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Scaling of the conductance distribution near the Anderson transition
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The scaling hypothesis is the foundation of our understanding of the Anderson transition. We present a direct
numerical demonstration of the scaling of the conductance distribution of a disordered system in the critical
regime. This complements a previous demonstration of the scaling of certain averages of the conductance
distribution @K. Slevin et al., Phys. Rev. Lett.86, 3594~2001!#.
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I. INTRODUCTION

The single parameter scaling hypothesis of Abraha
et al. is the basis of our understanding of the Anders
metal-insulator transition in disordered systems.1 In Ref. 1 it
was proposed that the zero-temperature conductancG
5(e2/h)g, as measured by the ‘‘Thouless number,’’ obey
single parameter scaling law. However, the large sample
sample fluctuations in the conductance of disordered syst
were not explicitly considered. In the critical and localiz
regimes the fluctuations are of the same order as the m
conductance.~The relation of the mean conductance to t
Thouless number is discussed in Ref. 2.! This led to sugges-
tions that the scaling hypothesis should be reformulated
terms of the typical conductance,3 or perhaps the distribution
of conductance.4,5

For a disordered system of sizeL in d521e dimensions,
Altshuler et al. estimated the cumulantscn of the conduc-
tance distribution using a field-theoretic method.6 At the mo-
bility edge they found that

cn~L !5H en22 n<n0'1/e,

~L/ l !en222n n.n0 .
~1!

If single parameter scaling holds, the only relevant len
should be the correlation lengthj, and the appearance of th
mean free pathl in the expression for the higher cumulants
unexpected.~In the insulating regimej is the localization
length, while in the metallic regime it is the correlatio
length.! Shapiro reconstructed the critical conductance dis
bution from Eq. ~1! and showed that, appearances to
contrary, these cumulants are consistent with a single par
eter scaling of the distribution.7

To apply results ford521e to three dimensions we mus
make a questionable extrapolation toe51. While the Ander-
son transition occurs at weak disorderkFl @1 whene!1, it
occurs at strong disorderkFl'1 in three dimensions.~Here
kF is the Fermi wave number.! Comparison of the distribu
tion obtained by Shapiro with numerical results shows t
the behavior of the conductance distribution at largeg, and
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also the nonuniversal behavior of the higher cumulants
Eq. ~1!, are qualitatively incorrect.8,9

To overcome the limitation to weak disorder Cohenet al.
used a Migdal-Kadanoff type real-space renormalizat
scheme.10 They found that the scaling of the conductan
distribution is described by two parameters; only in the lim
of weak disorder is single parameter scaling recovered. H
ever, and as pointed out by Cohenet al., the Migdal-
Kadanoff scheme involves an uncontrolled approximat
and some of the results obtained with it are known to
incorrect. For example, in the metallic regime the predic
conductance fluctuations are too large and in disagreem
with the theoretically well-established and experimenta
verified phenomena of universal conductan
fluctuations.11,12 They concluded that while the Migdal
Kadanoff scheme may be exact for hierarchical lattices
three dimensions it is primarily of pedagogical value.13

Recent work on Anderson localization in one dimensi
has highlighted the importance of a second length scalel s .
Deychet al.14 demonstrated the existence of a crossover
tween single parameter and two parameter scaling regi
dependent on the ratio ofl s to the localization lengthj.
Single parameter scaling is observed whenj. l s , and two
parameter scaling whenj, l s . The implications of this result
for Anderson localization in higher dimensions are not y
clear.

