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Temperature-dependent magnetization in diluted magnetic semiconductors

S. Das Sarma, E. H. Hwang, and A. Kaminski
Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 24 November 2002; published 1 April 2003!

We calculate magnetization in magnetically doped semiconductors assuming a local exchange model of
carrier-mediated ferromagnetic mechanism and using a number of complementary theoretical approaches. In
general, we find that the results of our mean-field calculations, particularly the dynamical mean-field theory
results, give excellent qualitative agreement with the experimentally observed magnetization in systems with
itinerant charge carriers, such as Ga12xMnxAs with 0.03,x,0.07, whereas our percolation-theory-based
calculations agree well with the existing data in strongly insulating materials, such as Ge12xMnx . We comment
on the issue of non-mean-field like magnetization curves and on the observed incomplete saturation magneti-
zation values in diluted magnetic semiconductors from our theoretical perspective. In agreement with experi-
mental observations, we find the carrier density to be the crucial parameter determining the magnetization
behavior. Our calculated dependence of magnetization on external magnetic field is also in excellent agreement
with the existing experimental data.
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I. INTRODUCTION

Diluted magnetic semiconductors~sometimes also re
ferred to as doped magnetic semiconductors—we will
the abbreviation ‘‘DMS’’ to denote both of these equivale
terminologies! have recently attracted a great deal
attention1,2 for their potential in combining ferromagneti
and semiconductor properties in a single material. The p
totypical DMS material is Ga12xMnxAs ~Ref. 3! ~typically
x'1 –10%) with the Mn ions substitutionally~in the ideal
situation! replacing Ga at the cation sites. Mn ions
Ga12xMnxAs serve a dual purpose, acting both as dopa
~acceptors in this case! and as magnetic impurities, whos
spins align at the ferromagnetic transition. Forx'127%,
Ga12xMnxAs is found to be ferromagnetic with the ferro
magnetic transition temperature~or, equivalently, the Curie
temperature! Tc'102100 K. The optimum value ofx,
which corresponds to the highest value of reported value
Tc , is around 5%. Other DMS materials of current inter
include In12xMnxAs,4 Ga12xMnxP,5 Ge12xMnx ,6 and
Ga12xMnxSb.7

In spite of a great deal of recent experimental and th
retical activity,1,2 there is not yet a consensus on the fund
mental mechanism leading to ferromagnetism in these
tems as well as on the definitive predictive theo
quantitatively describing this ferromagnetic mechanism. It
therefore, important to work out detailed and experimenta
falsifiable consequences for various proposed theore
models and ideas. In this context, it is unfortunate that m
of the theoretical DMS literature, perhaps due to the con
erable technological motivation in creating room
temperature ferromagnetic semiconductors for projec
spintronics applications, has concentrated on the calculat
of Tc in various DMS materials. Such theoretical predictio
of Tc invariably involve tuning free parameters~e.g., the
strength of the exchange coupling between carriers and l
moments!, whose values are often unknowna priori. This
significantly reduces the practical importance of these p
dictions except perhaps in the broadest qualitative sens
0163-1829/2003/67~15!/155201~16!/$20.00 67 1552
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identifying the crucial controlling parameters that determ
and limit Tc in DMS materials. On the other hand, the tem
perature dependenceM (T) of the spontaneous magnetizatio
possesses many characteristics, such as concavity/conv
of the curve, value of saturation magnetization, critical b
havior at the point of ferromagnetic transition, etc., whi
cannot all be described by just tuning parameters of a gi
model. Thus study ofM (T) has a very high potential fo
elucidating the physics behind DMS ferromagnetism in r
systems.

A particular issue of considerable significance in DM
ferromagnetism has been the non-trivial non-mean-field-
behavior of the spontaneous magnetization as a functio
temperature. This was already apparent in the very first
ported observation4 of DMS ferromagnetism in a
III 12xMnxV material, namely, In12xMnxAs, where the ex-
perimental M (T) curve exhibited an untypical outwardl
concave shape strikingly different from the usual conv
M (T) behavior expected within the textbook Weiss mea
field theory8 and seen routinely in conventional ferroma
netic materials. The In12xMnxAs ~with x50.013) system
studied in Ref. 4 was an insulating system~i.e., with resis-
tivity increasing monotonically with decreasing temper
ture!, and the insulating ferromagnetic DMS systems stud
so far in the literature almost always exhibit qualitative
similar non-mean-field-like concaveM (T) behavior.6

Two of us have recently shown9 that such a manifestly
non-mean-field-like concaveM (T) behavior in insulating
DMS materials can be understood on the basis of a magn
percolation transition of bound magnetic polarons in t
strongly localized carrier system. Earlier numeric
simulations10,11 in the strongly localized regime had alread
indicated that theM (T) behavior of DMS ferromagnets
could have concave outward shapes as seen experimen
Very recent numerical simulations12 in the strongly localized
regime have verified our polaron percolation picture of DM
ferromagnetism in the insulating regime.

Even in the ‘‘metallic’’ ~i.e., with resistivity decreasing
with T below the ferromagnetic transition temperature! DMS
©2003 The American Physical Society01-1
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systems,1,3,13–20 such as optimally doped Ga0.95Mn0.05As,
where long-range magnetic ordering of the Mn magnetic m
ments is created presumably by a dilute gas of delocal
holes mediating the magnetic interaction, the experiment
observedM (T) often appears to be very different from th
classic mean-field shape.8 Although the metallic
Ga12xMnxAs DMS system does not exhibit the manifes
concave temperature-dependent magnetization seen in
lating DMS systems, the observedM (T) in metallic DMS is
often1,3,13–20 almost linear in temperature for 0.5Tc&T
,Tc , with a temperature-dependent behavior intermed
between the concaveM (T) shapes of the localized theory9

and the textbook convex magnetization curves.8

We mention that very recent annealing experiments13–20

in Ga12xMnxAs ~with x50.0520.10) demonstrate tha
M (T) behavior~as well as the value ofTc) can be strongly
affected by annealing, and particularly, ‘‘optimal’’ annealin
~to be found empirically for each sample purely by trial a
error since the precise role of annealing in improving
materials quality is unknown at this stage! may lead to rea-
sonably mean-field-like convexM (T) shape with a concomi
tant enhancement ofTc . Nonoptimal annealing, on the othe
hand, leads to suppression ofTc and strongly non-mean
field-like ~and nonuniversal! M (T) behavior.

Finally, most of DMS magnetization measurements in
literature, particularly for the insulating DMS systems, sh
a saturation magnetization~for B50) considerably smalle
in magnitude than that expected from the full ordering of
the magnetic ions, indicating that a large fraction~sometimes
as much as 90%! of the magnetic ions do not contribute
the global DMS ferromagnetism.

Motivated by the desire for illuminating the physic
mechanisms underlying DMS ferromagnetism, we theor
cally consider in this paper the temperature-dependent m
netizationM (T) in three-dimensional DMS systems using
number of complementary theoretical approaches. The ca
lations we present here are based on the static~Weiss! mo-
lecular mean-field theory,21 the dynamical mean-field theor
~DMFT!,22 and the percolation theory.23 Of particular interest
is the important issue of correlations between magnetic
transport properties of various DMS materials since s
correlations should~and do! exist in magnetic systems
where the ferromagnetism is mediated by carriers leadin
the global ordering of the dopant local moments. While e
lier studies invariably concentrated on either localized-car
~‘‘insulating’’ ! and itinerant-carrier~metallic! material, we
consider both these regimes as well as the crossover bet
them. We provide detailed numerical results for our cal
lated magnetizationM (T,B), whereB is the applied externa
magnetic field andT is the temperature, in various regimes
the system parameter space. TheseM (T,B) results should
help ascertain the applicability of various theoretical mod
to specific experimental DMS materials of current interes

This paper is organized as follows. In Sec. II, we descr
our model and our theoretical approaches based on the W
mean-field theory, DMFT, and the percolation theory, a
present our numerical results forM (T,B) in each of the
theoretical approaches, providing brief discussion of our
sults in light of the existing experimental data in the liter
15520
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ture. We conclude in Sec. III, summarizing our qualitati
findings and providing a critical perspective on what o
theoretical results on magnetization imply for the micr
scopic mechanisms underlying DMS ferromagnetism w
the particular emphasis on the correlations between trans
characteristics~metallic or insulating! and M (T) behavior
~convex, concave, or ‘‘linear’’!.

