound state with en
ergy 0.22 eV~0.19 eV! below the conduction band mini
mum, with localizationw'6.5 Å ~w'7.0 Å!. These results
are reproduced in Table II for comparison with the resu
from the supercell calculations. The approximate agreem
suggests that the QW interpretation is indeed realistic,
supports the idea thatthe one-dimensional localization ca
be understood as a quantum-well confinement effect.

Of course, the simple square shape of the quantum
potential used here to interpret the numerical results is c
sen only because of its analytical simplicity. It has be
shown both in Ref. 19 and 20 that a 2H/3C interface induces
a dipole moment in the vicinity of the interface. We therefo
also expect a dipole moment at a 4H/3C ~and 6H/3C) inter-
face, since the dipole moment in principle originates fro
the hexagonal symmetry. The electric field associated w
such a dipole moment can change the electrostatic poten
leading to a potential shape that is different from a sim
square well. But even though this model is simple and cru
both with respect to the shape, the width, and the depth
the quantum well, we think the arguments above do ind
suggest that SF~31! and SF~13! in 4H-SiC, and SF~42! and
SF~24! in 6H-SiC are each associated with a QW of som
shape, and that a QW model offers a helpful and reason
description of the SF results.

B. Cases where the stacking fault acts as a quantum barrier

In Figs. 3 and 4 we saw that SF~3111! and SF~111! do not
give rise to clearly split-off states in the fundamental ba
gap similar to those in the other cases, although in both c
a split-off conduction band appears at the K point, which
the point where 2H-SiC has its conduction band minimum
To analyze the absence of clearly split-off bands in the f
damental band gap in these cases, we first turn to SF~111! in
3C-SiC and observe~Fig. 2! that SF~111! creates a thin
2H-like ~zig zag! sequence consisting of two hexagon
turns ~i.e., two changes of sign in the Ha¨gg sequence! in
neighboring glide planes. From Table III we find that bo
for the conduction band and the valence band electro
SF~111! should act as a quantumbarrier rather than a quan
tum well, with barrier heights estimated to 1.03 and 0.13
respectively. An electron-repulsive barrier acting on the c
duction band electrons is not expected to give rise to bo
states below the conduction band. On the other hand, a q
tum barrier~as with any other repulsive perturbation! acting
on the valence band electrons, could create bound stat
the fundamental band gap originating from the valence ba
From Table III the barrier height is around 0.13 eV, but t
valence electrons will respond to this perturbation in so
way, most likely leading to a rearrangement of the electr
relative to the perfect bulk in such a way that thethin
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2H-like stacking sequence becomes slightly depleted
electronic charge, resulting in a slightly positively charg
SF sheet. This will reduce the barrier height to less than 0
eV. Our results indicate that the resulting perturbation d
not create states clearly split off from the valence band.
low ~Sec. IV C! we will see that this perturbation does n
even seem to create shallow states in the gap.

The situation for SF~3111! in 6H-SiC is similar~see Fig.
2!. In this case, a 2H-like ~zig zag! sequence with four hex
agonal turns surrounded by locally cubic stacking sequen
~two extra turns compared to perfect 6H-SiC! is created. The
geometrical resemblance with the SF in 3C-SiC, which has
two hexagonal turns, is obvious. Furthermore, assuming
the band offsets in Table III approximately also describe
band edge offsets at a 2H/6H junction, we getDEC(2H/
6H)5EC(2H)2EC(6H)'0.4 eV and DEV(2H/6H)
5EV(2H)2EV(6H)'0.1 eV. Thus, both for the conductio
band and the valence band electrons, SF~3111! acts as a
quantumbarrier. Thus, there is not only a geometrical r
semblance with the SF in 3C-SiC, but also a resemblanc
with respect to the height of the energy barriers@but with a
lower conduction band energy barrier for SF~3111! than for
SF~111!#.