Numerical studies of the Anderson model have dem
strated single parameter scaling of the localization length
electrons in quasi-one-dimensional systems,15 and also of the
mean resistance, mean conductance, and typical conduc
near the Anderson transition in three dimensions.16 The ob-
servation of scaling for any one of these averages does
rule out a two parameter scaling of the conductance distr
tion because the fluctuations of the relevant quantity mi
scale quite differently. This is precisely what happens in
Migdal-Kadanoff scheme in which the mean of the logarith
of resistance obeys a single parameter scaling law whil
the same time the conductance distribution obeys a two
rameter scaling law. This scenario seems less likely in li
of the consistent scaling of the three different averages
©2003 The American Physical Society06-1
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served in Ref. 16. Perhaps even more telling is the dem
stration in numerical studies of the existence of a unive
size-independent critical distribution that is accessible
varying only a single parameter.8 This observation make
two parameter scaling unlikely since two parameter sca
should require that both parameters be varied simultaneo
to access the critical point. Nevertheless, given the cru
role that the scaling hypothesis plays in the theory of tra
port in disordered systems, we feel that a very direct a
clear cut demonstration of the scaling of the conducta
distribution is called for. Such a demonstration is presen
below.

An interesting aspect of the method we use to dem
strate scaling is that it is not necessary to have any ana
approximation for the form of the conductance distributi
or to identify a single quantity which parametrizes the dis
bution. Instead we establish scaling by analyzing the perc
tiles of the distribution. This provides a much more dire
and robust demonstration of scaling than can be archived
any analysis based on average quantities such as the
ments of the distribution.

II. METHOD

Following Ref. 5 a single parameter scaling law for th
conductance distributionpL(g) of a three-dimensional sys
tem of linear dimensionL can be mathematically formulate
as follows:

pL~g!.F~g;X!, ~2!

whereX is a parameter which must obey the single param
scaling law

d lnX

d lnL
5b~X!. ~3!

A limiting process is implicit in Eq.~2!; we refer the reade
to Ref. 5 for a detailed discussion. The parameterX need not
be one of the moments of the distribution.

At first sight it appears that we must know the function
form of the functionF in Eq. ~2! in order to verify single
parameter scaling of the distribution numerically. In fact, t
is not so. The procedure we have adopted is to analyze
scaling of the percentiles of the distribution. The prec
definition of the percentilegq is

q5E
0

gq
pL~g!dg, ~4!

where 0<q<1. By establishing single parameter scaling f
a representative set of percentiles we indirectly establish E
~2! and~3!, providedthat the scaling of different percentile
are consistent. When considering the percentiles it is not n
essary to distinguishg, ln g, or 1/g as it is when considering
average quantities.

We have analyzed the conductance distribution of
Anderson model numerically. The motion of the electrons
described by
15510
n-
al
y

g
ly

al
-
d
e
d

-
tic

-
n-
t
by

o-

er

l

he
e

r
s.

c-

e
s

H5V(
^ i , j &

Ci
†Cj1(

i
WiCi

†Ci , ~5!

whereCi
† (Ci) is the creation~annihilation! operator of an

electron at the sitei of a three-dimensional cubic lattice. Th
amplitude of the random potential at sitei is Wi . Hopping is
restricted to nearest neighbors and its amplitude was take
the unit of energy,V51. We assumed a box distribution wit
eachWi uniformly distributed on the interval@2W/2,W/2#.
In what follows we refer to the strength of the potential flu
tuationsW as the disorder. The numerical method used
described in Ref. 17. The two terminal zero-temperature c
ductance was evaluated using the Landauer formula

g52trt†t, ~6!

wheret is the transmission matrix describing the propagat
of electrons from one contact to the other.18,19

The conductance distribution depends on the system
L, the disorderW, the Fermi energyEF , and the boundary
conditions. We setEF50.5 and imposed fixed boundary con
ditions in the transverse directions. We accumulated data
the disorder range 15<W<18 and system sizes 6<L<18.
At the extremes of the disorder range the localization~corre-
lation! length is of the same order as the system size,20 so
that our data covers the critical regime.