II. MODEL, THEORY, AND RESULTS

A. The model

We assume in this work that the fundamental mechan
underlying ferromagnetism in DMS materials~e.g.,
III 12xMnxV, Ge12xMnx) is the carrier—local-moment~ki-
netic orp-d) exchange coupling, which eventually leads to
global ferromagnetic ordering of the impurity local momen
~i.e., Mn! for T,Tc overcoming any direct antiferromagnet
~superexchange! interaction between the local moment spi
themselves. This is certainly the prevalent viewpoint
DMS ferromagnetism, at least for Ga12xMnxAs system fol-
lowing the pioneering work of Ohno and his co-workers. It
natural to ask about the evidence for this belief in carri
mediated DMS ferromagnetism induced in the Mn local m
ments. First-principles band theory calculations indicate t
there is strongp-d hybridization between the Mnd levels
and the valence-bandp states of GaAs. This leads to stron
kinetic exchange coupling between hole spins and Mn sp
which is the basis of our model. Experimentally, there ar
number of compelling circumstantial indications
Ga12xMnxAs being a carrier-mediated ferromagnetic ma
rial. First, there is a strong correlation~made even stronge
by the recent annealing experiments! between transport and
magnetic properties. This, however, is not definitively co
clusive since strongly insulating Ga12xMnxAs ~and
In12xMnxAs) samples are also found to be ferromagne
~albeit with much lowerTc values!. Perhaps the most com
pelling evidence supporting the carrier-mediated ferrom
netic mechanism, is the observed agreement~so far available
only in Ga12xMnxAs DMS systems! between the magnetiza
tion measured directly using a SQUID magnetometer a
that inferred by analyzing the anomalous Hall-effect da
Such an consistency between direct and ‘‘transport-inferr
magnetization strongly suggests a carrier-mediated excha
mechanism underlying DMS ferromagnetism. In additio
there are a number of experiments dealing with optical pr
erties~again, available only for Ga12xMnxAs so far! which
indicate very strong correlation between the magnetic b
structure and the magnetization of the system, leading a
to the condition that the global ferromagnetic ordering of t
Mn local moments is most likely induced by the hole sp
polarization in DMS systems. The related issue of whet
these carriers are valence-band holes or impurity band h
is more difficult to settle. Given the strong inherent disord
in DMS materials and rather strong exchange coupling
tween hole and Mn spins~leading to local binding of holes
and Mn ions!, it is natural to think that all of the physic
~both localized and delocalized! are essentially impurity
band physics. This viewpoint, which we have adopted in
theories presented in this paper, has received strong sup
from recent optical experiments. Also our DMFT results,
presented in Sec. II C, clearly demonstrate the important
of impurity band physics in DMS magnetic propertie
1-2
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TEMPERATURE-DEPENDENT MAGNETIZATION IN . . . PHYSICAL REVIEW B67, 155201 ~2003!
Since the most intensively studied DMS materials
current interest are Mn-doped III-V semiconducto
III 12xMnxV ~e. g., Ga12xMnxAs, In12xMnxAs, Ga12xMnxP,
Ga12xMnxN, and Ga12xMnxSb), where the carriers are typ
cally holes, we will other refer to the semiconductor carrie
as ‘‘holes’’ in the rest of the paper without any loss
generality.

So our basic model is that of a finite densityni of mag-
netic dopants~‘‘impurities’’ ! interacting through a local ex
change coupling with a finite densitync of holes in the host
semiconductor material withnc /ni!1. We assume that mag
netic impurities under consideration enter substitutionally
the cation sites~e.g., Mn impurities at Ga sites!. Recent ex-
perimental annealing studies of Ga12xMnxAs have
shown13–19 that lattice defects may be playing an importa
role in determining magnetic and transport properties of
samples, but we assume in our work that these defects e
our theory only in determining the basic parameters of
model, namely, the density of magnetically active dopa
ni , the hole densitync , and perhaps the local effective e
change couplingJ between the holes and the magnetic i
purities, and do not include any defects into our model
plicitly. Examples of such defects, which enter our mod
through its parameters rather than directly, are given by
tisite defects in the host semiconductor material~i.e., As at
Ga sites in GaAs! and Mn interstitials~i.e., Mn atoms at
interstitial sites rather than cation substitutional sites!, which
may very well be important in providing substantial compe
sation in the semiconductor, leading to the experimental
that the hole densitync is usually a small fraction of the
magnetic dopant density instead of there being a one-to
correspondence between dopants and holes. The lo
moment densityni in our model is not necessarily the tot
Mn concentration in the system, since the presence of
interstitial defects could lower the density of magnetica
active Mn ions. In this work, we useni to denote local-
moment volume density andx to denote the fraction of Ga
atoms replaced by Mn dopants.

Similarly, consistent with the spirit of our minimal mode
we also neglect all band structure effects in our theory, m
ing the simplest approximation such as a single parab
band with a single effective mass or a single simple tig
binding carrier band characterized by an effective band w
parameter. This is not because realistic band-structure ef
are not of any importance in DMS ferromagnetism, in fa
we believe that spin-orbit coupling in Ga12xMnxAs valence-
band hole states may play a quantitative role in Ga12xMnxAs
ferromagnetism, particularly in the relatively disorder-fr
metallic (x'0.05) systems where the holes are likely to
GaAs valence-band hole states with strong spin-orbit c
pling. Our reasons for neglecting spin-orbit coupling a
other band-structure effects in our theory are the followi
~1! our interest in this paper is in theoretically explorin
M (T,B) within a minimal model, which requires onlyni ,
nc , andJ, leaving out all nonessential complications;~2! if
needed, band-structure effects can be systematically inclu
in the future by appropriately extending the model;~3! due to
the inevitable presence of strong exchange coupling
strong disorder in DMS materials, a starting point based
15520
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perfect ‘‘realistic’’ valence-band hole states may
inapplicable—in fact, we believe that much of the DM
physics is occurring in the impurity band of the host sem
conductor with the itinerant and the localized carriers be
the extended and the localized hole states in the impu
band of the system and not the valence-band states, a
point strongly supported by several recent experimen
results.24–27

The Hamiltonian of exchange interaction between m
netic impurities and holes, we use in this paper, reads

HM5E d3r(
j

Ja0
3@Sj•s~r !#d~r2Rj ![(

j
Ja0

3@Sj•s~Rj !#,

~1!

whereJ, which has units of energy, is the exchange coupl
between an impurity spinsSj located atRj and a hole spin
densitys(r ), anda0

3 is the unit cell volume needed for prope
normalization. The impurity spinS in Eq. ~1! is assumed to
be completely classical in the theory whereas the carrier s
s is treated quantum mechanically. This is justified beca
the impurity spin is large, e.g.,S55/2 for Mn in
Ga12xMnxAs.

Our model ~except for the mean-field theory conside
ations of Sec. II B! omits the direct Mn-Mn antiferromag
netic exchange interaction, assuming its effects to be ei
negligibly small or incorporated into the effective paramet
of the model. Actually, in the parameter range of interest
us (x!1), where DMS ferromagnetism typically occurs, th
magnetic impurities are separated from each other by
magnetic atoms, and this antiferromagnetic interacti
which rapidly decays with the distance, should be negligib
We also ignore any specific hole-hole interaction effect
our theory. These approximations are nonessential and
done in the spirit of identifying the minimal DMS magnet
model of interest. Both of these effects, which may be
quantitative importance in some situations, can be inclu
in the theory by adjusting the parameters of the model,
perhaps at the cost of introducing more unknown parame
characterizing these interactions. The possible effects of
cluding these interactions in our calculations will be d
cussed later in the paper.

With this introduction, the full Hamiltonian is given by

H5E d3r(
a

ca
†~r !F2

¹2

2m
1V~r !Gca~r !

1(
j
E d3r F(

a
W~r2Rj !ca

†~r !ca~r !

1(
ab

Ja0
3~Sj•sab!d~r2Rj !ca

†~r !cb~r !G
1(

j
gimB~Sj•B!

1E d3r(
ab

gcmBca
†~r !cb~r !~sab•B!, ~2!

where first term is the ‘‘band’’ Hamiltonian, withm being the
relevant effective mass,V(r ) is the random potential arising
1-3
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from ~nonmagnetic! disorder,W(r2Ri) is the Coulomb po-
tential due to a magnetic impurity located atRi , and the
second term is the local exchange coupling between the
ments of magnetic impurities and the carrier spins@i.e., pre-
cisely theHM defined by Eq.~1!#. For the Pauli matrices, we
use the notationsab[(sab

x ,sab
y ,sab

z ) with a andb being
the spin indices and (sab•a)[axsab

x 1aysab
y 1azsab

z for
any vectora. The last two terms in Eq.~2! are simply the
Zeeman energies of the local moments and the holes, res
tively, gi and gc are the correspondingg factors,mB is the
Bohr magneton, andB is the external magnetic field.