C. Polarization-induced localization of near band edge states

In Fig. 6~a! we show the projected probability distributio
f a(z) for the bottom of the conduction band~a5M! in the
case SF~13! ~which is very similar to the one for SF~31!
shown in Ref. 4! together withf a(z) for the top of the va-
lence band~a5G! for the cases SF~13! @Fig. 6~b!# and
SF~31! @Fig. 6~c!# in 4H-SiC. The striking feature here i
that the valence-band-edge probability distribution
SF~13! in Fig. 6~b! has the appearance of a localized state~in
one dimension!, essentially localized around the SF, but wi
a localizationw'28 Å, which is much larger than for the
bound SF~13! state at (EC20.18) eV, for whichw'8.6 Å
~see also Table II!. Furthermore, this localized highest ener
~valence! band state lies very close in energy to the extend
valence band states, with no clear signs of split-off. No sim
lar localization can be seen at the valence band edge
SF~31!. In the remainder of this section we will present som
arguments which we believe explain this and related featu
in the other cases. This explanation is based on the work
ideas presented by Qteishet al.20

Figures 7~a! and 7~b! show schematically themacroscopi-
cally averaged24 crystal potential energy along thec direc-
tion for SF~13! and perfect 4H-SiC, respectively. This mac
roscopic average is defined as an average in slabs orthog
to thec direction, and corresponds to the usual definition
macroscopic quantities in electrostatics~cf. the macroscopic
Maxwell equations!. The construction of the figures is esse
tially based on two ideas, pointed out in Ref. 20. First,
SiC polytypes, except 3C-SiC, have a symmetry where no
all four tetrahedral bonds are equivalent. In Fig. 1~a!, for
instance, the Si-C bonds along thec direction are not related
by symmetry to the three bonds almost lying in the gli
plane. Thus, charge transfer between the nonequiva
4-7
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
bonds may~and does! take place, resulting in a spontaneo
polarization~SP! ~cf. ferroelectric or pyroelectric materials!
along thec direction. The electric dipole moments associa
with the SP are essentially localized around the hexago
turns in the stacking sequence, and are directed opposi
the c direction ~down in Fig. 1!. The electric~polarization!
field from all the dipoles in a plane orthogonal to thec axis
is thus directed along the positivec direction. It is helpful to
think of this situation as similar to a pair of closely spac
oppositely charged plates~cf. a parallel-plate capacitor!

FIG. 6. The projected probability distribution~left-hand scale!
and the truncated normalization integral~right-hand scale!, within a
96 atom supercell, at the bottom of the conduction band at M
SF~13! ~a!, and at the top of the valence band atG for SF~13! ~b!,
and SF~31! ~c! in 4H-SiC. Also shown are the stacking sequen
and the localizationw for localized states.
15520
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around each hexagonal turn and parallel with the basal pl
with the negatively charged plate to the right of the po
tively charged plate in Fig. 7. As is well known, the electr
field is zero outside the capacitor, and exists only betw
the oppositely charged plates. The presence of this ele
field is represented in Figs. 7~a! and 7~b! by the positive
slopes in the averaged potential energy around the hexag
turns. In SiC, the energy barrier associated with each dip
is around 0.04 eV. Since a SP does not exist in 3C-SiC for
symmetry reasons, the dipole moment per unit volume is
good approximation proportional to the degree of hexagon
ity.

Second, to avoid the build-up of a large uncompensa
electric field~voltage! across the crystal, there must exist
depolarization fieldacross the crystal, which is directed o
posite to the polarization field and compensates for the
tential steps associated with the hexagonal turns. Such a
polarization field will arise in a real crystal from th
accumulation of surface charges on the material, from
motion of free carriers in the bulk or from the polarization
dopants.20 In addition, intrinsic screening effects in the pe
fect crystal will also lead to a depolarization field. All thes
effects, except for the accumulation of surface charges, g
rise to a finite screening length, which is the distance from
electrostatic perturbation beyond which the perturbation
screened out. In Fig. 7 it has been assumed that the scree
length is not substantially smaller than the hexagonal lat
constantc in 4H-SiC, because if it were, the maxima of th
potential in Fig. 7~a! would all have essentially the sam
value. The important point to notice now is that due to t
use of a periodic potential, the depolarization field is au
matically introduced into the calculations~since the periodic
potential has the same value on opposite sides of the su
cell!, and is represented in Fig. 7 by the portions of t
averaged potential having negative slopes between the
agonal turns.