To estimategq we simulated 1 000 000 realizations of th
random potential and calculated the conductance for e
realization.~For L518 the number of realizations was a
proximately 500 000.! We sorted the data into ascending o
der and our estimate ofgq was then then5@qNd#th datum in
this list, where@x# is the integer part ofx. When fitting the
numerical data it is also necessary to have an estimate o
accuracy of the percentiles. Following the standard met
we used the binomial distribution to estimate the likely a
curacy of the percentile. We defined

Dn5ANdq~12q!, ~7!

located the (n1Dn)th and (n2Dn11)th data in the list,
and calculated the differences withgq . Our estimate of the
accuracy is then the largest of these two differences. In p
tice, we found that the accuracy of all the percentiles w
comparable, being of the order of 0.2%. The data were t
fitted with the finite-size scaling forms below by minimizin
the x2 statistic in the usual way.

To fit the system size and disorder dependence of
percentile we supposed a single parameter scaling law
allowed for deviations from scaling due to an irrelevant sc
ing variable and nonlinearity of the scaling variables.15 We
fitted the data to

ln gq5F~c,f!, ~8!

wherec is the relevant scaling variable andf is the irrel-
evant scaling variable. We approximated this scaling fu
tion by its first-order expansion in the irrelevant scaling va
able

ln gq5F0~c!1fF1~c!. ~9!
6-2
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We expanded each scaling function as a power series,

F0~x!5 ln~gq!c1x1a2x21•••1an0
xn0, ~10!

F1~x!511b1x1b2x21•••1bn1
xn1. ~11!

Here (gq)c is the critical value of the percentile. The scalin
variables were approximated by expansions in terms of
dimensionless disorder

w5~Wc2W!/Wc , ~12!

where Wc is the critical disorder separating the insulati
and metallic phases

c5L1/n~c1w1c2w21•••1cnc
wnc!, ~13!

f5Ly~f01f1w1f2w21•••1fnf
wnf!. ~14!

The critical exponentn describes the divergence of the l
calization~correlation! length as the transition is approache

j5j6uc1w1c2w21•••1cnc
wncu2n. ~15!

The constantsj6 , and hence the absolute scale of the loc
ization ~correlation! lengthj, cannot be determined from th
fit. The decay of the irrelevant scaling variable with syste
size is described by the exponenty,0. Redundancy in the
definition of the fitting parameters between the coefficie
in the expansions ofF0 andF1 and the expansions ofc and
f are eliminated by setting some of the expansion coe
cients ofF0 and F1 to unity as shown. This choice is als
necessary ifF0 andF1 are to be universal. The total numb
of parameters isNp5n01n11nc1nf14.

The minimum ofx2 was found using theDRNLIN routine
of the IMSL numerical library. The starting values of the fi
ting parameters supplied toDRNLIN are in the regionn
'1.6, Wc'16.5, y'23, and c1'1. We set the initial
value of ln(gq)c to a value close to its best-fit value by visu
inspection of the raw data, and all other parameters w
initially zero. The results of the fitting procedure are n
especially sensitive to the choice of the starting values
number of fits corresponding to different choices ofn0 , n1 ,
nc , and nf are possible and a selection criterion is nec
sary. We set a cutoff for the goodness-of-fit probabilityQ at
Q50.1 and searched for the fit that required the fewest
rameters to satisfy this. Broadly speaking all sensible cho
of n0 , n1 , nc and nf lead to consistent estimates of th
critical parameters. The goodness of fit and the accurac

TABLE I. The estimated critical values for each percentile a
95% confidence intervals.

q Wc ln(gq)c n

0.025 16.486.02 24.146.03 1.566.03
0.17 16.476.01 22.556.01 1.566.01
0.5 16.486.04 21.086.03 1.596.03
0.83 16.466.05 0.136.03 1.606.04
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the fitted parameters were estimated using Monte C
simulations of synthetic data sets.21

III. RESULTS

Results for theq50.025, 0.17, 0.5, and 0.83 percentile
are shown in Table I.~For a normal distribution with meanm
and variances2, these choices would correspond to t
pointsm22s,m2s,m, andm1s in the distribution.! Pre-
cise details of the fits are given in Table II. The estimates
the irrelevant exponent are consistent with those obtaine
Ref. 16 and are not shown again here.