The local exchange coupling can be ferromagneticJ
,0) or antiferromagnetic (J.0), without affecting DMS
ferromagnetism@first-principles band theory28–30 suggests
local antiferromagnetic coupling (J.0) for the holes in
Ga12xMnxAs]. Finally, we mention that the magnetic inte
action Hamiltonian, defined by Eq.~1!, is sometimes referred
to as thes-d ~or s-f ) exchange Hamiltonian31 or the Zener
model32 in the literature although it was originall
introduced33 by Nabarro and Fro¨hlich in a slightly different
context. The physics, we are interested in, is how the lo
exchange interaction defined in Eqs.~1! and~2! could lead to
global ferromagnetic ordering of the impurity local momen
below a Curie temperatureTc . We mention that we choos
S55/2 ands51/2 in all our numerical calculations below.

Unfortunately, none of the parametersJ, nc , andni of our
model is directly experimentally measurable. This is why
have emphasized, throughout this work, qualitative beha
in temperature-dependent magnetization as a function of
system parameters. The carrier densitync is hard to measure
even in metallic ferromagnetic materials because of the p
lems associated with anomalous Hall effect~and the situation
is obviously worse in strongly insulting systems!. The local-
moment densityni is unknown because only a fraction of th
incorporated Mn atoms are magnetically active due to
invariable presence of Mn interstitials and other possible
fects in the system. What is known about Ga12xMnxAs is
that it is a heavily compensated system in the sense tha
density of holes, is much less than the density of Mn, ty
cally nc /ni;0.1. Much of this compensation most like
arises from various defects invariably present in lo
temperature molecular beam epitaxy grown Ga12xMnxAs.
The two most ‘‘harmful’’ defects in this respect are Mn in
terstitials and As antisites. Both of these defects act as e
tive double donors, producing two electrons each. Thus
holes produced by the magnetically and electrically act
‘‘desirable’’ Mn21 ions ~sitting at substitutional cation sites!,
with each substitutional Mn ion producing one hole, could
heavily compensated by the defects leading to the exis
situation in Ga12xMnxAs, wherenc /ni!1.

All aspects of Kondo physics are completely negligib
for the current problem. Kondo physics is relevant only
the complementary regime of high carrier density (nc /ni
@1), where a paramagnetic carrier ground state entail
the impurity spin is quenched by the free carriers. For it
erant delocalized carriers~i.e., metallic DMS!, the indirect
exchange coupling between the local moments~induced by
carrier spin polarization! is precisely the Rudermann-Kitte
15520
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Kasuya-Yosida~RKKY ! interaction. The relevance~or per-
haps even, the dominance! of RKKY physics ~leading to a
magnetic ground state! over the Kondo physics in the low
carrier density limit of the Kondo lattice system has occ
sionally been mentioned in the Kondo-effect literature.34

The crucial element of RKKY physics, playing a key ro
in DMS ferromagnetism, is the relatively low values of ca
rier density in these materials leading tokFA3 ni!1 ~wherekF
is the Fermi wavevector associated with the carrier den
nc andA3 ni is the characteristic interimpurity separation! so
that the RKKY interaction is essentially always ferroma
netic, and the RKKY spin-glass-type behavior predomin
in disordered magnetic metallic systems may not arise h
since the interaction is mostly ferromagnetic avoiding effe
of frustration.

In principle, one could start from the general Hamiltoni
~2!, and try to develop a theory for carrier localization a
magnetism on an equal footing. Such an ambitious atte
would be essentially futile, due to the enormous complex
of the problem, which would require both disorder and e
change interaction to be treated nonperturbatively. We, th
fore, adopt the reasonable empirical approach of build
into our basic model the metallic~itinerant carriers! or the
insulating ~localized carriers! nature of the system, and de
velop separate complementary theoretical approaches fo
two situations in order to compare and contrast the natur
DMS ferromagnetism in metallic and insulating system
both with the local exchange magnetic Hamiltonian~1! cou-
pling the impurity moments to carrier spins.

We use complementary theoretical approach
@degenerate- and nondegenerate-carrier Weiss static m
field theory, dynamical mean-field theory, and percolat
theory# in this paper; two of which apply to the limiting
cases of extended metallic system~degenerate-carrier mean
field theory and DMFT! and the other two to the strongl
localized insulating system~nondegenerate-carrier mea
field theory and percolation theory!. In principle, DMFT can
interpolate smoothly between the systems with extended
localized carriers, but we have neglected localization effe
in our DMFT calculations carried out so far. Our results f
temperature- and magnetic-field-dependent magnetiza
M (T,B) exhibit qualitative behavior very similar to that see
in experiments which, given the minimal nature of our th
oretical model, is all we can expect of the theory. In o
view, at this early stage of the development of DMS mate
als and their physical understanding~and given the meta-
stable and fragile complex nature of the DMS system!,
where all the materials details~e.g., defects and disorder o
many possible types! qualitatively affecting the system mag
netization may not even be known at the present time, i
premature to demand~or impose, for example, by tuning th
parameters of the theoretical model! quantitative agreemen
between theory and experiment. In this respect, we stron
disagree with the statements asserting that DMS ferrom
netism is a well-understood problem based on a mode
free valence-band holes interacting with Mn local momen
The excellent qualitative agreement between our calcula
magnetization results in different theoretical approaches
the experimental magnetization data in the existing literat
1-4
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TEMPERATURE-DEPENDENT MAGNETIZATION IN . . . PHYSICAL REVIEW B67, 155201 ~2003!
provides useful insight into the possible magnetic mec
nisms underlying metallic and insulating DMS systems.

B. The Static Mean-Field Theory

The basic idea underlying the static mean-field theory
applied to ferromagnetism in DMS, is to represent action
all impurity/hole spins upon a given impurity/hole spin as
effective ‘‘mean field,’’ whose value is determined by th
average values of the spins acting upon this given spin.
resulting equations for the spins of impurities and holes
to be solved self-consistently, finally, yielding the equili
rium magnetization at a given temperature.

The difference between the mean-field theory, conside
in this section, and the canonical Weiss mean-field mo
arises from the existence of two interacting species of sp
those of holes and of impurities in a DMS system. As
result, we have two effective fields—one determined by
average value of a hole spin and the other determined by
average value of an impurity spin. In the framework
Hamiltonian ~2!, the effective field acting upon holes ha
contributions coming from magnetic impurities and from t
external magnetic fieldB,

Beff
(c)5

1

gcmB
~Ja0

3ni^Sz&!1B, ~3!

where the direction of thez axis is chosen to coincide with
the direction of applied magnetic fieldB, or, in the case of
B50, with the direction of spontaneous magnetization
impurities. The effective field acting upon impurities is
sum of contributions from holes and the external magn
field. Relative simplicity of the static mean-field theory a
lows us to account also for possible direct antiferromagn
interaction between magnetic impurities by adding the f
lowing term to the Hamiltonian:

HAF5(
jk

Jjk
AF~Sj•Sk!, ~4!

which yields one more contribution to the effective field a
ing upon magnetic impurities,

Beff
(i)5

1

gimB
~zAFJAF^Sz&1Ja0

3nc^sz&!1B, ~5!

wherezAF is the effective number of surrounding impuritie
a given impurity interacts with.

The response of the impurity spin to this effective fie
Beff

(i) is given by

^Sz&5SBSS gimBBeff
(i)

kBT D , ~6!

where

Bs~x![
2s11

2s
coth

2s11

2s
x2

1

2s
coth

1

2s
x ~7!

is the Brillouin function. The magnetic response of ho
spins to effective fieldBeff

(c) produced by impurities strongly
15520
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depends on whether the hole gas is degenerate or not.
two complementary cases of nondegenerate and degen
holes will be considered below in Secs. II B 1 and II B
respectively. We mention that the nondegenerate~degener-
ate! situation applies primarily to the insulating~metallic!
DMS systems.

1. Nondegenerate holes

The case of nondegenerate holes, when the hole spin
tribution is not affected by the Pauli exclusion principle, co
responds to two physical situations. The first one occ
when the holes are localized with strong on-site repulsion
there is only one hole at each localization center. This s
nario is relevant to DMS with localized carriers, which w
also be considered in Sec. II D using the percolation the
The second situation takes place in a gas of delocalized h
when the temperature is higher than the Fermi energy.

When the Pauli exclusion principle plays no role in t
spin distribution of electrons, the latter is determined
Boltzmann statistics, and the average hole spin, as de
mined by the effective mean-fieldBeff

(c) , is given by

^sz&5sBsS gcmBBeff
(c)

kBT D , ~8!

similarly to Eq.~6!, with gc being the holeg factor.
Combining Eqs.~3!, ~5!, ~6!, and ~8!, we obtain the fol-

lowing self-consistent equation for^Sz&:

^Sz&
S

5BSF23
Tc0

T
Anc

ni
A sS

~s11!~S11!