Figure 7~c! shows the difference between the averag
potentials in Figs. 7~a! and 7~b!. It can be regarded as th

r

FIG. 7. Schematic illustration of the averaged potential ene
along the stacking direction in the case of~a! SF~13!, ~b! perfect
4H-SiC, and~c! their difference. The hexagonalc axis is directed to
the right, and the rectangular area in~b! indicates half a primitive
unit cell.
4-8
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STACKING FAULTS IN 3C-, 4H-, AND 6H-SiC . . . PHYSICAL REVIEW B 67, 155204 ~2003!
average of a perturbation acting on the perfect crysta
create a potential in the faulted crystals. Since the avera
perturbation is positive, the perturbation itself, i.e., the d
ference in potential energy as a function of the thr
dimensional position vectorrW between crystals with and
without SF~13!, can be considered repulsive as a whole.
argue that, in analogy with point defect physics, this rep
sive perturbation is capable of creating localized band st
just above the top of the~extended! valence band states
Since they are in the gap~but just barely so!, they are local-
ized @Fig. 6~b!#, just like discrete shallow acceptor states
semiconductors. These localized band states, however
completely occupied and cannot act as acceptors.

The absence of similar localized band states in the cas
SF~31! can be explained within the same conceptual fram
work. The averaged potentials in this case are shown in F
8~a! and 8~b!, and as seen in Fig. 8~c!, their difference is
negative, corresponding now instead to an attractive pe
bation. Such a perturbation will not push up states from
valence band and into the band gap, but the highest-en
valence band state should essentially be modified host cr
band state@Fig. 6~c!#. Note that the relative energy position
of the strongly localized sates atEC20.22 eV andEC
20.18 eV is, at least qualitatively, compatible with the d
ference between the potentials in Figs. 8 and 7, and
probably be traced back to this difference. Moreover,
difference in sign between the two perturbation potentials
Figs. 7~c! and 8~c! is a manifestation and another proof of th
inequivalence of the two types of SF’s, SF~31!, and SF~13!.
This inequivalence has to our knowledge not been rec
nized in the literature before, even though it can be infer
from general symmetry considerations alone~Sec. II A!.

The projected probability distributions for the lowest co
duction band state and highest valence band state for SF~111!
in 3C-SiC are shown in Figs. 9~a! and 9~b!. Again, even
though they are very close in energy to the delocalized b
states in their respective bands, they are also surprisi
localized, in particular the valence band state with locali
tion w'18 Å. We also observe that they have most of th
wave functions in the 3C host region outside the thin
2H-like stacking sequence, and, which is perhaps more m
terious, with amplitudes almost exclusively ondifferent sides

FIG. 8. Same as Fig. 7 but for SF~31!.
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of the SF. Next we will explain these features, and again
will consider the effects of SP and the associated depolar
tion field.20

First we observe that a distinct difference between the
in 3C-SiC and those in 4H-SiC is that in the former case tw
extrahexagonal turns are introduced relative to the host cr
tal, whereas in the latter case only theposition of one hex-
agonal turn has changed, without changing the total num
of turns. The conservation of the number of hexagonal tu
is the reason why the averaged perturbation for the SF’
4H-SiC is localized~the perturbation itself exists, of cours
in the whole displaced part of the crystal!. In contrast, the
averaged perturbation for a SF in 3C-SiC ~as well as for
SF~3111! in 6H-SiC, see below! will, except for details
around the hexagonal turns, schematically look similar
that in Fig. 10. Again the portion with the positive slope
due to the dipole moment associated with the hexago
turns ~here indicated by one structureless step!, and the por-
tions with the negative slopes on either side are associ
with the depolarization field. We believe that it is this sha
of the perturbation which is responsible for the wave fun
tion segregation: on the right-hand side of the extra hexa
nal turns the repulsive perturbation pushes up a state f
the valence band and into the gap, making it localized, wh
on the other side the attractive part creates a localized s
just below the conduction band. Thus, it is not the thin v

FIG. 9. The projected probability distribution~left-hand scale!
and the truncated normalization integral~right-hand side!, within a
96 atom supercell, for~a! the bottom of the conduction band and~b!
the top of the valence band in 3C-SiC with a SF.
4-9
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
lence electron quantum barrier~of height less than 0.13 eV in
this case! in itself which creates these states close to the b
edges, but rather the presence of the polarization in the
2H-like slab and the accompanying depolarization field. T
interpretation is supported by our calculations on so-ca
twin boundaries in 3C-SiC,25 which is a 3C crystal contain-
ing one hexagonal turn. In this case we observe a wave fu
tion segregation and localization for the states at the b
edges which is almost identical to that in SF~111!. It should
be noted that these conclusions are of general validity on
twice the screening length is not much larger than the len
of the supercell in thec direction, since otherwise the slop
of the potential from the depolarization field in Fig. 10
affected by the size of the supercell.

