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Scaling of the conductance distribution near the Anderson transition
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The scaling hypothesis is the foundation of our understanding of the Anderson transition. We present a direct
numerical demonstration of the scaling of the conductance distribution of a disordered system in the critical
regime. This complements a previous demonstration of the scaling of certain averages of the conductance
distribution[K. Slevin et al, Phys. Rev. Lett86, 3594 (2001)].

DOI: 10.1103/PhysRevB.67.155106 PACS nuniber71.30:+h, 71.23-k, 72.15.Rn

I. INTRODUCTION also the nonuniversal behavior of the higher cumulants in
Eq. (1), are qualitatively incorre&?®

The single parameter scaling hypothesis of Abrahams To overcome the limitation to weak disorder Colediral.
etal. is the basis of our understanding of the Andersonused a Migdal-Kadanoff type real-space renormalization
metal-insulator transition in disordered systenis.Ref. 1it  schemé?® They found that the scaling of the conductance
was proposed that the zero-temperature conductdBce distribution is described by two parameters; only in the limit
=(e*/h)g, as measured by the “Thouless number,” obeys aof weak disorder is single parameter scaling recovered. How-
single parameter scaling law. However, the large sample-tcever, and as pointed out by Cohestal, the Migdal-
sample fluctuations in the conductance of disordered systemgadanoff scheme involves an uncontrolled approximation
were not explicitly considered. In the critical and localized and some of the results obtained with it are known to be
regimes the fluctuations are of the same order as the meaficorrect. For example, in the metallic regime the predicted
conductance(The relation of the mean conductance to theconductance fluctuations are too large and in disagreement
Thouless number is discussed in Ref. Phis led to sugges- with the theoretically well-established and experimentally
tions that the scaling hypothesis should be reformulated iferified phenomena of universal conductance
terms of the typical conductanéayr perhaps the distribution fluctuationsi**? They concluded that while the Migdal-

of conductancé? Kadanoff scheme may be exact for hierarchical lattices, in
For a disordered system of sizen d=2+ € dimensions, three dimensions it is primarily of pedagogical valde.
Altshuler et al. estimated the cumulants, of the conduc- Recent work on Anderson localization in one dimension
tance distribution using a field-theoretic mettfost the mo-  has highlighted the importance of a second length skale
bility edge they found that Deychet all* demonstrated the existence of a crossover be-
ho tween single parameter and two parameter scaling regimes
_]€ n<ng~1/e, dependent on the ratio df, to the localization lengtht.
Ca(L)= (L/|)en272n n>ny. @ Single parameter scaling is observed whenlg, and two

parameter scaling whefi<|s. The implications of this result

If single parameter scaling holds, the only relevant lengthfor Anderson localization in higher dimensions are not yet
should be the correlation lengéh and the appearance of the clear.
mean free pathin the expression for the higher cumulantsis  Numerical studies of the Anderson model have demon-
unexpected(In the insulating regimet is the localization strated single parameter scaling of the localization length of
length, while in the metallic regime it is the correlation electrons in quasi-one-dimensional systémesnd also of the
length) Shapiro reconstructed the critical conductance distrimean resistance, mean conductance, and typical conductance
bution from Eqg.(1) and showed that, appearances to thenear the Anderson transition in three dimensithghe ob-
contrary, these cumulants are consistent with a single parangervation of scaling for any one of these averages does not
eter scaling of the distributioh. rule out a two parameter scaling of the conductance distribu-

To apply results fod=2+ € to three dimensions we must tion because the fluctuations of the relevant quantity might
make a questionable extrapolationete 1. While the Ander-  scale quite differently. This is precisely what happens in the
son transition occurs at weak disordgd>1 whene<1, it  Migdal-Kadanoff scheme in which the mean of the logarithm
occurs at strong disordds-I~1 in three dimensiongHere  of resistance obeys a single parameter scaling law while at
ke is the Fermi wave numberComparison of the distribu- the same time the conductance distribution obeys a two pa-
tion obtained by Shapiro with numerical results shows thatameter scaling law. This scenario seems less likely in light
the behavior of the conductance distribution at lagg@nd  of the consistent scaling of the three different averages ob-
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served in Ref. 16. Perhaps even more telling is the demon- . .

stration in numerical studies of the existence of a universal H:VZ Ci CH‘Ei WiCiC;, 6)
size-independent critical distribution that is accessible by (Rl

varying only a single parametérThis observation makes \whereC! (C,) is the creation(annihilation) operator of an
two parameter scaling unlikely since two parameter scalingjectron at the siteof a three-dimensional cubic lattice. The
should require that both parameters be varied simultaneouslympjitude of the random potential at sitis W; . Hopping is

to access the critical point. Nevertheless, given the cruciglestricted to nearest neighbors and its amplitude was taken as
role that the scaling hypothesis plays in the theory of tranSthe ynit of energyV/'=1. We assumed a box distribution with
port in disordered systems, we feel that a very direct angachw; uniformly distributed on the intervdl—W/2,W/2].
clear cut demonstration of the scaling of the conductancg, what follows we refer to the strength of the potential fluc-
distribution is called for. Such a demonstration is presenteg,stionsW as the disorder. The numerical method used is