3BsS 23
Tc0

T
Ani

nc
A sS

~s11!~S11!

^Sz&
S

1
gcmBB

kBT D 1
6ST1

~S11!T

^Sz&
S

2
gimBB

kBT G , ~9!

where

kBTc05 1
3 Ja0

3AncniAS~S11!s~s11!, ~10!

kBT15 1
6 S~S11!zAFJAF, ~11!

and J is assumed to be negative~antiferromagnetic interac
tion between impurities and holes!. Similarly to the text-
book mean-field theory, Eq.~9! has a nontrivial solution in
the absence of the external magnetic field only if tempera
T is below a certain value, which is the ferromagnetic tra
sition temperatureTc . Using the expansion for the Brillouin
function

Bs~x!ux!1'
s11

3s
x1O~x3!, ~12!

we arrive at the following expression:

Tc
(n)5ATc0

2 1T1
22T1 . ~13!

In the absence of antiferromagnetic interaction betwe
the impurities,T150 so the ferromagnetic transition tem
1-5
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perature equalsTc0. Equation~9! in the absence of the ex
ternal magnetic field and atJAF50 reduces to

^Sz&
S

5BSF3
Tc0

T
Anc

ni
A sS

~s11!~S11!

3BsS 3
Tc0

T
Ani

nc
A sS

~s11!~S11!

^Sz&
S D G , ~14!

the average hole spin is still given by Eqs.~8! and ~3! with
B50. The solution of Eq.~14! can be found numerically
The resulting magnetization curves for impurities and ho
for several values ofnc /ni are shown in Fig. 1. Note tha
specific values ofJ, ni , and nc are not of any relevance
here—only the rationc /ni is the important tuning paramete
in determining magnetization as a function ofT/Tc . The
most important salient feature of Fig. 1 is the highly ‘‘no
mean-field-like’’ concave magnetization behavior for lo
values (<0.2) ofnc /ni . The reason for such behavior is th
if we have one hole per many impurities, the effective fie
Beff

(c) acting on holes is much stronger than its counterpartBeff
(i)

acting on impurities. As a result, the hole magnetizat
grows as

^sz&
s

;ATc0
(n)2T

T

for T&Tc0 and reaches unity at some temperature of
order ofTc0, while the impurity magnetization is still muc
less than unity. As the temperature is getting lower, the
purity magnetization grows as

^Sz&
S

'BSS 3
Tc0

(n)

T
Anc

ni
A sS

~s11!~S11!
D

and approaches unity only at

FIG. 1. ~a! Dopant magnetizationM /M0[^Sz&/S and ~b! hole
magnetizationm/m0[^sz&/s with S55/2 and s51/2 from the
nondegenerate-hole model for various values of density r
(nc /ni51.0,0.5,0.2,0.1,0.05).
15520
s

n

e

-

T;Tc0
(n)Anc

ni
!Tc0

(n) .

Finite antiferromagnetic couplingJAF suppressesTc , as
one can easily see from Eq.~13!. In Fig. 2, we show the
dopant magnetization, as given by the~numerical! solution
of Eq. ~9! for B50, for various values ofT1 /Tc0 for two
typical values ofnc /ni50.5 and 0.1.

In discussing the results shown in Fig. 2, we first note t
the actual direct Mn-Mn antiferromagnetic couplingJAF is
expected to be very small in Ga12xMnxAs for low values of
x, i.e., for relatively large Mn-Mn separation, since the dire
antiferromagnetic coupling falls off exponentially with inte
atomic distance. For larger values ofx, however, effects of
antiferromagnetic Mn-Mn coupling may very well be impo
tant in determining the DMS magnetic behavior. In gene
finite JAF suppresses bothTc andM (T) as one would expect
In particular, the zero-temperature magnetizationM (T→0)
could be strongly suppressed far below the saturation m
netization by the finite antiferromagnetic coupling, partic
larly for lower hole densities,

^Sz&
S

uT→05minH 1,
1

2

Tc0
(n)

T1
Anc

ni
AS11

S

s

s11J . ~15!

An interesting feature of Fig. 2 is that at low carrier de
sities, larger values ofJAF may actually restore~albeit with
strongly suppressed value of saturation magnetization! the
convexM (T) shape@e.g., thezAFuJAFu/J55.031023 curve
for nc /ni50.1 in Fig. 2~b!#. For higher hole densities, how
ever,M (T) becomes more concave forJAFÞ0.

The magnetic susceptibility of the system is essentia
that of impurities~sincenc /ni!1 andS.s), and above the
critical temperature is given by

io
FIG. 2. Dopant magnetization with bothJAF and J from the

nondegenerate-hole model withS55/2 ands51/2 for various val-
ues of coupling constant ratio (zAFJAF/J50.0,0.5,1.0,2.5, and 5.0
31023, from the top! ~a! for density ratiosnc /ni50.5 and ~b!
nc /ni50.1.
1-6
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x~T![ni

]~gimB^Sz&!

]B
5

x01
~Tc0

(n)!2

T2Ja0
3

gigcmB
2

S 12
Tc

(n)

T D S 11
T*

T D , ~16!

where T* [T11AT1
21Tc0

2 , and x05ni(gimB)2S(S11)/3T
is the paramagnetic susceptibility of bare impurities.

Finally, we show in Fig. 3 the effect of an external ma
netic field, by showingM (T,B) for fixed parameter value
J,S,s, and for various values of density rationc /ni . In the
main figure we showM (T,B) as a function of temperatur
for a magnetic field value,B52.6T ~solid lines!, and in the
inset we showM (T,B) as a function of the external mag
netic field for different temperatures. In inset we sho
M (B,Tc)}B1/3, as expected in the mean-field theory.

2. Degenerate hole gas

For metallic DMS systems, where ferromagneticTc is
optimum ~at least for Ga12xMnxAs), the carrier system is
typically delocalized, with the Fermi energy substantially e
ceeding the ferromagnetic transition temperature. In s
systems, the formalism of Sec. II B 1, developed for t
nondegenerate-hole system is not applicable anymore,
we have to use the generic expression

^sz&
s

5
1

nc

1

2E d« f ~e!@D~«1gcmBsBeff
(c)!

2D~«2gcmBsBeff
(c)!# ~17!

for the hole polarization, whereD(«) is the hole density of
states.

FIG. 3. External magnetic field and temperature dependenc
dopant magnetization for the nondegenerate-hole model for var
values of density ratio (nc /ni51.0,0.5,0.2,0.1,0.05, from the top!.
Solid ~dashed! lines indicate the results for a fixed external ma
netic fieldB52.6T (0T). The parameters of Fig. 1 are used. In t
inset, the magnetization curves as a function of magnetic field
given for fixed temperatures (T50.95, 1.0, and 1.05Tc , from the
top!. Solid ~dashed! lines represent the results fornc /ni51.0
(nc /ni50.1).
15520
-
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If the effective fieldBeff
(c) acting on carriers is weak, we

can expand the density of states up to the first order in
effective field to obtain

^sz&
s

5
1

nc
gcmBsBeff

(c)E d« f ~e!D8~«!. ~18!

For very low temperatures,kBT!EF ~in general, this condi-
tion is satisfied in metallic Ga12xMnxAs systems, where
typically kBTc /EF,0.1 noting that bothTc andEF decrease
with lowering the hole densitync), we get

^sz&
s

5
1

nc
gcmBsBeff

(c)D8~EF!. ~19!

Linearizing Eq.~6! and using Eqs.~3! and ~5!, we arrive at

Tc
(d)5Tc0

(d)22T1 , ~20!

where

Tc0
(d)5

S~S11!

3
s2~Ja0

3!2D~EF!ni ~21!

andT1 is given by Eq.~11!.
In the absence of antiferromagnetic interaction betwe

magnetic impurities,JAF50, the ferromagnetic transition
temperature equalsTc0. As one can see from Eq.~21!, Tc0

}J2nc
1/3 in the Weiss mean-field theory for degenerate ho

@sinceD(EF)}nc
1/3 for a three-dimensional degenerate ele

tron gas#, in contrast to the nondegenerate case considere
Sec. II B 1, whereTc0}Jnc

1/2.
When the hole density is very small, the hole Fermi e

ergyEF may be comparable to the effective magnetic ene
gcmBsBeff

(c) . In this case, we can not expand Eq.~17! with
respect to the effective fieldBeff

(c) , and the hole magnetizatio
must be obtained by directly integrating Eq.~17!.

Before presenting our numerical results for the calcula
temperature-dependent DMS magnetization for
degenerate-carrier mean-field theory, we mention that
~20! for the ferromagnetic transition temperature in the Ze
model was first derived in Ref. 35 more than 40 years a
and has recently been rediscovered36,37 in the context of
DMS ferromagnetism.