Based on the results for 4H- and 3C-SiC, the appearanc
of localized states at the immediate vicinity of the ba
edges for SF’s in 6H-SiC can easily be understood. In Fi
11 we showf a(z) for the bottom of the conduction ban
~a5M! in the case SF~24! @which is very similar to that for
SF~42!#, together withf a(z) for the top of the valence ban
~a5G! for the case SF~24! and SF~42!. From Fig. 2 it is clear
that the situation for SF~24! corresponds to Fig. 7, thus cre
ating similar to SF~13! in 4H-SiC, localized band states jus
above the extended band states at the valence band m
mum @Fig. 11~b!#. Similarly, SF~42! behaves as SF~31! in
4H-SiC in this respect, while SF~3111! introduces two extra
hexagonal turns relative to the host crystal, very similar
SF~111! in 3C-SiC. This resemblance between SF~3111! in
6H-SiC and SF~111! in 3C-SiC is reflected in Fig. 12, which
is very similar to Fig. 9.

The absence and presence, respectively, of a shallow
calized state close to the valence band in the case SF~42! and
SF~24! indicate that there is a difference in their optical a
tivity. If c i denotes the wave function for the strongly loca
ized state below the conduction band minimum andc f the
wave function for the highest state on the other side of
band gap, the probability for an optical transition across
band gap is proportional tou^c i urWuc f&u2. Figures 5 and 11
clearly indicate that this transition probability is much larg
for SF~24! than for SF~42! in 6H-SiC. The corresponding
difference between SF~13! and SF~31! in 4H-SiC is similar.
The localization parameters for the localized near band-e
states are summarized in Table II.

FIG. 10. Schematic illustration of the averaged potential alo
the c axis inside a 3C-SiC supercell caused by the introduction
one or several additional hexagonal turns in neighboring~0001!
planes. For simplicity, the potential associated with the dipole m
ment is indicated with one structureless step. The figure is
applicable to SF~3111! if regarded as a plot of the averaged pote
tial perturbation.
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V. SOME EXPERIMENTAL OBSERVATIONS EXPLAINED
BY SF FORMATION

In Ref. 4 we showed how an observed resistivity anom
in n-type 4H- and 6H- SiC,26 which cannot be reconciled
with the normal bulk anisotropy,27,28 could be explained in
terms of the strongly localized SF bands. We also brie
indicated their relation to the electrical degradation pheno
enon in bipolar devices. Here we will be a little more d
tailed regarding the mechanism leading to degradation.

g

-
o

-

FIG. 11. The projected probability distribution~left-hand scale!
and the truncated normalization integral~right-hand scale!, within a
96 atom supercell, at the bottom of the conduction band at M
SF~24! ~a!, and at the top of the valence band atG for SF~24! ~b!
and SF~42! ~c! in 6H-SiC. Also shown are the stacking sequen
and the localizationw for localized states.
4-10
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STACKING FAULTS IN 3C-, 4H-, AND 6H-SiC . . . PHYSICAL REVIEW B 67, 155204 ~2003!
Even though there are shallow states in the immed
vicinity of the band edges which show clear signs of loc
ization, we argue that the bound SF states in the cle
split-off band in Table II are mainly responsible for the de
radation of bipolar 4H- and 6H-SiC devices. Electrons in
jected into the base region of the pin diode, for instance,
captured by the bound SF states, tending to make this
negatively charged, whereby holes are also attracted to
SF region. This enhanced local concentration of electr
and holes will increase the probability for electron-hole
combination, leading to a reduction of the electron and h
lifetimes, and hinder electrons and holes from moving fre
in the device. This will obstruct the normal build-up of a
electron-hole plasma, and consequently obstruct the no
conductivity modulation, causing an increased voltage d
across the device.

An interesting question is what is causing the expans
of the SF’s. This is not the subject of the present paper, b
could be noticed that apart from stress, which is gener
too low to cause partial dislocation motion around room te
perature in SiC, recombination enhanced dislocat
motion29 is most likely involved.