below._ ) described in Ref. 17. The two terminal zero-temperature con-
An interesting aspect of the method we use to demongctance was evaluated using the Landauer formula
strate scaling is that it is not necessary to have any analytic

approximation for the form of the conductance distribution g=2trt't, (6)
or to identify a single quantity which parametrizes the distri-
bution. Instead we establish scaling by analyzing the percerwheret is the transmission matrix describing the propagation
tiles of the distribution. This provides a much more directof electrons from one contact to the otf&#’
and robust demonstration of scaling than can be archived by The conductance distribution depends on the system size
any analysis based on average quantities such as the mlo- the disordeW, the Fermi energ¥g, and the boundary
ments of the distribution. conditions. We sefE-=0.5 and imposed fixed boundary con-
ditions in the transverse directions. We accumulated data for
Il. METHOD the disorder range E5W=18 and system sizes<6L <18.
' At the extremes of the disorder range the localizatoorre-
Following Ref 5 a single parameter scaling law for the lation) length is of the same order as the system $lzn
conductance distributiop, (g) of a three-dimensional sys- that our data covers the critical regime.
tem of linear dimensioh. can be mathematically formulated ~ To estimateg, we simulated 1 000 000 realizations of the
as follows: random potential and calculated the conductance for each
realization.(For L=18 the number of realizations was ap-
pL(g)=F(g;X), (2)  proximately 500 000.We sorted the data into ascending or-
der and our estimate @f, was then the=[gqNg]th datum in
whereX is a parameter which must obey the single parametethis list, where[x] is the integer part ok. When fitting the

scaling law numerical data it is also necessary to have an estimate of the
accuracy of the percentiles. Following the standard method
dinX we used the binomial distribution to estimate the likely ac-
dinL =B(X). (3) curacy of the percentile. We defined
A limiting process is implicit in Eq(2); we refer the reader An=+N4q(1—q), W
to Ref. 5 for a detailed discussion. The param&teeed not ) )
be one of the moments of the distribution. located the §+An)th and —An+1)th data in the list,

At first sight it appears that we must know the functional@nd calculated the differences wily . Our estimate of the
form of the functionF in Eq. (2) in order to verify single —accuracy is then the largest of these two dlﬁerences. In prac-
parameter scaling of the distribution numerically. In fact, thistice, we found that the accuracy of all the percentiles were
is not so. The procedure we have adopted is to analyze tHgomparable, being of the order of 0.2%. The data were then
scaling of the percentiles of the distribution. The precisditted with the finite-size scaling forms below by minimizing

. LS . i 2 . . -
definition of the percentiley, is the x* statistic in the usual way.
To fit the system size and disorder dependence of the

9 percentile we supposed a single parameter scaling law but
q=j p.(g)dg, (4) allowed for deviations from scaling due to an irrelevant scal-
0 ing variable and nonlinearity of the scaling variables\Ve

where 0sg=<1. By establishing single parameter scaling forfltted the data to

a representative set of percentiles we indirectly establish Eqgs. Ing,=F (¢, ) ®)

(2) and(3), providedthat the scaling of different percentiles q e

are consistent. When considering the percentiles it is not neahere ¢ is the relevant scaling variable anflis the irrel-

essary to distinguish, Ing, or 14y as it is when considering evant scaling variable. We approximated this scaling func-

average quantities. tion by its first-order expansion in the irrelevant scaling vari-
We have analyzed the conductance distribution of theable

Anderson model numerically. The motion of the electrons is

described by Ingq=Fo(¢)+ ¢F1(¢). 9
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We expanded each scaling function as a power series, TABLE II. The details of the fitNy is the number of data.

Fo(x)=In(gg)ctXx+ ax’+ .- - +an0x"0, (100 q nn n, ng ng N Ny P Q
5 N 0.025 3 2 1 0 10 179 159 0.7
F1(X)=1+byx+byx?+ - - - + by ™, 1) ga7 2 2 1 0 9 179 155 08
. . . .05 3 2 1 0 10 179 172 0.4
Here @) is the critical value of the percentile. The scaling 83 3 5 1 0 10 179 180 03

variables were approximated by expansions in terms of the
dimensionless disorder

(12) the fitted parameters were estimated using Monte Carlo

simulations of synthetic data séts.
where W, is the critical disorder separating the insulating
and metallic phases