In Fig. 4, we show our calculated impurity and carri
magnetization for the degenerate-carrier Weiss mean-fi
theory using the same parameters~typical for Ga12xMnxAs)
as for the corresponding nondegenerate case shown in F
In general, except for the lowest hole density withni /nc
50.05, the impurity magnetization is convex, but looks qu
different from the classic textbook Weiss form except p
haps at very high carrier densities whenni /nc'1. Particu-
larly, for the realistic value ofnc /ni50.1 ~which is thought
to apply to many Ga12xMnxAs samples!, M (T) in Fig. 4 has
the non-mean-field-like straight line shape at lower tempe
tures. For higher values of hole density,nc /ni50.2 and 0.5,
the magnetization is much closer to the classical Brillou
shape whereas for lower carrier densities~e.g., nc /ni

of
us

re
1-7
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S. DAS SARMA, E.H. HWANG, AND A. KAMINSKI PHYSICAL REVIEW B 67, 155201 ~2003!
50.05), even this metallic DMS system starts exhibiting
concave magnetization curve typical of the insulating DM
systems discussed Sec. II B 1.

The origin of the concave shape of the magnetizat
curve is exactly the same as for the nondegenerate case
cussed in Sec. II B 1, namely, the magnetization of ho
saturates atT&Tc0, much earlier than magnetization of im
purities, which upon saturation of the hole magnetizat
grows as given by Eq.~14!, which represents a concav
curve providednc /ni!1. Thus, the concave magnetizatio
behavior may be generic to the low carrier density limit
the DMS ferromagnets, independent of whether they are
tallic or insulating although the highly concave magnetiz
tion curves of Fig. 1~a! are clearly much more typical of th
insulating DMS systems than the metallic ones. The car
magnetization results presented in Fig. 4~b! are very similar
to textbook convex Weiss magnetization behavior. We n
that the degenerate-carrier mean-field theory results show
Fig. 4~a! are qualitatively very similar to the experimental
measured temperature-dependent magnetization data in
tallic Ga12xMnxAs systems. In particular, recent anneali
experiments, where annealing leads to better metalli
~e.g., higher conductivity! by virtue of increasing the hole
density, show qualitative trends strikingly similar to the r
sults of Fig. 4~a!.

Next we include the direct antiferromagnetic coupling~4!
between the local moments in our consideration. WithJAF

Þ0, the critical temperature is given by Eq.~20!. The cal-
culated impurity magnetization in the presence of the anti
romagnetic coupling is shown in Fig. 5. Comparing with t
nondegenerate-hole model, we find that the degenerate-
case is more quantitatively sensitive to the antiferromagn
coupling although the qualitative effect of a finiteJAF in both

FIG. 4. ~a! Dopant magnetizations from the degenerate-h
model for various values of the density ratio (nc /ni50.5, 0.2, 0.1,
and 0.05, from the top!. Here we use the fixed parameter value
S55/2, s51/2, ni51021 cm23, m50.5me , x50.05, and coupling
constantJ53.0 eV. ~b! Hole magnetization with the same param
eters as in~a!. Notem(T50) is the magnetization atT50, which
may not be equal tom0[gcmBsnc .
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the metallic and the insulating DMS materials is basically
same, namely, suppression of the transition temperature
the magnetization.

Similar to the results shown for the insulating systems,
present in Fig. 5 calculated impurity magnetization for tw
values of the rationc /ni50.5 @Fig. 5~a!# and 0.1@Fig. 5~b!#.

In Fig. 6, the calculated external magnetic field and te
perature dependence of the dopant magnetization is sh
for fixed parameter valuesJ,S,s, and for various values o
density rationc /ni . In the main figure, we showM (T,B) as

e

:

FIG. 5. Dopant magnetization with bothJAFÞ0 from the
degenerate-hole model for various values of the coupling cons
ratio ~a! zAFJAF/J50.0, 0.5, 1.0, 1.5, and 2.531023 ~from the top!
and for density rationc /ni50.5; ~b! zAFJAF/J50.0, 0.5, 1.0, 1.5,
and 1.7531023 ~from the top! andnc /ni50.1. The parameter val
ues of Fig. 4 are used.

FIG. 6. External magnetic field and temperature dependenc
dopant magnetization from the degenerate-hole model for var
values of the density ratio (nc /ni50.5, 0.2, 0.1, and 0.05, from th
top!. Solid ~dashed! lines indicate the results for a fixed extern
magnetic fieldB52.6T (0T). The parameters in Fig. 4 are used.
the inset the magnetization curves as a function of magnetic fi
are given for fixed temperatures (T50.95, 1.0, and 1.05Tc

(d) , from
the top!. Solid ~dashed! lines represent the results fornc /ni50.5
(nc /ni50.05).
1-8
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TEMPERATURE-DEPENDENT MAGNETIZATION IN . . . PHYSICAL REVIEW B67, 155201 ~2003!
a function of temperature for a magnetic-field value,B
52.6T ~solid lines!, and in the inset, we showM (T,B) as a
function of the external field for fixed temperatures. Our c
culatedM (T,B) behavior is roughly qualitatively similar to
experimental observations in Ga12xMnxAs systems in the
metallic regime.

The magnetic susceptibility of the system is essentia
that of impurities, similarly to Sec. II B 1, Eq.~16!, and
above the critical temperature is given by

x~T!5

x01
Tc0

(d)

TJa0
3

gigcmB
2

12
Tc

(d)

T

, ~22!

where x05ni(gimB)2S(S11)/3T is the paramagnetic sus
ceptibility of bare impurities.

The Weiss molecular mean-field theory results~for local-
ized carriers in Sec. II B 1 and for delocalized carriers in S
II B 2!, presented above for DMS magnetization, quali
tively agree very well with the existing experimental data.
particular, the basic trend of our results shown in Figs. 1
that the spontaneous magnetization is strongly suppre
~perhaps even into a very unusual outwardly concave sh!
at low carrier densities and for more insulating syste
whereas at higher carrier densities and for more metallic
tems, the magnetization has the usual convex textb
shape, is in excellent agreement with experiment. O
degenerate-carrier mean-field results@see Fig. 3~a!# also re-
produce the almost linear magnetization curves seen
Ga12xMnxAs for intermediate carrier densities. But obv
ously, one needs to go beyond the Weiss mean-field the
for a deeper~and more quantitative! understanding of DMS
magnetization, if for no other reason than to validate~or to
ascertain the regime of validity of! the simple static mean
field theory. At low carrier density, the mean-field theo
should work better since on the average there are many
local moments between any two holes, but typically t
number of Mn atoms per hole is around 3–4 so the qua
tative applicability of MFT is questionable. Note that th
hole-hole interaction neglected in our calculations may
included in a crude approximate fashion by incorporatin
Stoner enhancement of the carrier susceptibility, though
general the strength of this enhancement is unknown.

In the next two sections, we go beyond the Weiss st
mean-field theory and develop two more sophisticated
proximation schemes to theoretically study DMS magneti
tion. These are DMFT~Sec. II C! and the percolation theor
~Sec. II D!.

C. The Dynamical Mean-Field Theory

In this section, we use a recently developed nonpertu
tive method, the ‘‘dynamical mean-field theory’’~DMFT!,38

to calculate magnetization for the minimal model@Eq. ~2!# of
dilute magnetic semiconductors. The DMFT has been
cently applied to the DMS system to calculate the magn
transition temperature and the optical conductivity.22 DMFT
is essentially a lattice quantum version of the Weiss me
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field theory, where the appropriate density of states~includ-
ing impurity band formation! along with temporal fluctua-
tions are incorporated within an effective local-field theor

We model the Ga12xMnxAs system as a lattice of sites
which are randomly nonmagnetic~with probability 12x) or
magnetic~with probability x), where x now indicates the
relative concentration~i.e., per Ga site! of active Mn local
moments in Ga12xMnxAs. The DMFT approximation
amounts to assuming that the self-energy is local or mom
tum independent,S(p,ivn)→S( ivn), and then all of the
relevant physics may be determined from the lo
~momentum-integrated! Green function defined by

Gloc~ ivn!5a0
3E d3p

~2p!3

1

ivn1m1hs2e~p!2Ss~ ivn!
,

~23!

where we have normalized the momentum integral to
volume of the unit cella0

3, andm is the chemical potentia
andh the external magnetic field.Gloc is, in general, a matrix
in spin and band indices and depends on whether on
considering a magnetic (a) or nonmagnetic (b) site. Since
Gloc is a local function, it is the solution of a local problem
specified by a mean-field functiong0, which is related to the
partition functionZloc5*dSexp(2Sloc) with action

Sloc5(
ab

g0ab
a ~t2t8!ca

†~t!cb~t8!