VI. STACKING FAULT ENERGIES

In crystals where the SF energy is large, perfect dislo
tions tend not to split up into partial dislocations to any a

FIG. 12. The projected probability distribution~left-hand scale!
and the truncated normalization integral~right-hand scale!, within a
96 atom supercell, for~a! the bottom of the conduction band and~b!
the top of the valence band in 6H-SiC containing SF~3111!.
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preciable extent, since the effective pulling force acting
the trailing partial from the leading partial, given byg/b
where b is the length of the Burgers vector, is large. T
existence of SF ribbons in SiC, i.e., the area between
leading and the trailing partial, and thus the developmen
extended SF’s, is a manifestation of the small SF energie
that material. For instance, the SF energy in 6H-SiC is
around 3 mJ/m2 and around 15 mJ/m2 in 4H-SiC,9,10 com-
pared to 280 mJ/m2 in diamond,30 55 mJ/m2 in Si, and 45
mJ/m2 in GaAs ~see Ref. 9!.

The SF energies of SiC calculated in the present work
shown in Table IV, together with experimental results. In t
first-principles supercell method we have calculated the
energies both with and without intrasupercell relaxation. T
meaning of ‘‘without intrasupercell relaxation’’ in Table IV i
that in neither the perfect crystal nor the faulted crystal ha
the atoms been allowed to deviate from their ideal positio
determined bya and c, whereas ‘‘with intrasupercell relax
ation’’ means that the atomic positions for both the perf
and the faulted crystals are fully relaxed~for givena andc!.
From Table IV we see that the effect of intrasupercell rela
ation is less than 2 mJ/m2.

The values for the ANNNI model are based on the f
lowing interlayer interaction parameters obtained using
~3! ~in meV!: J151.9097,J2522.3059,J3520.3959, and
from these parameters one can determine the approximat
energies for the other polytypes.31 As seen in Table IV, the
supercell method and the ANNNI model give very simil
results, except for 3C-SiC. Note that the ANNNI model can
not distinguish between SF~31! and SF~13!, or between SF

TABLE IV. Theoretical and experimental SF energies (mJ/m2)
for three SiC polytypes. ISR means intrasupercell relaxation, an
defined in the main text.

SF energies (mJ/m2) 3C-SiC 4H-SiC 6H-SiC

Supercell method SF I 21.71 17.7 3.10
~without ISR! SF II 18.1 40.1

SF III 3.35
Supercell method SF I 22.70 18.4 1.35
~with ISR! SF II 18.7 38.4

SF III 1.63
ANNNI model SF I 26.27 18.3 3.14

SF II 18.3 36.6
SF III 3.14

Experiment Ref. 9 14.762.5 2.960.6
Ref. 10 2.560.9

TABLE V. Theoretical and experimental SF energies (mJ/m2)
for Si and diamond.

mJ/m2 Without ISR With ISR Experiment

Si 36.0 33.4 50–70~Ref. 33!
C ~diamond! 314 264 279641 ~Ref. 30!
4-11
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LINDEFELT, IWATA, ÖBERG, AND BRIDDON PHYSICAL REVIEW B67, 155204 ~2003!
~42! and SF~24!, since it only concerns normal and twinne
tetrahedra, whereas SF~31! and SF~13!, as well as SF~42!
and SF~24!, are related through an interchange of Si and
atoms. The SF energy of 3C-SiC is negative both with the
supercell method and from the ANNNI model, which is
agreement with theoretical results obtained earlier by Ka¨ckel
et al.32

In order to investigate the accuracy of our computatio
method, we have also calculated the SF energy in Si
diamond including intrasupercell relaxation~Table V!. The
theoretical SF energy of diamond agrees very well with
perimental values, while for Si it is clearly smaller than t
available experimental value. Chouet al.33 and Käckel
et al.32 also calculated the SF energy of Si and obtained v
ues close of ours, namely 33 and 38 mJ/m2, respectively. We
pl
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have not been able to find the reasons for the apparent
derestimations of the SF energy for Si relative to expe
ments.

A striking feature in Table IV is that in 6H-SiC, SF~3111!
has a considerably larger SF energy than the other two ty
Unless there is a preference as to in which glide plane pa
dislocations are nucleated, this type of SF should be r
tively rare compared to the other two types.
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