Data for theq50.17 percentile are plotted in Fig. 1. I
Fig. 2 the same data, after subtraction of corrections to s
ing, are replotted to demonstrate single parameter sca
This is done by plotting the corrected data as a function
the ratio of the systems sizeL to the localization~correlation!
length j. When displayed in this way the data fall on tw
different curves corresponding to the localized~lower curve!
and the delocalized~upper curve! regimes. The two curves
are described by two scaling functionsF1 and F2 derived
from F0,

TABLE II. The details of the fit.Nd is the number of data.

q n0 nc n1 nf Np Nd x2 Q

0.025 3 2 1 0 10 179 159 0.7
0.17 2 2 1 0 9 179 155 0.8
0.5 3 2 1 0 10 179 172 0.4
0.83 3 2 1 0 10 179 180 0.3

FIG. 1. Theq50.17 percentile of the conductance distributio
for disorderedL3L3L systems versus system sizeL for disorder
W in the range~Refs. 15 and 18!. The lines are the fit of Eq.~8!.
6-3
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KEITH SLEVIN, PETER MARKOŠ, AND TOMI OHTSUKI PHYSICAL REVIEW B 67, 155106 ~2003!
F1~x!5 ln~gq!c1x1/n1•••1an0
xn0 /n, ~16!

F2~x!5 ln~gq!c2x1/n1•••1~21!n0an0
xn0 /n. ~17!

Data on the metallic branch follow

ln gq5F1S L

j1
D , ~18!

FIG. 3. Data for the median conductance (q50.5 percentile!,
together with the best fit of Eq.~8!, as a function of disorderW for
systems sizes in the rangeL56 –18.

FIG. 2. The data of Fig. 1, after subtraction of corrections
scaling, replotted as function of the ratioL/j to display single pa-
rameter scaling. The lines are the scaling functions~16! and ~17!
described in the text.
15510
while data on the the insulating branch follow

ln gq5F2S L

j2
D . ~19!

For completeness some representative data for the me
(q50.5) andq50.87 percentiles appear in Figs. 3 and
respectively.

We also analyzed theq50.975 percentile of the distribu
tion but were unable to convincingly fit its systems’ size a
disorder dependence. The origin of the difficulties may
the large corrections to scaling encountered for this perc
tile. Larger systems sizes will probably be needed for a
finitive analysis of the high-conductance tail of the distrib
tion.

For the percentiles analyzed the estimates of the crit
disorder and the critical exponent obtained from the sca
of different percentiles are consistent as required. The e
mates of the critical exponent in Table I are consistent w
our previous estimates based on the scaling of the loca
tion length in quasi-one-dimensional systems,15 scaling of
higher Lyapunov exponents,22,23 and scaling of the mean
conductance, mean resistance, and typical conductan16

The estimates are also consistent with numerical estim
reported by other authors.24–26

IV. CONCLUSION

Our numerical results demonstrate single parameter s
ing of the zero-temperature conductance distribution in
critical regime of the Anderson transition in three dime
sions. This result complements a previous demonstratio

FIG. 4. The data for theq50.83 percentile after corrections t
scaling are subtracted and plotted as function of the ratioL/j to
make single parameter scaling evident. The lines are the sca
functions~16! and ~17! described in the text.
6-4
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the scaling of the mean conductance, typical conducta
and mean resistance.16

A two parameter scaling of the conductance distributi
similar to that found by Deychet al.14 for one-dimensional
systems, might be recovered in the strongly localized regi
The localization length diverges at the critical point whilel s ,
which is related to the integrated density of states, is alw
finite. Thus, on approaching the critical point we should
ways findj. l s and single parameter scaling should be o
served. Far from the critical point, ifj becomes less thanl s ,
a two parameter scaling might appear. It remains to be s
a

x

he

A

tt.
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however, if the results of Deychet al. carry over to higher
dimensions.
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23P. Markoš, J. Phys. A33, L393 ~2000!.
24A. MacKinnon, J. Phys.: Condens. Matter6, 2511~1994!.
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