1J(
ab

~S•sab!ca
†~t!cb~t8!, ~24!

on thea ~magnetic! site and

Sloc5(
ab

g0ab
b ~t2t8!ca

†~t!cb~t8!, ~25!

on the~nonmagnetic! b site. Hereca
†(t) (ca

†(t)) is the de-
struction~creation! operator of a fermion in the spin statea
and at timet. g0(t2t8) plays the role of the Weiss mea
field ~bare Green function for the local effective actionSloc)
and is a function of time. Its physical content is that of
mean amplitude for a fermion to be created at timet and
being destroyed at timet8. The local Green function is cal
culated exactly as

Gloc~ ivn!5^~g0
211JS•sab!21&, ~26!

where the thermal average^•••& is taken with respect to the
orientation of the local spinS. Thea-site mean-field function
g0

a can be written asg0ab
a 5a01a1m•sab , with m the mag-

netization direction anda1 vanishing in the paramagneti
state (T.Tc). Since the spin axis is chosen parallel tom, g0

a

becomes a diagonal matrix with components parallel (g0↑
a

5a01a1) and antiparallel (g0↓
a 5a02a1) to m. It is speci-

fied by the condition that the local Green function compu
from Zloc , namely,d lnZloc /dg0

a5(g0
a2S)21 is identical to

the local Green function computed by performing the m
mentum integral using the same self-energy.
1-9
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S. DAS SARMA, E.H. HWANG, AND A. KAMINSKI PHYSICAL REVIEW B 67, 155201 ~2003!
The form of the dispersion given in full Hamiltonian
Eq. ~2!, applies only near the band edges. It is necess
for the method to impose a momentum cutoff, arisi
physically from the carrier bandwidth. We impose the cut
by assuming a semicircular density of stat
D(e)5a0

3*d3p/@(2p)3#d(«2«pa)5A4t22e2/2pt, with
t5(2p)2/3/ma0

2. The parametert is chosen to correctly re
produce the band edge density of states. Other choice
upper cutoff would lead to numerically similar results. Th
choice of cutoff corresponds to a Bethe lattice in infin
dimensions. Other~perhaps more realistic! choices for the
density of states would give magnetization results qual
tively similar to our results since the band edge density
states has the correct physical behavior in our model. For
N(e), the self-consistent equation forg0 obeys the equation

g0
a~v!5g0

b~v!5v1m2xt2^~g0
a~v!1JS•sab!21&

2~12x!t2^g0
b~v!21&, ~27!

where the angular brackets denote averages performed i
ensemble, defined by the appropriateZloc .

Within this approximation, the normalized magnetizati
M (T) of the local moments is given by

M ~T!5E ~dS!•Ŝ
exp~2Sloc!

Zloc
. ~28!

As the temperature is increased, the spins disorder and e
tually the magnetic transition temperature is reached. Ab
this temperature,g0 is spin independent. By linearizing th
equation in the magnetic part ofg0 with respect toa1, we
may obtain the ferromagnetic transition temperatureTc . The
details on the calculation ofTc are given in Ref. 22. The
critical temperatureTc and magnetization of the local mo
ment depend crucially onJ/t, x, and carrier densitync . Note
that in the DMFT calculation, it is more convenient to e
press our results in terms ofn, the relative concentration o
active local moments rather thanni , the absolute impurity
density.

Before we show our calculated magnetization, we
scribe the density of state~DOS! of dynamical mean-field
calculations applying to simple semicircle models. In Fig.
we show the DMFT density of states for majority spin ne
the band edge corresponding to the disordered spin staT
.Tc , and the inset shows theT50 ferromagnetic state. Th
evolution of the energy (v) dependent DOS is shown as th
carrier-spin couplingJ is increased from zero; note that th
method works equally well in the orderedT50 state and the
disordered spinT.Tc case, and predicts the formation of
spin-polarized impurity band forJ.t. For smallJ, we see
the expected band shift proportional toxJ. For J.Jc , an
impurity band centered at;2J and containingx states, is
seen to split off from the main band, where the critical co
pling Jc;t. In the DMFT calculations, we parametrized th
exchange couplingJ in terms of the bandwidth parametert,
subsuming the unit cell volumea0

3 implicitly.
In Fig. 8, we show the normalized magnetization of t

local moments as a function of temperature for different v
ues ofJ51.0,1.5,2.0t andx50.05, and for various hole den
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sities,nc /ni . For the small coupling constantJ5t, the im-
purity band is not formed, but forJ51.5,2.0t, we have a
spin-polarized impurity band. For relatively high densi
(nc /ni50.4, orn50.02), the calculated magnetization loo
similar to the Weiss mean-field results. But for low dens
(nc /ni50.04), we have a linearM (T) in the intermediate
temperature range. Near the critical temperatureTc , the
critical behavior of the magnetization for all density is give
by M (T)}(Tc2T)1/2. For different exchange couplings, w
have similar results~i.e., linear behavior at low densities an
intermediate temperature ranges!.

In discussing our DMFT magnetization calculations, w
note that the DMFT results shown in Fig. 8 are qualitative
roughly similar to the delocalized static~degenerate! mean-
field-theory results we obtained in Sec. II B 2. For examp
the results of Fig. 8 approximately resemble those shown
Fig. 4~a!, except that the DMFT results of Fig. 8 are in mu
better agreement with the magnetization measurement
metallic Ga12xMnxAs systems in the sense that the line
behavior ofM (T) for lower T ~with almost a kink just below
Tc as can be seen in Fig. 8! is much more pronounced~as in
the experimental data! than our delocalized mean-field
theory results shown in Fig. 4~a!. This is both gratifying and
expected because DMFT is a substantial improvement on
Weiss mean-field theory~MFT! as it incorporates the physic
of spin-split impurity bands through the appropriate quant
self-energy corrections not included in the simple MFT
Sec. II B. In fact, for very low carrier densities, we obta
outwardly concaveM (T) in our DMFT calculations~as we
expect to do in the strongly nondegenerate limit!, but the
computational convergence in our DMFT numerical calcu
tions is rather poor in this regime of unrealistically lo
(nc /ni<0.01) carrier densities, and, therefore, we refra
from showing these results. One can, however, detect v
slight concavity in the lowest carrier density (nc /ni50.04)
M (T) results shown in Fig. 8. We point out that the critic
magnetic properties in DMFT are the same as in the st

FIG. 7. The calculated density of states for dynamical me
field calculations applied to the semicircular model. Shown is
evolution of majority spin DOS for various carrier-spin couplingJ
in the disordered spinT.Tc state. Inset shows the DOS for th
ordered ferromagnetic state atT50. For the large coupling con
stantJ.Jc , we find a well separated impurity band below the ma
band.
1-10
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FIG. 8. The normalized DMFT impurity magnetization as a function of temperature for~a! J51.5t, ~b! J51.0t, and ~c! J52.0t; for
x50.05 and fornc /ni50.4, 0.2, 0.1, and 0.04~from the top!. The dashed line in~a! represents the magnetization calculated for the sim
Weiss mean-field theory for the local-moment spinS55/2.
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MFT, and therefore, all the DMFT critical exponents a
equal to those in the Weiss MFT.

In particular, it should be possible to obtain theM (T)
behavior for the localized carrier case~cf. Sec. II B 1! also
from DMFT by incorporating impurity band localization i
the DMFT formalism. Our current theory does not inclu
localization, and the impurity band~or valence-band! carriers
in our DMFT calculations are all delocalized metallic car
ers. First-principles band theory calculations indicate that
actual exchange coupling in Ga12xMnxAs may be close to
critical Jc , and as such impurity band physics may be qu
important for understanding DMS magnetization. To inc
porate physics of localization, one needs to include disor
effects ~invariably present in real DMS systems! in the
model. All our MFT calculations~both DMFT in Sec. II C
and the static MFT of Sec. II B! are done in the virtual crys
tal approximation, where effective field is averaged appro
ately leaving out random disorder effects explicitly. In t
following section, we explicitly incorporate disorder in th
theory by developing a percolation theory approach to D
magnetization for the strongly localized insulating system

The calculated magnetization as a function of tempera
is shown in Fig. 9 for various external magnetic-field valu
The inset shows the magnetization as a function of exte
field at T5Tc . Our calculatedM (T,B) behavior is roughly
qualitatively similar to the mean-field results in Sec. II B
At the critical temperatureTc , M (Tc ,B) shows a mean-field
behavior,M (Tc ,B)}B1/3. The DMFT results shown in Fig
9 are qualitatively similar to DMS experimental results.