w= (W, —W)/W,,

Y=L (W WPt gy W), (19 Il RESULTS
Results for theq=0.025, 0.17, 0.5, and 0.83 percentiles
are shown in Table (For a normal distribution with mean
and varianceo?, these choices would correspond to the
points u—20,u— o, 1, andu+ o in the distribution). Pre-
cise details of the fits are given in Table Il. The estimates of
the irrelevant exponent are consistent with those obtained in
Ref. 16 and are not shown again here.
The constantg.. , and hence the absolute scale of the local- Data for theq=0.17 percentile are plotted in Fig. 1. In
ization (correlation length ¢, cannot be determined from the Fig. 2 the same data, after subtraction of corrections to scal-
fit. The decay of the irrelevant scaling variable with systeming, are replotted to demonstrate single parameter scaling.
size is described by the expongnt.0. Redundancy in the This is done by plotting the corrected data as a function of
definition of the fitting parameters between the coefficientghe ratio of the systems siteto the localizatior(correlatior)
in the expansions df, andF, and the expansions @f and  length &. When displayed in this way the data fall on two
¢ are eliminated by setting some of the expansion coeffidifferent curves corresponding to the localizémiver curve
cients of F, andF; to unity as shown. This choice is also and the delocalizedupper curvg regimes. The two curves
necessary if, andF, are to be universal. The total number are described by two scaling functioks. andF_ derived
of parameters iN,=ny+n,+n,+n,+4. from Fy,
The minimum ofy? was found using therNLIN routine
of the IMsSL numerical library. The starting values of the fit-
ting parameters supplied toRNLIN are in the regionv
~1.6, W,~16.5, y=—3, and ¢y,~1. We set the initial
value of In@). to a value close to its best-fit value by visual
inspection of the raw data, and all other parameters were
initially zero. The results of the fitting procedure are not « |-
especially sensitive to the choice of the starting values. A '
number of fits corresponding to different choicesngf n4,
n,, andn, are possible and a selection criterion is neces-
sary. We set a cutoff for the goodness-of-fit probabi@yat
Q=0.1 and searched for the fit that required the fewest pa-<
rameters to satisfy this. Broadly speaking all sensible choices ™
of ng, ny, n, andny lead to consistent estimates of the
critical parameters. The goodness of fit and the accuracy o

d=LY(¢o+ p1W+ oW+ - - - + ¢n¢Wn¢)- (14

The critical exponent describes the divergence of the lo-
calization(correlation length as the transition is approached.

£= LYW WPt gy WM (15)

(@)

TABLE |. The estimated critical values for each percentile and
95% confidence intervals.

q We In(gq)c v

0.025 16.48 .02 —4.14+ .03 1.56-.03

0.17 16.47-.01 —2.55+.01 1.56+.01

0.5 16.48-.04 —1.08+.03 1.59+.03 FIG. 1. Theq=0.17 percentile of the conductance distribution
0.83 16.46-.05 0.13+.03 1.60-.04 for disordered. XL XL systems versus system sizdor disorder

W in the rangeg(Refs. 15 and 18 The lines are the fit of E(8).
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FIG. 2. The data of Fig. 1, after subtraction of corrections to

scaling, replotted as function of the ratid¢ to display single pa-
rameter scaling. The lines are the scaling functit® and (17)
described in the text.

Fi(X)=In(gg)etx"+ - +a, x", (16)
F_(X)=In(gg)e— X"+ - +(=1)"a, x"”. (17)

Data on the metallic branch follow

L
lngq:F+ _)1 (18)
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FIG. 3. Data for the median conductancg=(0.5 percentilg
together with the best fit of Ed8), as a function of disordew for
systems sizes in the rangje=6-18.
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FIG. 4. The data for thg=0.83 percentile after corrections to
scaling are subtracted and plotted as function of the fati to
make single parameter scaling evident. The lines are the scaling
functions(16) and(17) described in the text.

while data on the the insulating branch follow

L
In gq=F_(§—). (19)

For completeness some representative data for the median
(g=0.5) andq=0.87 percentiles appear in Figs. 3 and 4,
respectively.

We also analyzed the=0.975 percentile of the distribu-
tion but were unable to convincingly fit its systems’ size and
disorder dependence. The origin of the difficulties may be
the large corrections to scaling encountered for this percen-
tile. Larger systems sizes will probably be needed for a de-
finitive analysis of the high-conductance tail of the distribu-
tion.

For the percentiles analyzed the estimates of the critical
disorder and the critical exponent obtained from the scaling
of different percentiles are consistent as required. The esti-
mates of the critical exponent in Table | are consistent with
our previous estimates based on the scaling of the localiza-
tion length in quasi-one-dimensional systefmscaling of
higher Lyapunov exponentd?® and scaling of the mean
conductance, mean resistance, and typical conductince.
The estimates are also consistent with numerical estimates
reported by other authofé2°

IV. CONCLUSION

Our numerical results demonstrate single parameter scal-
ing of the zero-temperature conductance distribution in the
critical regime of the Anderson transition in three dimen-
sions. This result complements a previous demonstration of
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the scaling of the mean conductance, typical conductancéowever, if the results of Deycét al. carry over to higher

and mean resistancé. dimensions.
A two parameter scaling of the conductance distribution,

similar to that found by Deyclet al** for one-dimensional

systems, might be recovered in the strongly localized regime.

The localization length diverges at the critical point while We would like to thank the Institute for Solid State Phys-

which is related to the integrated density of states, is alway&s of the University of Tokyo for the use of their computer

finite. Thus, on approaching the critical point we should al-facilities. P.M. would like to thank the Japan Society for the

ways find&>1g and single parameter scaling should be ob-Promotion of Science, Sophia University for their hospitality

served. Far from the critical point, i becomes less thdg, and financial support, and for support under APVT Grant No.

a two parameter scaling might appear. It remains to be seeb1-021602.
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