D. Magnetization in the percolation formalism

Our recently developed percolation theory9 applies strictly
in the regime of strongly localized holes, where the dyna
cal mean-field theory for delocalized carriers described
Sec. II C has little validity. These two theories, mean-fie
theory and percolation theory, are, therefore, complemen
Interestingly, however, the perturbation theory and the
namical mean-field theory are not mutually exclusive in sp
of their regimes of validity being different, and in particula
a significant aspect of our percolation approach is its ab
to reproduce qualitatively the mean-field-theory results of
preceding section both forTc andM (T).
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The percolation theory assumes the same carrier-medi
ferromagnetism model of Sec. II B, but now the carriers
pinned down with the localization radiusaB . The localized
carriers are therefore taken to be in the impurity band a
disorder, completely neglected in the mean-field theory
Secs. II B and II C, now plays a key role in the carrier loc
ization. The mean-field theory and the perturbation the
are therefore, complementary in the sense that one~the
mean-field theory! completely neglects disorder, and th
other~the percolation theory! includes disorder at a very fun
damental level, i.e., by starting from the picture of localiz
carriers in a strongly disordered system. The magnetic im
rities in this case are assumed to be completely rando
distributed in the host semiconductor lattice in contrast to
mean-field case, where the carrier states are free and
disorder is neglected.

As we have demonstrated in Ref. 9, the problem of fer
magnetic transition in a system of bound magnetic polar
can be rigorously reduced to the problem of overlapp
spheres studied in the percolation theory.23 The latter prob-
lem studies spheres of the same radiusr randomly placed in

FIG. 9. The external magnetic-field effects on the magnetiza
as a function of temperature for fixed parameter valuesJ51.5t, x
50.05, andnc /ni50.2. The curves correspond toB50.002, 0.001,
0.0005, 0.0001, and 0.0t~from the top!. Inset shows the magnetiza
tion as a function of external field atT5Tc .
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space~three-dimensional in our case! with some concentra
tion n. Overlapping spheres form ‘‘clusters’’; as the sphe
radius r becomes larger, more and more spheres join i
clusters, the clusters coalesce, and finally, at some cri
value of the sphere radius, an infinite cluster spanning
whole sample appears. This problem has only one dim
sionless parameterr 3n and, therefore, can be easily studi
by means of Monte-Carlo simulations.

Each sphere of the overlapping spheres problem co
sponds to a bound magnetic polaron, which is a comp
formed by one localized hole and many magnetic impurit
with their spins polarized by the exchange interaction w
the hole spin. The concentrationn of spheres is therefore
equal to the concentrationnc of localized holes. The expres
sion for the effective polaron radius is not trivial and h
been found in our earlier work.9 The resulting formal relation
between the physical parameters of the system under co
eration and the only parameter of the overlapping sphe
problem reads:9

r 3n5F0.861~aB
3nc!

1/3ln
Tc

T G3

. ~29!

Here 0.64'0.863 is the critical value of the paramete
r 3n, at which the infinite cluster appears, andTc is the Curie
temperature of the ferromagnetic system under consi
ation, derived in Ref. 9,

Tc;sSJS a0

aB
D 3

~aB
3nc!

1/3Ani

nc
expS 2

0.86

~aB
3nc!

1/3D . ~30!

The limit of applicability of Eq.~30! is determined by the
condition aB

3nc!1. The dependence of the Curie tempe
ture on the hole concentration in a wider domain of values
parameteraB

3nc is shown schematically in Fig. 10.
Since the magnetic characteristics of the sample

mostly due to magnetic impurities rather than holes,
quantity of interest is the number of magnetic impurities in

FIG. 10. Curie temperatureTc as a function of the dimension
less parameteraB

3nc . At aB
3nc&1, Tc is given by Eq.~30!. At

aB
3nc*1, Eq.~30! ~being beyond limits of its applicability! predicts

decline ofTc ~dotted line!; in reality, Tc grows monotonically with
aB

3nc ~solid line!, though its exact behavior is unknown.
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cluster, which is proportional to the cluster volume. T
magnetic properties of the system can be expressed in te
of the following quantities, which can be easily found:~i!
concentrationP(vn;r 3n)dv of clusters with volume be-
tween v and v1dv, ~ii ! the fraction of volumeP`(r 3n)
taken by the infinite cluster, and~iii ! the fractionP0(r 3n)
that does not belong to any sphere or cluster of sphe
Clearly, these quantities obey the relation

P`~rn1/3!1E
0

`

P~vn;rn1/3!vdv1P0~rn1/3![1.

Figure 11 shows the behavior of the three terms of the ab
equation as a function of temperatureT, with r 3n related to
T/Tc by Eq.~29! andaB

3nc51023. Having found these quan
tities, one can easily find the magnetic properties of
system.

The spins of nonconnected clusters are not correlated
average out when we calculate the spontaneous magne
tion of the whole sample. The only nonvanishing contrib
tion comes from the infinite cluster. The total magnetic m
ment of the sample per unit volume is, therefore,

M5niSP̀ S T

Tc
,aB

3ncD . ~31!

Here and in the following equations, we write the charact
isticsP` , P0, andP(vn) of the overlapping sphere problem
as functions of the physical parametersT/Tc and aB

3nc in-
stead ofr 3n. The relation between these parameters is giv
by Eq.~29!. The temperature dependence of the spontane
magnetization given by Eq.~31! is plotted in Fig. 12 for two
experimentally variable values ofaB

3nc . As already men-
tioned before, such strongly concaveM (T) behavior is often
observed in insulating DMS systems, see, for example, R
4,6, and 39.

The magnetic susceptibility of a sample has contributio
coming from polaron clusters and free spins. Using the c
sical expression for the susceptibility of a free magnetic m
mentm0

FIG. 11. Fractions of volume taken by the infinite cluster~solid
line! and finite clusters~dashed line! and the fraction of volume tha
do not belong to any cluster or sphere~dotted line! for aB

3nc

51023 ~Monte-Carlo simulation!.
1-12
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xm0
5

m0
2

3T
,

and the fact that the total spin of a cluster with volumev
equalsvni , we arrive at

x5
1

3T
gS2F E

0

`

PS vnc ;
T

Tc
,aB

3ncD ~vni!
2dv

1niP0S T

Tc
,aB

3ncD G . ~32!

The first term in brackets diverges as (T2Tc)
g with g

'1.7 atT→Tc . The second term in brackets does not ha
any singularity atT→Tc . For the temperature dependence
the susceptibility given by Eq.~32!, see Fig. 13.

Using the classical magnetization relation

MS~T!5SLS gimBSB

T D , ~33!

whereL(x)[B`(x)5cotanx21/x is the Langevin function,
we obtain the following expression for the magnetic mom
per unit volume in finite magnetic field:

FIG. 13. Temperature dependence of the magnetic susceptib
for nc /ni50.02.

FIG. 12. Spontaneous magnetization as a function of temp
ture.
15520
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M ~B!5niSP̀ S T

Tc
,aB

3ncD
1E

0

`

PS vnc ;
T

Tc
,aB

3ncD vniLS gimBvniSB

T Ddv

1niSP0S T

Tc
,aB

3ncDLS gimBSB

T D . ~34!

Figures 14 and 15 illustrate the dependence of the magn
zation on the temperature and magnetic field, respectiv
Since the spins of polarons and their clusters are much la
than those of three impurities, the magnetization curve
Fig. 15 has two characteristic scales. First, polarons and t
clusters are polarized~inset of Fig. 15!, then the free spins
are polarized at much larger fields.

We mention that our percolation-theory critical expone
are g'1.7 andb'0.4 for the susceptibility~Fig. 13! and
magnetization~Fig. 12!, as compared with the mean-fiel
results ofg51 andb50.5 and the best existing numeric
estimates ofg'1.39 andb'0.37 for the three-dimensiona
Heisenberg model.40

ity

FIG. 14. Temperature dependence of magnetization in fi
magnetic field withEZ5gimBSB.

FIG. 15. Magnetic-field dependence of the sample magnet
tion at given temperature withEZ5gimBSB.

a-
1-13



pr
a
a

n-
ta
-

ng

nt
re
r
e
-
d
a
a

e
c
lin
tio
on
c
s

m

,
o

a

t-
d
av
th
low

th
et
av

o
ri
h

er

d
ri

ne
za

as

lar,
een
tion
Figs.
iza-
ng
al-
atu-
12,
ra-
le
e-
her
eti-

in-
ow

ible
ag-
ls.
o-

ec-

ept

ri-
t
er-
g-
the
al-

n-
ld-
s to
e

cing
Mn
ent

e

n
n,
the

ith
it

w

S. DAS SARMA, E.H. HWANG, AND A. KAMINSKI PHYSICAL REVIEW B 67, 155201 ~2003!
III. CONCLUSION

The temperature-dependent magnetization results
sented in this work for different but interrelated theoretic
models are qualitatively consistent with one another. In p
ticular, the two theories for metallic DMS systems with iti
erant carriers, namely, the degenerate-carrier Weiss s
mean-field theory~see Sec. II B 2! and the dynamical mean
field theory ~see Sec. II C!, both give onwardly convex
M (T) carriers, similar~but not identical! to that in the text-
book molecular mean-field result, with the convexity bei
enhanced~suppressed! with increasing~decreasing! delocal-
ized carrier density. In typical situations involving itinera
carriers in metallic DMS systems, we find temperatu
dependent magnetization curves that are almost linea
lower temperatures, in excellent agreement with experim
tal observations in metallic Ga12xMnxAs systems. Such ap
parent ‘‘non-mean-field-like’’ magnetization behavior, foun
here both in our delocalized-carrier static and dynamic me
field theories, arises from a combination of following re
sons:~1! the double Brillouin function@i.e., B„B(x)…] form
of the coupled field magnetization@see Eq.~9!#; ~2! the low
values ofnc /ni , leading to the Mn moments feeling on th
average a much reduced number of free carriers. As the
rier density is increased, for example, by suitable annea
in recent experimental studies, such linear magnetiza
curves evolve toward the more conventional outwardly c
vex magnetization, as can be seen in our results and in re
annealing experiments.15–19 In the case of localized carrier
appropriate for insulating DMS systems@many of which are
also found to be ferromagnetic with well-defined Curie te
peratures, e.g., Ga12xMnxAs for x,0.03, In12xMnxAs,4 and
Ge12xMnx ~Ref. 6!#, our two complementary theories
namely the nondegenerate-carrier static mean-field the
~Sec. II B 1! and the percolation theory~Sec. II D!, give
qualitatively similar magnetization behavior. In particular,
low carrier densities theM (T) curves in strongly insulating
DMS systems exhibit strikingly non-mean-field-like ou
wardly concave magnetization behavior, as often observe
the insulating DMS systems. Again, this unusual conc
magnetization behavior arises from a combination of
strongly localized nature of the carrier system and the
values of the carrier density~i.e., nc /ni!1) in DMS materi-
als. We emphasize, however, a very important feature of
oretical results presented in this work: the convex magn
zation behavior in the strongly metallic case and the conc
behavior in the insulating case arenot a sharp dichotomy in
DMS properties—these are really the two extremes of a c
tinuum of possible magnetization behavior in DMS mate
als, as can be inferred from the results of Sec. II B. T
typical DMS magnetization behavior should lie somewh
in between these two extremes of highly concave~low car-
rier density and strongly localized insulating DMS! and
highly convex~high carrier density and strongly delocalize
metallic DMS! magnetization, leading to the generic expe
mental observation of almost linearM (T) behavior in ferro-
magnetic Ga12xMnxAs.

Another often-mentioned peculiar aspect of DMS mag
tization, namely, the low value of the saturation magneti
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tion ~compared with the number of Mn ions in the sample
given by the value ofx in Ga12xMnxAs), is also apparent in
our theoretical results presented in this work. In particu
the presence of direct antiferromagnetic coupling betw
the Mn moments may drastically suppress the satura
magnetization, as can be seen in the results presented in
2 and 5 of this paper. This absence of complete magnet
tion saturation in our mean-field results is akin to havi
effective ferrimagnetism in the system. In addition, the c
culated magnetization is may be much lower than the s
ration value except at very low temperatures, see Fig.
which could also explain the lack of magnetization satu
tion. It is likely that in the real DMS materials an appreciab
fraction of the Mn moments are magnetically inactive b
cause they do not sit in cation substitutional sites, but rat
at defect sites such as interstitials and are antiferromagn
cally coupled to other Mn moments. Such magnetically
active Mn atoms could be one of the reasons for the l
values of saturation magnetization in Ga12xMnxAs. We also
note that our percolation theory provides another poss
explanation for the observed low values of saturation m
netization in low carrier density insulating DMS materia
Since the infinite cluster of percolating bound magnetic p
larons triggering the long-range ferromagnetic ordering n
essarily leaves out a large number of Mn moments~which
are not parts of the infinite cluster except atT→0), one
naturally expects a very low saturation magnetization exc
perhaps atT!Tc .

A recent series of potentially important annealing expe
ments in metallic Ga12xMnxAs samples by several differen
groups may eventually shed considerable light on our und
standing of the mechanisms underlying DMS ferroma
netism. These experiments, while differing somewhat on
details, all find that suitable low temperature optimal anne
ing may enhance the magnetic properties of Ga12xMnxAs by
increasingTc and more importantly for our purpose, by e
hancingM (T) to more convex almost standard mean-fie
like behavior. This enhancement of magnetization seem
correlate well with improvement in the metallicity of th
annealed sample~e.g., higher conductivity! and with an in-
crease in the hole density. Annealing may also be enhan
the magnetic properties by annealing away some of the
interstitials. Our theoretical results are in excellent agreem
with these annealing experiments, since increasingnc /ni
does lead to enhanced~and more convex! magnetization in
our theory. In this context, it will be very helpful to hav
more detailed information on theM (T) behavior in strongly
localized insulating samples both for Ga12xMnxAs with x
,0.03 and for other insulating DMS materials~e.g.,
Ge12xMnx).

Our final comment addresses the role of disorder~essen-
tially neglected in our work, except for the percolatio
theory part, as we treat it in the virtual crystal approximatio
i.e., we assume that holes and local moments only feel
average effective field!, which is invariably strong~and not
yet well understood! in DMS materials. In particular, even
the metallic DMS systems are in effect very poor metals w
mean-free paths which are at or below the Ioffe-Regel lim
~with low-temperature mobilities of the order of a fe
1-14
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cm2/V s only!, indicating the presence of very stron
disorder.41 In the presence of such strong disorder, vario
spin-glass ground states may compete with ferromagn
ground states. We believe that it is important to look
signatures of spin-glass physics in low-temperature D
magnetic properties. It may very well turn out that spin-gla
phases dominate the regime of parameter space~e.g., x
d

u

er
e

i-
.T

X.
nd

ys
.

d

d

n
n,

-
B.

15520
s
tic
r
S
s

,1% or x.10% in Ga12xMnxAs), where a ferromagnetic
ground state does not seem to stabilize in DMS material
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33F. Fröhlich and F.R.N. Nabarro, Proc. R. Soc. London, Ser. A175,

382 ~1940!.
34M. Sigrist, K. Ueda, and H. Tsunetsugu, Phys. Rev. B46, 175

~1992!; S. Doniach, Physica B91, 231 ~1977!; P. Nozières, Eur.
Phys. J. B6, 447 ~1998!; A.N. Tahvildar-Zadeh, M. Jarrell, and
J.K. Freericks, Phys. Rev. B55, R3332~1997!.

35A.A. Abrikosov and L.P. Gorkov, Zh. Eksp. Teor. Fiz.43, 2230
~1962! @Sov. Phys. JETP16, 1575~1963!#. Rather ironically this
1-15



g-
uc

th

,

ev.

n,
r.,

S. DAS SARMA, E.H. HWANG, AND A. KAMINSKI PHYSICAL REVIEW B 67, 155201 ~2003!
paper dealt with the Zener-RKKY model of impurity ferroma
netism in metallic systems, where the carrier density is m
larger than the local-moment density~in contrast to DMS mate-
rials, whereni@nc)—it is now well known that RKKY interac-
tion in disordered magnetic alloy systems~e.g., Cu-Mn! leads to
spin-glass-type behavior rather than ferromagnetism; never
less the mean-field-theory expression forTc derived in this pa-
per is precisely the same as our Eq.~20!, which is used in much
of the DMS literature in discussing the Curie temperature.

36T. Dietl, H. Ohno, F. Matsukura, and D. Ferrand, Science287,
1019 ~2000!.
15520
h

e-

37T. Jungwirth, W.A. Atkinson, B.H. Lee, and A.H. MacDonald
Phys. Rev. B59, 9818~1999!.

38A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, R
Mod. Phys.68, 13 ~1996!.

39G.H. McCabe, T. Fries, M.T. Liu, Y. Shapira, L.R. Ram-Moha
R. Kershaw, A. Wold, C. Fau, M. Averous, and E.J. McNiff, J
Phys. Rev. B56, 6673~1997!.

40A. Pelissetto and E. Vicari, Phys. Rep.368, 549 ~2002!.
41C. Timm, F. Scha¨fer, and F. von Oppen, Phys. Rev. Lett.89,

137201~2002!.
1-16


